
A Probabilistic Logic Model of Lightning Network

Damiano Azzolini2, Fabrizio Riguzzi2, Elena Bellodi1, and Evelina Lamma1

1 Dipartimento di Ingegneria – University of Ferrara – Via Saragat 1, I-44122, Ferrara, Italy
2 Dipartimento di Matematica e Informatica – University of Ferrara – Via Saragat 1, I-44122,

Ferrara, Italy
{damiano.azzolini,fabrizio.riguzzi,

elena.bellodi,evelina.lamma}@unife.it

Abstract. One of the main limitations of blockchain systems based on Proof of
Work is scalability, making them unsuitable for e-commerce and small payments.
Currently, one of the principal directions to overcome the scalability issue is to
use the so-called “layer two” solutions, like Lightning Network, where users can
open channels and send payments through them. In this paper, we propose a Prob-
abilistic Logic model of Lightning Network, and we show how it can be adopted
to compute several properties of it. We conduct some experiments to prove the
applicability of the model, rather than providing a comprehensive analysis of the
network.

Keywords: Probabilistic Logic Programming · Blockchain · Lightning Network.

1 Introduction

The scalability trilemma states: “Scalability, decentralization, security: you can have
only two of the three”. This is the main issue all blockchains must face. Proof of Work
(PoW) based blockchains, such as Bitcoin [14] and Ethereum [24], are secure and (the-
oretically) decentralized, but not very scalable [7]. This is because, currently, the PoW
consensus algorithm requires solving a computationally hard problem. At the moment
of writing, in the case of Bitcoin, the average number of transactions per second is 7,
for Ethereum 15, making them unusable for every day small payments. Blockchains
based on Proof of Stake (PoS) or Delegated Proof of Stake (DPos) can support a higher
number of transactions but at the cost of less decentralization.

Among all the various proposals to increase the number of processed transactions,
such as Sharding [11] and sidechains [6], the so-called “layer two” solutions remain
the most adopted. One of the most famous is Lightning Network [16] (LN). In Light-
ning Network users can open, through a transaction on the main chain, a bidirectional
Payment Channel, and then use the funds locked in this channel to issue transactions,
without utilizing the main chain. The capacity distribution in a channel is unknown,
to preserve privacy. An important feature of LN is that it also allows the routing of
payments between two users not directly connected by a channel.

Probabilistic Logic Programming (PLP) is a powerful language to represent sce-
narios where probability has a central role: it combines the expressivity of Logic Pro-
gramming with uncertainty over facts, and it has been already used to model several



2 D. Azzolini et al.

blockchain-related scenarios [3,5]. Routing in the LN can be seen as uncertain, in the
sense that users may not be active for some reasons or may refuse to forward the pay-
ment. Furthermore, there is uncertainty on the funds distribution on a channel.

In [2] the authors proposed a logic model of the Bitcoin LN; here, we extend it
by proposing a probabilistic logic model of Bitcoin LN, and we show how this model
can represent the uncertain scenario cited above, allowing, for instance, to compute the
probability of a successful payment routing. We focus on Lightning Network built upon
Bitcoin. However, our model can be extended to a general blockchain.

The paper is structured as follows: in Section 2 we describe the general structure and
features of the Bitcoin Lightning Network. Section 3 introduces the PLP base concepts
needed to understand the LN model developed and discussed in Section 4. Section 5
presents a possible application of the model to compute routing probabilities, and Sec-
tion 6 concludes the paper.

2 Blockchain, Bitcoin and Lightning Network

Bitcoin was designed by Nakamoto in 2008 [14] with the goal to create a decentralized
payment system where users can issue transactions without the need of a centralized
authority. Bitcoin blockchain offers several features such as immutability, auditability,
and transaction atomicity. These features make it theoretically suitable for payments
and micro payments. However, scalability is still one of the main limitations of the
system and does not allow an increasing number of transactions.

A blockchain is based on a linear sequence of blocks, linked together by crypto-
graphic functions. To append a block to the chain, a miner must execute, in the case of
Bitcoin, a Proof of Work (PoW) algorithm which involves finding a solution to a hard
puzzle. This mechanism ensures that blocks, once discovered, cannot be tampered with.
On the other hand, this is a huge bottleneck for scalability. In fact, as computing power
increases and technology evolves, the difficulty of PoW increases, keeping the average
discovery time fixed to approximately one block every ten minutes, and thus limiting
the number of transactions that can be processed by the system since blocks have a fixed
size.

Another feature of Bitcoin that restricts the scalability is the block size limit (1Mb),
a very controversial topic3. An increase of this limit will allow the system to process
more transactions. However, this would require more computation power to store and
manage the blockchain, reducing the decentralization of the system. Furthermore, forks
would be more likely to happen, due to the slower propagation time. Finally, a change
in block size can be done only with a hard fork, an update that would be backward
incompatible: this can cause a consensus failure, making the system completely unreli-
able.

At the moment, the scalability problem is not solved. In the past, several improve-
ments were proposed (called Bitcoin Improvement Proposal4) that slowly increased
the number of manageable transactions. One of the first, advanced at the end of 2015

3https://en.bitcoin.it/wiki/Block_size_limit_controversy
4https://en.bitcoin.it/wiki/Bitcoin_Improvement_Proposals

https://en.bitcoin.it/wiki/Block_size_limit_controversy
https://en.bitcoin.it/wiki/Bitcoin_Improvement_Proposals


A Probabilistic Logic Model of Lightning Network 3

and accepted few years later, is Segregated Witness (SegWit)5. In a nutshell, SegWit
increases the capacity of a block by removing signature data from a transaction and in-
troducing the definition of Virtual Size of a block and block weight, measured in weight
unit instead of bytes.

Another related improvement proposal is the one that suggests the usage of Schnorr
signatures [12,21]. Currently, to send transactions, signatures are needed. In the case
a user wants to send a transaction from multiple addresses to one, every transaction
requires its own signature, increasing the transaction size, making it more expensive.
After the implementation of Schnorr signatures, if users control multiple addresses,
they can move the funds from those addresses to a single address using only one signa-
ture, making the transaction lighter. These two solutions combined would increase the
number of manageable transactions, but the Bitcoin system would still be limited.

Another approach consists in the so-called “layer two” solutions, based on an un-
derlying blockchain: the main idea is to create a layer of channels on top of it where
users can interact without facing the scalability problem of the blockchain. Lightning
Network [16] (LN) is currently one of the most promising “layer two” solutions. It con-
sists of a peer-to-peer network based on a blockchain, such as Bitcoin, where users can
send payments and micro payments through bidirectional payment channels, without
having to pay high transaction fees, and without the need of long confirmation times.
To open a channel, users must broadcast an initial funding transaction on the underlying
blockchain. To update the state of the channel, they can create a commitment transac-
tion that is not published on the main chain. To close the channel, they must agree on
the state of the channel and then publish a closing transaction.

One of the main features of LN is the possibility to send payments also to not
directly connected users, through multi hop payments, assuming that the source and the
destination are linked through intermediate connections. Moreover, thanks to Hashed
Timelock Contracts (HTLC)6, there is no need for trust between users.

However, the capacity of a channel between two users A and B is known, but the
distribution of the capacity in each direction is unknown, since it is a feature introduced
to increase the security of the system7. Due to this characteristic, routing is a compli-
cated task in Lightning Network, and can be considered probabilistic.

3 Probabilistic Logic Programming

Logic Programming (LP) is a powerful language that allows one to express complex
models with few lines of codes. One of the main limitations of Logic Programming
is that it cannot manage uncertainty. Probabilistic Logic Programming [9,18] extends
LP by allowing the definition of probabilistic facts that can follow several probability
distributions. Initially, only Bernoulli distributions [20] (or generalized Bernoulli dis-
tributions [22]) were proposed.

5https://github.com/bitcoin/bips/blob/master/bip-0141.
mediawiki

6https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
7https://github.com/lightningnetwork/lightning-rfc/blob/

master/07-routing-gossip.md

https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://github.com/lightningnetwork/lightning-rfc/blob/master/07-routing-gossip.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/07-routing-gossip.md


4 D. Azzolini et al.

The distribution semantics [19] gives a precise meaning to PLP without function
symbols (with finite grounding). An atomic choice indicates whether a grounding (i.e.,
a substitution term/variable) for a probabilistic fact is selected. A set of atomic choices is
consistent if it does not contain two different alternatives (selected and not selected) for
the same probabilistic fact. A consistent set of atomic choices forms a composite choice:
in the case it contains an atomic choice for every grounding of every probabilistic fact it
is named a selection. A selection identifies a ground logic program called world, and its
probability can be computed as the product of the probabilities of the atomic choices.
The probability P of a query q can then be computed as the sum of the probabilities of
the worlds w in which the query is true:

P(q) = ∑
w|=q

P(w)

Here, we consider the PLP language ProbLog [10]. A probabilistic fact fi has the
following syntax:

pi :: fi

meaning that fi is true with probability pi ∈]0,1], and false otherwise. If pi = 1 the fact
is deterministic, i.e., it is always true. An example of a Probabilistic Logic Program is
shown below:

0.7::no_sleep.
0.8::too_much_work.
tired:- no_sleep.
tired:- too_much_work.

The first two lines are probabilistic facts, while the third and fourth lines are clauses. A
clause is composed of a head and a body separated by the neck operator (:-). The head
is true if the body is true. Here, for the first clause, the head is tired and the body is
no sleep. Both these clauses are ground since they do not contain variables (denoted
with the first letter uppercase). In other words, this program models a person who is
tired if he/she does not sleep enough or if he/she works too much. With probability
0.7, the person does not sleep enough (no sleep), and with probability 0.8 he/she
works too much (too much work). We can then ask the probability that the person is
tired (tired) obtaining 0.94 (0.7 ·0.8+0.7 ·0.2+0.3 ·0.8).

One of the main issues in PLP (and LP in general) is that the grounding of a program
may be huge, so managing it can be very difficult. To tackle this, usually probabilistic
logic programs are compiled into a more compact form through a process called knowl-
edge compilation [8].

In the last few years, Hybrid Probabilistic Logic Programs arose [4,13], with the
possibility to define continuous random variables and constraints among them. To con-
sider continuous probability distributions, we introduce the syntax used by cplint [1]
and its module MCINTYRE [17]. Continuous random variables can be encoded with:

f : Density

where f is an atom (a predicate symbol followed by a number of arguments) with a
continuous variable as argument and Density is a special atom that models a probability
density on the argument of the atom. For example,



A Probabilistic Logic Model of Lightning Network 5

f(X) : gaussian(X,0,2).

indicates that X in f(X) follows a Gaussian distribution with mean 0 and variance 2.
Inference in these types of programs can be done, for example, by sampling [17].

4 Network Model

The LN can be represented as a graph where users (nodes) are linked by connections
(edges) with capacity distributed according to some probability distribution, since the
real distribution is unknown (except for the two users that opened the channel). Let us
start with a deterministic model, that will be later extended to a probabilistic one. A
connection between two nodes is represented with a fact edge(A,B,Capacity),
where A and B are the two nodes and Capacity is the capacity of the connection. The
whole LN is represented as a list of edge/3 facts (where /3 indicates the arity, i.e.,
the number of arguments). For these experiments, we do not consider fee base and fee
rate. However, they can be straightforwardly included in the analysis by simply adding
more arguments. Connections are undirected, meaning that payments can go in both
directions, and are represented with the following predicate connected/3:

connected(A,B,C):- edge(A,B,C) ; edge(B,A,C).

A and B are connected with a channel of capacity C if there is an edge from A to B or (;)
from B to A with capacity C. The degree of a node is the number of edges incident to
the node. We can search for a path between two nodes with a standard Prolog predicate.
An example written using SWI-Prolog [23] is reported here for the sake of clarity:

connected_test(Source,Next,Size):-
connected(Source,Next,Cap),
Size < Cap.

path(Dest,Dest,_,_,Path,Path).
path(Source,Dest,Size,NSteps,Visited,Path) :-

length(Visited,N),
N < NSteps,
connected_test(Source,Next,Size),
\+ memberchk(Next,Visited),
path(Next,Dest,Size,NSteps,[Next|Visited],Path).

The predicate path/6 states that there is a path from Source to Dest that can route
a payment of size Size if the two nodes are connected by intermediate nodes that have
not been already visited (condition checked with \+memberchk, a deterministic ver-
sion of member/2). Ensuring that a node has not been already visited is fundamental,
otherwise we may get stuck in a loop where we move an infinite number of times be-
tween a pair of nodes. The length N of the path is bounded using the standard Prolog
comparison predicate </2, that compares the length of the list containing already vis-
ited nodes (Visited) with a user defined threshold (NSteps). In a similar way, the
capacity Cap is checked against the size Size of the payment in a second predicate
called connected test. A sample call to path/6 is path(a,c,10,3,[],P),



6 D. Azzolini et al.

were we look for a path P from a to c of at most 3 edges that can route a payment of
size 10, starting with an empty list ([]) of visited nodes.

The previous code does not consider the capacity distribution in a channel. Let us
now extend it with a probabilistic fact to represent it. Using cplint on swish [1],
we can define continuous random variables (say for example uniformly distributed in
[L,U]) with:

distr(X,L,U) : uniform_dens(X,L,U).

Here, X has a uniform distribution between L and U, where L is the minimum value and
U the maximum value. The predicate connected test can be modified as:

connected_test(Source,Next,Size):-
connected(Source,Next,Cap),
distr(C,0,Cap),
Size < C.

In other words, we collect the capacity of the channel between two nodes, and we
state that the capacity from Source to Next is given by a random variable uniformly
distributed between 0 and Cap. With this definition, at each sampling iteration, the
distribution for every channel is fixed and does not change. Clearly, to successfully
route a payment, its size must be smaller than the capacity in the considered direction
(Size < C).

We can further extend the previous model by considering also intermittent edges.
This situation may arise when a node disconnects from the network or when declines to
forward a payment. To model it, we can define a Bernoulli random variable that is true
with a certain probability (set to 0.95 in the following code snippet):

0.95::active(_).

The predicate is then extended as:

connected_test(Source,Next,Size):-
connected(Source,Next,Cap),
active(Next),
distr(C,0,Cap),
Size < C.

In the experiments, we modelled the capacity of a channel using a uniform distri-
bution, and the probability that a node is active with a Bernoulli distribution. However,
several extensions and variations can be made: changing the type of distribution for the
channel capacity (Gaussian with mean equal to half of the capacity, for example) or
even setting the probability that a node declines to route a payment proportional to the
payment size, to the fees or a combination of the two.

5 Routing Analysis

We used a snapshot of the LN taken from https://ln.bigsun.xyz/ on the 12th
of April 2021. We considered only the open channels, resulting in a network with 14734

https://ln.bigsun.xyz/


A Probabilistic Logic Model of Lightning Network 7

Capacity (sat) Occurrences Degrees Occurrences Highest Capacities (sat) Occurrences
100000 3942 1 6958 500000000 4
1000000 3523 2 2575 477184791 1
500000 2794 3 1372 354000000 1
2000000 1533 4 802 300000000 2

16777215 1522 5 549 250000000 1
200000 1446 6 397 238135604 1
5000000 1359 7 263 225118006 1

20000 1297 8 209 200000000 28
10000000 1131 9 182 179792707 1

50000 1079 10 145 154222260 1
Table 1. Information about channel capacities and node degrees.

nodes, 44349 channels, and with a total capacity of 125819660675 satoshi (1258.19 bit-
coin). Table 1 shows a recap of the most common channel capacities and node degrees
(considering also duplicated edges that connect the same pair of nodes).

To demonstrate how PLP can be used to model the LN, we conducted some ex-
periments. For all of them, we fixed the maximum length of the path. Moreover, we
suppose that the distribution of the capacity in a channel is uniform (i.e., if the channel
that connects A and B has capacity 1, we can route from A to B a uniform distributed
value between 0 and 1, and from B to A the remaining), since we do not have further
information.

To select the range of the payment size, we first compute the average of the ca-
pacities of all the connections. We obtained approximately 2837035 satoshi but with a
huge standard deviation (> 107). So, we counted the number of connections that have
less than the average capacity, less than half of the average capacity, and less than a
quarter of the average capacity, obtaining respectively 35555 (≈ 80%), 31902 (≈ 72%),
and 26077 (≈ 59%). Figure 1 shows a more detailed graph, where the X axis indicates
the percentage of the average capacity and the Y axis indicates both the number of
connections (edges) with less than that value, and the relative percentage of the total
connections. To further analyse the distribution of the capacity, we removed the nodes
with the highest capacities and plotted the variation of the total capacity. The results are
shown in Fig 2.

In a first test, we want to compute the probability to successfully route a payment
of varying size between two different random nodes of the same degree at the first at-
tempt, given that nodes may not be active. One of the main requisites to route a payment
is that all the nodes along the path are active, otherwise it cannot be sent. Moreover, as
said before, a node may refuse to forward the payment for some reasons. We fix the
length of the path (number of intermediate edges) to 2 and the node degree of source
and destination to 2, 5, and 10. We then plot how the probability varies when inter-
mediate nodes may not be active. Probability values are computed with the predicate
mc sample(+Query:atom,+N:int,-Prob:float), provided by the MCIN-
TYRE module [17], that samples the query Query N times and returns the ratio be-
tween the number of successes and the number of samples (Prob). We set the number
of samples to 1000.



8 D. Azzolini et al.

0 20 40 60 80 100

1

2

3

·104

Percentage of Average Capacity

N
um

be
ro

fC
on

ne
ct

io
ns

20

40

60

80

Pe
rc

en
ta

ge
of

C
on

ne
ct

io
ns

Fig. 1. Number and percentage of connec-
tions with less than a certain percentage of
the average capacity (2837035).

0 50 100 150 200

1.05

1.1

1.15

1.2

1.25

·1011

Number of Removed Connections

To
ta

lC
ap

ac
ity

L
ef

t

85

90

95

100

Pe
rc

en
ta

ge
of

In
iti

al
C

ap
ac

ity
L

ef
t

Fig. 2. Value and percentage of capacity left
after removing the top n (X axis) connec-
tions in terms of capacity.

Figure 3 shows the results for the first experiment: nodes with higher degrees have,
as expected, a higher probability to successfully route a payment on the first attempt,
even if this gap reduces as the payment size increases. Figure 4 shows the results for
the experiments with a varying probability of intermediate nodes to be active: the prob-
ability of a successful routing decreases, but not so drastically. If the source and the
destination are the same node, and the length of the path is greater than 2 (at least the
source node and another one, if these two nodes are connected by at least 2 edges,
otherwise the path should be composed of at least 2 additional nodes plus the source),
we can compute the probability of a successful rebalance. This is a common situation
since, if users want to refill a channel, currently one of the main solutions is to send a
circular payment to themselves.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

0.2

0.4

0.6

0.8

Payment Size

Pr
ob

ab
ili

ty

Degree = 2
Degree = 5

Degree = 10

Fig. 3. Probability of a successful payment
of varying size between random connected
nodes of degree 2, 5, and 10.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

0.2

0.4

0.6

Payment

Pr
ob

ab
ili

ty

Active probability = 0.95
Active probability = 0.90
Active probability = 0.85

Fig. 4. Probability of a successful payment
of varying size between random connected
nodes of degree 2, with different active
probabilities for intermediate nodes.



A Probabilistic Logic Model of Lightning Network 9

In another experiment, we want to know the probability of a successful payment be-
tween two random nodes of variable degrees, given that the payment is split in various
equal parts. That is, we split a payment into N parts and compute the probability that all
these payments succeed at the first attempt. This is a common scenario in LN [15], be-
cause, when the size of the payment increases, the probability of success decreases, due
to the channel capacity limitation. However, increasing the number of payments also
increases the fees required to route the payment, due to the necessity to issue multiple
transactions. The graphs in Figures 5, 6, and 7 show how the probability of a successful
payment varies when the payment is split in 2, 3 or 4 parts and intermediate nodes are
always active. In Figures 8, 9, and 10 we performed the same experiment but we fixed
the degree of source and destination to 2, and we varied both the probability that a node
is active and the number of parts of a payment.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

0.5

0.6

0.7

0.8

0.9

Payment Size (sat)

Pr
ob

ab
ili

ty

Degree = 2
Degree = 5

Degree = 10

Fig. 5. Probability of a successful payment
of varying size split into 2 equal parts, be-
tween connected nodes of various degrees.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

0.7

0.8

0.9

1

Payment Size (sat)

Pr
ob

ab
ili

ty

Degree = 2
Degree = 5

Degree = 10

Fig. 6. Probability of a successful payment
of varying size split in 3 equal parts, be-
tween connected nodes of various degrees.

We can see that all the plots present two sudden jumps in probability, around 500000
(5 · 105) and 1000000 (106): this is in accordance with the distribution of edges with
these two values of capacity. In fact, 500000 and 1000000 are the second and third
most common capacities (see Table 1). In our implementation, to route a payment, we
randomly check if one of the edges between the current node and another node has
enough capacity. If it has, it is selected. However, if the value of the payment is close to
the total capacity of the selected edge, the routing will likely fail, since we suppose that
the distribution is uniform. For example, if we try to route a payment of size 4.5 ·105 into
a channel of capacity 5 · 105, we have only approximately 10% of chances to succeed
(with a distribution supposed uniform). Since a lot of channels have capacity 5 · 105,
when the payment approaches this value, the success probability of routing at the first
attempt reduces. With a payment slightly greater than 5 · 105, these channels are no
longer considered, since they do not have enough capacity, so the probability suddenly
increases. Similarly happens with the value 106. Another, but less noticeable jump, can
be found around 100000 (105), which is the most common value for the capacity of a
channel. This happens for the same reasons explained before.



10 D. Azzolini et al.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

0.7

0.75

0.8

0.85

0.9

0.95

Payment Size (sat)

Pr
ob

ab
ili

ty

Degree = 2
Degree = 5

Degree = 10

Fig. 7. Probability of a successful payment
of varying size split into 4 equal parts, be-
tween connected nodes of various degrees.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

0.4

0.5

0.6

0.7

0.8

Payment Size (sat)

Pr
ob

ab
ili

ty

Active probability = 0.95
Active probability = 0.90
Active probability = 0.85

Fig. 8. Probability of a successful payment
of varying size split into 2 equal parts, be-
tween connected nodes of degree 2 with
varying active probability.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

0.5

0.6

0.7

0.8

Payment Size (sat)

Pr
ob

ab
ili

ty

Active probability = 0.95
Active probability = 0.90
Active probability = 0.85

Fig. 9. Probability of a successful payment
of varying size split into 3 equal parts, be-
tween connected nodes of degree 2 with
varying active probability.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

0.5

0.6

0.7

0.8

Payment Size (sat)

Pr
ob

ab
ili

ty
Active probability = 0.95
Active probability = 0.90
Active probability = 0.85

Fig. 10. Probability of a successful payment
of varying size split into 4 equal parts, be-
tween connected nodes of degree 2 with
varying active probability.

6 Conclusions

In this paper, we propose to analyse (Bitcoin) Lightning Network with Probabilistic
Logic Programming. The usage of PLP allows representing the network with a highly
expressive language. We described the network as an undirected graph with the capacity
of a channel following a uniform distribution. Furthermore, we considered also the
possibility to have intermittent nodes, a situation that may arise also when a node refuses
to forward a payment. The goal of this paper is to prove the feasibility of a Probabilistic
Logic model of the network, rather than provide and analysis of it, since the network
continuously changes (and thus an analysis will be obsolete in a few weeks, even days
or hours), and routing mechanism are typically more sophisticated than randomized
routing. To test the applicability of a probabilistic logic model, we ran some experiments



A Probabilistic Logic Model of Lightning Network 11

on a real snapshot of the network, obtaining that a Probabilistic Logic analysis can be
useful to model several uncertain scenarios.

References

1. Alberti, M., Bellodi, E., Cota, G., Riguzzi, F., Zese, R.: cplint on SWISH: Prob-
abilistic logical inference with a web browser. Intell. Artif. 11(1), 47–64 (2017).
https://doi.org/10.3233/IA-170105

2. Azzolini, D., Bellodi, E., Brancaleoni, A., Riguzzi, F., Lamma, E.: Modeling bit-
coin lightning network by logic programming. Proceedings 36th International Con-
ference on Logic Programming (Technical Communications) 325, 258–260 (2020).
https://doi.org/10.4204/EPTCS.325.30

3. Azzolini, D., Riguzzi, F., Lamma, E.: Studying transaction fees in the bitcoin blockchain
with probabilistic logic programming. Information 10(11), 335 (2019)

4. Azzolini, D., Riguzzi, F., Lamma, E.: A semantics for hybrid probabilis-
tic logic programs with function symbols. Artif. Intell. 294, 103452 (2021).
https://doi.org/10.1016/j.artint.2021.103452

5. Azzolini, D., Riguzzi, F., Lamma, E., Bellodi, E., Zese, R.: Modeling bitcoin protocols with
probabilistic logic programming. In: Bellodi, E., Schrijvers, T. (eds.) Proceedings of the 5th
International Workshop on Probabilistic Logic Programming, PLP 2018, co-located with the
28th International Conference on Inductive Logic Programming (ILP 2018), Ferrara, Italy,
September 1, 2018. CEUR Workshop Proceedings, vol. 2219, pp. 49–61. CEUR-WS.org
(2018)

6. Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G., Miller, A., Poelstra, A.,
Timón, J., Wuille, P.: Enabling blockchain innovations with pegged sidechains (2014)

7. Croman, K., Decker, C., Eyal, I., Gencer, A.E., Juels, A., Kosba, A., Miller, A., Saxena, P.,
Shi, E., Gün Sirer, E., Song, D., Wattenhofer, R.: On scaling decentralized blockchains. In:
Clark, J., Meiklejohn, S., Ryan, P.Y., Wallach, D., Brenner, M., Rohloff, K. (eds.) Financial
Cryptography and Data Security. pp. 106–125. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2016)

8. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17, 229–264
(2002)

9. De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.): Probabilistic Inductive Logic
Programming, LNCS, vol. 4911. Springer (2008)

10. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and its applica-
tion in link discovery. In: Veloso, M.M. (ed.) IJCAI 2007. vol. 7, pp. 2462–2467. AAAI
Press/IJCAI (2007)

11. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure sharding
protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, October 24-28, 2016. pp. 17–30.
ACM, New York, NY, USA (2016). https://doi.org/10.1145/2976749.2978389

12. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple schnorr multi-signatures with
applications to bitcoin. Designs, Codes and Cryptography 87(9), 2139–2164 (Sep 2019).
https://doi.org/10.1007/s10623-019-00608-x

13. Michels, S., Hommersom, A., Lucas, P.J.F., Velikova, M.: A new probabilistic constraint
logic programming language based on a generalised distribution semantics. Artif. Intell. 228,
1–44 (2015). https://doi.org/10.1016/j.artint.2015.06.008

14. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)

https://doi.org/10.3233/IA-170105
https://doi.org/10.4204/EPTCS.325.30
https://doi.org/10.1016/j.artint.2021.103452
https://doi.org/10.1145/2976749.2978389
https://doi.org/10.1007/s10623-019-00608-x
https://doi.org/10.1016/j.artint.2015.06.008


12 D. Azzolini et al.

15. Piatkivskyi, D., Nowostawski, M.: Split payments in payment networks. In: Data Privacy
Management, Cryptocurrencies and Blockchain Technology, pp. 67–75. Springer (2018)

16. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant payments (2016)
17. Riguzzi, F.: MCINTYRE: A Monte Carlo system for probabilistic logic programming. Fund.

Inform. 124(4), 521–541 (2013). https://doi.org/10.3233/FI-2013-847
18. Riguzzi, F.: Foundations of Probabilistic Logic Programming. River Publishers, Gistrup,

Denmark (2018)
19. Sato, T.: A statistical learning method for logic programs with distribution semantics. In:

Sterling, L. (ed.) ICLP 1995. pp. 715–729. MIT Press (1995)
20. Sato, T., Kameya, Y.: PRISM: a language for symbolic-statistical modeling. In: IJCAI 1997.

vol. 97, pp. 1330–1339 (1997)
21. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of cryptology 4(3), 161–

174 (1991)
22. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions.

In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3131, pp. 195–209. Springer,
Berlin (2004)

23. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: Swi-prolog. Theory and Practice of
Logic Programming 12(1-2), 67–96 (2012)

24. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper 151, 1–32 (2014)

https://doi.org/10.3233/FI-2013-847

	A Probabilistic Logic Model of Lightning Network

