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Abstract. Markov Chain Monte Carlo (MCMC) methods are a class of
algorithms used to perform approximate inference in probabilistic mod-
els. When direct sampling from a probability distribution is difficult,
MCMC algorithms provide accurate results by constructing a Markov
chain that gradually approximates the desired distribution. In this pa-
per we describe and compare the performances of two MCMC sampling
algorithms, Gibbs sampling and Metropolis Hastings sampling, with re-
jection sampling for probabilistic logic programs. In particular, we anal-
yse the relation between execution time and number of samples and how
fast each algorithm converges.

Keywords: Approximate Inference, Markov Chain Monte Carlo, Probabilistic
Logic Programming.

1 Introduction

Probabilistic Logic Programming (PLP) is a useful paradigm for encoding mod-
els characterized by complex relations heavily depending on probability [10,13].
One of the main challenges of PLP is to find the probability distribution of
query random variables, a task called inference. Real world problems often re-
quire very complex models. In this case, exact inference, which tries to compute
the probability values in an exact way, is not feasible. Approximate inference
overcomes this issue providing approximate results whose accuracy increases as
the simulation continues. Markov Chain Monte Carlo methods are a class of
algorithms used to perform approximate inference, especially when direct sam-
pling from the probability distribution is not practical. In this paper we propose
the first Gibbs sampling algorithm for PLP and we analyse how MCMC algo-
rithms, Metropolis Hastings sampling and Gibbs sampling in particular, behave
in terms of execution time and accuracy of the computed probability.

The paper is structured as follows: in Section 2 we introduce Probabilistic
Logic Programming. In Section 3 we offer an overview of Markov Chain Monte
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Carlo (MCMC) techniques and we analyse Metropolis Hastings sampling and
Gibbs sampling. Section 4 shows the results of our experiments and Section 5
concludes the paper.

2 Probabilistic Logic Programming

Several approaches have been proposed for combining logic programming and
probability theory. Here we consider languages based on the distribution seman-
tics proposed by Sato in [15]. All the languages based on this semantics presented
so far differ only in the way they encode choices for clauses but they all have the
same expressive power [13].

A probabilistic logic program without function symbols defines a probability
distribution over normal logic programs called instances or worlds. Logic Pro-
grams with Annotated Disjunctions (LPADs) [16] are a PLP language based on
the distribution semantics. In these types of programs, the possible choices are
encoded using annotated disjunctive heads of clause. An annotated disjunctive
clause has the form h1 : Π1; . . . ;hm : Πm :− b1, . . . , bn, where h1, . . . , hm are log-
ical atoms, b1, . . . , bn are logical literals and Π1, . . . ,Πm are real numbers in the
interval [0, 1] that sum to 1. b1, . . . , bn is called body while h1 : Π1; . . . ;hm : Πm

is called head. In case of
∑m

k=1Πm < 1, the head of the annotated disjunctive
clause implicitly contains an extra atom null that does not appear in the body
of any clause and whose annotation is 1−

∑m
k=1Πm.

Each world is obtained by selecting one atom from the head of each grounding
(i.e. substitution of variables with terms in all possible ways) of each annotated
disjunctive clause.

Consider the following LPAD:

mistake(X) : 0.6 :− drunk(X).
mistake(X) : 0.7 :− bad player(X).
drunk(iverson).
bad player(iverson).

This program can be read as: if X is drunk, then X makes a mistake with
probability 0.6 and nothing happens with probability 1 − 0.6 = 0.4. If X is a
bad player, then X makes a mistake with probability 0.7 and nothing happens
with probability 0.3. The last two clauses state that iverson certainly is a bad
player and is drunk.

The probability of a query in a probabilistic logic program without function
symbol is computed by extending the probability distribution over normal logic
programs defined by the probabilistic logic program, to a joint distribution of
the query and the worlds. Then, the probability is obtained by summing out the
worlds. When a program contains also function symbols, the previous definition
must be extended. This is because its grounding is infinite. So, the number of
atomic choices in a selection that defines a world is infinite as well as the number
of words. For a detailed definition see [12].
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Performing inference, i.e. computing the probability distribution of the truth
values of a query, can be done using exact or approximate methods. Exact in-
ference can be performed in a reasonable time only when the size of the domain
is relatively small, due to the #P-completeness of the task [7]. For larger do-
mains, approximate inference is needed. Moreover, in programs with function
symbols, goals may have an infinite number of possible infinite explanations
and exact inference may not terminate [13]. Consider a one-dimensional random
walk problem where a particle starts at position X > 0. At each time step, the
particle can move one unit left (−1) or right (+1) with equal probability. The
walk stops as soon as the particle reaches 0. In this case, the walk terminates
with probability one [5] but there is an infinite number of walks with nonzero
probability [6]. In this example, exact inference, which tries to find the set of all
explanations and then computing the probability of the query from it, will loop
because the number of explanations is infinite.

Approximate algorithms using sampling are implemented in cplint [14] in
the MCINTYRE [11] module. To be able to sample a query from a program,
MCINTYRE applies a program transformation to the original program and then
queries the modified program. Consider a disjunctive clause

Ci = hi1 : Πi1 ∨ . . . ∨ himi
: Πimi

:− bi1, . . . , bini
,

where
∑mi

k=1Πik = 1. Ci is transformed into the set of clauses MC(Ci) =
{MC(Ci, 1), . . . ,MC(Ci,mi)}:

MC(Ci, 1) = hi1 :− bi1, . . . , bini
,

sample head(PL, i, V C,NH), NH = 1.
. . .
MC(Ci,mi) = himi :− bi1, . . . , bini ,

sample head(PL, i, V C,NH), NH = mi.
where V C is a list containing each variable appearing in Ci and PL is a list
containing [Πi1, . . . ,Πimi

]. If the parameters do not sum up to 1, the last clause
(the one for null) is omitted. In other words, a new clause is constructed for
each head. Then, using the predicate sample head/4, a head index is sampled
at the end of the body. If this index coincides with the head index, the derivation
succeeds, otherwise it fails. The internal database of the SWI-Prolog engine [17] is
used to record all samples (sampled random choices) taken with sample head/4

using the predicate assertz/1. Notice that sample head/4 is placed at the end
of the body because at that point all the variables of the clause are ground
(since we assume that the program is range restricted). The truth of a query in
a sampled program can be tested by asking the query to the resulting normal
program. This is equivalent to taking a sample of the query.

In general we are interested in computing approximate conditional proba-
bilities: we want to compute the probability of an event Y = y given that an
event E = e has been observed (i.e. P (y | e)) where Y and E are conjunctions
of ground atoms and y and e are either true or false. In the rest of the pa-
per we analyze three different algorithms available in cplint [14] for performing
approximate inference with sampling: Gibbs sampling (Subsec. 3.1), Metropolis-
Hastings (Subsec. 3.2) and rejection sampling.
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Rejection sampling [7] is one of the simplest Monte Carlo algorithms. To
take a sample of the query, it works in two steps: 1) it queries the evidence
e. 2) If the query is successful, it queries the goal g in the same sample (that
is, computing P (g | e)). Otherwise it discards the sample. The pseudocode for
rejection sampling is shown in Algorithm 1.

Algorithm 1 Function Rejection: Rejection sampling algorithm.
1: function Rejection Sampling(P, query, evidence, Samples)
2: Input: Program P, query, evidence, number of samples Samples
3: Output: P (query|evidence)
4: Succ← 0
5: n← 1
6: while n ≤ Samples do
7: Call evidence
8: if evidence succeeds then
9: Call query
10: if query succeeds then
11: Succ← Succ + 1
12: end if
13: n← n + 1
14: end if
15: end while
16: return Succ/Samples
17: end function

However, rejection sampling has a disadvantage: if the evidence is very un-
likely, many samples are discarded, making the algorithm very slow. For exam-
ple, if the probability of the evidence (P (e)) is very low, say 10−4, then even
for N = 105 samples the expected number of unrejected samples is 10. So, to
obtain at least Samples unrejected samples, we need to generate on average
N = Samples/P (e) samples from the distribution [7]. There are several alter-
natives to deal with low probability evidence, such as likelihood weighting [3] or
Markov Chain Monte Carlo (MCMC) methods.

3 MCMC Sampling

Markov Chain Monte Carlo (MCMC) methods generate samples from the pos-
terior distribution when directly sampling from the posterior is not feasible, due
to the complexity of the distribution itself. The main idea of MCMC methods is
to iteratively construct a Markov chain in which sampling can be done directly.
As the number of samples increases, the approximation gets closer to the desired
posterior distribution. In this way, MCMC methods are theoretically capable of
getting arbitrarily close to the true posterior distribution. During the execution
of MCMC algorithms, usually the first few samples are discarded because they
may not represent the desired distribution. This phase is called burnin phase.

In this section we analyse two of the most famous MCMC sampling algo-
rithms: Gibbs sampling and Metropolis Hastings sampling.
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Algorithm 2 Function Gibbs: Gibbs MCMC algorithm
1: function Gibbs(query, evidence,Mixing, Samples, block)
2: GibbsCycle(query, evidence,Mixing, block)
3: return GibbsCycle(query, evidence, Samples, block)
4: end function
5: function GibbsCycle(query, evidence, Samples, block)
6: Succ← 0
7: for n← 1→ Samples do
8: Save a copy of samples C
9: SampleCycle(evidence)
10: Delete the copy of samples C
11: ListOfRemovedSamples = RemoveSamples(block)
12: Call query . new samples are asserted at the bottom of the list
13: if query succeeds then
14: Succ← Succ + 1
15: end if
16: CheckSamples(ListOfRemovedSamples)
17: end for
18: return Succ

Samples

19: end function
20: procedure SampleCycle(evidence)
21: while true do
22: Call evidence
23: if evidence succeeds then
24: TrueEv ← true
25: return
26: end if
27: Erase all samples
28: Restore samples copy C
29: end while
30: end procedure
31: function RemoveSamples(block)
32: SampleList← []
33: for b← 1→ block do
34: retract sample S = (Rule, Substitution, V alue) . samples are retracted from the top of

the list
35: Add (Rule, Substitution) to SampleList
36: end for
37: return SampleList
38: end function
39: procedure CheckSamples(ListOfRemovedSamples)
40: for all (Rule, Substitution) ∈ ListOfRemovedSamples do
41: if (Rule, Substitution) was not sampled then
42: Sample a value for (Rule, Substitution) and record it with assert
43: end if
44: end for
45: end procedure

3.1 Gibbs Sampling

The idea behind Gibbs sampling is the following: when sampling from a joint
distribution is not feasible, we can sample each variable independently consid-
ering the other variables as observed [4]. In details, suppose we have n variables

X1, . . . , Xn. First we set these variables to an initial value x
(0)
1 , . . . , x

(0)
n , for

instance by sampling from a prior distribution. At each iteration (or until con-

vergence) we take a sample x
(t)
m ∼ P (xm | xt−11 , xt−12 , . . . , xt−1m−1, x

t−1
m+1, . . . , x

t−1
n ).

There is also the possibility to perform blocked Gibbs sampling, i.e, group to-
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gether two or more variables and sampling from their joint distribution condi-
tioned on all other variables, instead of sampling each one individually.

Gibbs sampling is available on cplint. The code is shown in Algorithm 2.
A list of sampled random choices is stored in memory using Prolog asserts.
Function GibbsCycle performs the main loop. To take a sample, we query
the evidence using function SampleCycle that performs a type of rejection
sampling: it queries the evidence until the value true is obtained. When the
evidence succeeds, we remove block random choices from the list of saved random
choices using function RemoveSamples. Then, we ask the query and, if the
query is successful, the number of successes is incremented by 1. The last step
consist in calling function CheckSamples. This function checks if there are
some rules not sampled in the list of removed random choices. If so, a value
is sampled and stored in memory. This is due to the necessity of assigning a
value to xm even if it was not involved in the new derivation of the query. The
probability is returned as the ratio between the number of successes and the
total number of samples.

3.2 Metropolis Hastings

In Metropolis Hastings sampling, a Markov chain is built by taking an initial
sample and, starting from this sample, by generating successors samples. Here
we consider the algorithm developed in [9] and implemented in cplint [14]. Al-
gorithm 3 goes as follows: 1) it samples random choices so that the evidence is
true to build an initial sample. 2) It removes a fixed number (defined as lag) of
sampled probabilistic choices to build the successor sample. 3) It queries again
the evidence by sampling starting from the undeleted samples. 4) If the evi-
dence succeeds, the query is asked by sampling. It is accepted with probability
min{1, N0/N1} where N0 is the number of choices sampled in the previous sam-
ple and N1 is the number of choices sampled in the current sample. 5) If the
query succeeds in the last accepted sample then the number of successes of the
query is increased by 1. 6) The final probability is computed as the number of
successes over the total number of samples.

In details, function MH returns the probability of the query given the ev-
idence. Function resample(lag) deletes lag choices from the sampled random
choices. In [9] lag is always 1. Function InitialSample builds the initial sample
with a meta-interpreter that starts with the goal and randomizes the order in
which clauses are used for resolution during the search to make the initial sample
unbiased. This is achieved by collecting all the clauses that match a subgoal and
trying them in random order. Then the goal is queried using regular sampling.

4 Experiments

We tested the performances of Gibbs sampling, Metropolis Hastings sampling,
and rejection sampling using four different programs. For each program, we ran
the queries mc gibbs sample/5, mc mh sample/5 and mc rejection sample/5
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Algorithm 3 Function MH: Metropolis-Hastings MCMC algorithm
1: function MH(query, evidence, lag, Samples)
2: MHCycle(query, evidence, lag)
3: return MHCycle(query, evidence, Samples)
4: end function
5: function MHCycle(query, evidence, Samples)
6: TrueSamples← 0
7: Ssample← InitialSample(evidence)
8: Call query
9: if query succeeds then
10: querySample← true
11: else
12: querySample← false
13: end if
14: Save a copy of the current samples C
15: n← 0
16: while n < Samples do
17: n← n + 1
18: SamplesList← Resample(lag)
19: Call evidence
20: if evidence succeeds then
21: Call query
22: if query succeeds then
23: querySample′ ← true
24: else
25: querySample′ ← false
26: end if
27: let CurrentSampled be the current number of choices sampled

28: if min(1, CurrentSampled
PreviousSampled ) > RandomV alue(0, 1) then

29: PreviousSampled← CurrentSampled
30: Delete the copy of the previous samples C
31: Save a copy of the current samples C
32: querySample← querySample′

33: else
34: Erase all samples
35: Restore samples copy C
36: end if
37: else
38: Erase all samples
39: Restore samples copy C
40: end if
41: end while
42: Erase all samples
43: Delete the copy of the previous samples C

44: return TrueSamples
Samples

45: end function
46: function Resample(lag)
47: for n← 1→ lag do
48: Delete a sample Sample
49: NewSample← Sample(Ssample)
50: Assert NewSample
51: end for
52: return SamplesList
53: end function

provided by the MCINTYRE module [11] implemented in cplint. All the algo-
rithms are written in Prolog and tested in SWI-Prolog [17] version 8.1.7. For
each query we show how the number of samples affects the execution time and
the computed probability. All the experiments were conducted on a cluster3

with Intel R© Xeon R© E5-2630v3 running at 2.40 GHz. Execution times are com-

3 http://www.fe.infn.it/coka/doku.php?id=start

http://www.fe.infn.it/coka/doku.php?id=start
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puted using the SWI-Prolog built-in predicate statistics/2 with the keyword
walltime. The results are averages of 10 runs. For both Gibbs and Metropolis
Hastings sampling, we set the number of deleted samples (burnin) to 100.

For the first comparison, we consider a program that generatively defines a
random arithmetic function4. The problem is to predict the value returned by the
function given one or two couples of input-output, i.e., to compute a conditional
probability. The peculiarity of this program is that it has an infinite number
of explanations. As described in Section 2, approximate inference is needed, as
exact inference may loop. In this example, the evidence has probability 0.05.
Results are shown in Fig. 1. In this case, Metropolis Hastings sampling and
Gibbs sampling have comparable execution time, but Gibbs sampling converges
more slowly.
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Fig. 1. Results for random arithmetic functions test.

The second program encodes a hidden Markov model (HMM) for modeling
DNA sequences. The model has three states, q1, q2 and end, and four output
symbols, a, c, g, and t, corresponding to the four nucleotides (letters)5 [2]. We
compute the probability that the model emits the sequence [a,c] observing
that from state q1 the models emits the letter a. The evidence has probability
0.25. Results are shown in Fig. 2. In this case, all the three algorithms converge
to the same probability value, but Metropolis Hastings is the slowest one with
execution time several times larger than Gibbs and rejection sampling.

For the third test we consider a Latent Dirichlet Allocation (LDA) model6 [1].
LDA is a generative probabilistic model especially useful in text analysis. In
particular, it models the distribution of terms and topics in documents in order
to predict the topic of the analysed text. This program, differently from the
others, is hybrid, i.e., it contains also continuous random variables. For this

4 http://cplint.eu/example/inference/arithm.pl
5 http://cplint.eu/example/inference/hmm.pl
6 http://cplint.eu/example/inference/lda.swinb

http://cplint.eu/example/inference/arithm.pl
http://cplint.eu/example/inference/hmm.pl
http://cplint.eu/example/inference/lda.swinb
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Fig. 2. Results for HMM test.

test, we fix both the number of words considered in a document (10) and the
number of topics (2) and we compute the relation between number of samples,
probability and execution time. In this example, we observe that the first two
words of the document are equal, which has probability 0.01. The results are
shown in Fig.3: in this case Gibbs sampling is slower than Metropolis Hastings
both in execution time and number of samples needed to compute an accurate
probability. Then we also fix the number of topics to 2 and increase the number
of consecutive equal words from 1 to 8. In this test, the evidence is progressively
extended, i.e., we observe that n number of words (from 1 to 8) are equal. In
this case Metropolis Hastings sampling outperforms the other algorithms (Fig. 4
left). For Gibbs sampling and rejection sampling, the number of words in the
plot is at most 6 since, for a value bigger than that, each query requires more
than one hour of computation.

The last program describes a university domain7 [8] characterized by stu-
dents, professors and courses. Each professor is related to a course and each
student attends a course. We are interested in computing the probability that a
professor teaches a course given that the same professor is advisor of some stu-
dents of the same course. We fixed the number of students to 10, and both the
number of professors and courses to 1. In this case the evidence has probability
0.09. Results are shown in Fig. 5. As for the previous experiment, we also incre-
mented the number of students up to 20 and plot how execution time changes
(Fig. 4 right). In both cases, Gibbs sampling is still the slowest algorithm, but
the performances are not so different from Metropolis Hastings and rejection
sampling.

7 http://cplint.eu/example/inference/uwcse.pl

http://cplint.eu/example/inference/uwcse.pl
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Fig. 3. Results for LDA model.
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Fig. 4. Both graphs show how the number of facts affects the execution time. The left
one is related to the LDA model while the right one to the university model. For both
we fixed the number of samples to 104.

5 Conclusions

In this paper we proposed the first Gibbs sampling algorithm for PLP. We also
compared it with Metropolis-Hastings and rejection sampling. The three algo-
rithms are available in the cplint suite and online in the web application cplint.eu.

For each algorithm we conducted several experiments to compare execution
time and convergence time. In three of the four experiments, Metropolis Hastings
outperformed Gibbs sampling and rejection sampling in terms of accuracy and
execution time. However, in the second experiment (HMM), Gibbs sampling has
better performances than Metropolis Hastings and it is comparable to rejection
sampling in terms of execution time. Also, in this test, Metropolis Hastings is
the least accurate (it overestimates the probability) while Gibbs sampling and

cplint.eu
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Fig. 5. Results for the university domain.

rejection sampling converge faster. Experimental analysis showed that Metropo-
lis Hastings is the fastest among the three unless the evidence has a relatively
high probability as in HMM where it has probability 0.25: in that case, Gibbs
performs better.
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