
Analyzing Transaction Fees with Probabilistic
Logic Programming

Damiano Azzolini1, Fabrizio Riguzzi1, and Evelina Lamma1

University of Ferrara, Via Saragat 1, I-44122, Ferrara, Italy
{damiano.azzolini,fabrizio.riguzzi,evelina.lamma}@unife.it

Abstract. Fees are used in Bitcoin to prioritize transactions. Transac-
tions with high associated fee are usually included in a block faster than
those with lower fees. Users would like to pay just the minimum amount
to make the transaction confirmed in the desired time. Fees are collected
as a reward when transactions are included in a block so, on the other
perspective, miners usually process first the most profitable transactions,
i.e. the one with higher fee rate. Bitcoin is a dynamic system influenced
by several variables, such as transaction arrival time and block discovery
time making the prediction of the confirmation time a hard task. In this
paper we use probabilistic logic programming to model how fees influence
the confirmation time and how much fees affect miner’s revenue.

Keywords: Bitcoin · Blockchain · Probabilistic Logic Programming.

1 Introduction

In the last year, the terms blockchain and bitcoin started to gain more and
more popularity. The absence of a centralized third party, the security and the
opportunity to develop new cryptocurrencies where all transactions are stored
in a distributed ledger are only a few of the features of blockchain systems.
Research on blockchain involves several different research areas, among them:
distributed systems to maximize and improve the connections between peers,
cryptography to ensure data consistency, economy to study the behaviour of the
cryptocurrencies and game theory to model the interaction between interacting
parties.

According to [32], blockchains have evolved over time: starting from version
1.0, where, thanks to Bitcoin [19], people were allowed to trade monetary value,
Ethereum [7] extended the use cases, allowing users to define the so-called smart
contracts. Nowadays, we are witnessing the birth of blockchains 3.0 with solutions
like Lighting Network [23], that increases substantially the number of processed
transactions.

Despite the availability of many different blockchains such as Ethereum [7,34],
EOS.IO [11], Hyperledger [14] and Cardano [8], Bitcoin still has the highest
market capitalization of all1.

1 https://coinmarketcap.com/

https://coinmarketcap.com/

D. Azzolini et al.

A probabilistic analysis can be particularly useful to determine how miners,
peers and users interact, even when non determinism and randomization are not
allowed by the various blockchain protocols. The intrinsic uncertainty of these
processes requires a probabilistic analysis to be fully understood and predicted.

Probabilistic (Logic) Programming [10] has been applied to model several
real world domains [20] including the Bitcoin protocol [3].

In particular starting from measures of average block size, average number of
transactions in a block and average fee rate, we created two probability models:
one for computing how transaction fees affect the average profit of a miner and
one to analyze how fee rates in Bitcoin affect the confirmation time. For both
experiments we used likelihood weighting to see how the observation of a certain
event, such as the confirmation of a transaction with a certain fee rate or an
increase of the average fee rate, modifies the probability of confirmation of the
following transactions.

The paper is structured as follows: in Section 2 we give a brief overview of
blockchain in general, Bitcoin and fees. Section 3 shows basic concepts of proba-
bilistic logic programming. Section 4 explains how we conducted the experiments
shown in Section 5. Section 6 concludes the paper with a discussion about the
existing literature and some future works.

2 Blockchain, Bitcoin and Fees

The first idea to use cryptography to secure timestamping digital data goes back
to 1991 [13]. In 2008 Satoshi Nakamoto published his paper [19] and shortly
after Bitcoin and Blockchain were born. In brief, a blockchain is a sequence of
blocks linked together using cryptography functions in order to guarantee data
integrity and data consistency. The whole blockchain is maintained by a set of
peers. All the peers can see the same data, in particular, all the blocks in the
same order, thanks to a so-called consensus algorithm: in the case of Bitcoin, this
involve solving a computationally hard problem that, once solved, can be easily
checked by anyone in the network. This algorithm, called proof-of-work, allows
also the system to function without a centralized third party. To increase the
probability of success, peer usually group themselves into mining pools to share
the computing power and split the revenues in case of success. Find a solution
to the PoW allows the solver to append a new block to the blockchain. After
that he will receive a reward in bitcoin for his work. Users in the system can
send transactions, transfers of value (bitcoin) among two or more users. Each
block is composed by a set of transactions. Each transaction is also attached to
an amount of bitcoin as a reward for the miner who includes it into a block. One
of the most interesting features is the possibility, starting from block number
0 (called genesis block), to reconstruct in a fully deterministic way the whole
history of blocks and transactions, allowing everyone to have access to the same
data.

The miner who solves the PoW receives, in addition to an amount of bitcoin,
the sum of all the fees of the transactions in a block trough a special transaction

Analyzing Transaction Fees with Probabilistic Logic Programming

called coinbase transaction. Thus, the miner is incentivised to include the most
profitable transactions into a block. However, due to the max block size limit
(1Mb, a very discussed threshold2), and the difficulty of the PoW puzzle (set to
be solved in 10 minutes of average), transactions usually wait several minutes in
the so-called mempool, waiting to be included in a block and confirmed.

To reduce the time spent in the mempool, users can attach a high fee to a
transaction. This option, however, triggers a high competition situation where
peers keep increasing the fees to prioritize transactions. On the other hand,
increasing the average fees can potentially reduce the number of users, since
they may be unwilling to pay such a high amount of fees for the transfer of a
little amount. Users are therefore incentivised to find an equilibrium between the
priority of the transaction, its size, its associated fees and the fee rate (amount
of fees, usually measured in satoshi, per byte where 1 satoshi = 10−8 bitcoin).

A common scenario which complicates the optimal fee rate estimation is the
presence of dependent transactions in the same block. According to the Bitcoin
consensus rule, all peers must see all blocks and all transactions in a block in the
same sequential order. Moreover, bitcoin cannot be spent before being received.
This means that, if A sends an amount X to B and B wants to send X to C,
the transaction where A sends X to B must appear earlier in the sequence than
the one used by B to send X to C. With this constraint, a miner cannot simply
order the transaction in a descending fee rate value order but he needs to take
into account dependencies: if B has a high associated fee rate and spends the
output of A, A must be included before B even if A has a low associated fee rate.
This situation con be used to force a transaction confirmation and it is known
as Child Pay for Parent3.

For all the previous reasons, fee estimation is a hard task. In addition, the
number of transactions received by the network during a certain time span is
unpredictable as well as is block discovery time.

There are several methods to estimate the optimal fee rate. One of the most
used Bitcoin client, Bitcoin Core4, offers a command called estimatesmartfee
to estimate the optimal fee rate to attach to a transaction in order to have
it confirmed with high probability in N blocks, where N is chosen by the user
and can be up to 1008. The algorithm, as described in the Bitcoin Core source
code5, works as follow: instead of tracking every single fee rate, which is too
expensive both for storage and computation, Bitcoin Core groups transactions
into exponentially spaced buckets. Transactions in the same bucket have similar
fee rate. The algorithm then tracks the number of transactions that enters in each
bucket and the number of transactions successfully included into the blockchain
within the target. Moreover, to make the prediction more accurate, the algorithm
gives more importance to recent blocks than to older blocks.

2 https://en.bitcoin.it/wiki/Block size limit controversy
3 https://en.bitcoin.it/wiki/Miner fees
4 https://bitcoin.org/en/download
5 https://github.com/bitcoin/bitcoin/blob/master/src/policy/fees.h

https://en.bitcoin.it/wiki/Block_size_limit_controversy
https://en.bitcoin.it/wiki/Miner_fees
https://bitcoin.org/en/download
https://github.com/bitcoin/bitcoin/blob/master/src/policy/fees.h

D. Azzolini et al.

3 Probabilistic Logic Programming

In this paper we consider Probabilistic Logic Programming under the distribu-
tion semantics, as proposed in [26, 31], which is capable of representing several
domains [1, 2, 27]. A probabilistic logic program defines a probability distribu-
tion over logic programs called worlds. To define the probability of a query, this
distribution is extended to a joint distribution of the query and the worlds. Con-
sequently, the probability of the query is obtained from the joint distribution by
summing out the worlds in a process called marginalization.

Each sentence of a logic program is called clause composed by a head and
a body. An example of clause is: tails(Coin) :− toss(Coin), where tails(Coin)
is called head and toss(Coin) body. The previous clause can be read as: “if
a Coin is tossed then the Coin lands tails”. In these experiments we consider
Logic Programs with Annotated Disjunctions (LPADs) [33] with no function
symbols (if function symbols are allowed see [25]). Alternatives are expressed
with disjunctive heads of clause where each atom is annotated with probability.
An LPAD is composed by one or more clauses Ci. The general form of a clause
is: hi1 : Πi1; . . . ;hivi

: Πivi :− bi1, . . . , biui
, where hi1, . . . , hivi

are logical atoms,
bi1, . . . , biui are logical literals and Πi1, . . . ,Πivi are real numbers in the inter-
val [0, 1] that sum to 1. bi1, . . . , biui is indicated with body(Ci). Clauses where∑vi

k=1Πik < 1 are also allowed: in this case the head of the annotated disjunctive
clause implicitly contains an extra atom null that does not appear in the body
of any clause and whose annotation is 1−

∑vi
k=1Πik. An example of LPAD can

be:

heads(Coin) : 0.5; tails(Coin) : 0.5 :− toss(Coin), \+ biased(Coin).

heads(Coin) : 0.6; tails(Coin) : 0.4 :− toss(Coin), biased(Coin).

fair(Coin) : 0.9; biased(Coin) : 0.1.

toss(coin).

This program can be read as: if we toss a Coin that is not (\+) biased then it
lands heads with probability 0.5 and tails with probability 0.5. If we toss a Coin
that is biased then it lands heads with probability 0.6 and tails with probability
0.4. The third clause states that a Coin is fair with probability 0.9 and biased
with probability 0.1. The last clause assert that a coin is certainly tossed.

Evaluating the probability of a query, a task called inference, is one of the
main challenges in probabilistic (logic) programming. There are two types of
inference: approximate inference and exact inference. Exact inference is used
when the problem has to be solved exactly. Several tools that performs exact
inference have been presented, such as PITA [28,29]. The main disadvantage of
exact inference is that it is, in general, #P-complete [16] so it is not usable for
large domains. A possible alternative to exact inference is approximate inference.
Both types of inferences are implemented in cplint [27], accessible also online6.

6 http://cplint.eu/

http://cplint.eu/

Analyzing Transaction Fees with Probabilistic Logic Programming

3.1 Conditional Approximate Inference

Approximate inference in cplint is performed using Monte Carlo algorithms [6,
24]. Each algorithm is usually composed by the following steps: 1) sampling a
world by sampling each ground probabilistic fact, 2) checking if the query is
true in the world, 3) compute the probability p of the query as the fraction of
samples where the query is true and 4) repeat the process for a fixed number of
times or until convergence. This process is still very expensive for large programs
because the generation of a world requires sampling many probabilistic facts. To
reduce the number of calculations, usually samples are evaluated lazily, i.e., the
sampling of probabilistic facts is performed only when required by a proof [26].

Using Monte Carlo methods, it is also possible to compute the probability
of a query given a certain evidence, using algorithms such as rejection sampling
or Metropolis-Hastings Markov Chain Monte Carlo (MCMC). In the case that
the evidence is on atoms that have continuous values as argument, likelihood
weighting must be used [21]. In likelihood weighting, each sample has an asso-
ciated weight based on the evidence. The total probability of the query is then
computed summing all the weights of the samples where the query is true and
then dividing this value by the total sum of the weights of the samples.

In cplint, (conditional) approximate inference can be done using the module
MCINTYRE [24]. cplint also allows the definitions of continuous random vari-
ables using the syntax A:Density:- Body. In particular, g(X):gaussian(X,0,
1) states that argument X of g(X) follows a Gaussian distribution with mean
0 and variance 1. The following example shows how to model a mixture of two
Gaussians: a biased coin is toss. With probability 0.6 it lands heads, with proba-
bility 0.4 it lands tails. If it lands heads, X in mix(X) is sampled from a Gaussian
with mean 0 and variance 1. If it lands tails, X is sampled from a Gaussian with
mean 5 and variance 2.

heads : 0.6; tails : 0.4.

g(X) : gaussian(X, 0, 1).

h(X) : gaussian(X, 5, 2).

mix(X) :− heads, g(X).

mix(X) :− tails, h(X).

Using cplint, we can take N samples of X in mix(X) by querying mc sample arg

(mix(X),N,X,L0) or we can take N samples of X in mix(X) given that heads
was true by querying mc mh sample arg(mix(X),heads,N,X,L0).

4 Modelling Transaction Fee with Probabilistic Logic
Programming

Transaction fee are a hot topic in Bitcoin. As said above, miners are interested
in selecting only the most profitable transactions while users are interested in
minimizing the cost for a transaction. There are several sources of uncertainty

D. Azzolini et al.

that makes the computation of the optimal value a complicated task. One of them
is block discovery time [5]. Its probability distribution can be described with a
Poisson distribution with rate (usually indicated with λ) 10 since all the events
are independent i.e., the discovery time of a block does not give information
about the next block and blocks are discovered every 10 minutes on average. To
keep the block production rate constant, the target value, that conditions the
block discovery time, is dynamically updated every 2016 blocks, based on the
time it took to find the last 2016 blocks.

Other sources of uncertainty, just to name a few, are: the number of trans-
actions broadcast every minute, the average size of them and the average size of
a block. All of them can be modelled with a Normal (also known as Gaussian)
distribution. This distribution is characterized by two parameters, mean (µ) and
variance (σ2) and is well suited to model data that tends to be around a central
value. Moreover, thanks to the Central Limit Theorem, the Poisson distribution
with mean λ can be approximated with a Gaussian distribution with mean and
variance λ, i.e., Possion(λ) ≈ Gaussian(λ, λ).

5 Experiments

In this paper we use probabilistic programming to model two real world scenar-
ios: computing the amount of fees collected by a miner over time and computing
the Bitcoin transaction fees trend.

In the first experiment, we are interested in computing how transaction fees
affect the average profit of a miner. Nowadays most of the revenues of miners
come from blocks reward: each miner that appends a block to the blockchain
receives a certain amount of bitcoin. However, the Bitcoin block mining reward
halves every 210,000 blocks so, the more blocks will be appended to the main
chain, the less will the miner’s revenue be. Currently, the revenue is 12.5 bitcoin
but approximately by the end of 2020 it will be halved. Therefore, in the future,
transaction fees will have a central role in supporting the miners activity.

In this experiment we modelled the number of transactions in a block (Ntx),
and the transaction reward R as Gaussian distributions. For both, the mean of
the distribution is sampled from another Gaussian distribution. The obtained
fees are Ntx ∗R. The model is shown in Listing 5-1:

mean_r(M):gaussian(M,18 ,2).

mean_b(M):gaussian(M,700 ,25).

revenue(_,M,R):gaussian(R,M,2).

block_size(_,M,S):gaussian(S,M,25).

val_r(I,V):- mean_r(M), revenue(I,M,V).

val_b(I,V):- mean_b(M), block_size(I,M,V).

obtained_fees(I,O):- val_r(I,R), val_b(I,B), O is R*B/100000.

Listing 5-1. Example of a model.

Analyzing Transaction Fees with Probabilistic Logic Programming

The predicates val b/2 and val r/2 compute the average size of a block and
the average fee rate. Finally, obtained fees/2 computes the amount of fees
received for creating one block. The output value is divided by 105 to get the
value in bitcoin, since the average fee rate is in satoshi/byte and the block size in
kilobyte. To compute the results, we used the predicates mc expectation/4 and
mc lw expectation/5 from the cplint package. The signature of the first pred-
icate is the following: mc expectation(+Query:atom,+N:int,?Arg:var,-Exp:

float). It takes N samples of Query and sums up the value of Arg for each
sample. The overall sum is divided by N to give Exp. The second predicate has
one more argument, the evidence. The difference with respect to the previous
one is that each sample is weighted by the likelihood of evidence in the sample,
according to likelihood weighting. The results are shown in Fig. 1, where we
observed val r/2 with V variable according to the legend and in Fig. 2 where we
observed val b/2 with V variable according to the legend. For both experiments
we used 1000 samples.

12 14 16 18 20 22 24 26

0.10

0.12

0.14

0.16

Observed Fees

P
ro

fi
t

(B
T

C
)

µ = 16
µ = 17
µ = 18
µ = 19
µ = 20

Fig. 1. The graph shows how a variation in the average bitcoin fee rate can influence
the miner profit. The data are computed by setting the parameters for the Gaussian
distribution for block size as µ = 700 and σ2 = 25 and for rewards as σ2 = 5 and
µ according to the legend. The straight lines represent the values computed without
observations (obtained with mc expectation/3).

In the second experiment, we want to understand how transaction fees may
vary over time. In particular, we want to know what is the probability that a
transaction with a certain fee rate is confirmed after a given number of blocks. We
start by defining the probability distributions of the involved variables. Look-
ing at Bitcoin data from blockchain.com, we retrieved the average number of
transactions in a block, the average block discovery time and the average num-
ber of transactions added to the mempool per second. All these variables can

blockchain.com

D. Azzolini et al.

680 700 720 740

0.115

0.120

0.125

Observed Size

P
ro

fi
t

(B
T

C
)

µ = 690
µ = 700
µ = 710
µ = 720

Fig. 2. The graph relates the block size with the average profit obtained from fees.
The parameters for the distribution for block size are σ2 = 25 and µ variable and for
the reward µ = 17 and σ2 = 2. Straight lines represent the values computed without
observations.

be assumed to follow a Poisson distribution that can be approximated with a
Gaussian distribution. The average transaction fee rate is also modelled with a
Gaussian distribution. However, because this value often varies over time, we
re-sample the mean of the distribution of the fees for every iteration. The model
is shown in Listing 5-2.

average_fee(_,M):uniform(M,15 ,25).

compute_fee(_,M,F):gaussian(F,M,4).

fee(I,F):- average_fee(I,M), compute_fee(I,M,F).

compute_time(F,M,V):gaussian(F,M,V).

number_of_tx_in_block(_,N):gaussian(N ,1600 ,1600).

block_discovery_time(_,N):gaussian(N,500 ,500).

tx_per_second(_,N):poisson(N,5).

generate_pool(N,N,[]):-!.

generate_pool(I,N,[F|T]):- I < N, fee(I,F), I1 is I+1,

generate_pool(I1 ,N,T).

get_len(A,B,B):- A >= B, !.

get_len(A,B,A1):- A < B, A1 is A-1.

loop_pool(FeeRate ,I,NBlocks ,Pool):- I =< NBlocks ,!,

number_of_tx_in_block(I,N), N11 is round(N),

length(Pool ,LP), get_len(LP,N11 ,N1),

length(L,N1), append(L,RemPool ,Pool),

Analyzing Transaction Fees with Probabilistic Logic Programming

loop_pool_check(FeeRate ,I,RemPool ,NBlocks).

loop_pool_check(_,_,[],_):- !.

loop_pool_check(FeeRate ,_,[H|_],_):- H < FeeRate ,!.

loop_pool_check(FeeRate ,I,RemPool ,NBlocks):- !,

I1 is I+1, block_discovery_time(I,Time),

tx_per_second(I,T), NNewTx is T*Time ,

NT1 is round(NNewTx),

generate_pool (0,NT1 ,NewArrived),

append(NewArrived ,RemPool ,NewPool),

sort(0, @>=, NewPool , PoolSorted),

loop_pool(FeeRate ,I1 ,NBlocks ,PoolSorted).

included(_I,FeeRate ,NBlocks):-

loop_pool_check(FeeRate ,0,[FeeRate],NBlocks).

Listing 5-2. Example of model.

The program creates an initial pool of N transactions by sampling N times a
value from a Gaussian distribution using the predicates generate pool/3 and
fee/2. To compute how many blocks we need to wait to confirm a transac-
tion with associated fee rate F , we sort the pool, compute the average num-
ber Nb of transactions in a block, the average block discovery time T and the
average number of transactions per second Ntxs (predicates loop pool/4 and
loop pool check/4). We then compute Ntxs ∗ T = Nta, the number of trans-
actions arrived during the last block creation. To simulate the inclusion of Nta

transactions in a block we removed the best Nb transactions from the mempool
(we suppose the miner acts as expected, i.e., he includes only the most profitable
transactions). If the transaction with the best fee rate in the remaining mempool
has a value less than F , this means that the transaction we consider has been
successfully included in a block and the iteration stops. Otherwise, we simulate
the arrival of Nta new transactions to the mempool with generate pool/3 and
repeat the process. In this case, we compute the results using both mc sample/3

and mc lw sample/4 provided by the cplint package. The first one samples the
goal a certain number of times and computes the probability of success. The
second one works in a similar way but, in addition, performs likelihood weight-
ing: each sample is weighted by the likelihood of the evidence in the sample.
Results are shown in Fig. 3. The used parameters are shown in Listing 5-2
and NBlocks was set to 1 (next block). For instance, if φ = 16 the query is: ?-
mc lw sample(included(1,16,1),included(0,ObservedFees,1), NSamples,

Probability). As expected, the confirmation probability decreases as the ob-
served fees increase. φ represents the fees associated to a transaction. The exper-
iments were executed computing 250 samples. Value of observed fees less than
φ gives probability = 1 and so are not reported in the graph.

D. Azzolini et al.

17 18 19 20 21 22 23

0.4

0.6

0.8

1.0

Observed Fee Rate

P
ro

b
a
b
il
it

y
φ = 16

φ = 17

φ = 18

φ = 19

φ = 20

Fig. 3. The graph shows how transaction fees influence the probability of confirmation
in N blocks. We selected a value of fee rate (φ) for the transaction under consideration
and then computed how probability changes according observed fee rate.

6 Conclusion

In this paper we show how to model blockchain fees using probabilistic logic pro-
gramming. Starting from real world data, we try to model how transaction fees
influence the confirmation time and how transaction fees contribute to miners
revenue. Despite being a relatively new technology, Bitcoin has attracted a lot of
interest in research. There are several papers that study Bitcoin behaviour such
as [3, 22, 30] where the authors study the so-called double spending attack. A
game theoretic analysis can be found in [18] where Bitcoin is analyzed in a sit-
uation where all the participants behave according to their incentives. However,
there are only few works in the literature concerning Bitcoin fees. In particular,
in [15, 17] the authors proposed a method based on queuing theory to model
how fees effect the confirmation time. To avoid price fluctuation, authors in [4]
proposed a new method to computes fees. An analysis on how block reward,
transaction fees and their ratio influences the Bitcoin ecosystem can be found
in [9].

To extend our work, decision theory and game theory models can be used to
deeply analyze miner’s behaviour and understand how they can optimally select
transactions based on several profit variables. Another interesting direction could
be the usage of deep learning models [12] to analyse historical data and predict
the evolution of the system.

References

1. Alberti, M., Bellodi, E., Cota, G., Riguzzi, F., Zese, R.: cplint on SWISH: Prob-
abilistic logical inference with a web browser. Intell. Artif. 11(1), 47–64 (2017).

Analyzing Transaction Fees with Probabilistic Logic Programming

https://doi.org/10.3233/IA-170105
2. Alberti, M., Cota, G., Riguzzi, F., Zese, R.: Probabilistic logical inference on

the web. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA
2016. LNCS, vol. 10037, pp. 351–363. Springer International Publishing (2016).
https://doi.org/10.1007/978-3-319-49130-1 26

3. Azzolini, D., Riguzzi, F., Lamma, E., Bellodi, E., Zese, R.: Modeling bitcoin pro-
tocols with probabilistic logic programming. In: Bellodi, E., Schrijvers, T. (eds.)
Proceedings of the 5th International Workshop on Probabilistic Logic Program-
ming, PLP 2018, co-located with the 28th International Conference on Inductive
Logic Programming (ILP 2018), Ferrara, Italy, September 1, 2018. CEUR Work-
shop Proceedings, vol. 2219, pp. 49–61. CEUR-WS.org (2018), http://ceur-ws.org/
Vol-2219/paper6.pdf

4. Basu, S., Easley, D., O’Hara, M., Sirer, E.G.: Towards a functional fee mar-
ket for cryptocurrencies. CoRR abs/1901.06830 (2019), http://arxiv.org/abs/
1901.06830

5. Bowden, R., Keeler, H.P., Krzesinski, A.E., Taylor, P.G.: Block arrivals in the bit-
coin blockchain. CoRR abs/1801.07447 (2018), http://arxiv.org/abs/1801.07447

6. Bragaglia, S., Riguzzi, F.: Approximate inference for logic programs with annotated
disjunctions. In: ILP 2011. LNAI, vol. 6489, pp. 30–37. Springer, Florence, Italy
(27-30 June 2011)

7. Buterin, V.: A next-generation smart contract and decentralized application
platform (2014), https://github.com/ethereum/wiki/wiki/White-Paper, accessed
February 14, 2019

8. Cardano., https://whycardano.com/
9. Carlsten, M., Kalodner, H., Weinberg, S.M., Narayanan, A.: On the instability

of bitcoin without the block reward. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. pp. 154–167. ACM (2016)

10. De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Mach.
Learn. 100(1), 5–47 (2015)

11. Eosio - an introduction by ian grigg, https://eos.io/introduction
12. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning, vol. 1. MIT Press (2016)
13. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. In: Conference

on the Theory and Application of Cryptography. pp. 437–455. Springer (1990)
14. Hyperledger., https://www.hyperledger.org/
15. Kasahara, S., Kawahara, J.: Priority mechanism of bitcoin and its effect

on transaction-confirmation process. CoRR abs/1604.00103 (2016), http://
arxiv.org/abs/1604.00103

16. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. Adaptive computation and machine learning, MIT Press, Cambridge, MA
(2009)

17. Koops, D.T.: Predicting the confirmation time of bitcoin transactions. CoRR
abs/1809.10596 (2018), http://arxiv.org/abs/1809.10596

18. Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of bitcoin mining, or bitcoin
in the presence of adversaries. In: Proceedings of WEIS. vol. 2013, p. 11 (2013)

19. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
20. Nguembang Fadja, A., Riguzzi, F.: Probabilistic logic programming in action. In:

Holzinger, A., Goebel, R., Ferri, M., Palade, V. (eds.) Towards Integrative Ma-
chine Learning and Knowledge Extraction, LNCS, vol. 10344. Springer (2017).
https://doi.org/10.1007/978-3-319-69775-8 5

21. Nitti, D.: Hybrid Probabilistic Logic Programming. Ph.D. thesis, KU Leuven
(2106)

https://doi.org/10.3233/IA-170105
https://doi.org/10.1007/978-3-319-49130-1_26
http://ceur-ws.org/Vol-2219/paper6.pdf
http://ceur-ws.org/Vol-2219/paper6.pdf
http://arxiv.org/abs/1901.06830
http://arxiv.org/abs/1901.06830
http://arxiv.org/abs/1801.07447
https://github.com/ethereum/wiki/wiki/White-Paper
https://whycardano.com/
https://eos.io/introduction
https://www.hyperledger.org/
http://arxiv.org/abs/1604.00103
http://arxiv.org/abs/1604.00103
http://arxiv.org/abs/1809.10596
https://doi.org/10.1007/978-3-319-69775-8_5

D. Azzolini et al.

22. Pinzón, C., Rocha, C.: Double-spend attack models with time ad-
vantange for bitcoin. Electr. Notes Theor. Comput. Sci. 329, 79–103
(2016). https://doi.org/10.1016/j.entcs.2016.12.006, https://doi.org/10.1016/
j.entcs.2016.12.006

23. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant pay-
ments (2016), https://lightning.network/lightning-network-paper.pdf

24. Riguzzi, F.: MCINTYRE: A Monte Carlo system for probabilistic logic program-
ming. Fund. Inform. 124(4), 521–541 (2013). https://doi.org/10.3233/FI-2013-847

25. Riguzzi, F.: The distribution semantics for normal programs with func-
tion symbols. Int. J. Approx. Reason. 77, 1 – 19 (October 2016).
https://doi.org/10.1016/j.ijar.2016.05.005

26. Riguzzi, F.: Foundations of Probabilistic Logic Programming. River
Publishers, Gistrup,Denmark (2018), http://www.riverpublishers.com/
book details.php?book id=660

27. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R., Cota, G.: Probabilistic logic
programming on the web. Softw.-Pract. Exper. 46(10), 1381–1396 (10 2016).
https://doi.org/10.1002/spe.2386

28. Riguzzi, F., Swift, T.: Tabling and answer subsumption for reasoning on logic
programs with annotated disjunctions. In: ICLP TC 2010. LIPIcs, vol. 7,
pp. 162–171. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010).
https://doi.org/10.4230/LIPIcs.ICLP.2010.162

29. Riguzzi, F., Swift, T.: The PITA system: Tabling and answer subsumption for
reasoning under uncertainty. Theor. Pract. Log. Prog. 11(4–5), 433–449 (2011).
https://doi.org/10.1017/S147106841100010X

30. Rosenfeld, M.: Analysis of hashrate-based double spending. CoRR abs/1402.2009
(2014), http://arxiv.org/abs/1402.2009

31. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: Sterling, L. (ed.) ICLP 1995. pp. 715–729. MIT Press (1995)

32. Swan, M.: Blockchain: Blueprint for a new economy. ”O’Reilly Media, Inc.” (2015)
33. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic Programs With Annotated

Disjunctions. In: ICLP 2004. LNCS, vol. 3132, pp. 431–445. Springer (2004)
34. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.

Ethereum project yellow paper 151, 1–32 (2014)

https://doi.org/10.1016/j.entcs.2016.12.006
https://doi.org/10.1016/j.entcs.2016.12.006
https://doi.org/10.1016/j.entcs.2016.12.006
https://lightning.network/lightning-network-paper.pdf
https://doi.org/10.3233/FI-2013-847
https://doi.org/10.1016/j.ijar.2016.05.005
http://www.riverpublishers.com/book_details.php?book_id=660
http://www.riverpublishers.com/book_details.php?book_id=660
https://doi.org/10.1002/spe.2386
https://doi.org/10.4230/LIPIcs.ICLP.2010.162
https://doi.org/10.1017/S147106841100010X
http://arxiv.org/abs/1402.2009

	Analyzing Transaction Fees with Probabilistic Logic Programming

