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Abstract. Abductive Logic Programming (ALP) has been proven very
effective for formalizing societies of agents, commitments and norms, in
particular by mapping the most common deontic operators (obligation,
prohibition, permission) to abductive expectations.
In our previous works, we have shown that ALP is a suitable framework
for representing norms. Normative reasoning and query answering were
accommodated by the same abductive proof procedure, named SCIFF.
In this work, we introduce a defeasible flavour in this framework, in order
to possibly discharge obligations in some scenarios. Abductive expecta-
tions can also be qualified as dischargeable, in the new, extended syntax.
Both declarative and operational semantics are improved accordingly,
and proof of soundness is given under syntax allowedness conditions.
The expressiveness and power of the extended framework, named SCIFFD,
is shown by modeling and reasoning upon a fragment of the Japanese
Civil Code. In particular, we consider a case study concerning manifes-
tations of intention and their rescission (Section II of the Japanese Civil
Code).

1 Introduction

A normative system is a set of norms encoded in a formal language, together
with mechanisms to reason about, apply, and modify them. Since norms pre-
serve the autonomy of the interacting parties (which ultimately decide whether
or not to comply), normative systems are an appropriate tool to regulate inter-
action in multi-agent systems [15]. Usually, norm definitions build upon notions
of obligation, permission and prohibition, in the tradition of Deontic Logic [36].

When formalizing norms, a natural approach is to encode them as impli-
cations; semantically, implications naturally represent conditional norms, where
the antecedent is read as a property of a state of affairs and the consequent as its
deontic consequence, and operationally rule-based systems offer support for rea-
soning and drawing conclusions from norms and a description of the system they
regulate. Applications of computational logic to formalize norms include logic



programming for the British Nationality Act [35], argument-based extended logic
programming with defeasible priorities [33], defeasible logic [27].

As mentioned above, normative systems have been applied in multi-agent sys-
tems [15]. Among the organizational models and [19, 18] exploit Deontic Logic to
specify the society norms and rules. Significant portions of EU research projects
were devoted to formalizing norms for multiagent systems; namely, the ALFEBI-
ITE project [11] was focused on the formalization of an open society of agents
using Deontic Logic, and in the IMPACT project [12, 20] an agent’s obligations,
permissions and prohibitions were specified by corresponding deontic operators.

The EU IST Project SOCS proposed various Abductive Logic Programming
(ALP) languages and proof procedures to specify and implement both individual
agents [17] and their interaction [4]; both approaches have later been applied to
modeling and reasoning about norms with deontic flavours [7, 34].

ALP has been proved a powerful tool for knowledge representation and rea-
soning [30], taking advantage of ALP operational support as a (static or dy-
namic) verification tool. ALP languages are usually equipped with a declara-
tive (model-theoretic) semantics, and an operational semantics given in terms
of a proof-procedure. Fung and Kowalski proposed the IFF abductive proof-
procedure [23] to deal with forward rules, and with non-ground abducibles. It
has been later extended [5], and the resulting proof procedure, named SCIFF,
can deal with both existentially and universally quantified variables in rule heads
and Constraint Logic Programming (CLP) constraints [28]. The resulting sys-
tem was used for modeling and implementing several knowledge representation
frameworks, such as deontic logic [7], where the deontic notions of obligation
and permission are mapped into special SCIFF abducible predicates, norma-
tive systems [6], interaction protocols for multi-agent systems [8], Web services
choreographies [3], and Datalog± ontologies [24].

In this work, we present SCIFFD, an extension of the SCIFF framework,
which introduces a defeasible flavour in the norm portion of the framework, as
a mechanism for discharging obligations: intuitively, rather than removing an
abductive expectation representing obligation with a sort of contraction [10], we
mark it as discharged to indicate that the lack of a fulfilling act is not a violation
of the norms. Both declarative and operational semantics are extended accord-
ingly, and a proof of soundness is given under syntax allowedness conditions.

Thanks to this extension, we are better able to cope with real-life norms,
even in the legal domain.

The paper is organized as follows. In Section 2, we first recall the SCIFF lan-
guage, also mentioning its declarative semantics and its underlying proof proce-
dure, and discuss a case study from Section II of the Japanese Civil Code. Then,
in Section 3, we introduce the SCIFFD syntax, with a novel abducible for dis-
charging obligations (namely, expectations); we also discuss the formalization of
a further article from the Japanese Civil Code. Section 4 extends the declarative
and operational semantics accordingly, and presents the proof of soundness for
the extended framework. In Section 5 we discuss related work and in Section 6
we conclude the paper.
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2 SCIFF language and semantics

As a running example, we consider, throughout the paper, article 96 (“Fraud or
duress”) of the Japanese civil code (see, for example, [29]). In order to model,
and discuss it, we first provide an informal description of the SCIFF language;
for formal definitions, we refer the reader to [7].

The SCIFF language. In SCIFF, the agent behaviour is described by means
of events (actual behaviour) and expectations (expected behaviour):

– events are atoms of the form H(Content ,Time)
– expectations are abducible atoms of the following possible forms, which,

while not being modal operators, can be given a deontic reading as shown
in [7]: E(Content ,Time): positive expectations, with a deontic reading of
obligation; EN(Content ,Time): negative expectations, read as prohibition;
¬E(Content ,Time): negation of positive expectation, or explicit absence
of obligation; ¬EN(Content ,Time): negation of negative expectation, or
explicit permission.

where Content is a logic term that describes the event and Time is a variable or
a term representing the time of the event. CLP constraints can be imposed over
variables; for time variables, they represent time constraints, such as deadlines.

A SCIFF program is a pair 〈KB, IC〉, where KB is a set of logic program-
ming clauses (used to express domain specific knowledge) which can have ex-
pectations, but not events, in their bodies, and IC is a set of implications called
Integrity Constraints, which implicitly define the expected behaviour of the in-
teracting parties. Function symbols and arbitrary nesting of terms are allowed.
Each Integrity Constraint (IC) in IC has the form Body → Head, where Body
is a conjunction of literals defined in KB, events and expectations, while Head
is a disjunction of conjunctions of expectations.

Thanks to their implication structure and the deontic reading of expectations
shown in [7], ICs can be read as conditional norms [6].

Case study In order to model article 96 (“Fraud or duress” from the Japanese
Civil Code), we describe the content of events and expectations by means of the
following terms:

– intention(A,B, I, IdI): person A utters a manifestation of intention to per-
son B, with identifier IdI for action I;

– do(A,B): person A performs act B;
– induce(A,B): act A induces act B;
– rescind(A,B, I, F, IdI , IdR): person A rescinds, with identifier IdR, his or

her intention, uttered to B and identified by IdI , to perform action I, due
to fraud or duress F ;

– know(A,F ): person A becomes aware of fact F ;
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– assertAgainst(A,B, IdR): person A asserts the legal act identified by IdR
against person B.

Legally relevant acts (intention, rescind, assertAgainst) have identifiers.
The following integrity constraint states that a manifestation of intention

should, in general, be followed by the performance of the act.

H(intention(A,B, I, IdI), T1)→ E(do(A, I), T2) ∧ T2 > T1 (1)

Each of the following integrity constraints models one of the paragraphs of Ar-
ticle 96. Here, fraudOrDuress/1 is a predicate, defined in KB, which specifies
which actions count as fraud or duress.

1. Manifestation of intention which is induced by any fraud or duress may be
rescinded.

H(intention(A,B, I, IdI), T1) ∧H(do(B,F ), T3) ∧H(induce(F, I), T2)

∧ fraudOrDuress(F ) ∧ T3 < T2 ∧ T2 < T1 ∧ T1 < T4

→¬EN(rescind(A,B, I, F, IdI , IdR), T4)

(2)

2. In cases any third party commits any fraud inducing any person to make a
manifestation of intention to the other party, such manifestation of intention
may be rescinded only if the other party knew such fact.

H(intention(A,B, I, IdI), T1) ∧H(do(C,F ), T3) ∧ C 6= B

∧H(know(B,F ), T5) ∧H(induce(F, I), T2)

∧ fraudOrDuress(F ) ∧ T2 < T1 ∧ T3 ≤ T5 ∧ T5 < T1

→¬EN(rescind(A,B, I, F, IdI , IdR), T4) ∧ T4 > T1

(3)

3. The rescission of the manifestation of intention induced by the fraud pur-
suant to the provision of the preceding two paragraphs may not be asserted
against a third party without knowledge.

H(rescind(A,B, I, F, IdI , IdR), T1) ∧ not H(know(C,F ), T2)

→EN(assertAgainst(A,C, IdR), T3) ∧ T1 < T3
(4)

Declarative semantics. The abductive semantics of the SCIFF language de-
fines, given a set HAP of H atoms called history and representing the actual
behaviour, an abductive answer, i.e., a ground set EXP of expectations that

– together with the history and KB, entails IC:

KB ∪HAP ∪EXP |= IC (5)

where |= is entailment according to the in 3-valued completion semantics.

4



– is consistent with respect to explicit negation;

{E(Content ,Time),¬E(Content ,Time)} * EXP∧
∧{EN(Content ,Time),¬EN(Content ,Time)} * EXP

(6)

– is consistent with respect to the meaning of expectations

{E(Content ,Time),EN(Content ,Time)} * EXP (7)

– is fulfilled by the history, i.e.

if E(Content ,Time) ∈ EXP then H(Content , T ime) ∈ HAP and (8)

if EN(Content ,Time) ∈ EXP then H(Content , T ime) 6∈ HAP (9)

Operational Semantics. Operationally, the SCIFF abductive proof procedure
finds an abductive answer if one exists, or detects that no one exists (see [5] for
soundness and completeness statements), meaning that the history violates the
SCIFF program. We call the two cases success and failure, respectively. The
SCIFF proof-procedure is defined through a set of transitions, each rewriting
one node of a proof tree into one or more nodes. The basic transitions of SCIFF
are inherited from the IFF [23], and they account for the core of abductive
reasoning. Other transitions deal with CLP constraints, and are inherited from
the CLP [28] transitions. Due to lack of space, we cannot describe in detail all
transitions; we sketch those dealing with the concept of expectation, that are
most relevant for the rest of the paper.

In order to deal with the concept of expectation, in each node of the proof
tree, the set of abduced expectations EXP is partitioned into two sets: the
fulfilled (FULF), and pending (PEND) expectations.

Transition Fulfillment E deals with the fulfillment of E expectations: if an
expectation E(E, TE) ∈ PEND and the event H(H,TH) is in the current history
HAP, two nodes are generated: one in which E = H, TE = TH and E(E, TE)
is moved to FULF, the other in which E 6= H or TE 6= TH (where 6= stands for
the constraint of disunification).

Transition Violation EN deals with the violation of EN expectations: if an
expectation EN(E, TE) ∈ PEND and the event H(H,TH) ∈ HAP, one node is
generated where the constraint E 6= H ∨ TE 6= TH is imposed, possibly leading
to failure.

When there are no more relevant events, history closure is applied; in this
case, all remaining E expectations in PEND are considered as violated and
failure occurs.

As regards complexity, the SCIFF language is an extension of Prolog, and,
as such, it is Turing-complete; so a SCIFF evaluation, in general, may not ter-
minate. Even if in the propositional case, Gottlob and Eiter [21] proved that the
complexity of abduction is ΣP

2 -complete.
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3 SCIFFD language

In legal reasoning, expectations can be discharged not only because they become
fulfilled by matching the actual behaviour of the agent, but also for other reasons.
For example, in case a contract is declared null, the agents are no longer expected
to perform the actions required in the contract.

We introduce an extension of the SCIFF language to deal with expectations
that do not hold any longer. We introduce two new abducible atoms, D(E) and
D(EN), which mean that an expectation is discharged; for example, the atom

D(E(X,T ))

means that the expectation E(X,T ) is no longer required to be fulfilled, as it
has been discharged.

The integrity constraints can have D atoms, which can be abduced.

Example 1. The user might write an IC saying that, if a contract with identifier
IdC is null (represented in this example with an abducible NULL, carrying the
identifier of the contract and that of the reason for nullification), all expectations
requiring an action in the context of that contract are discharged:

NULL(IdC , Idnull)∧E(do(Agent,Action, IdC), Tdo)
→ D(E(do(Agent,Action, IdC), Tdo)).

(10)

We can express that a contract that is explicitly permitted to be rescinded can be
nullified as

¬EN(rescind(A, I, F, IdI , IdR), Tr) ∧H(rescind(A, I, F, IdI , IdR), Tr)

→NULL(IdI , IdR)
(11)

The combined effect of ICs (10) and (11) is that rescission is only effective when
the circumstances grant an explicit permission.

Example 2. As a second case study from the Japanese Civil Code, we consider
Article 130, which states “In cases any party who will suffer any detriment as
a result of the fulfillment of a condition intentionally prevents the fulfillment
of such condition, the counterparty may deem that such condition has been
fulfilled”. Article 130 can be modeled as follows:

H(do(Agent1, Action1), T1) ∧E(do(Agent2, Action2), T2)

∧ detrimental(Action2, Agent1) ∧ prevent(Action1, Action2)

→ D(E(do(Agent2, Action2), T2))

(12)

where detrimental/2 and prevent/2 are predicates defined in the KB to specify
when, respectively, an action is detrimental to an agent and when an action
prevents another.
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Syntactic restrictions The following syntactic restriction is used in the proof of
soundness.

Definition 1. Weak D-allowedness. An IC containing a D atom is weakly D-
allowed if there is only one D atom, it occurs in the head, and the head contains
only that atom.

A KB is weakly D-allowed if none of its clauses contains D atoms.
A SCIFFD program 〈KB, IC〉 is weakly D-allowed if KB is weakly D-allowed

and all the ICs in IC are weakly D-allowed.

The following restriction is not necessary for the soundness results proved in
Sect. 4.3, but it allows a more efficient treatment of the D atoms. Note that all
the examples presented in this paper satisfy the restriction.

Definition 2. Strong D-allowedness. An IC containing a D atom is strongly
D-allowed if it is weakly D-allowed and the (only) expectation in the D atom
occurs identically in the body of the IC.

Intuitively, the given notion of strong D-allowedness allows one to define ICs that
select one expectation and make it discharged, subject to conditions occurring
in the body. This syntactic restriction is aimed at capturing the most common
scenarios while trying to maintain an efficient execution.

In fact, if the strong allowedness condition is lifted, it is not required for an
atom E(X) to have been abduced before declaring it discharged. If two atoms
E(X) and D(E(Y )) are abduced, two options have to be explored, as alterna-
tives: either X unifies with Y , and the expectation E(X) becomes discharged,
or X and Y do not unify (e.g., by imposing a dis-unification constraint X 6= Y ).
These cases, the SCIFF proof-procedure opens a choice point; this means that,
in case |E| expectations E are abduced and |D| D atoms are abduced, |E||D|
choice points will be created, each opening 2 alternative branches, which would
generate 2|E||D| branches (of course, the same could be said for EN expecta-
tions).

We performed an experiment to verify this worst-case analysis. We generated
a number of E(X) and D(E(Y )) atoms, and measured the time SCIFFD took to
find the first solution and all solutions (all experiments were run on a Intel Core
i7-3720QM CPU @ 2.60GHz running SWI-Prolog version 7.4.0-rc1 on Linux
Mint 18.1 Serena 64 bits). For all solutions (Figure 1 right), the running time
follows closely the foreseen 2|E||D|, while for one solution (Figure 1 left), the
running time seems dependent mainly on the number of raised expectations and
almost independent from the number of D atoms. Note also the different scales:
finding one solution takes at most 3 seconds with 100 expectations and discharge
atoms, while finding all solutions takes almost 3 hours with |E| = |D| = 8.

From a language viewpoint, the strong allowedness condition restricts the
set of expectations that can be discharged to those that have been raised. With-
out such restriction, one could abduce a generic atom D(E(X)) saying that
one expectation is discharged. Semantically, this would mean that one of the
expectations might be discharged, although it is not said which one.
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Fig. 1. Experiments with different numbers |D| of D atoms and |E| of E atoms; time
in seconds for finding one solution (left) or all solutions (right).

Dischargement scenarios The remainder of this section is devoted to discuss
an example concerning manifestation of intention (Section II of the Japanese
Civil Code), modeled in SCIFFD and one concerning prevention of fulfillment
of conditions. Sections presenting the declarative and operational semantics of
the extended framework and proof of soundness then follow.

Example 3. (Example 1 continued).

Let us consider the case study of section 2 again, and assume that work on an
acquired good G is to be paid by the good’s owner O, unless O rescinds the good’s
purchase and asserts the rescission against the performer of the work M (which,
due to integrity constraint (4), is only allowed if the performer was aware of the
rescission’s cause, such as a fraud). We can express this norm by means of the
following integrity constraint:

H(work(M,G,O,W ), T1)

→E(pay(O,M,W ), T2) ∧ T1 < T2

∨(E(rescind(O,B, buy(G), F, IdI , IdR), T3)

∧E(assertAgainst(O,M, IdR), T4)

∧ T1 < T3 ∧ T3 < T4)

(13)

where the term work(M,G,O,W ) represents mechanic M doing work W on the
good G owned by O, and the term pay(O,M,W ) represents owner O paying
mechanic M for work W .

The KB states that fixing a car’s mileage constitutes fraud or duress.

fraudOrDuress(fixMileage(C)) (14)
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In the scenario defined by the following history

H(do(bob, fixMileage(car)), 1)

H(induce(fixMileage(car), buy(car)), 2)

H(intention(alice, bob, buy(car), i1), 3)

H(work(mechanic, car, alice, lpgSystem), 4)

H(rescind(alice, bob, buy(car), fixMileage(car), i1, i2), 5)

(15)

Alice’s rescission is explicitly permitted by IC (2), because her manifestation
of intention was induced by Bob’s fraudulent act of fixing the car’s mileage;
the expectation E(do(alice, buy(car)), T ), raised because of IC (1), is discharged
because of ICs (10) and (11).

However, since the mechanic was not aware of Bob’s fraud, IC (4) prevents
Alice from asserting the rescission against him, so the second disjunct in IC
(13) cannot hold, and Alice still has to pay him for installing the LPG system
(E(pay(alice,mechanic, lpgSystem, T2))). For the history that contains all the
events in formula (15), plus H(know(mechanic, fixMileage(car)), 1) (i.e., the
mechanic is now aware of the car’s mileage being fixed), alice is not prohibited
from asserting the rescission against the mechanic by integrity constraint (4).
With the event H(assertAgainst(alice,mechanic, i2), 6), the second disjunct in
the head of integrity constraint (13), is satisfied and alice is not obliged to pay
the mechanic for his work.

Example 4. Consider the following scenario, where an order by a customer should
be followed by a delivery by the seller:

H(order(Customer, Seller,Good), Torder)

→ E(do(Seller, deliver(Good)), Tdelivery) ∧ Tdelivery > Torder.
(16)

Suppose that Alice placed an order, but in the meanwhile she was diagnosed a rare
immunodeficiency, and she cannot meet people, except her family members. Her
mother usually lives with her, but today she went out, so Alice locked the door,
as it would be detrimental for her if any person got in the house. This prevents
any delivery, but it is a minor issue for her compared to the consequences that
Alice should face in case she met a stranger.

detrimental(deliver(Good), alice).

prevent(lockDoor, deliver(Good)).
(17)

Given the following history

H(order(alice, bob, computer), 1)

H(do(alice, lockDoor), 2)
(18)

the expectation for Bob to deliver the good, raised by IC (16), is discharged by
IC (12), because Alice performed an action that prevents the fulfillment.
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4 SCIFFD Declarative and Operational Semantics

4.1 Declarative Semantics

We now show how to deal with the discharge of expectations in the context
of ALP. We first give an intuitive definition, then show its pitfalls and finally
provide a correct definition.

In order to accept histories in which expectations may not have matching
events, we need to extend the definition of fulfillment of expectations given in
equations (8) and (9); intuitively, a positive expectation is fulfilled if either there
is a matching event or if the expectation has been discharged:

if E(Content ,Time) ∈ EXP
then H(Content , T ime) ∈ HAP ∨D(E(Content ,Time)) ∈ EXP

(19)

and symmetrically for a negative expectation:

if EN(Content ,Time) ∈ EXP
then H(Content , T ime) 6∈ HAP ∨D(EN(Content ,Time)) ∈ EXP

(20)

However in this way there could exist abductive answers with D literals even
if there is no explicit rule introducing them. For example, in the history of
formula (15) an abductive answer would be3

¬EN(rescind(alice, bob, buy(car), fixMileage(car), i1, ), T2),
D(EN(assertAgainst(alice, , i2), ))
D(E(do(alice, buy(car), i1), ))
D(E(pay(alice,mechanic, lpgsystem), ))
NULL(i1, i2)

since it satisfies equations (5) (which takes into account knowledge base and
integrity constraints), (6), (7), (19) and (20). Note that Alice is no longer re-
quired to pay the mechanic, because although no IC introduces explicitly the
dischargement of the expectation that she should pay, the abductive semantics
accepts the introduction of the literal D(E(pay(alice,mechanic, lpgsystem), )).

We propose the following semantics.

Definition 3. Abductive answer.
If there is a set EXP such that

1. satisfies equations (5), (6), and (7)
2. is minimal with respect to set inclusion within the sets satisfying point 1,

considering only D atoms; more precisely: there is no set EXP′ satisfying
point 1 and such that EXP′ ⊂ EXP and EXP = EXP′ ∪ F , where F
contains only D atoms

3. satisfies equations (19) and (20)

then the set EXP is an abductive answer, and we write 〈KB, IC〉 |=EXP true.
3 For brevity, we omit an expectation E(x) if we have already its discharged version
D(E(x)).
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4.2 Operational Semantics

Operationally, the proof procedure is extended with transition Dischargement.
If EXP contains two atoms E(x, T ) ∈ PEND and D(E(x, T )), then atom

E(x, T ) is moved to the set FULF of fulfilled expectations.
Similarly, if EXP contains two atoms EN(x, T ) ∈ PEND and D(EN(x, T )),

then atom EN(x, T ) is moved to the set FULF of fulfilled expectations.
Another modification is that transition EN violation is postponed after all

other transitions (including the closure of the history). In fact, if we have H(x, 1),
EN(x, T ) and D(x, T ), a failure would occur if the proof-procedure applied first
EN violation. Instead, if Dischargement is applied first, expectation EN(x, T )
is moved to the FULF set and transition EN violation is no longer applicable.

In case, at the end of a derivation, there are still expectations that are not
fulfilled, the derivation is a failure derivation (and backtracking might occur to
explore another branch, if available).

If a computation terminates with success, we write 〈KB, IC〉 `EXP true.

4.3 Soundness

We are now ready to give the soundness statements; these statements rely on
the soundness and completeness theorems of the SCIFF proof-procedure, so they
hold in the same cases; for the SCIFF allowedness conditions over knowledge
base and integrity constraints, we refer the reader to [5].

Theorem 1. (Soundness of success) If 〈KB, IC〉 is weakly D-allowed and
〈KB, IC〉 `EXP true then 〈KB, IC〉 |=EXP true

Proof. If no D atoms occur in IC, the procedure coincides with SCIFF, which
is sound [5]. In the case with D atoms in IC, the procedure might report success
in cases in which SCIFF reports failure due to the extended notion of fulfillment
(eq. (19) and (20)). In such a case, the D atom must have been generated, and
the only way to generate it is through an IC having such atom in the head (see
Definition 1).

The procedure generates the atom only if the body of the IC is true. If the
body is true, it means (from the soundness of SCIFF) that it is true also in the
declarative semantics, so the D atom must be true also declaratively. In such a
case, eq. (19) (or (20)) is satisfied, meaning that the success was sound. �

Theorem 2. (Soundness of failure) If 〈KB, IC〉 is weakly D-allowed and
〈KB, IC〉 |=EXP true, then ∃EXP′ ⊆ EXP such that 〈KB, IC〉 `EXP′ true

Proof. If there are no D atoms in IC, the procedure coincides with SCIFF, so
the completeness theorem of SCIFF holds [5]. In the case with D atoms in IC,
the declarative semantics allows as abductive answers some sets that would not
have been returned by SCIFF, and in which expectations are not fulfilled by
actual events, but discharged through an abduced D atom.

Consider such an abductive answer EXP. We prove by contradiction that
each D atom in EXP occurs in the head of an IC whose body is true. In fact, if
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a D atom in EXP was not in the head of an IC whose body is true, then the set
EXP′ obtained by removing the D atom from EXP would satisfy equation (5).
On the other hand, since EXP satisfies equations (6) and (7) and those equations
do not involve D atoms, also EXP′ satisfies those equations. This means that
EXP does not satisfy condition 2 of Definition 3, which means that EXP was
not an abductive answer and we get a contradiction.

Since each D atom occurs in the head of an IC whose body is true, the proce-
dure applies such IC and abduces that atom. This means that the corresponding
expectation becomes discharged, and hence it does not cause failure. �

5 Related Work

Many authors have investigated legal and normative applications of deontic
logics. The use of such logics was initially debated when taking into account
permissions. For example, in [16] the authors present an approach based on in-
put/output logics [32] for formalizing conditional norms, obligations and permis-
sions in a scenario where many hierarchically organized authorities are present.
In such a scenario, there can be norms that are more important than others and
therefore the authors consider a hierarchy of norms, defined by “meta-norms”,
and different types of permissions with different strenghts. However, the focus
of [16] is on helping the legislator to understand how the modification of a norm
or the definition of a new one may change the whole normative system. In fact,
following the input/output logic’s semantics, [16] is not concerned about the
truth value of formulae representing (part of) norms but defines a cause-effect
link between inputs and obligatory outputs in an abductive-like way.

Recently deontic logics have been increasingly applied to legal domains. In
[26] the authors discuss the impact new contracts, which introduce new con-
straints, may have on already existing business processes. The authors present
a logic called FCL (Formal Contract Language), based on RuleML, for repre-
senting contracts in a formal way. The language allows automatic checking and
debugging, analysis and reasoning [25]. In [26] a normal form of FCL, called
NFCL, is presented with the aim of having a clean, complete and non-redundant
representation of a contract. This normal form is obtained by merging the new
constraints with the existing ones and cleaning up the redundancies by using the
notion of subsumption. The result points out possible conflicts among contracts
and how each contract is intertwined with the whole business process. Similar
results can be accomplished with SCIFFD which allows checking the consistency
of the SCIFFD program representing the constraints of the business process.

A different approach is the combination of temporal logics with deontic log-
ics. An example is given in [1], where the authors define Normative Temporal
Logic (NTL) which replaces the standard operators of the well-known CTL [22]
with deontic operators. The use of time, which forces the sequentiality of the
constraints, avoids many paradoxes typical of standard deontic logic, such as
those involving contrary-of-duty. Moreover, the authors present the Simple Re-
active Modules Language (SRML) which follows NTL and allows the execution of
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model checking in four different scenarios depending on the presence or absence
of an interpretation of the normative system and on the definition of the model
under examination. Similarly, SCIFFD can manage time although it does not
follow the temporal logic semantics. A similar approach is proposed by the same
authors in [2] where they present the Norm Compliance CTL (NCCTL). This
logic extends CTL by adding a new deontic-like operator P modeling coalitions
between norms which cooperate in the normative system. NCCTL is equipped
with a model checker, called NorMC [31]. Since SCIFF performs on-the-fly
checking of compliance, the two systems cannot be directly compared.

The AD system [9] is a deontic logic that supports defeasibile obligations by
means a revision operator (called f), which represents the assumptions that nor-
mally come with an explicitly stated condition. Intuitively, fA ⇒ O(B) means
that A implies that B is obligatory, as long as the usual assumptions about A
are true. The SCIFFDsemantics implements an implicit assumption that an ex-
pectation is not discharged (and is therefore required to be fulfilled), which can
be defeated by an explicit dischargement atom (which allows for the expectation
not to be fulfilled).

This paper shows that representing and reasoning with norms facilitate for
the adoption of such approaches in many scenarios. Checking whether certain
facts are compliant with the normative system in use is in fact often needed.
Abductive frameworks such as SCIFFD can also be used, for example, in foren-
sics for analysing and arguing on evidence of a crime or for explaining causal
stories, sequence of states and events forming (part of) a case. Such stories must
be coherent and there must be a process, usually abductive, able to prove their
truthfulness. These necessities are pointed out for example in [13, 14], where
the authors present a hybrid framework which combines the two most used ap-
proaches in reasoning about criminal evidences: argumentative and story-based
analysis. Both of them could benefit from the use of normative systems.

6 Conclusions

In this article we continue our line of research that applies abductive logic pro-
gramming to the formalization of normative systems.

We introduced the SCIFFD language, extending the SCIFF abductive frame-
work with the notion of dischargeable obligation. Dischargeable obligations can
occurr in the head of forward rules (named ICs), fired under specific conditions
mentioned in the body of the rules. The SCIFFD declarative semantics and its
operational counterpart for verification accordingly extend SCIFF’s, and sound-
ness is proved under syntactic conditions over these (discharging) constraints.

To experiment the framework we considered case studies requiring the notion
of discharging of an obligation. In particular, we considered the articles in the
Japanese Civil Code that deal with the rescission of manifestation of intentions
and prevention of fulfillment of conditions. We also show - informally - the result
of running the operational support upon this example in some simple scenarios.
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