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Abstract

In Probabilistic Abductive Logic Programming we are given a probabilistic logic

program, a set of abducible facts, and a set of constraints. Inference in proba-

bilistic abductive logic programs aims to find a subset of the abducible facts that

is compatible with the constraints and that maximizes the joint probability of

the query and the constraints. In this paper, we extend the PITA reasoner with

an algorithm to perform abduction on probabilistic abductive logic programs

exploiting Binary Decision Diagrams. Tests on several synthetic datasets show

the effectiveness of our approach.

Keywords: Abduction, Distribution Semantics, Probabilistic Logic

Programming, Statistical Relational Artificial Intelligence

1. Introduction1

Probabilistic Logic Programming (PLP) [1, 2] has recently attracted a lot of2

interest thanks to its ability to represent several scenarios [3, 4] with a simple3
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yet powerful language. Furthermore, the possibility of integrating it with sub-4

symbolic systems makes it a relevant component of explainable probabilistic5

models [5].6

An extension of Logic Programming that can manage incompleteness in7

the data is given by Abductive Logic Programming (ALP) [6, 7]. The goal of8

abduction is to find, given a set of hypotheses called abducibles, a subset of these9

that explains an observed fact. With ALP, users can perform logical abduction10

from an expressive logic model possibly subject to constraints. However, a11

limitation is that observations are often noisy since they come from real-world12

data. Furthermore, there may be different levels of belief among rules. It is13

thus fundamental to extend ALP and associate probabilities to observations, to14

both handle these scenarios and test the reliability of the computed solutions.15

Starting from the probabilistic logic language of LPADs, in this paper we16

introduce probabilistic abductive logic programs (PALP), i.e., probabilistic logic17

programs including a set of abducible facts and a (possibly empty) set of (pos-18

sibly probabilistic) integrity constraints. Probabilities associated with integrity19

constraints can represent how strong the belief is that the constraint is true20

and can help in defining a more articulated probability distribution of queries.21

These programs define a probability distribution over abductive logic programs22

inspired by the distribution semantics in PLP [8]. Given a query, the goal is to23

maximize the joint probability distribution of the query and the constraints by24

selecting the minimal subsets of abducible facts to be included in the abductive25

logic program while ensuring that constraints are not violated.26

Consider the following motivating example: suppose you work in the city27

center and, starting from your home, you may choose several alternative routes28

to reach your office. However, streets are often congested, but you want to avoid29

traffic and reach the destination with the lowest probability of encountering a30

car accident. You can associate different probabilities (representing beliefs or31

noisy data that came from historical measurements) of encountering (or not32

encountering) a car accident in all the possible alternative streets, and impose33

an integrity constraint that states that only one path (combination of streets)34
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can be selected (clearly, you cannot travel two routes simultaneously). Then,35

you look for the best combination of streets to maximize the probability of not36

encountering a car accident. A possible encoding for this situation is presented37

in Section 6 (experiments on graph datasets). Alternatively, suppose that you38

want to study more in depth a natural phenomenon that may happen in a region.39

In the model, there may be some variables that describe the land morphological40

characteristics and some variables that relate the possible events that can occur,41

such as eruption or earthquake. Moreover, you want to impose that some of42

these cannot be observed together (or it is unlikely that they will be). The43

goal may consist in finding the optimal combination of variables (representing44

possible events) that better describes a possible scenario and maximizes its45

probability. This will be the running example we use through the paper, starting46

from Example 1, where we model events possibly occurring in the island of47

Stromboli.48

To perform inference on PALP, we extend the PITA system [9], which com-49

putes the probability of a query from an LPAD by means of Binary Decision50

Diagrams (BDD). One of the key points of this extension is that it has the ver-51

sion of PITA used to make inference on LPADs as a special case: when both the52

set of abducibles and the set of constraints are empty, the program is treated53

as a probabilistic logic program. This has an important implication: we do not54

need to write an ad hoc algorithm to treat the probabilistic part of the LPAD,55

we just need to extend the already-existing algorithm. Furthermore, (proba-56

bilistic) integrity constraints are implemented by means of operations on BDDs57

and so they can be directly incorporated in the representation. The extended58

system has been integrated into the web application “cplint on SWISH” [10, 11],59

available online at https://cplint.eu/.60

To test our implementation, we performed several experiments on five syn-61

thetic datasets. The results show that PALP with probabilistic or determin-62

istic integrity constraints often require comparable inference time. Moreover,63

through a series of examples, we compare inference on PALP with other re-64

lated tasks, such as Maximum a Posteriori (MAP), Most Probable Explanation65
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(MPE), and Viterbi proof.66

The paper is structured as follows: Section 2 and Section 3 present respec-67

tively an overview of Abductive and Probabilistic Logic Programming. Section 468

introduces probabilistic abductive logic programs and some illustrative exam-69

ples. Section 5 describes the inference algorithm we developed, which was tested70

on several datasets in Section 6. Section 7 provides an analysis of related works,71

and Section 8 concludes the paper.72

2. Abductive Logic Programming and Well-Founded Semantics73

Abduction is the inference strategy that copes with incompleteness in the74

data by guessing information that was not observed. Abductive Logic Program-75

ming [6, 7] extends Logic Programming [12] by considering some atoms, called76

abducibles, to be only indirectly and partially defined using a set of constraints.77

The reasoner may derive abductive hypotheses, i.e., sets of abducible atoms,78

as long as such hypotheses do not violate the given constraints. Let us now79

introduce more formally some definitions.80

Definition 1 (Integrity Constraint). A (deterministic) integrity constraint

IC is a formula of the form

:− Body

where Body = b1, . . . , bn and each bi is a logical literal (i.e., a logical atom or the

negation of a logical atom). Logically, an IC can be understood for the logical

formula

false← ∃Body

where ∃ is over all variables in Body.81

Definition 2 (Abductive Logic Program). An abductive logic program is a82

triple (P, IC, A) where P is a normal program, IC is a set of integrity constraints83

and A is a set of ground atoms, the abducibles, that do not appear in the head84

of a rule of any grounding of P .85
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Before introducing the definition of abductive explanation, we review the86

basic concepts regarding the Well-founded semantics (WFS) [13]. Following [14],87

a 3-valued interpretation I for a logic program P is a pair I = 〈T, F 〉 where T and88

F contain respectively the true and false ground atoms in I, and both are subsets89

of the Herbrand base HP of P . The truth value of the atoms in HP \ (T ∪F ) is90

undefined. A 3-valued interpretation is consistent if T ∩ F = ∅. If HP = T ∪ F91

for a 3-valued interpretation I of P , I is called 2-valued. A consistent 3-valued92

interpretation M is a 3-valued model of P if, for every clause C in P , the clause93

is true in M . If M is 2-valued, it is called a 2-valued model. The WFS assigns a94

meaning to logic programs through a 3-valued interpretation. We consider here95

the definition provided in [14] which is based on an iterated fixpoint. Given a96

program P and an interpretation I = 〈T, F 〉, we define with TI(T ) and FI(F )97

the operators containing new true and false facts that can be derived from P98

knowing I. Both are monotonic [14], so they have a least and greatest fixpoint.99

Call TI the least fixpoint of TI and FI the greatest fixpoint of FI . Consider this100

new operator I(I) = I ∪ 〈TI , FI〉 that assigns to every interpretation I of P a101

new interpretation I(I). I is also monotonic [14]. Its least fixpoint is considered102

the well-founded model (WFM) of P , denoted as WFM (P ). Undefined atoms103

are not added to I in none of its iterations. If the set of undefined atoms of104

WFM (P ) is empty, the WFM is called total or 2-valued, and the program is105

dynamic stratified.106

Definition 3 (Abductive Explanation). Given an abductive logic program107

(P, IC,A) and a conjunction of ground atoms q, the query, the problem of ab-108

duction is to find a set of atoms ∆ ⊆ A, called abductive explanation, such109

that P ∪∆ |= q and no constraints are violated, i.e., P ∪∆ 6|= ∃Body for every110

integrity constraint, where |= is to be interpreted as truth in the well-founded111

model (WFM) of the program [15]1.112

Here, we require that P ∪∆ has a 2-valued WFM for every ∆. Consequently,113

1We consider ∆ a set of facts rather than a set of atoms when we add it to P .
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negation is defined under the WFM. This also means that |= is well-defined and114

it is either true or false for any P ∪ ∆ and any q. By default, abducible facts115

not present in the explanation are considered false.116

Consider the following example:117

fire :- spark, not wet.

spark :- lighter.

spark :- flint.

wet:- grass_is_wet.

:- not wet, lighter.

where grass is wet, lighter, and flint are abducibles and not means nega-118

tion. The query fire has the abductive explanation ∆1 = {flint}. Note that119

also ∆2 = {lighter} could be an abductive explanation, but it is forbidden by120

the IC.121

3. Probabilistic Logic Programming122

The distribution semantics [8] is becoming increasingly important in Prob-123

abilistic Logic Programming. According to this semantics, a probabilistic logic124

program defines a probability distribution over a set of normal logic programs125

(called worlds). The distribution is extended to a joint distribution over worlds126

and a ground query, and the probability that the query is true is obtained from127

this distribution by marginalization. The languages based on the distribution128

semantics differ in the way they define the distribution over Logic Programs.129

Here, we consider Logic Programs with Annotated Disjunctions (LPADs) [16],130

which are sets of disjunctive clauses in which each atom in the head is annotated131

with a probability (see Section 7 for a discussion of related proposals).132

Formally, a Logic Program with Annotated Disjunctions (LPAD) consists of

a finite set of annotated disjunctive clauses. An annotated disjunctive clause Ci

is of the form

hi1 : Πi1; . . . ;hini
: Πini

:− bi1, . . . , bimi
.
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In such a clause, the semicolon stands for disjunction, hi1, . . . hini are logical133

atoms, bi1, . . . , bimi
are logical literals, and Πi1, . . . ,Πini

are real numbers in134

the interval ]0, 1] such that
∑ni

k=1 Πik ≤ 1. Note that, if ni = 1 and Πi1 = 1, the135

clause corresponds to a non-disjunctive clause. If
∑ni

k=1 Πik < 1, the head of the136

annotated disjunctive clause implicitly contains an extra atom null that does137

not appear in the body of any clause and whose annotation is 1 −
∑ni

k=1 Πik,138

with the meaning that none of the previous hi is true. Probabilistic facts are139

considered as independent: this may seem restrictive but, in practice, does not140

limit the possibility to express dependence between facts [2, 17]. We denote by141

ground(T ) the grounding of an LPAD T , i.e., the result of replacing variables142

with constants in T .143

Example 1. The island of Stromboli is located at the intersection of two geo-144

logical faults, one in the southwest-northeast direction, the other in the east-west145

direction, and contains one of the three volcanoes that are active in Italy. This146

program ([18, 19]) models the possibility that an eruption or an earthquake oc-147

curs at Stromboli.148

(C1) eruption:0.6;earthquake:0.3 :- sudden_er, fault_rupture(X).149

(C2) sudden_er:0.7.150

(C3) fault_rupture(southwest_northeast).151

(C4) fault_rupture(east_west).152

If there is a sudden energy release (sudden_er) under the island and there is a153

fault rupture (fault_rupture(X)), then there can be an eruption of the volcano154

on the island with probability 0.6 or an earthquake in the area with probability155

0.3. The energy release occurs with probability 0.7 and we are sure that ruptures156

occur along both faults.157

We now present the distribution semantics for programs without function sym-158

bols, so with a finite Herbrand base. For the distribution semantics with function159

symbols see [8, 20, 21, 22].160

An atomic choice is a selection of the k-th head atom for a grounding Ciθj161

of a probabilistic clause Ci and is represented by the triple (Ci, θj , k), where θj162
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is a grounding substitution (a set of couples Var/constant grounding Ci) and163

k ∈ {1, . . . , ni}. An atomic choice represents an equation of the form Xij = k164

where Xij is a random variable associated with Ciθj . A set of atomic choices κ165

is consistent if (Ci, θj , k) ∈ κ, (Ci, θj ,m) ∈ κ implies that k = m, i.e., only one166

head is selected for a ground clause.167

A composite choice κ is a consistent set of atomic choices. The probability168

of a composite choice κ is P (κ) =
∏

(Ci,θj ,k)∈κ Πik. A selection σ is a total169

composite choice (it contains one atomic choice for every grounding of each170

probabilistic clause). Let us call ST the set of all selections. A selection σ171

identifies a logic program wσ called a world. The probability of wσ is P (wσ) =172

P (σ) =
∏

(Ci,θj ,k)∈σ Πik. Since the program does not contain function symbols,173

the set of worlds WT = {w1, . . . , wm} is finite and P (w) is a distribution over174

worlds:
∑
w∈WT

P (w) = 1. We consider only sound LPADs as defined below.175

Definition 4. An LPAD T is called sound iff for each selection σ in ST , the176

program wσ chosen by σ is 2-valued.177

The conditional probability of a query q (ground atom) given a world w178

can be defined as: P (q | w) = 1 if q is true in the WFM of w (w |= q) and 0179

otherwise. We can obtain the probability of the query by marginalization:180

P (q) =
∑
w

P (q, w) =
∑
w

P (q | w)P (w) =
∑
w|=q

P (w). (1)

Formula 1 can be also used to compute the probability of a query when q is181

composed of a conjunction of ground atoms, since the truth of a conjunction of182

ground atoms is still well defined in a world.183

Example 2. For the LPAD T of Example 1, clause C1 has two groundings,184

C1θ1 with θ1 = {X/southwest northeast} and C1θ2 with θ2 = {X/east west},185

while clause C2 has a single grounding C2∅. Since C1 has three head atoms and186

C2 two, T has 3× 3× 2 = 18 worlds, shown in Table 1. The query eruption is187

true in 5 of them (highlighted in the table) and its probability is P (eruption) =188

0.6 · 0.6 · 0.7 + 0.6 · 0.3 · 0.7 + 0.6 · 0.1 · 0.7 + 0.3 · 0.6 · 0.7 + 0.1 · 0.6 · 0.7 = 0.588.189
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w

eruption:0.6; earthquake:0.3 :-

sudden er,

fault rupture(sw ne).

eruption:0.6; earthquake:0.3 :-

sudden er,

fault rupture(east west).

sudden er:0.7. P (w)

1 eruption eruption sudden er 0.252

2 eruption earthquake sudden er 0.126

3 eruption null sudden er 0.042

4 eruption eruption null 0.108

5 eruption earthquake null 0.054

6 eruption null null 0.018

7 earthquake eruption sudden er 0.126

8 earthquake earthquake sudden er 0.063

9 earthquake null sudden er 0.021

10 earthquake eruption null 0.054

11 earthquake earthquake null 0.027

12 earthquake null null 0.009

13 null eruption sudden er 0.042

14 null earthquake sudden er 0.021

15 null null sudden er 0.007

16 null eruption null 0.018

17 null earthquake null 0.009

18 null null null 0.003

Table 1: Possible worlds w for the LPAD of Example 1 with the corresponding probability

P (w), computed as the product of the probabilities associated with the head atoms taking

value true, reported in each row. Highlighted rows represent the worlds in which the query

eruption is true.

A composite choice κ identifies a set ωκ that contains all the worlds associ-190

ated with a selection that is a superset of κ: i.e., ωκ = {wσ | σ ∈ ST , σ ⊇ κ}.191

We define the set of worlds identified by a set of composite choices K as192

ωK =
⋃
κ∈K ωκ. Given a ground atom q, a composite choice κ is an expla-193

nation (not to be confused with an abductive explanation, that will be de-194

fined later) for q if q is true in every world of ωκ. For example, the composite195

choice κ1 = {(C1, {X/southwest northeast}, 1), (C2, ∅, 1)} is an explanation for196

eruption in Example 1. A set of composite choices K is covering with respect197

to q if every world wσ in which q is true is such that wσ ∈ ωK . In Example 1,198
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a covering set of explanations for eruption is K = {κ1, κ2} where:199

κ1 = {(C1, {X/southwest northeast}, 1), (C2, ∅, 1)} (2)

κ2 = {(C1, {X/east west}, 1), (C2, ∅, 1)} (3)

Given a covering set of explanations for a query, we can obtain a Boolean200

formula in Disjunctive Normal Form (DNF) where: (1) we replace each atomic201

choice of the form (Ci, θj , k) with the equation Xij = k, (2) we replace an202

explanation with the conjunction of the equations of its atomic choices, and (3)203

we represent the set of explanations with the disjunction of the formulas for204

all explanations. If we consider a world as the specification of a truth value205

for each equation Xij = k, the formula evaluates to true exactly on the worlds206

where the query is true [20]. In Example 1, if we associate the variable X11207

with C1{X/southwest northeast}, X12 with C1{X/east west} and X21 with208

C2∅, the query is true if the following Boolean formula is true:209

f(X) = (X21 = 1 ∧X11 = 1) ∨ (X21 = 1 ∧X12 = 1). (4)

Since the disjuncts in the formula are not necessarily mutually exclusive, the210

probability of the query cannot be computed by a summation as in Formula211

(1). The problem of computing the probability of a Boolean formula in DNF,212

known as disjoint sum, is #P-complete [23]. One of the most effective ways of213

solving the problem makes use of Decision Diagrams.214

3.1. Binary and Multi-valued Decision Diagrams215

We can apply knowledge compilation [24] to the Boolean formula f(X) to216

translate it into a “target language” that allows the computation of its proba-217

bility in polynomial time. We can use Decision Diagrams as a target language.218

Since the random variables appearing in the Boolean formula that are associated219

with atomic choices can take on multiple values, we need to use Multi-valued220

Decision Diagrams (MDDs) [25]. An MDD represents a function f(X) taking221

Boolean values on a set of multi-valued variables X by means of a rooted graph222

that has one level for each variable. Each node n has one child for each possible223
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value of the multi-valued variable associated with n. The leaves store either 0 or224

1. Since MDDs split paths on the basis of the values of a variable, the branches225

are mutually exclusive so a dynamic programming algorithm [26] can be ap-226

plied for computing the probability. Figure 1a shows the MDD corresponding227

to Formula (4).228

Most packages for the manipulation of decision diagrams are however re-229

stricted to work on Binary Decision Diagrams (BDD), i.e., decision diagrams230

where all the variables are Boolean. These packages offer Boolean operators231

among BDDs and apply simplification rules to the results of operations to re-232

duce as much as possible the size of the binary decision diagram, obtaining a233

reduced BDD.234

A node n in a BDD has two children: the 1-child and the 0-child. When235

drawing BDDs, rather than using edge labels, the 0-branch, the one going to236

the 0-child, is distinguished from the 1-branch by drawing it with a dashed line.237

To work on Multi-valued Decision Diagrams with a BDD package we must238

represent multi-valued variables by means of binary variables. The following239

encoding used in [27] gives good performance. For a multi-valued variable Xij ,240

corresponding to a ground clause Ciθj , having ni values, we use ni− 1 Boolean241

variables Xij1, . . . , Xijni−1 and we represent the equation Xij = k for k =242

1, . . . ni − 1 by means of the conjunction Xij1 ∧ . . . ∧ Xijk−1 ∧ Xijk, and the243

equation Xij = ni by means of the conjunction Xij1 ∧ . . . ∧Xijni−1. The BDD244

equivalent to the MDD of Figure 1a is shown in Figure 1b. Binary Decision245

Diagrams obtained in this way can be used as well for computing the probability246

of queries by associating a parameter πik with each Boolean variable Xijk,247

representing P (Xijk = 1). The parameters are obtained from those of multi-248

valued variables in this way: πi1 = Πi1, . . ., πik = Πik∏k−1
j=1 (1−πij)

, up to k = ni−1.249

To manage Binary Decision Diagrams, we exploit the CUDD2 (Colorado250

University Decision Diagram) library, a library written in C that provides func-251

tions to manipulate different types of Decision Diagrams. CUDD allows the252

2https://github.com/ivmai/cudd
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2 1

11

3 2

3 2

1X12

10

X12

X11

X21

(a) Multi-valued Deci-

sion Diagram correspond-

ing to Formula (4).

X211

1 0

X111

X121

(b) Binary Decision Dia-

gram (after simplification

operations) equivalent to

the MDD shown in Fig-

ure 1a.

X0

1

X2X1

(c) BDD with comple-

mented edges.

Figure 1: Decision Diagrams.

definition of three types of edges: edge to a 1-child, edge to a 0-child, and com-253

plemented edge to a 0-child. The meaning of a complemented edge is that the254

function represented by the child must be complemented: if the leaf value is 1255

and we visited an odd number of complemented edges along the path, then the256

value 0 must be considered. With this representation, only the 1-leaf is needed.257

An example of a BDD with complemented edges can be found in Figure 1c: it258

encodes the function (X0 ∧X1) ∨ (X0 ∧X2).259

4. Probabilistic Abductive Logic Programs260

To introduce the concept of probabilistic abductive logic programs, consider261

again Example 1. Suppose we want to maximize the probability of the query262

eruption. However, we do not know whether there was a fault rupture in the263

southwest-northeast or east-west direction. Furthermore, suppose that the fault264

rupture may happen along only one of the two directions simultaneously. In the265

following, we formally introduce this problem.266

Definition 5 (Probabilistic Integrity Constraint). A probabilistic integrity

constraint is an integrity constraint with an associated probability, i.e., is a for-
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mula of the form

π :− Body

where Body = b1, . . . , bn and each bi is a logical literal (i.e., a logical atom or267

the negation of a logical atom), and π ∈ ]0, 1].268

Definition 6 (Probabilistic Abductive Logic Program). A probabilistic269

abductive logic program is a triple (T, IC, A) where T is an LPAD, IC is a270

(possibly empty) set of (possibly probabilistic) integrity constraints, and A is a271

set of ground atoms, the abducibles, that do not appear in the head of a rule of272

any grounding of T .273

According to Definition 6, in general, a probabilistic abductive logic program274

is composed of an LPAD, a set of integrity constraints (probabilistic, determin-275

istic, or both), and a set of abducibles, which we indicate by prepending the276

functor abducible to the atoms. The set of integrity constraints may be empty.277

The triple (T, IC, A) defines a distribution over abductive logic programs P278

in this way: we obtain a world w by selecting one head atom for each grounding279

of each probabilistic clause from the LPAD T and then by adding or not each280

grounding of each probabilistic integrity constraint from IC. The probability of281

the world is given by the product among the probabilities of the atomic choices282

made for the LPAD clauses, a factor π for each grounding of each probabilistic283

integrity constraint π : −Body inserted in the world, and a factor 1−π for each284

constraint not included in the world. For example, in the program shown in285

Figure 2a, the two probabilistic facts (b and d) and the IC offer two alternatives286

each. There are 2×2×2 = 8 worlds, whose probabilities are computed as shown287

in Figure 2b.288

Given a probabilistic abductive logic program (T, IC, A) and a set of ground

atoms ∆ ⊆ A, the joint probability P (q, IC | ∆) of a query q and the integrity

constraints in IC to be true in (T, IC, A) given ∆ is the sum of the probabilities

of the worlds where ∆ is an abductive explanation of q and all constraints are

satisfied. P (q, IC | ∆) can be computed by marginalizing the joint probability

13



a:- b,c.

a:- d,e.

b:0.3.

abducible c.

d:0.6.

abducible e.

0.1 :- c,e.

(a) Program.

w b d :- c,e. P (w)

1 T T I 0.3 · 0.6 · 0.1 = 0.018

2 T F I 0.3 · 0.4 · 0.1 = 0.012

3 F T I 0.7 · 0.6 · 0.1 = 0.042

4 F F I 0.7 · 0.4 · 0.1 = 0.028

5 T T E 0.3 · 0.6 · 0.9 = 0.162

6 T F E 0.3 · 0.4 · 0.9 = 0.108

7 F T E 0.7 · 0.6 · 0.9 = 0.378

8 F F E 0.7 · 0.4 · 0.9 = 0.252

(b) Worlds.

Figure 2: Example program and its worlds. I and E indicate respectively whether the IC is

included (I) or not (E) in each world.

of the worlds, the query, and the ICs, in this way:

P (q, IC | ∆) =
∑
w

P (q, IC, w | ∆) =
∑
w

P (q, IC | w,∆) · P (w | ∆).

If we indicate respectively with Pw the abductive logic program and with ICw

the subset of integrity constraints considered in every world w, then

P (q, IC | w,∆) =

1 if Pw ∪∆ |= q and Pw ∪∆ 6|= ICw

0 otherwise

so

P (q, IC | ∆) =
∑

w:Pw∪∆|=q∧Pw∪∆ 6|=ICw

P (w | ∆).

Definition 7 (Probabilistic Abductive Problem). Given a probabilistic ab-

ductive logic program (T, IC, A) and a conjunction of ground atoms q, the query,

the probabilistic abductive problem consists in finding a set ∆ ⊆ A, the prob-

abilistic abductive explanation, such that P (q, IC | ∆) is maximized and the

explanations in ∆ are minimal, i.e., solve

least(arg max
∆

P (q, IC | ∆))
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where arg max returns the set of all sets of abducibles that maximizes the joint

probability of the query and the ICs (there can be more than one set of abducibles

if they all induce the same probability), and

least(I) = {∆ | ∆ ∈ I, @∆′ ∈ I : ∆′ ⊂ ∆}.

That is, the goal is to find the minimal sets ∆ of abducibles that maximize the289

joint probability of the query and the integrity constraints. Here, minimality is290

intended in terms of set inclusion. We also say that the function least computes291

the set of undominated ∆, where ∆ dominates ∆′ if ∆ ⊂ ∆′. If IC = ∅, the292

task reduces to least(arg max∆ P (q | ∆)).293

Let us now clarify all the previously introduced concepts through a series of294

examples.295

Example 3. Consider the program shown in Figure 2a. The query q = a has296

the probabilistic abductive explanation ∆ = {c,e}. In fact, P (q, IC | ∆) =297

0.162 + 0.108 + 0.378 = 0.648, corresponding to worlds #5,6,7 of Figure 2b,298

where q is true given ∆ and the IC is excluded (E) from the worlds. This299

happens because the IC does not completely exclude {c,e}, it just excludes it for300

the worlds where the constraint is present. The probability of such explanation301

is higher than the one associated to {e} and {c}, as:302

• given the probabilistic abductive explanation {c}, a is true in 4 worlds303

(#1,2,5,6) with probability 0.018 + 0.012 + 0.162 + 0.108 = 0.3;304

• given the probabilistic abductive explanation {e}, a is true in 4 worlds305

(#1,3,5,7) with probability 0.018 + 0.042 + 0.162 + 0.378 = 0.6.306

Variant 1. If we remove the integrity constraint from the program shown in Fig-307

ure 2a, as reported in Figure 3a, the query q = a with the probabilistic abductive308

explanation ∆ = {c,e} is true in the first three worlds, highlighted in Figure 3c,309

so it has probability P (q | ∆) = 0.18 + 0.12 + 0.42 = 0.72.310
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a:- b,c.

a:- d,e.

b:0.3.

abducible c.

d:0.6.

abducible e.

(a) Program.

1

d

b

a

b

e

c

e

(b) BDD.

w b d P (w)

1 T T 0.3 · 0.6 = 0.18

2 T F 0.3 · 0.4 = 0.12

3 F T 0.7 · 0.6 = 0.42

4 F F 0.7 · 0.4 = 0.28

(c) Worlds.

Figure 3: Program, BDD, and worlds for Example 3 variant 1. Highlighted rows in the table

represent the worlds in which the query a is true with probabilistic abductive explanation

{c,e}, together with their probability.

Variant 2. Consider again the program shown in Figure 2a, but with the in-311

tegrity constraint deterministic, i.e., :- c,e. There are four possible worlds (see312

Figure 4b). The probabilistic abductive explanation that maximizes the probabil-313

ity of the query q = a and, at the same time, satisfies the constraint, is ∆ = {e}.314

P (q, IC | ∆) = 0.18 + 0.42 = 0.6, corresponding to the sum of the probabilities315

of the worlds where q is true given ∆, highlighted in Figure 4b. Note that the316

probabilistic abductive explanation {c,e} has higher probability than {e} (see317

above) but is forbidden by the IC.318

Variant 3. If the probability of the IC is set to 0.5, i.e., 0.5 :- c,e, the query319

q = a has the probabilistic abductive explanation ∆ = {e}, with probability320

P (q, IC | ∆) = 0.09 · 2 + 0.21 · 2 = 0.6, corresponding to worlds #1,3,5,7321

(highlighted in Table 2). Such explanation gives higher probability than {c,e}322

and {c} as:323

• given the probabilistic abductive explanation {c,e}, a is true in 3 worlds324

(#5,6,7) with probability 0.09 + 0.06 + 0.21 = 0.36;325

• given the probabilistic abductive explanation {c}, a is true in 4 worlds326

(#1,2,5,6) with probability 0.09 + 0.06 + 0.09 + 0.06 = 0.3.327
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d

a

c

b

e

1

e

(a) BDD.

w b d P (w)

1 T T 0.3 · 0.6 = 0.18

2 T F 0.3 · 0.4 = 0.12

3 F T 0.7 · 0.6 = 0.42

4 F F 0.7 · 0.4 = 0.28

(b) Worlds.

Figure 4: BDD and worlds for the query of Example 3 variant 2. Highlighted rows in the table

represent the worlds in which the query a is true with probabilistic abductive explanation {e},

together with their probability.

If we want to compute the minimum probability π of the IC π:-c,e. such328

that explanation {e} is chosen, we have to solve a system of two inequalities,329

imposing that the sum of the probabilities of worlds #5,6,7 (see Figure 2b) is330

greater than the sum of the probabilities associated both with worlds #1,2,5,6331

and #1,3,5,7, with π as a variable. The result is π < 0.167. So, when the IC332

has probability greater than 0.167, explanation {e} is preferred to {c,e} (and333

{c}), as if the constraint were deterministic.334

Example 4. Abducibles facts can also be negated in the body of clauses. Con-335

sider a simple variation of the program shown in Figure 3a, where the abducible336

c appears negated in the first clause for a/0:337

a:- b,\+c.338

Here, the query q = a has the probabilistic abductive explanation ∆ = {e} and339

probability 0.72, because, when c is not selected, the second clause still has the340

body satisfied.341

Example 5. A program may have multiple minimal explanations yielding max-342

imum probability of the query and the constraints. Consider the following ex-343

ample:344
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w b d :- c,e. P (w)

1 T T I 0.3 · 0.6 · 0.5 = 0.09

2 T F I 0.3 · 0.4 · 0.5 = 0.06

3 F T I 0.7 · 0.6 · 0.5 = 0.21

4 F F I 0.7 · 0.4 · 0.5 = 0.14

5 T T E 0.3 · 0.6 · 0.5 = 0.09

6 T F E 0.3 · 0.4 · 0.5 = 0.06

7 F T E 0.7 · 0.6 · 0.5 = 0.21

8 F F E 0.7 · 0.4 · 0.5 = 0.14

Table 2: Worlds for Example 3 variant 3. Highlighted rows represent the worlds in which the

query a is true with probabilistic abductive explanation {e}, together with their probability.

I and E stand respectively for included and excluded.

a:0.4.345

b:0.4.346

abducible aa.347

abducible bb.348

q:- a,aa.349

q:- b,bb.350

:- aa,bb.351

Both ∆1 = {aa} and ∆2 = {bb} are minimal, each one giving a probability of352

0.4.353

Example 6. Consider the case of an abductive logic program (no probabilistic354

facts). For example, if we query a in the following program, where both b and c355

are abducibles:356

a:- b,c.357

a:- c.358

abducible b.359

abducible c.360
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we would obtain, without the least function, two explanations: ∆1 = {b,c} and361

∆2 = {c}. However, this is in contrast with our definition, where the goal is to362

find sets that are also minimal. In this example ∆2 ⊂ ∆1, so the latter must363

not be considered as it is not minimal.364

Variant 1. If we add another clause a:- d,e. with d and e abducibles, the set365

of explanations for a will be ∆ = {{c},{d,e}}, since both are minimal.366

We now apply the semantics of probabilistic abductive logic programs to the367

“Stromboli” example.368

Example 7. Given the LPAD of Example 1 (where the variable X has been369

replaced by ), IC = ∅, and A = {C3, C4}:370

eruption:0.6; earthquake:0.3 :- sudden_er, fault_rupture(_).371

sudden_er: 0.7.372

abducible fault_rupture(southwest_northeast).373

abducible fault_rupture(east_west).374

the query q = eruption has the probabilistic abductive explanation3
375

∆ = {fault_rupture(southwest_northeast),fault_rupture(east_west)}376

with probability P (q | ∆) = 0.252 + 0.126 + 0.042 + 0.126 + 0.042 = 0.588,377

corresponding to worlds #1,2,3,7,13 in Table 1 where q is true given ∆. ∆378

yields the highest probability since379

• given the probabilistic abductive explanations380

∆1 = {fault_rupture(southwest_northeast)} or381

∆2 = {fault_rupture(east_west)}, P (q | ∆1) = P (q | ∆2) = 0.42;382

• given the probabilistic abductive explanation383

∆3 = ∅, P (q | ∆3) = 0.384

3This example can be tested at https://cplint.eu/e/eruption_abduction.pl.
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Variant 1. Note that, given the program:385

eruption:0.6; earthquake:0.3 :- sudden_er, fault_rupture(_).386

sudden_er: 0.7.387

abducible fault_rupture(southwest_northeast).388

fault_rupture(east_west).389

the query q = eruption would have the probabilistic abductive explanation390

∆ = {fault_rupture(southwest_northeast)} with the same probability as391

above, corresponding to the same worlds. The same result would be achieved by392

making abducible fault_rupture(east_west) instead of393

fault_rupture(southwest_northeast).394

Variant 2. If we remove C3 or C4 from the program, for instance C4:395

eruption:0.6; earthquake:0.3 :- sudden_er, fault_rupture(_).396

sudden_er: 0.7.397

abducible fault_rupture(southwest_northeast).398

we would lose the second grounding X/east_west. Now, the query q = eruption399

would have the probabilistic abductive explanation400

∆ = {fault_rupture(southwest_northeast)} but with probability P (q | ∆) =401

0.42+0.18 = 0.6, corresponding to worlds #1,2 of Table 3, where q is true given402

∆.403

Variant 3. If we add an IC to the program stating that a fault rupture cannot404

happen along both directions at the same time:405

eruption:0.6; earthquake:0.3 :- sudden_er, fault_rupture(_).406

sudden_er: 0.7.407

abducible fault_rupture(southwest_northeast).408

abducible fault_rupture(east_west).409

410

:- fault_rupture(southwest_northeast),fault_rupture(east_west).411
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w

eruption:0.6; earthquake:0.3 :-

sudden er,

fault rupture(sw ne).

sudden er:0.7. P (w)

1 eruption sudden er 0.42

2 eruption null 0.18

3 earthquake sudden er 0.21

4 earthquake null 0.09

5 null sudden er 0.07

6 null null 0.03

Table 3: Possible worlds for the LPAD of Example 7 (Variant 2) with the corresponding

probability, computed as the product of the probabilities associated with the head atoms

taking value true, reported in each row. Highlighted rows represent the worlds in which the

query eruption is true.

the probabilistic abductive explanations that maximize the probability of the query412

q = eruption and satisfy the constraint are both413

∆1 = {fault_rupture(southwest_northeast)}414

and415

∆2 = {fault_rupture(east_west)}, as P (q, IC | ∆1) = P (q, IC | ∆2) =416

0.252 + 0.126 + 0.042 = 0.42 in both cases.417

Note that the probabilistic abductive explanation found at the beginning of this418

example, with a higher probability P (q | ∆) = 0.588, is now forbidden by the IC.419

Several related tasks, such as Maximum a Posteriori (MAP), Most Proba-420

ble Explanation (MPE), and Viterbi proof, require the selection of an optimal421

subset of facts to optimize a function value. However, there are some important422

differences with abduction that will be investigated in the next subsection.423

4.1. Relation to MAP/MPE and Viterbi proof problems424

In PLP, the probabilistic abductive problem differs both from the Maximum425

A Posteriori (MAP)/Most Probable Explanation (MPE) task [28] and from the426

Viterbi proof [29, 30, 31].427

In general terms, given a joint probability distribution over a set of random

variables, a set of values for a subset of the variables (evidence), and another
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disjoint subset of the variables (query variables4), the MAP problem consists

of finding the most probable values for the query variables given the evidence.

The MPE problem is the MAP problem where the set of query variables is the

complement of the set of evidence variables. More formally, given an LPAD

T , a conjunction of ground atoms e, the evidence, and a set of random vari-

ables X (query random variables), associated with some ground rules of T , the

MAP problem is to find an assignment x of values to X such that P (x | e) is

maximized, i.e., solve

arg max
x

P (x | e).

The MPE problem is a MAP problem where X includes all the random vari-428

ables associated with all ground clauses of T . These problems differ from ours429

because we want to find the set ∆ that maximizes the probability of the query430

variables P (x | ∆), rather than the value of the query variables with maximum431

probability.432

Example 8. Given the program T of Example 1 where the two certain facts are433

made probabilistic:434

(C1) eruption:0.6;earthquake:0.3 :- sudden_er, fault_rupture(X).435

(C2) sudden_er:0.7.436

(C3) fault_rupture(southwest_northeast):0.5.437

(C4) fault_rupture(east_west):0.4.438

and evidence is ev:-eruption, if all the random variables associated with all439

ground clauses are query variables, the MPE task finds the most probable expla-440

nation for ev, i.e., the explanation with the highest probability, corresponding to441

the assignment x:442

[rule(1,eruption,(sudden_er,fault_rupture(southwest_northeast))),443

rule(1,eruption,(sudden_er,fault_rupture(east_west))),444

4In this subsection, we use the word query associated with variables, with a slightly different

meaning with respect to the rest of the paper.
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rule(2,sudden_er,true),445

rule(3,fault_rupture(southwest_northeast),true),446

rule(4,null,true)]447

Predicate rule/3 specifies respectively the clause number, the selected head,448

and the clause body with the selected grounding. P (x | ev) = 0.6 · 0.6 · 0.7 · 0.5 ·449

(1− 0.4) = 0.07565.450

Example 9. Given the program of Example 8 and the evidence ev:-eruption,451

if only the random variables associated with C3 and C4 are query, the MAP452

assignment x is:453

[rule(3,fault_rupture(southwest_northeast),true),454

rule(4,null,true)]455

with probability P (x | ev) = 0.126. This probability is computed as P (x,ev)
P (ev) where456

x is the composite choice κ = {(C3, X/southwest northeast, 1), (C4, {}, 2)}6.457

Differently, the Viterbi proof is the most probable proof for a query, i.e., it458

is a partial assignment (a partial possible world) such that for all assignments459

extending the proof, the query is still true. In practice, the Viterbi proof corre-460

sponds to the most likely explanation (proof) in the set of covering explanations461

for a query.462

Example 10. Given the program of Example 8, the covering set of explanations463

for the query eruption is K = {κ1, κ2} (see Eq. 2 and 3).464

κ1 (Eq. 2) corresponds to the following partial assignment:465

[rule(1,eruption,(sudden_er,fault_rupture(southwest_northeast))),466

rule(2,sudden_er,true),467

rule(3,fault_rupture(southwest_northeast),true)]468

5This example can be tested at https://cplint.eu/e/eruption_mpe.pl.
6This example can be tested at https://cplint.eu/e/eruption_map.pl.
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having probability 0.6 · 0.7 · 0.5 = 0.21.469

κ2 (Eq. 3) corresponds to the following partial assignment:470

[rule(1,eruption,(sudden_er,fault_rupture(east_west))),471

rule(2,sudden_er,true),472

rule(4,fault_rupture(east_west),true)]473

having probability 0.6 · 0.7 · 0.4 = 0.168. Being the Viterbi proof the most likely474

explanation in the set K, it corresponds to κ1
7.475

In conclusion, the MAP/MPE task distinguishes between evidence and query476

variables, with the goal of finding the assignment of values to the query vari-477

ables such that the probability of that assignment given the evidence atoms is478

maximized.479

The probabilistic abductive problem, instead, aims at identifying the best480

set of ground atoms, explicitly defined in the program as abducibles, which max-481

imizes the probability of a query, while possibly satisfying some (probabilistic)482

integrity constraints, which are admitted neither in the MAP/MPE task nor in483

the Viterbi proof task.484

5. Algorithm485

In PLP, the probability of the query is computed by building a BDD and by486

applying a dynamic programming algorithm that traverses it, such as the one487

presented in [26] and reported in Algorithm 1 for the sake of clarity. var(node)488

represents the variable associated with the BDD node node and comp is a flag489

that indicates whether a node pointer is complemented or not. Intermediate490

results are stored in a table to avoid the execution of the same computation in491

case the algorithm encounters an already visited node. Essentially, the BDD is492

traversed until a terminal node is found. From there, probabilities are computed493

and returned to the root.494

7This example can be tested at https://cplint.eu/e/eruption_vit.pl.
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Algorithm 1 Function Prob: computation of the probability of a BDD.

1: function Prob(node,TableProb)

2: if node is a terminal then

3: return 1

4: else

5: if TableProb(node.pointer) 6= null then

6: return TableProb(node)

7: else

8: p0 ←Prob(child0(node),TableProb)

9: p1 ←Prob(child1(node),TableProb)

10: if child0(node).comp then

11: p0 ← (1− p0)

12: end if

13: Let π be the probability of being true of var(node)

14: Res ← p1 · π + p0 · (1− π)

15: Add node.pointer → Res to TableProb

16: return Res

17: end if

18: end if

19: end function

Algorithms 2 and 3 present the extension to the PITA system for returning495

the minimal set of the (probabilistic) abductive explanation for a query, by496

taking as input the root of a BDD representing its explanations.497

Before analysing the algorithms, let us explain how ICs are managed. As498

described in the previous sections, they are represented as denials: a clause499

without head and a conjunction of literals in the body. Integrity constraints500

are implemented by conjoining BDDs. A BDD for the IC :− b1, . . . , bm is ob-501

tained by asking the query b1, . . . , bm with PITA (after applying the program502

transformation described in Appendix A). Abducible facts are represented with503

nodes (and thus Boolean random variables) of abducible type. Furthermore,504

constraints can contain variables and they can also be associated with probabil-505

ities. In this case, an extra variable associated with the probability is added to506

the BDD representing the constraint. Two BDDs, one for the query (BDDQ)507

and one for the constraints (BDDC), are built. The Boolean expression repre-508

senting the query is given by the conjunction of BDDQ with the negation of509

BDDC (BDDQ and not BDDC). This definition can be straightforwardly ex-510
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tended in the case of multiple ICs. Consider the program shown in Example 11511

and the query q.512

Example 11.513

q:- a,d.514

q:- b,c.515

abducible a.516

abducible b.517

c:0.4.518

d:0.5.519

:- a,b.520

BDDQ and BDDC represent respectively the Boolean expressions (a and d)521

or (b and c) (for the query q, Figure 5a) and a and b (for the constraint522

:- a,b, Figure 5b).523

a

d

b

c

d

q

b

1

(a) BDD for (a and d) or (b and c)

(BDDQ).

1

a

b

q

(b) BDD for a and b (BDDC).

Figure 5: BDDs for Example 11.

The final expression is the conjunction ((a and d) or (b and c)) and524

(not(a and b)). Figure 6a shows the conjunction of BDDQ and BDDC while525

Figure 6b shows its truth table.526
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a

b

q

b

c

d

1

(a) BDD resulting from the conjunction of BDDQ

and BDDC.

a b c d Expr

F F F F F

F F F T F

F F T F F

F F T T F

F T F F F

F T F T F

F T T F T

F T T T T

T F F F F

T F F T T

T F T F F

T F T T T

T T F F F

T T F T F

T T T F F

T T T T F

(b) Truth table.

Figure 6: BDD and truth table for Example 11. Highlighted rows represent the combina-

tions of arguments such that the expression ((a and d) or (b and c)) and (not(a and b))

(compactly referred as Expr in the table) is true.

In the following, we describe step by step Algorithms 2 and 3.527

The function AbductiveExpl (Algorithm 2) gets as input the root of the528

BDD representing the explanations for a query, which is reordered (line 2) so529

that variables associated with abducibles come first in the order. This oper-530

ation is crucial, since it allows us to directly integrate in PITA the algorithm531

to compute the probabilistic abductive explanation. Reordering the variables532

of a BDD may increase or decrease its size. However, having the abducible533

variables first allows the direct use of function Prob (Algorithm 1). TableAbd534

stores the pairs probability-set of explanations computed at each node corre-535

sponding to an abducible fact. Similarly, TableProb stores the values computed536

at probabilistic nodes and it is used by the function Prob. Both TableAbd and537

TableProb are initially empty. After that, function AbdInt (Algorithm 3) is538

called. This function starts from the root: if the current node does not represent539

an abducible, there are no abducibles in the remaining part of the diagram and540
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Algorithm 2 Function AbductiveExpl: computation of the minimal sets

that maximize the joint probability of the query and the ICs, and of the corre-

sponding probability.

1: function AbductiveExpl(root)

2: root′ ← Reorder(root) . BDD reordering

3: TableAbd ← ∅

4: TableProb ← ∅

5: (Prob,Abd)← AbdInt(root′,TableAbd,TableProb, false)

6: Abd′ ← RemoveDominated(Abd)

7: return (Prob,Abd′)

8: end function

so the probability is computed using the function Prob (line 4) and a set ∆541

containing only an empty explanation is returned. This is possible only because542

the BDD has been reordered as previously described. The function Prob also543

handles the terminal case (i.e., BDD constant node 1). If a value for the current544

node has already been computed, it is retrieved from TableAbd and returned545

(lines 11 and 12).546

Otherwise, function AbdInt is recursively called on both the true and false547

child. After the recursion, a max operation between the probability with or548

without the node is performed (line 16) to choose whether the abducible repre-549

sented by the current node should be included in the explanations or not: if the550

probability of the true child is greater than the probability of the false child,551

the abducible represented by the current node is selected and added to the ex-552

planations. Otherwise, it is not. If it is selected (line 18), the probability at553

the current node is given by the probability of the true child (p1). In this case,554

the set of explanations is built by adding the current abducible (represented by555

var(node)) to all the true child choices (represented by Abd1) using the function556

AddNodeToExplanations. If the probabilities computed in the two children557

are the same, the explanations of the true child that are dominated (strict su-558

perset) by an explanation of the false child are removed (line 20). This is needed559

to preserve the minimality of the result: if we do not remove the explanations in560

the true child that are a superset of one explanation in the false child, we would561
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Algorithm 3 Function AbdInt: traversal of the BDD to compute the sets that

maximize the joint probability of the query and the ICs and the corresponding

value.
1: function AbdInt(node,TableAbd,TableProb, comp)

2: comp← node.comp⊕ comp

3: if var(node) is not associated with an abducible then

4: p←Prob(node) . Call to prob

5: if comp then

6: return (1− p, [[]])

7: else

8: return (p, [[]])

9: end if

10: else

11: if TableAbd(node.pointer) 6= null then

12: return TableAbd(node.pointer)

13: else

14: (p0,Abd0)← AbdInt(child0(node),TableAbd,TableProb, comp)

15: (p1,Abd1)← AbdInt(child1(node).TableAbd,TableProb, comp)

16: if p1 > p0 then . Max

17: Abd ← AddNodeToExplanations(var(node),Abd1)

18: Res← (p1,Abd)

19: else if p1 == p0 then . Same probability

20: Abd ←RemoveDominatedAndMerge(Abd0,Abd1)

21: if Abd is empty then

22: Res← (p0,Abd0)

23: else

24: Res← (p1,Abd)

25: end if

26: else

27: Res← (p0,Abd0)

28: end if

29: Add node.pointer → Res to TableAbd

30: return Res

31: end if

32: end if

33: end function

obtain sets which are not minimal. We cannot remove the explanations of the562

false child that are dominated by an explanation of the true child: after the563

introduction of the current node in the explanations of the true child, the expla-564

nations that dominate the ones removed in the false child are no more subsets.565

This is because they will have the current node included, that it is not present566
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in the explanations of the false child, thus breaking the subset relation. If the567

set of explanations obtained after the removal of the dominated ones is empty,568

the explanations of the false child (Abd0), together with their probability (p0),569

are returned (because the addition of the true child in the true explanations570

would still lead to a dominated explanation, so there is no need to consider571

it). Otherwise, the current node is added to all the true explanations and the572

result is merged with the explanations of the false child and returned. These573

operations are performed by the function RemoveDominatedAndMerge.574

The sets of explanations are kept ordered, to speed up the comparisons. If575

the node is not selected (line 27), the probability and the set of explanations576

computed in the false child are returned. This function will return in variable577

Res the pair P (q, IC | ∆) and the set ∆ maximizing that probability. Note578

that, as in Algorithm 1, intermediate results (indicated with Res) are stored in579

a table to avoid the execution of the same computation in case the algorithm580

encounters an already visited node.581

After the execution of function AbdInt, we remove once again the possi-582

ble dominated sets from the set of explanations (Algorithm 2 line 6). Finally,583

Algorithm 2 returns the pair (Prob,Abd′) where Prob = P (q, IC | ∆) and584

Abd′ = least(arg max∆ P (q, IC | ∆)), i.e., the set of minimal sets ∆ maximizing585

that probability.586

Here, we focused on programs without function symbols (see Section 3).587

However, our algorithm can be extended to also manage programs with function588

symbols, and this can be an interesting direction for future work.589

In the extreme case where there are no probabilistic facts, Algorithm 2 re-590

turns the abductive explanations: no probabilistic fact is involved, so the func-591

tion Prob is called only to manage the terminal node. By definition, a BDD592

encodes a Boolean function that can be a solution of the abduction problem.593

In the case of multiple solutions, both the functions RemoveDominatedAnd-594

Merge and RemoveDominated eliminate those that are dominated, and the595

returned solutions are minimal.596

Let us now focus on the complexity of the whole task. Exact inference in597
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probabilistic logic programs is #P-complete (originating from the cost of the598

underlying graphical model) [32]. Here, we compute the probabilistic abductive599

explanation following the same pattern of exact inference in PLP (knowledge600

compilation and traversing the resulting structure with a dynamic programming601

algorithm) but we have an additional step, which is the reordering of the BDD.602

Changing the order of a BDD is done by swapping adjacent variables, an oper-603

ation that can be performed polynomially [33]. We adopted this solution, and604

empirically noted (see Section 6) that the time required for this task is always605

negligible with respect to the traversing of the BDD. Checking whether one606

set is a subset of another set can be performed in a time linear with the size607

of the smallest of the two subsets since we kept them ordered. If the sets of608

explanations are of sizes respectively m and n, m · n comparisons are needed.609

5.1. Execution Example610

To better understand the algorithm, consider the illustrative program of611

Example 3 variant 1, shown, together with its BDD, in Figure 3. Suppose that612

the probability of a together with its probabilistic abductive explanation needs613

to be computed. The algorithm starts at node a and is recursively called until614

a non abducible node is found. Nodes b left and right are reached, and the615

probabilities are computed using the function prob: for b left 0.3 is computed616

while for b right 0.3 + (1− 0.3) · 0.6 = 0.72. At the left node e, a max operation617

between the true and false children is performed: max(0.3, 0.72) = 0.72 and618

e is added to the current explanation, which now contains only e. Similarly,619

at right node e, max(0.6, 0) = 0.6 and e is again added to the current empty620

explanation. At node c, max(0.72, 0.6) = 0.72 so c is added to the true child’s621

explanation {e} and the overall probability with its abducible explanation are622

respectively 0.72 and {c,e}.623

The following theorem proves that Algorithm 2 solves the probabilistic ab-624

ductive problem625

Theorem 1. Algorithm 2 solves the probabilistic abductive problem.626
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Proof 1. (Sketch) The BDDs that are generated for the query and the ICs627

represent the Boolean formulas according to which the query is true and the628

ICs are satisfied for the correctness of the PITA algorithm. By reordering the629

resulting BDD, we have abducible nodes first in the diagram: this means that630

when we reach a probabilistic node there are no more abducible nodes below and631

we can compute the probability of that node as in PITA. The upper diagram is632

then used to select the sets of abducibles that provide the largest probability by633

simply comparing the probabilities of the partial sets coming from the children.634

Special care must be taken for the case of equal probability of the two children635

because in this case domination must be checked.636

6. Experiments637

We conducted some experiments to analyze the execution time of the pro-638

posed algorithm. We executed them on a cluster8 with Intel® Xeon® E5-639

2630v3 running at 2.40 GHz on five synthetic datasets9 taken from [28]: grow-640

ing head (gh), growing negated body (gnb), blood, probabilistic graph (graph)641

and probabilistic complete graph (complete graph). As stated in Section 3 (see642

Definition 4), we consider only sound programs. For each one, we conducted643

three kinds of experiments: one with deterministic integrity constraints, one644

with probabilistic integrity constraints, and one without constraints. Since re-645

sults with probabilistic and deterministic constraints are almost identical, only646

one curve is shown. We arbitrarily set the probability of all the integrity con-647

straints to 0.5: this value typically indicates weak constraints. However, here648

we are interested in the execution time of our algorithm, not in the computed649

probability: if we set a value different from 0.5, we would likely obtain the same650

results in terms of execution time, since the BDDs must be traversed in the651

same manner.652

8http://www.fe.infn.it/coka/doku.php?id=start
9All datasets can be found at: https://bitbucket.org/machinelearningunife/palp_

experiments.
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We selected the previously listed set of programs with the goal of covering a653

broad spectrum of possible cases: with gh and gnb, we investigate, respectively,654

how a growing number of atoms in the head and negated literals in the body655

influences the execution time. Furthermore, the dataset gh with integrity con-656

straints has multiple explanations with the same probability. blood represents a657

possible application in the biological domain, while the experiments on graphs658

are representative of the motivating example introduced in Section 1 and can be659

as well associated to real-world scenarios. For all the experiments, we computed660

the total execution time which is given by the time required for constructing,661

reordering, and traversing the BDDs. As we discuss in Section 7, current compa-662

rable systems do not exist to the best of our knowledge, so a direct comparison663

with other implementations is not possible.664

6.1. Data665

The first dataset (gh) is composed of a set of programs characterized by666

clauses with a growing number of atoms (from 1 to 14) in the head. The most667

complex program has 28 clauses and 14 abducibles. The following is a program668

with two abducibles:669

abducible aba1.670

abducible aba2.671

a0 :- a1.672

a1:0.5:- aba1.673

a0:0.5; a1:0.5:- a2.674

a2:0.5:- aba2.675

The query is a0. For the experiments with ICs, we considered an XOR con-676

straint: only one abducible should be selected. For the previous example, this677

can be implemented with:678

r:- aba1,aba2.679

r:- \+aba1,\+aba2.680

:- r.681

33



In general, if there are n abducibles, an XOR constraint can be implemented682

with
(
n
2

)
+ 2 clauses. In the previous example,

(
2
2

)
+ 2 = 3. The second clause683

represents the case where none of the abducibles is considered. The third one684

(denial) forbids a disjunction of the first two clauses:685

not((aba1 and aba2) or (not aba1 and not aba2)) which is true only if686

one between aba1 and aba2 is selected.687

The second dataset (gnb) is composed of a set of programs with an increasing688

number of negated atoms (from 1 to 14) in the body of clauses. Each clause has689

an abducible fact in the body. The most complex program has 121 clauses and690

16 abducibles. The following is a program with four abducibles:691

abducible aba0.692

abducible aba1.693

abducible aba2.694

abducible aba3.695

a0:0.5:- a1, aba0.696

a0:0.5:- \+a1,a2, aba0.697

a0:0.5:- \+a1,\+a2,a3, aba0.698

a1:0.5:- a2, aba1.699

a1:0.5:- \+a2,a3, aba1.700

a2:0.5:- a3, aba2.701

a3:0.5:- aba3.702

We are interested in the probability of a0 since it depends on an increasing703

number of rules. In the experiment with ICs, we tested the edge case where all704

the abducibles should be selected. This situation can be represented with:705

r:- \+aba0.706

r:- \+aba1.707

r:- \+aba2.708

:- r.709

The blood dataset is a set of programs that model the inheritance of blood710

type. Each program has an increasing number of ancestors (up to five levels in711
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the genealogical tree) identified as mother and father for each person. The most712

complex program has 67 clauses and 2 abducibles with a variable argument with713

20 groundings each. For the experiments with ICs, mother and father should714

not have the same blood type: this can be implemented using a single denial715

with variables. Here, we are interested in finding an explanation that maximizes716

the probability that a person p has a certain blood type.717

The graph dataset represents a set of probabilistic graphs following a Barabási-718

Albert model generated with the Python networkx package10, with the number719

of nodes ranging in [50,100] and parameter m0 (representing the number of edges720

to attach from a new node to existing nodes) set to 2. Since the generation of721

the Barabási-Albert model is not deterministic, we created 100 different graph722

configurations and averaged the resulting inference times. The complete graph723

dataset represents one probabilistic complete graph where each pair of nodes724

is connected by an edge. In both datasets, every node has a probability of 0.5725

of being connected to another node if the abducible representing the edge is726

selected. Thus, the number of abducibles is the same as the number of edges.727

The goal is to compute the minimal probabilistic abductive explanation that728

maximizes the probability of the existence of a path between nodes 1 and N ,729

where N is the size of the graph (number of nodes). In the case of a complete730

graph, the number of edges, and thus abducibles, is (N · (N −1))/2. For the ex-731

periments with ICs, we removed paths of length two up to five: if path(A,B,L)732

is the predicate that represents the path between nodes A and B with length L,733

this constraint can be imposed with :- path(0,49,L), L < 6.734

To sum up, the datasets have the structure described in Table 4 that lists735

the number of probabilistic rules (#p), the number of atoms in the head (#h)736

per clause, the number of atoms in the body (#b), the number of abducibles737

(#a), the number of ICs (#IC), and the number of atoms in the body of ICs738

(#bIC) per IC for each of the five datasets, all parametric in n, the size of the739

program. We considered the datasets with ICs, since the values for the datasets740

10https://networkx.github.io/
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without ICs are equal, except for the number of ICs that is obviously 0.741

Dataset #p #h #b #a #IC #bIC

blood 27 + n {3,4} {2,3} 2 2 2

gh 2n [1,n] 1 n 1
(n
2

)
+ 2

gnb n · (n− 1)/2 + 1 1 [1,n] n 1 n

graph 2(n− 50) + 96 1 1 2(n− 50) + 96 6 1

complete graph n · (n− 1)/2 1 1 n ∗ (n− 1)/2 3 1

Table 4: Details of the datasets.

6.2. Discussion of Experiments Results742

For gh, inference times are shown in Figure 7a. In the experiment without743

ICs, inference on programs with up to 12 abducibles takes less than 1 second.744

Starting from 13 abducibles, execution time grows exponentially. With ICs,745

inference on programs with up to 11 abducibles takes less than 1 second. As for746

the experiments without ICs, execution time then starts to grow exponentially,747

but with a steeper slope.748

For gnb, inference times are shown in Figure 7b. In both types of experi-749

ments, they are very similar. Until 14 abducibles, inference takes less than 1750

second. Starting from 15 abducibles, time grows exponentially. Overall, for both751

gh and gnb, experiments with ICs show slightly worse performance with respect752

to the version without, even if for the latter, results are often comparable.753

For the blood dataset, execution time for experiments with and without ICs754

present similar performance (Figure 8). In detail, the execution time exceeds 1755

hour for the dataset of size 36 for both programs with and without ICs.756

For the graph dataset, Figure 9a shows that the execution time generally757

increases as the number of abducibles increases, reaching an exponential slope.758

For the complete graph dataset, Figure 9b shows that for a number of abducibles759

up to 6 nodes, inference time is constant and negligible; with 7 nodes, it increases760

rapidly to approximately 18 (with ICs) and 46 (without ICs) seconds. Finally, it761

exceeds 8 hours (the time limit) for size N = 8. Unlike the other datasets, in this762
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(a) Results for the gh dataset.
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(b) Results for the gnb dataset.

Figure 7: Inference time as a function of the number of abducibles for gh and gnb datasets,

with and without integrity constraints.
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Figure 8: Inference time as a function of the number of abducibles for the blood dataset, with

and without integrity constraints.

case the dashed curve (programs with ICs) is below the solid curve (programs763

without ICs).764

Overall, the experiments with and without ICs take comparable time. This765

can be due to the implementation of the constraints, which may discard some of766

the possible solutions that can be obtained from the BDD without ICs. The ex-767

periments with ICs are faster only for the complete graph dataset: this happens768

probably because constraints allowed us to remove some paths.769

Clearly, as in most of the applications, scalability is an issue. As the pro-770

gram size increases, the execution time increases, often exponentially. This is771
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(a) Results for the graph dataset.
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dataset.

Figure 9: Inference time as a function of the number of abducibles for the graph and complete

graph datasets, with and without integrity constraints.

unavoidable given the complexity of the problem and the expressivity of the lan-772

guage. Solutions alternative to compiling to BDDs may be investigated, such as773

the technique of lifted inference: this will be an interesting direction for future774

work.775

7. Related Work776

Traditionally defined as inference to the best explanation, abduction embeds777

the implicit assumption that many possible explanations exist and raises the778

issue about which one should be selected. Adopting a purely logical setting,779

one may leverage the candidate explanations’ complexity, preferring minimal780

ones. Still, different minimal but incomparable explanations are possible (there781

is no total ordering on them). Intuitively, one might want to select candidate782

explanations based on their “reliability”, so that non-minimal explanations are783

not discarded by default. Interpreting “reliability” as (un)certainty opens a784

connection with the domain of probabilistic reasoning.785

In fact, much research has been carried out aimed at combining logical786

and statistical inference, from early works [34] to more recent approaches such787

as Probabilistic Logic Programming [1, 2] and Statistical Relational Learning788
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(SRL) [35]. Of course, this also brings about additional problems that are typ-789

ical of Probabilistic Graphical Models (PGM) [36] (parameter and model learn-790

ing, inference). From a Logic Programming perspective, examples of embedding791

probabilistic reasoning in logic based on the so-called distribution semantics [8]792

are Logic Programs with Annotated Disjunctions (LPADs) [16], ProbLog [26],793

CP-Logic [37] and PRISM [8, 38]. Both ProbLog and PRISM allow to set prob-794

abilities only on facts, but the former allows two alternatives (true or false)795

only, one of which is implicit, while the latter allows more than two alterna-796

tives. PRISM offers the special predicate msw(switch, value), encoding a ran-797

dom switch (i.e., a random variable), that can be used in the body of clauses to798

check that the random switch takes the value value. The possible values of each799

switch are defined by facts for the values/2 predicate, while the probability of800

each switch is set by calling the predicate set sw/2. With respect to ProbLog801

and PRISM, LPADs and CP-Logic offer the most general syntax. They only802

differ in that CP-Logic deems invalid some programs to which a causal meaning803

cannot be attached. As said, we considered LPADs.804

Some works explicitly addressed probabilistic abductive reasoning: the au-805

thors of [39] explicitly addressed the issue of ranking explanations based on their806

likelihood. Like us, they propose a probabilistic abductive framework, based on807

the distribution semantics for normal logic programs, that handles negation as808

failure and integrity constraints in the form of denials. As in our case, the au-809

thors realize that in a probabilistic setting, abduction should aim at computing810

most preferred (i.e., likely), not minimal, solutions. So, they compute the prob-811

ability of queries. Differently from them, among most preferred solutions, we812

still look for minimal ones, since we believe that abduced information is only813

tentative, and should be kept to a minimum. Connected to non-minimality,814

they propose an open world interpretation of abducibles. A first fundamental815

difference, and a claimed novel aspect of their approach, is treating ICs as ev-816

idence. More specifically, they define evidence as a set of integrity constraints.817

This is more expressive than traditional definitions of evidence, because denials818

can express NAND conditions to be fulfilled and using ICs made up of just one819
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literal they can also set the truth (or falsity) of single atoms. Therefore, in their820

setting, “a query is a conjunction of existentially quantified literals and denials”,821

and their goal is to compute P (q | IC), where q is the query and IC is the ev-822

idence. Our goal is to compute P (q, IC | ∆). Another fundamental difference823

is that they consider a probability distribution over the truth values of each824

(ground) abducible and treat the integrity constraints as hard constraints that825

can never be violated, envisaging the possibility of viewing denials as a direction826

to pursue in future work. We addressed this issue in our work, allowing to set827

probabilities on integrity constraints.828

Several proposals embed the Expectation Maximization (EM) algorithm.829

PRISM [40] is a system based on logic programming with multivalued random830

variables. While not providing support for integrity constraints, it includes a831

variety of top-level predicates which can generate abductive explanations. Intro-832

ducing a probability distribution over abducibles, it chooses the best explanation833

using a generalized Viterbi algorithm. It can learn probabilities from training834

data. In essence, it performs what we called Viterbi proof. The authors of [41]835

extend the SOLAR system [42] with an abductive inference architecture exploit-836

ing an EM algorithm working on BDDs to evaluate hypotheses obtained from837

the process of hypothesis generation. In particular, all the minimal explanations838

are generated. Then, the EM algorithm working on a BDD representation is839

used to assign probabilities to atoms in explanations. As the final step, the840

probability of each hypothesis is computed to find the most probable one. For841

the comparison of our approach with MAP and Viterbi proofs, see Section 4.1.842

Other solutions approached abduction from a deductive reasoning perspec-843

tive. For example, the one proposed in [43] exploits Markov Logic Networks844

(MLN) [44]. Since MLNs provide only deductive inference, abduction is carried845

out by adding reverse implications for each rule in the knowledge base, this way846

increasing the size and complexity of the model, and its computational require-847

ments. Like MLNs, most SRL formalisms use deduction for logical inference,848

and so, they cannot be used effectively for abductive reasoning. The authors849

of [45] adopt Stochastic Logic Programs [46], considering a number of possi-850
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ble worlds. Abduction is carried out by reversing the deductive flow of proof851

and collecting the probabilities associated with the involved clauses. Compared852

to our proposal, programs are restricted to SLP, and integrity constraints are853

not considered. However, the use of deduction without constraints may lead to854

wrong conclusions. Furthermore, an implementation is currently not available.855

The solution presented in [47] describes an original approach to PALP based856

on Constraint Handling Rules, that allows interaction with external constraint857

solvers. As for our approach, it can return minimal explanations with their858

probabilities. Both an implementation returning all the solutions and one re-859

turning only the most probable one is provided. Differently from our approach,860

it attaches probabilities to abducibles only, and has limitations in the use of861

negation, that must be simulated by normal predicate symbols (e.g., not p(X)862

for ¬p(X)). So, the expressiveness of the constraints is more limited than in863

our proposal.864

In the context of Action-probabilistic logic programs (ap-programs), used865

for modelling behaviours of entities, in [48] the authors focused on the problem866

of maximizing the probability that an entity takes a (combination of) action(s),867

subject to some constraints (known as the Probabilistic Logic Abduction Prob-868

lem, or PLAP). Specifically, they consider the Basic PLAP setting, where the869

goal is fixed (a predicate checking reachability of a desired situation from the870

current situation) and the answer is binary. Differently from our approach, in871

PLAP the program is ground, and variables and constraints only concern proba-872

bilities. Another approach that uses ap-programs for abductive query answering873

can be found in [49].874

Some proposals approached probabilistic reasoning in abduction but did not875

make all the ALP components probabilistic. In [50], programs contain non-876

probabilistic definite clauses and probabilities are attached to abducible atoms.877

So, there are no structured constraints, and no integrated logic-based abductive878

proof procedure. cProbLog [51] extends regular ProbLog logic programs, where879

facts in the program can be associated with probabilities, to consider integrity880

constraints. It comes with a formal semantics and computational procedures,881
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resulting in a powerful framework that encompasses the advantages of both882

PLP (ProbLog) and SRL (MLNs). Differently from our proposal, constraints883

are sharp, and thus all worlds that do not satisfy the constraints are ignored.884

The discussion in [52] only considers ICs in the form of (universally quanti-885

fied) denials, i.e., negations of conjunctions of literals. Other abductive frame-886

works proposed different kinds of integrity constraints: IFF [53] and its ex-887

tensions, CIFF [54] and SCIFF [55], are based on integrity constraints that888

are clauses (i.e., implications with conjunctive premises and disjunctive conclu-889

sions). The solution proposed in [56] considers an ALP program enriched with890

integrity constraints à la IFF, possibly annotated with a probability value, that891

makes it possible to handle uncertainty of real-world domains. This language is892

also made richer by allowing for probabilistic abduction with variables, extend-893

ing this way the answer capabilities of the proof-procedure. These probabilistic894

integrity constraints were defined in [57, 58], where programs containing such895

constraints are called Probabilistic Constraint Logic Theories (PCLTs) and may896

be learned directly from data by means of the PASCAL (“ProbAbiliStic induc-897

tive ConstrAint Logic”) system. PCLTs however are theories only made up of898

constraints.899

A recent proposal [59] extended traditional ALP by providing for several900

types of integrity constraints inspired by logic operators and allowing to attach901

probabilities to all components in the program (logic program, abducibles, and902

integrity constraints). Differently from this work, it allows ranking candidate903

explanations by likelihood but does not compute their exact probability.904

While not explicitly computing with abduction, other systems may have a905

relationship to our work in that they merge logic programs, constraints, and906

probabilities. Specifically, Answer Set Programming (ASP) [60] may express907

denials and choice rules. There is a stream of works on probabilistic extensions908

of ASP that can deal with abduction through choice rules. Usually these works909

propose specific systems, implementations, or optimizations.910

P-log [61] extends ASP by adding “random attributes” (that can be con-911

sidered as random variables) of the form a(X) where probabilistic information912
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(understood as a measure of the degree of an agent’s belief) about possible values913

of a is given through so-called ‘pr-atoms’. The logical part of a program rep-914

resents knowledge which determines the possible worlds of the program, while915

pr-atoms determine the probabilities of these worlds. LPMLN [62] extends ASPs916

by allowing weighted rules based on the Markov Logic weight scheme. LPMLN917

programs can be turned into P-log programs or into answer set MLN programs,918

to use their reasoning engines. As to the former, the translation of non-ground919

LPMLN programs yields unsafe ASPs. As to the latter, the straightforward920

implementation of a translation of an LPMLN program into an equivalent MLN921

results in effective computation. PrASP [63] is a probabilistic inductive logic922

programming (PILP) language and an uncertainty reasoning and statistical re-923

lational machine learning software, based on ASP. It includes limited support924

for inference with probabilistic normal logic programs under non-ASP-based925

semantics.926

8. Conclusions927

In this paper, we extended the PITA system to perform abductive reasoning928

on probabilistic abductive logic programs: given a probabilistic logic program, a929

set of abducible facts, and a set of (possibly probabilistic) integrity constraints,930

we want to compute minimal sets of abductive explanations (the probabilistic931

abductive explanation) such that the joint probability of the query and the con-932

straints is maximized. The algorithm is based on Binary Decision Diagrams933

and was tested on several datasets, by including or not the constraints. Em-934

pirical results show that often the versions with and without constraints have935

comparable execution times: this may be due to the constraint implementation936

that discards some of the solutions. The code is available online and integrated937

in a publicly accessible web application at https://cplint.eu [11]. As future938

work, we plan to apply approximate inference [64] to speed up the computation:939

for example, if we consider the routing problem exposed in Section 1 and the940

graph experiments in Section 6, approximate inference will allow us to manage941
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bigger graphs and handle real-world networks.942
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Appendix A. The PITA System1160

PITA (Probabilistic Inference with Tabling and Answer subsumption) [9,1161

21] computes the probability of a query from a probabilistic logic program in1162

the form of an LPAD by first transforming the LPAD into a normal program1163

containing calls for manipulating BDDs. The idea is to add an extra argument1164

to each subgoal to store a BDD encoding the explanations for the answers of1165

the subgoal. The values of the subgoals’ extra arguments are combined using a1166

set of general library functions:1167

• init, end: initializes and terminates the data structures for manipulating1168

BDDs;1169

• zero(-D), one(-D): D is the BDD representing the Boolean constants 01170

or 1 respectively;1171

• and(+D1,+D2,-DO), or(+D1,+D2,-DO), not(+D1,-DO): Boolean opera-1172

tions among BDDs D1 and D2;1173

• equality(+Var,+Value,-D): D is the BDD representing Var=Value, i.e.,1174

the multi-valued random variable Var is assigned Value;1175

• ret prob(+D,-P): returns the probability P of the BDD D.1176

As usual, + denotes input variables that must be instantiated when the predicate1177

is called, while - is used for output variables that should not be instantiated1178

when the predicate is called. These functions are implemented in C as an1179

interface to the CUDD library for manipulating Binary Decision Diagrams. A1180

BDD is represented in Prolog as an integer that is a pointer in memory to its root1181

node. Moreover, the predicate get var n(+R,+S,+Probs,-Var) is implemented1182

in Prolog and returns the multi-valued random variable Var associated with rule1183

R with grounding substitution S and list of probabilities Probs in its head.1184

The PITA transformation applies to atoms, literals and clauses. The trans-1185

formation for an atom h and a variable D, PITA(h,D), is h with the variable D1186
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added as the last argument. The transformation for a negative literal b = \+ a1187

and a variable D, PITA(b,D), is the Prolog conditional1188

(PITA(a,DN)->1189

not(DN,D)1190

;1191

one(D)1192

).1193

In other words, the data structure DN is negated if a has some explanations;1194

otherwise, the data structure for the constant function 1 is returned.1195

The disjunctive clause1196

cr = h1:p1 ; ... ; hn:pn :- b1,...,bm.1197

where the parameters pi, i = 1, ..., n sum to 1, is transformed into the set of1198

clauses PITA(cr):1199

PITA(cr,i)=PITA(hi,D):- one(DD0),1200

PITA(b1,D1),and(DD0,D1,DD1),....,1201

PITA(bm,Dm),and(DDm-1,Dm,DDm),1202

get_var_n(r,V,[p1,...,pn],Var),1203

equality(Var,i,DD),and(DDm,DD,D).1204

for i = 1, ..., n, where V is a list containing all the variables appearing in cr1205

and r is a unique identifier for cr. If the parameters do not sum up to 1, then1206

n − 1 rules are generated as the last head atom, null, does not influence the1207

query since it does not appear in any body. In the case of empty bodies or1208

non-disjunctive clauses (a single head with probability 1), the transformation1209

can be optimized.1210

The PITA transformation applied to Example 1 yields1211

PITA(c1,1) = eruption(D) :-1212

one(DD0),sudden_er(D1),and(DD0,D1,DD1),1213

fault_rupture(X,D2),and(DD1,D2,DD2),1214
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get_var_n(1,[X],[0.6,0.3,0.1],Var),1215

equality(Var,1,DD),and(DD2,DD,D).1216

PITA(c1,2) = earthquake(D) :-1217

one(DD0),sudden_er(D1),and(DD0,D1,DD1),1218

fault_rupture(X,D2),and(DD1,D2,DD2),1219

get_var_n(1,[X],[0.6,0.3,0.1],Var),1220

equality(Var,2,DD),and(DD2,DD,D).1221

PITA(c2,1) = sudden_er(D) :-1222

one(DD0), get_var_n(2,[],[0.7,0.3],Var),1223

equality(Var,1,DD),and(DD0,DD,D).1224

PITA(c3,1) = fault_rupture(southwest_northeast,D) :- one(D).1225

PITA(c4,1) = fault_rupture(east_west,D) :- one(D).1226

Clause C1 has three alternatives in the head but the last one is the null atom1227

so only two clauses are generated. Clauses C3 and C4 are definite facts so their1228

transformation is optimized as shown above.1229

PITA uses tabling [65] to ensure that, when a goal is asked again, the already1230

computed answers for it are retrieved rather than recomputed. That saves time1231

because explanations for different goals are memorized. Moreover, it also avoids1232

non-termination in many cases. PITA also exploits the answer subsumption1233

feature [66] such that, when a new answer for a tabled subgoal is found, it1234

combines old answers with the new one according to a partial order or lattice.1235

See [2] for further details.1236
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