
A Logic Based Approach to Multi-Agent

Systems

J. J. Alferes � P. Dell'Acqua+ E. Lammay J. A. Leite�

L. M. Pereira� F. Riguzziy

� Centro de Inteligência Arti�cial - CENTRIA

Departamento de Inform�atica, Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

fjja,jleite,lmpg@di.fct.unl.pt
+ Department of Science and Technology, Campus Norrk�oping,

Link�oping University, Norrk�oping, Sweden

pier@itn.liu.se

y Dipartimento di Ingegneria, Universit�a di Ferrara,

Via Saragat 1, 44100 Ferrara, Italy

elamma@deis.unibo.it

friguzzi@ing.unife.it

1 Research Work

The research group at CENTRIA UNL in Lisbon, in collaboration with Fer-

rara and Link�oping, has been quite active in the �eld of Logic Programming

(LP) geared towards rational agents over several years, and has investigated a

spate of rational agent functionalities and their implementations. In particular,

the Lisbon group has been active in the �elds of learning, abduction, updat-

ing, argumentation, paraconsistency, belief revision, soft LP, contradicition re-

moval, diagnosis, and debugging1. These research directions are all included in

the broader long term research avenue of building evolving and collaborative

rational epistemic agents, whose overarching objective is to establish a
exible

declarative language for the speci�cation and implementation of dynamic knowl-

edge construction in a society of agents. In [32, 33], the philosophical foundations

and the general line of approach to the de�nition of rational agents, based on

and building upon the strengths of LP, have been put forward.

Other recent results by the team include the combination of various pieces

of knowledge, possibly originating in various agents, each of which with ascribed

priorities over the others, the totality being organized via an acyclic graph [25,

28].

The long term objective of the group speci�cally includes the building of

rational epistemic agents capable, in an integrated fashion, of reacting to a dy-

namic environment comprising other agents; managing and revising their goals,

1 Cf. project MENTAL \An Architecture for Mental Agents". Available at

http://centria.di.fct.unl.pt/�ica/mental/

knowledge, and beliefs; making hypotheses about the world in order to plan and

achieve the goals; learn with experience; and enabled with introspective capabil-

ities. For this LP has been successfully used both as the uni�ed encompassing

theoretical basis, and as the implementation vehicle.

A declarative language for specifying dynamic knowledge, also capable of

combining knowledge and its production in a dynamically con�gurable society

of agents, is a key ingredient for the long term goal. Agents receive information

from various sources, and this information must be combined [27]. An agent must

be able to adapt to a dynamic environment, and its knowledge must contain

information on how the agent can modify and communicate with it.

Herein we o�er an overview of the agent related results and research directions

of the group, complemented by pointers to publications, prototypes, project

reports, and ongoing work. We begin by introducing the foundational results in

Section 2, followed by portraying the general agent architecture in Section 3,

and by a speci�c agent theory in Section 4. Next, in Section 5, we present an

innovative concrete logic based genetic learning functionality, appropriate either

for a single agent or for a population of agents with distributed knowledge. A

subsequent section 6 envisages how the di�erent rational agent encompassing

functionalities can work in unison to bring about a society of epistemic agents.

Finally, a Conclusion section summarizes and draws out the importance of LP

for the whole endeavour.

2 Logics and Languages for Engineering Agents

Till recently, Logic Programming could be seen as a good representation lan-

guage for stactic knowledge. If we are to move towards a more open and dy-

namic environment, typical of the agency paradigm, we need to consider ways

of representing and integrating knowledge from di�erent sources which may also

evolve in time. Moreover, an agent not only comprises knowledge about each

state, but also some form of knowledge about the transitions between states.

This knowledge can latter represent the agent's knowledge about the environ-

ment's evolution, as well as its own actions' results and its internal evolution.

Since logic programs describe knowledge states, it's only �t that logic programs

describe transitions of knowledge states as well. It is natural to associate with

each state a set of transition rules to obtain the next state. Recent developments

have opened Logic Programming to these otherwise unreachable dynamic worlds.

In [2, 3], Dynamic Logic Programming (DLP) was introduced by us, following

the eschewing of performing updates on a model by model basis, but rather as a

process of rule updates [29, 30]. There, we have studied and de�ned the declara-

tive and operational semantics of sequences of logic programs (or dynamic logic

programs). Each program in the sequence contains knowledge about some given

state, where di�erent states may, for example, represent di�erent time periods

or di�erent sets of priorities. The introduction of Dynamic Logic Programming

has extended Logic Programming, making it possible for a program to undergo

a sequence of modi�cations. This opens up the possibility of incremental design

and evolution of logic programs, and therefore signi�cantly facilitating modu-

larization of programming in logic and, thus, modularization of non-monotonic

reasoning as well.

Dynamic Logic Programming does not by itself provide a proper language for

specifying (or programming) changes into logic programs. If knowledge is already

represented by logic programs, dynamic programs simply represent the evolution

of knowledge. But how is the evolving of knowledge speci�ed? What makes

knowledge evolve? It is natural to associate with each state a set of transition

rules to obtain the next state. Consequently, an interleaved sequence of states

and applicable rules of transition is obtained.

In [7, 6], the language LUPS { \Language for dynamic updates" { was in-

troduced, designed for specifying changes to logic programs. Given an initial

knowledge base (as a generalized logic program) LUPS provides a means for

sequentially updating it, by means of update commands. Besides simple uncon-

ditional assertions and rectractions of rules, LUPS also includes commands that

make such assertions/retractions dependent on conditions presently veri�ed in

the knowledge base, persistent commands that are applicable at every transition,

commands for cancelling persistent commands, and event assertion/retraction

commands valid only for the next transition. The declarative meaning of a se-

quence of sets of update commands in LUPS is de�ned by the semantics of the

corresponding dynamic logic program generated by those commands.

Imperative programming speci�es transitions and leaves states implicit. Logic

programming, traditionally, could not specify state transitions. Dynamic Logic

Programming, together with the language of dynamic updates LUPS makes both

states and their transitions declarative.

Even though the main motivation behind the introduction of Dynamic Logic

Programming was to represent the evolution of knowledge in time, several up-

dating dimensions may combine simultaneously, with or without the temporal

one, such as speci�city (as in taxonomies), strength of the updating instance (as

in the legislative domain), hierarchical position of knowledge source (as in orga-

nizations), credibility of the source (as in uncertain, mined, or learnt knowledge),

or opinion precedence (as in a society of agents). For this to be possible, DLP

needs to be extended to allow for a more general structure of states. In [25, 28]

we have introduced Multi-dimensional Dynamic Logic Programming (MDLP)

to generalize Dynamic Logic Programming to cater for collections of states orga-

nized by arbitrary acyclic digraphs, not just sequences of states.MDLP assigns

semantics to sets and subsets of logic programs, depending on how they stand

in relation to one another, as de�ned by the acyclic digraph (DAG) that repre-

sents the states and their con�guration. By dint of such natural generalization,

MDLP a�ords extra expressiveness, thereby enlarging the latitude of logic pro-

gramming applications uni�able under a single framework. The generality and

exibility provided by a DAG ensures a wide scope and variety of new possibil-

ities. By virtue of the newly added characteristics of multiplicity and composi-

tion,MDLP provides a \societal" viewpoint in Logic Programming, important

in these web and agent days, for combining knowledge in general.

Based on the strengths of MDLP as a framework capable of simultane-

ously representing several aspects of a system in a dynamic fashion, and on the

strengths of LUPS (and its extension to the multi-dimensional case) as a power-

ful language to specify the evolution of DAGs, by means of transitions, we have

launched ourselves into the design of an agent architecture, MINERVA [26],

with the intention of providing, on a sound theoretical basis, a common agent

framework grounded on the strengths of Logic Programming, so as to permit the

combination of several non-monotonic knowledge representation and reasoning

mechanisms developed in recent years, provided by the functionalities of diverse

agents.

3 Agent Architecture

In our opinion, to carry out their tasks, rational agents will require an admixture

of any number of the reasoning mechanisms mentioned in the Introduction. To

this end, a MINERVA agent is based on a modular design where a common

knowledge base is concurrently manipulated by specialized sub-agents (schemat-

ically depicted in Fig. 1). The common knowledge base contains all knowledge

shared by more than one sub-agent. It is conceptually divided in the following

components: Capabilities, Intentions, Goals, Plans, Reactions, Object Knowledge

Base and Internal Behaviour Rules, together with an internal clock. Although

conceptually divided into such components, all these modules will share a com-

mon representation mechanism based onMDLP and LUPS, the former to repre-

sent knowledge at each state and LUPS to represent the state transitions, i.e. the

common part of the agent's behaviour. Every agent is composed of specialized

function related sub-agents, that execute their various specialized tasks. These

sub-agents constitute the labour intensive part of theMINERVA architecture.

Their tasks reside in the evaluation and manipulation of the Common Knowl-

edge Base and, in some cases, in the interface with the environment in which the

agent is situated and possibly with private specialized procedures. They di�er

essentially in their speciality inasmuch as there are those implementing the reac-

tive, planning, scheduling, belief revision, goal management, learning, dialogue

management, information gathering, preference evaluation, strategy, and diag-

nosis functionalities. Whilst some of those sub-agent's functionalities are fully

speci�able in LUPS, others will require private specialized procedures where

LUPS serves as an interface language to them. Each of these sub-agents, there-

fore, contains a LUPS program encoding its behaviour and its interface with the

private procedures and environment These LUPS programs are \executed" by a

meta-interpreter, producing a sequence of states in the structures of the Com-

mon Knowledge Base. The collection of all such sequences of states, produced

by all the sub-agents will constitute the states of the MDLP .

Conceiving the architecture based on the notion of, to some extent, indepen-

dent sub-agents allows some degree of modularity, useful in what concerns the

adaptability of the architecture to di�erent situations since not all sub-agents

are required for all situations.This basic architecture a�ords us, we believe, with

�����������	

������
	

�
���
�� ���������

�
��
���
	

����	

������

�
������� ��	�

����� ���
	

���

�����

���

�����

���

�����

���

�����

���

�����

���

�����

���

�����

���

�����

�����
��

�
����
 �
�

	���� �

	���� �

	���� �

!��
� ����

Fig. 1. The MINERVA agent architecture

the elasticity and resilience to further support a spate of crucial ancillary func-

tionalities, in the form of additional specialized agents, via compositional, com-

munication, and procedural mechanisms.

4 Engineering Agent Theories

In [14, 15] we developed a speci�c logical formalization of a framework for multi-

agent systems and de�ned its semantics, based on the foundational work de-

scribed in section 2, and in [19, 5]. In it we can embed a
exible and powerful

kind of agent. In fact, these agents can be rational, reactive, abductive, able to

prefer and they can update the knowledge base of other agents (including their

own).

The knowledge state of each agent is represented by an abductive logic pro-

gram in which it is possible to express rules, integrity constraints, active rules

and priorities among rules. This renders the agents able to reason, to react to

the environment, to prefer among several alternatives, to update both beliefs

and reactions, and to abduce hypotheses to explain observations made.

These agents can be embedded into a multi-agent system in such a way that

the only form of interaction among them is based on the notions of project and

update. A project of the form �:C of an agent � denotes the intention of �

of proposing to update the theory of an agent � with C. Correspondingly, an

update of the form ��C in the theory of � denotes the intention of � to update

the current theory of � with C. It is then up to � whether or not to accept

that update. For example, if � trusts � and therefore � is willing to accept it,

then � has to update its theory with C. The new information may contradict

what � believes and, if so, the new believed information will override what is

currently believed by �. � can also propose an update to itself by issuing an

internal project �:C.

The semantics of the multi-agent system provides a logical description of

the agent interactions. The de�nition of the semantics depends also on the goal

that each agent has to prove at a certain moment. In fact, when proving a goal

the agent may abduce hypotheses that explain the goal. These in turn may

trigger reactive rules, and so on. Hypotheses abduced in proving a goal G are

not permanent knowledge, rather they only hold during the abductive proof of

G. To make them permanent, an agent can issue an internal project and then

update its own knowledge base with those hypotheses.

The engineering of our agent society is based exclusively on the notions of

projects and updates to model the agent interactions, and permits though sim-

ple, building autonomous and distributed agent systems. This form of interaction

is powerful and
exible, and a number of communication protocols can be built

on top of it. In [16] we argue that our present theory of the type of agents is a

rich evolvable basis suitable for engineering agent societies. In fact, the frame-

work assembles essential ingredients of an agent architecture needed to engineer

open, dynamic agent societies where the agents can self-organize themselves with

respect to their goals, and self-evolve. The overal \emerging" structure will be

exible and dynamic: each agent will have its own explicit representation of its

organization which, furthermore, is updatable by preferring.

Currently, we are implementing a prototype of our agents in Java. In par-

ticular, we are designing and implementing the mechanism that models the in-

terplay between the abilities of rationality and reactivity based on the notion

of interrupts. The knowledge base and the updating mecanism of the agent are

implemented in Prolog and run under the logic programming environment XSB

system [11] under the well-founded semantics. The Prolog implementation can

then be incorporated into the Java prototype via InterProlog [10], an interface

between the XSB system and Java.

5 A Logic Based Genetic Learning Facility

Belief revision is an important functionality that agents must exhibit: agents

should be able to modify their beliefs in order to model the outside world. More-

over, they need to perform this task in cooperation with other agents, because

access to knowledge and the knowledge itself are distributed in nature, i.e., each

agent has only a partial knowledge of the world.

In [20, 22, 21] we considered a de�nition of the belief revision problem that

consists in removing a contradiction from an extended logic program [34, 4, 8]

by modifying the truth value of a selected set of literals called revisables. The

program contains as well clauses with false (?) in the head, representing integrity

constraints. Any model of the program must ensure that the body of integrity

constraints be false for the program to be non-contradictory. Contradiction may

also arise in an extended logic program when both a literal L and its opposite

:L are obtainable in the model of the program. Such a problem has been widely

studied in the literature, and various solutions have been proposed [9, 13] that

are based on abductive logic proof procedures.

A new approach was proposed in [20, 22, 21, 23, 24] for performing belief re-

vision in a society of logic-based agents, by means of a (distributed) genetic

algorithm. The problem can be modeled by means of a genetic algorithm, by

assigning to each revisable of a logic program a gene in a chromosome. In the

case of a two-valued revision, the gene will have the value 1 if the corresponding

revisable is true and the value 0 if the revisable is false. The �tness function

that is used in this case is represented in part by the percentage of integrity

constraints that are satis�ed by a chromosome.

Each agent keeps a population of chromosomes and �nds a solution to the re-

vision problem by means of a genetic algorithm. We consider a formulation of the

revision problem where each agent has the same set of revisables and the same

program, but is subjected to possibly di�erent observations and constraints. Ob-

servations and constraints may vary over time, and can di�er from agent to agent

because agents may explore di�erent regions of the world. Each agent by itself

locally performs a genetic search in the space of possible revisions of its knowl-

edge, and exchanges genetic information by crossing its revisable chromosomes

with those of other agents. In this way, we achieve distribution in belief revision

since chromosomes coming from di�erent agents, through crossover, contribute

to solve the problem.

We have performed experiments comparing the evolution in beliefs of a single

agent informed of the whole of knowledge, to that of a society of agents, each

agent accessing only part of the knowledge. The experiments have been per-

formed on problems of model based diagnosis, a natural domain in which belief

revision techniques apply [13], and on the n-queen problem. In spite that the

distribution of knowledge increases the diÆculty of the problem, experimental

results [23] show that the solutions found in the multi-agent case are comparable

in terms of accuracy to those obtained in the single agent case.

The genetic algorithm we propose, besides encompassing the Darwinian op-

erators of selection, mutation and crossover, also comprises a Lamarckian oper-

ator. Darwin's theory is based on the concept of natural selection: only those

individuals that are most �t for their environment survive, and are thus able to

generate new individuals by means of reproduction. Moreover, during their life-

time, individuals may be subject to random mutations of their genes that they

can transmit to o�spring. Lamarck's theory, instead, states that evolution is due

to the process of adaptation to the environment that an individual performs in

its lifetime. The results of this process are then automatically transmitted to its

o�spring, via its genes. In other words, the abilities learnt during the life of an

individual can modify its genes.

Experimental evidence in the biological kingdom has shown Darwin's theory

to be correct and Lamarck's to be wrong, although the more recently evolved

concept of \meme" supports cultural Lamarckian evolution (cf. [12]). However,

in the �eld of genetic programming, Lamarckian evolution has proven to be

a powerful concept and various authors have investigated the combination of

Darwinian and Lamarckian evolution [18, 1, 31, 17].

The Lamarckian operator we propose di�ers from Darwinian ones precisely

because it modi�es a chromosome coding beliefs so that its �tness is improved

by experience rather than in a random way. We call memes those genes in the

chromosomes that can be modi�ed by the lamarckian operator. They may be a

subset of all the genes, i.e., not all the genes may be modi�ed by the Lamar-

ckian operator. The Lamarckian operator modi�es the memes by means of a

(logic-based) procedure inspired by [35]: the logical derivations leading to the

inconsistency of belief are traced so as to remove these derivations' support on

the meme coded assumptions, e�ectively by mutating the latter. In our algo-

rithm, therefore, computational logic is used in order to �nd good revisions that

are then distributed by means of the crossover genetic operator.

The adoption of computational logic methods in a genetic algorithm provides

an improvement over purely genetic approaches: in [20, 22, 21] we have shown

that the addition of the Lamarckian operator to a single-agent version of the

genetic algorithm improves the �tness that can be reached by the algorithm in a

given number of generation. In [20, 22, 21] we have also shown that the addition

of the Lamarckian operator to the multi-agent system has the same e�ect.

Moreover, in order to take into account the di�erent nature of memes, we

have modi�ed the Darwinian crossover operator so that memes of an another

agent can be acquired only if they have been checked for consistency, and pos-

sibly mutated by the Lamarckian operator, as a result of its own observational

experience. Experimental results show that this special treatment of memes leads

to improved results in terms of accuracy.

We believe our method to be important for situations where classical belief

revision methods hardly apply: those where environments are non-uniform and

time changing and especially those where the knowledge is distributed. These

environments can be explored by distributed agents that evolve genetically to

accomplish cooperative belief revision, if they use our approach.

6 A Dynamic Knowledge Framework

It is not too diÆcult to imagine how a combined process of rule generation, of

systematic diagnosis, and of rule revision by updating, can be used to achieve

automated theory learning, in an integrated way, within the uniform setting of

logic programming.

To initiate the learning, one starts with some �xed, already acquired, back-

ground knowledge in rule form, i.e. a theory, and with a rule generator to add

to it new purported knowledge, in order to explain abductively known observa-

tions, whether positive or negative, in the form of facts and explicitly negated

facts.

The goal is to generate rules that de�ne a positive concept as well as its

negated concept, so that they cover all known observation instances. This auto-

matic generation of new rules is subjected to a pre-de�ned bias, i.e. only some

rule forms, and predicates comprising them, are allowed in the generation pro-

cess. Newly generated rules may contradict one another, on some of the ob-

servation instances, and so they must be subjected to a diagnosis, to identify

alternative possible minimal revisions.

To decide which revision to adopt next, desirable new possible observations

are conceived of, with respect to the ongoing available theory, and whose results,

if known, would allow to decide among the competing revisions. The results of

these so-called crucial observations are then obtained, either by the program

soliciting them, or by a belief revision process subsequently executed to carry

out the actions leading to the observation results

Once the desired revisions are selected on the basis of the results, and of

also programmed preference criteria, the revisions are enacted by an update

procedure. Note that revised rules can themselves be subjected to later revisions

if needed.

Indeed, the whole process will be iterated on the basis of new incoming

knowledge, or by knowledge confrontation of among di�erently evolved auto-

mated theories, with distinct backgrounds, biases, rule generators, diagnosers,

revisors, preferences, planners, observations, and updating procedures, compris-

ing a rational agent.

Agent epistemic confrontation relies on argumentation and mutual debug-

ging. Besides the legislative and legal domain, the province of scienti�c discussion

too relies on such procedures, and can bene�t from their automation.

Tackling argumentation involves a set of tools similar to those of diagnosis

and debugging. Arguments can attack another argument's assumptions either

directly, by proving the negation of an assumption, or indirectly, by contradict-

ing a conclusion of other argument which rests on its assumptions. However,

such attacks by an argument upon another can, in turn, be counter-attacked in

the same way, and may in response counter-counter-attack, etc. logic program-

ming has shown how this process can be studied and conclusions drawn about

competing mutually contradictory arguments, and how they each can be revised

to reach agreement.

7 Conclusion

In both academia and industry it is increasingly felt that intelligent agents will be

a key technology as computing systems become ever more distributed, intercon-

nected, and open. In such environments, the ability of agents to autonomously

plan and pursue their actions and goals, to cooperate, coordinate, and negoti-

ate with others, and to respond
exibly and intelligently to dynamic and un-

predictable situations will lead to signi�cant improvements in the quality and

sophistication of the software systems that can be conceived and implemented,

and the application areas and problems which can then be addressed.

Our overall aim is that of establishing, on a sound theoretical basis, the design

of a general architecture for mental agents (i.e. comprising knowledge, beliefs,

and intentions) based on, and building on the strengths of logic programming.

The agents share a common changeable environment, itself modeled in logic

programming. The whole framework is being conceptualized in logic program-

ming, and experimented with by means of distributed logic programming [26].

The use of agents allows for information to be distributed, and shared, only

as the need arises. Thus knowledge manipulation complexity can be reduced.

EÆciency can be gained too by executing agents concurrently.

An agent must be able to manage its knowledge, beliefs, intentions (goals),

and plans, as it receives new information and instructions, and to react to chang-

ing conditions in the environment. It must also be capable of interacting with

other agents, by exchanging knowledge and beliefs, as well as of reacting to

other agents' requests. Any two such agents will be able to cooperate either

by diagnosing errors or missing information in each others' information base,

or to cooperate in the use of common resources, in avoiding undesired mutual

interference in their plans, and in joint belief revision to achieve a common goal.

Every agent is composed of specialized, possibly concurrent, function related

subagents, that execute the various goals and instructions assigned to it by the

agent. Examples of such subagents are those implementing the reactive, reason-

ing, belief revision, argumentation, explanation, learning, dialogue management,

information gathering, preference evaluation, strategy, and diagnosis functional-

ities. The subagents are coordinated by a meta-level layer that ensures internal

task distribution and belief revision, subagent communication, �nal decisions,

and all interaction with the outside, i.e. with both the environment and other

agents, including communication, interrupt handling, requests, and observations.

Although each agent has a meta-level coordination, a collection of interacting

agents has no such abode, and their collective behaviour will manifest (emergent)

properties that are diÆcult to foresee.

Because knowledge and belief are in general incomplete, contradictory, and

error prone | and all the more so in the multi-agent setting | we make use of

semantics, procedures, and implementations, for dealing with contradictory, in-

complete, erroneous, imperfect, vague and default information, abduction, belief

revision, debugging, and argumentation.

We attain reinforcement learning by using belief revision techniques for achiev-

ing an e�ect similar to back propagation. Such learning allows the evolving of the

strength of evidence attached to an agent's knowledge and beliefs, as a result of

their contribution to correct or incorrect conclusions. Furthermore, agents may

compare and combine their degrees of evidence, either to argue, to partake of

information, or to reach consensus. The use of genetic algorithms for evolving

belief \genes" (or \memes") is also a technique we have explored for learning,

and it opens up a new emergent �eld: that of linking the genetic algorithm ap-

proach to logic based knowledge evolution in an agent. Moreover, the exchange

of genetic material enables agents to cross-fertilize experiences.

The use of logic programming for the overall endeavour is justi�ed on the

grounds of it providing a rigorous single encompassing theoretical basis for the

aforesaid topics, as well as an implementation vehicle for parallel and distributed

processing. Additionally, logic programming provides a formal high level
exible

instrument for the rigorous speci�cation and experimentation with computa-

tional designs, making it extremely useful for prototyping, even when other,

possibly lower level, target implementation languages are envisaged.

To conclude, Logic Programming is, without a doubt, the privileged melting

pot for the articulate integration of functionalities and techniques, pertaining

to the design and mechanization of complex systems, addressing ever more de-

manding and sophisticated computational abilities. For instance, consider again

those reasoning abilities mentioned above. Forthcoming rational agents, to be

realistic, will require an admixture of any number of them to carrying out their

tasks. No other computational paradigm a�ords us with the wherewithal for

their coherent conceptual integration. And, all the while, the very vehicle that

enables testing its speci�cation, when not outright its very implementation. Or

is there?

Acknowledgements

The CENTRIA researchers acknowledge the support of PRAXIS projects MEN-

TAL and FLUX. The work of J. A. Leite was also supported by PRAXIS Schol-

arship no. BD/13514/97.

References

1. D. H. Ackely and M. L. Littman. A case for lamarckian evolution. In C. G.

Langton, editor, Arti�cial Life III. Addison Wesley, 1994.
2. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. C. Przymusinski.

Dynamic logic programming. In A. Cohn, L. Schubert, and S. Shapiro, editors,

Proceedings of the 6th International Conference on Principles of Knowledge Rep-

resentation and Reasoning (KR-98), pages 98{111, San Francisco, June 2{5 1998.

Morgan Kaufmann Publishers.
3. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. C. Przymusin-

ski. Dynamic updates of non-monotonic knowledge bases. The Journal of Logic

Programming, 45(1{3):43{70, September/October 2000.
4. J. J. Alferes and L. M. Pereira. Reasoning with Logic Programming, volume 1111

of LNAI. Springer-Verlag, 1996.

5. J. J. Alferes and L. M. Pereira. Updates plus preferences. In M. O. Aciego, I. P.

de Guzmn, G. Brewka, and L. M. Pereira, editors, Logics in AI, Procs. JELIA'00,

LNAI 1919, pages 345{360, Berlin, 2000. Springer.

6. J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS : A

language for updating logic programs. Arti�cial Intelligence. To appear.

7. J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS : A

language for updating logic programs. In Michael Gelfond, Nicola Leone, and

Gerald Pfeifer, editors, Proceedings of the 5th International Conference on Logic

Programming and Nonmonotonic Reasoning (LPNMR-99), volume 1730 of LNAI,

pages 162{176, Berlin, December 2{4 1999. Springer.

8. J. J. Alferes, L. M. Pereira, and T. C. Przymusinski. \Classical" negation in non-

monotonic reasoning and logic programming. Journal of Automated Reasoning,

20:107{142, 1998.

9. J. J. Alferes, L. M. Pereira, and T. Swift. Well-founded abduction via tabled dual

programs. In D. De Schreye, editor, Procs. of the 16th International Conference

on Logic Programming, pages 426{440, Las Cruces, New Mexico, 1999. MIT Press.

10. InterProlog. Available at http://www.declarativa.com/InterProlog/default.htm.

11. XSB-Prolog. Available at http://xsb.sourceforge.net/.

12. Susan Blackmore. The Meme Machine. Oxford U.P., Oxford, UK, 1999.

13. C. V. Dam�asio, L. M. Pereira, and M. Schroeder. REVISE: Logic programming and

diagnosis. In Proceedings of Logic-Programming and Non-Monotonic Reasoning,

LPNMR'97, volume 1265 of LNAI, Germany, 1997. Springer-Verlag.

14. P. Dell'Acqua and L. M. Pereira. Updating agents. In S. Rochefort, F. Sadri and

F. Toni (eds.), Procs. of the ICLP'99 Workshop on Multi-Agent Systems in Logic

(MASL'99), 1999.

15. P. Dell'Acqua and L. M. Pereira. Preferring and updating with multi-agents.

Submitted, 2001.

16. P. Dell'Acqua and L. M. Pereira. Preferring and updating in abductive multi-agent

systems. In A. Omicini, P. Petta, and R. Tolksdorf, editors, ESAW01, pages 53{66,

2001. Available at: http://lia.deis.unibo.it/confs/ESAW01/.

17. J. J. Grefenstette. Lamarckian learning in multi-agent environment. In Proc. 4th

Intl. Conference on Genetic Algorithms. Morgan Kau�man, 1991.

18. W. E. Hart and R. K. Belew. Optimization with genetic algorithms hybrids that

use local search. In R. K. Belew and M. Mitchell, editors, Adaptive Individuals in

Evolving Populations. Addison Wesley, 1996.

19. R. A. Kowalski and F. Sadri. Towards a uni�ed agent architecture that com-

bines rationality with reactivity. In D. Pedreschi and C. Zaniolo, editors, Logic in

Databases, Intl. Workshop LID'96, LNCS 1154, pages 137{149. Springer, 1996.

20. E. Lamma, F. Riguzzi, and L. M. Pereira. Logic aided lamarckian learn-

ing. In Proc. 5th Intl. Workshop on Multistrategy Learning, 2000. Avaliable at

http://www.ing.unife.it/docenti/FabrizioRiguzzi/msl00.ps.

21. E. Lamma, F. Riguzzi, and L. M. Pereira. Belief revision via

lamarckian evolution. Submitted for publication, available at

http://www.ing.unife.it/docenti/FabrizioRiguzzi/ga2001.ps, 2001.

22. Evelina Lamma, Fabrizio Riguzzi, and Lu��s Moniz Pereira. Belief revision by

lamarckian evolution. In First European Workshop on Evolutionary Learning (Ev-

oLEARN2001), LNCS. Springer-Verlag, 2001.

23. Evelina Lamma, Fabrizio Riguzzi, and Lu��s Moniz Pereira. Belief revi-

sion by multi-agent genetic search. Submitted for publication, available at

http://www.ing.unife.it/docenti/FabrizioRiguzzi/cl2001.ps, 2001.

24. Evelina Lamma, Fabrizio Riguzzi, and Lu��s Moniz Pereira. A system for multi-

agent belief revision by genetic search. Submitted for publication, available at

http://www.ing.unife.it/docenti/FabrizioRiguzzi/cl2001demo.ps, 2001.

25. J. A. Leite, J. J. Alferes, and L. M. Pereira. Multi-dimensional dynamic logic

programming. In F. Sadri and K. Satoh, editors, Proceedings of the CL-2000

Workshop on Computational Logic in Multi-Agent Systems (CLIMA'00), pages

17{26, 2000.

26. J. A. Leite, J. J. Alferes, and L. M. Pereira. Minerva - a dynamic logic program-

ming agent architecture. In J. J. Meyer and M. Tambe, editors, Procs. of the

Eighth International Workshop on Agent Theories, Architectures, and Languages

ATAL'01, 2001. To appear.

27. J. A. Leite, J. J. Alferes, and L. M. Pereira. Minerva - combining societal agents

knowledge. Technical report, Dept. de Informatica, Faculdade de Ciencias e Tec-

nologia, Universidade Nova de Lisboa, Lisbon, Portugal, 2001.

28. J. A. Leite, J. J. Alferes, and L. M. Pereira. Multi-dimensional dynamic knowledge

representation. In T. Eiter, M. Truszczynski, and W. Faber, editors, Proceedings of

the 6th International Conference on Logic Programming and Nonmonotonic Rea-

soning (LPNMR-01), 2001. To appear.

29. J. A. Leite and L. M. Pereira. Generalizing updates: From models to programs. In

J. Dix, L. M. Pereira, and T. C. Przymusinski, editors, Selected Extended Papers

of the ILPS'97 3th International Workshop on Logic Programming and Knowledge

Representation (LPKR-97), volume 1471 of LNAI, pages 224{246, Berlin, 1997.

Springer Verlag.

30. J. A. Leite and L. M. Pereira. Iterated logic program updates. In J. Ja�ar, editor,

Proceedings of the 1998 Joint International Conference and Symposium on Logic

Programming (JICSLP-98), pages 265{278, Cambridge, June 15{19 1998. MIT

Press.

31. Y. Li, K. C. Tan, and M. Gong. Model reduction in control systems by means

of global structure evolution and local parameter learning. In D. Dasgupta

and Z. Michalewicz, editors, Evolutionary Algorithms in Engineering Applications.

Springer Verlag, 1996.

32. L. M. Pereira. The logical impingement of arti�cial intelligence. In Antonio Zilhao,

editor, Grazer Philosophische Studien (Internationale Zeitschrift Fur Analytische

Philosophie), Analytical Philosophy in Portugal, volume 56, pages 183{204. Ams-

terdam/Atlanta, 1999.

33. L. M. Pereira. Philosophical incidence of logic programming. In D. Gabbay and

J. Woods (eds.), Handbook of History and Philosophy of Logic, Kluwer (in press),

2001.

34. L. M. Pereira and J. J. Alferes. Well founded semantics for logic programs with

explicit negation. In Proceedings of the European Conference on Arti�cial Intelli-

genece ECAI92, pages 102{106. John Wiley and Sons, 1992.

35. L. M. Pereira, C. V. Dam�asio, and J. J. Alferes. Diagnosis and debugging as con-

tradiction removal. In L. M. Pereira and A. Nerode, editors, Proceedings of the

2nd International Workshop on Logic Programming and Non-monotonic Reason-

ing, pages 316{330. MIT Press, 1993.

