A Semantics for Hybrid Probabilistic Logic Programs with Function Symbols

Damiano Azzolinia,*, Fabrizio Riguzzib, Evelina Lammaa

aDipartimento di Ingegneria - University of Ferrara, Via Saragat 1, I-44122, Ferrara, Italy
bDipartimento di Matematica e Informatica - University of Ferrara, Via Saragat 1, I-44122, Ferrara, Italy

Abstract

Probabilistic Logic Programming (PLP) is a powerful paradigm for the representation of uncertain relations among objects. Recently, programs with continuous variables, also called hybrid programs, have been proposed and assigned a semantics. Hybrid programs are capable of representing real-world measurements but unfortunately the semantics proposal was imprecise so the definition did not assign a probability to all queries. In this paper, we remedy this and formally define a new semantics for hybrid programs. We prove that the semantics assigns a probability to all queries for a large class of programs.

Keywords: Probabilistic Logic Programming, Hybrid Programs

1. Introduction

Probabilistic Logic Programming (PLP) \cite{3,21} has been attracting a growing interest for its ability of representing both relationships among entities and uncertainty over such relationships. Among the semantics proposed for probabilistic logic programs, the distribution semantics \cite{22} gained prominence thanks to its intuitiveness and simplicity. The distribution semantics underlies many languages such as Probabilistic Horn Abduction \cite{16}, PRISM \cite{22}, Independent Choice Logic \cite{17}, Logic Programs with Annotated Disjunctions \cite{24},

*Corresponding author

Email addresses: damiano.azzolini@unife.it (Damiano Azzolini), fabrizio.riguzzi@unife.it (Fabrizio Riguzzi), evelina.lamma@unife.it (Evelina Lamma)
ProbLog [4], and CP-logic [25]. All these languages allow a countable number of discrete random variables. The semantics was proven well-defined for these programs in [20, 21].

The main limitation of these languages is that they do not allow continuous random variables and so they cannot properly represent several real-world scenarios characterized, for instance, by temporal or physical models. However, in the last few years, languages that overcome this limitation have appeared: Hybrid ProbLog [5], Distributional Clauses (DC) [6], Extended PRISM [8], cplint hybrid programs [21], HAL-ProbLog [26], and Probabilistic Constraint Logic Programming (PCLP, for short, in the following) [11, 12, 13].

The semantics that have been proposed for such programs are able to consider a countable number of continuous random variables. However, none of the above proposals prove that the semantics is well-defined for a large class of programs.

In particular, here we consider the semantics of PCLP proposed in [13] that is one of the more detailed. The authors define a probability space for such programs composed of a sample space, a set of events, and a measure. Events are the entities that can be assigned a measure value, i.e., a probability. However, the authors of [13] didn’t prove that every query can be associated to an event, i.e., that every query can be assigned a probability.

In this paper, we remedy this by providing a new semantics, based on the Well-founded Semantics, that, for a large class of programs (for all the programs that provide, for every world, a two-valued Well-founded model), assigns every query to an event and thus to a probability for the PCLP [11, 12, 13] language.

The paper is structured as follows. The distribution semantics for programs with function symbols and Probabilistic Constraint Logic Programming are introduced respectively in Section 2 and 3. Some motivating examples can be found in Section 4 where we also illustrate the PCLP expressive power. In Sections 5 we introduce a new semantics for PCLP and we prove that it is well-defined. Finally, in Section 6 we discuss several related semantics proposals. Section 7 concludes the paper.
2. The Distribution Semantics for Programs with Function Symbols

In the following sections we assume that the reader is familiar with ordered sets, ordinal numbers, fixpoints, logic programming, and probability theory. See appendixes A, B, C, and D for a brief overview of these topics and [2, 7, 10, 11] respectively for an in-depth treatment.

Probabilistic Logic Programming (PLP) extends logic programming with the possibility of expressing uncertain relations. Several PLP languages have been proposed during the years. In this section we present the distribution semantics for ProbLog programs with function symbols. Let us consider first ProbLog programs without function symbols.

A probabilistic logic program P is composed by a set of clauses (or rules) R and a set of probabilistic facts F which are of the form

$$\Pi :: f$$

where Π is a probability and f is an atom. If f is not ground, the fact stands for a set of facts, one for each grounding.

Let us consider an example.

Example 1 (Graph). Consider a probabilistic graph where the edges have a probability of existing.

\[F_1 = 1/3 :: \text{edge}(a,b).\]
\[F_2 = 1/2 :: \text{edge}(b,c).\]
\[F_3 = 1/4 :: \text{edge}(a,c).\]
\[
\text{path}(X,X).
\]
\[
\text{path}(X,Y) \leftarrow \text{edge}(X,Z), \text{path}(Z,Y).
\]

This program has three ground probabilistic facts, each corresponding to one edge, and two clauses. With this program we can compute the probability of the existence of a path between two nodes, for example, by asking for the probability of $\text{path}(a,c)$ being true.

In order to give a semantics to ProbLog programs without function symbols, let us introduce some terminology. An *atomic choice* indicates whether a
grounding \(f\theta \) of a probabilistic fact \(\Pi :: f \) is selected or not and is represented with the triple \((f, \theta, k)\) where \(k \in \{0, 1\} \). \(k = 1 \) means that the fact is selected, \(k = 0 \) that it is not. A set of atomic choices is consistent if only one alternative is selected for a grounding of a probabilistic fact, i.e., it does not contain atomic choices such as \((f, \theta, j)\) and \((f, \theta, k)\) with \(j \neq k \). Finally, we define a composite choice \(\kappa \) as a consistent set of atomic choices. Given a composite choice \(\kappa \) we can define its probability as

\[
P(\kappa) = \prod_{(f, \theta, 1) \in \kappa} \Pi_i \prod_{(f, \theta, 0) \in \kappa} 1 - \Pi_i.
\]

A selection \(\sigma \) (also called total composite choice) contains one atomic choice for every grounding of every probabilistic fact. A selection \(\sigma \) identifies a world \(w_\sigma \), i.e., a logic program containing the rules \(R \) and atoms corresponding to each atomic choice \((f, \theta, 1)\) of \(\sigma \). The way to assign a probability to composite choices applies also to selections, so we have a way of assigning a probability to worlds.

Since there are no function symbols, the Herbrand universe is finite and so is the set of groundings of probabilistic facts. Therefore, the set of worlds is finite, and each world is determined by a finite number of choices. \(P(\sigma) \) as defined above is a probability distribution over the worlds.

We want to assign a probability to ground atoms. We assume that each world has a total well-founded model, i.e., each ground atom is either true or false in the world, but it cannot be undefined. We call programs satisfying this property sound.

Given a ground atom \(q \) and a world \(w \) we can thus define the conditional probability \(P(q \mid w) \) as 1 if \(w \vdash q \) and 0 otherwise.

The probability of \(q \) can be computed by summing out the worlds from the joint distribution of the query and the worlds:

\[
P(q) = \sum_w P(q, w) = \sum_w P(q \mid w)P(w) = \sum_{w \models q} P(w).
\]
Table 1: Worlds for Example 1. The highlighted rows represent the worlds where the query
path(a, c) is true, together with their probability.

Example 2 (Graph, continued). The program of Example 1 has three ground probabilistic facts so it has $2^3 = 8$ worlds (see Table 1). The query path(a, c) is true in 5 of them and its probability is

$$P(path(a, c)) = 1/3 \cdot 1/2 \cdot 1/4 + 1/3 \cdot 1/2 \cdot 3/4 + 1/3 \cdot 1/2 \cdot 1/4 + 2/3 \cdot 1/2 \cdot 1/4 + 2/3 \cdot 1/2 \cdot 1/4$$

$$= 9/24 = 0.375$$

If the program contains function symbols, the Herbrand universe is denumerable and the set of groundings of probabilistic facts is denumerable as well. The set of worlds in this case is uncountable, as will be shown later by Theorem 4, and the probability of each world is 0, as it is given by an infinite product of numbers all bounded away from 1. Therefore, the semantics cannot be given as above.

Let us consider an example with function symbols.

Example 3 (Game of dice). Consider the game of dice proposed in [24]: the player repeatedly throws a six-sided die. The game stops when the outcome is six. If we consider a game played with a three-sided die, where the game stops when the outcome is three, a possible ProbLog encoding could be:
If we add the clauses
\[\text{at least}_1 \leftarrow \text{on}_1. \]
\[\text{never}_1 \leftarrow \text{at least}_1. \]
where ‘\(_ \)’ denotes an anonymous variable, we can ask for the probability that the die landed at least once on face 1 and that the die never landed on face 1.

Let us introduce some more definitions. With \(W_P \) we denote the set of all worlds of a probabilistic logic program \(P \). The set of worlds \(\omega_\kappa \) compatible with a composite choice \(\kappa \) is \(\omega_\kappa = \{ w_\sigma \in W_P \mid \kappa \subseteq \sigma \} \). Therefore, a composite choice identifies a set of worlds. For programs with function symbols, \(\omega_\kappa \) may be uncountable so it is not guaranteed that \(\sum_{w \in \omega_\kappa} P(w) \) can be defined, since \(P(w) = 0 \). However, \(P(\kappa) \) is still well-defined. Let us call \(\mu(\kappa) = P(\kappa) \).

Given a set of composite choices \(K \), the set of worlds \(\omega_K \) compatible with \(K \) is defined as \(\omega_K = \bigcup_{\kappa \in K} \omega_\kappa \). Two sets \(K_1 \) and \(K_2 \) of composite choices are equivalent if \(\omega_{K_1} = \omega_{K_2} \), that is, if they correspond to the same set of worlds. If the union of two composite choices \(\kappa_1 \) and \(\kappa_2 \) is not consistent, then \(\kappa_1 \) and \(\kappa_2 \) are incompatible. We define pairwise incompatible a set \(K \) of composite choices if for all \(\kappa_1 \in K, \kappa_2 \in K \), \(\kappa_1 \neq \kappa_2 \) implies that \(\kappa_1 \) and \(\kappa_2 \) are incompatible.

Obtaining pairwise incompatible sets of composite choices (for both probabilistic logic programs with finite and infinite number of worlds) is a crucial problem, since the probability of a pairwise incompatible set \(K \) of composite choices for programs without function symbols can be defined as \(P(K) = \sum_{\kappa \in K} P(\kappa) \), which can be easily computed. \(P(K) \) is still well-defined for programs with function symbols if \(K \) is countable. Let us call it \(\mu \) so \(\mu(K) = P(K) \).
We can assign probabilities to a general set \(K \) of composite choices by constructing a pairwise incompatible equivalent set through the technique of splitting. In detail, if \(f\theta \) is an instantiated fact and \(\kappa \) is a composite choice that does not contain an atomic choice \((f, \theta, k)\) for any \(k \), the split of \(\kappa \) on \(f\theta \) can be defined as the set of composite choices \(S_{\kappa, f\theta} = \{\kappa \cup \{(f, \theta, 0)\}, \kappa \cup \{(f, \theta, 1)\}\} \). In this way, \(\kappa \) and \(S_{\kappa, f\theta} \) identify the same set of possible worlds, i.e., \(\omega_\kappa = \omega_{S_{\kappa, f\theta}} \), and \(S_{\kappa, f\theta} \) is pairwise incompatible. It turns out that, given a set of composite choices, by repeatedly applying splitting it is possible to obtain an equivalent mutually incompatible set of composite choices [18].

Theorem 1 (Existence of a pairwise incompatible set of composite choices [18]).

Given a finite set \(K \) of composite choices, there exists a finite set \(K' \) of pairwise incompatible composite choices equivalent to \(K \).

Theorem 2 (Equivalence of the probability of two equivalent pairwise incompatible finite set of finite composite choices [15]). If \(K_1 \) and \(K_2 \) are both pairwise incompatible finite sets of finite composite choices such that they are equivalent, then \(P(K_1) = P(K_2) \).

Given a finite pairwise incompatible set \(K' \) of composite choices equivalent to \(K \), a measure for a probabilistic logic program \(P \) is defined as \(\mu_P(\omega_K) = \mu(K') \).

We say that a composite choice \(\kappa \) is an explanation for a query \(q \) if \(\forall w \in \omega_\kappa : w \models q \). Moreover, a set \(K \) of composite choices is covering with respect to a query \(q \) if every world in which \(q \) is true belongs to \(\omega_K \).

Example 4 (Pairwise incompatible covering set of explanations for Example 3).

In Example 3, the query at least once 1 has the pairwise incompatible covering set of explanations

\[
K^+ = \{\kappa^+_0, \kappa^+_1, \ldots\}
\]
with

\[\kappa_0^+ = \{(f_1, \{X/0\}, 1)\} \]

\[\kappa_1^+ = \{(f_1, \{X/0\}, 0), (f_2, \{X/0\}, 1), (f_1, \{X/s(0)\}, 1)\} \]

\[\ldots \]

\[\kappa_i^+ = \{(f_1, \{X/0\}, 0), (f_2, \{X/0\}, 1), \ldots, (f_1, \{X/s^{i-1}(0)\}, 0), (f_2, \{X/s^i(0)\}, 1), (f_1, \{X/s^i(0)\}, 1)\} \]

\[\ldots \]

So \(K^+ \) is countable and infinite. The query never_1 has the pairwise incompatible covering set of explanations

\[K^- = \{\kappa_0^-, \kappa_1^-, \ldots\} \]

with

\[\kappa_0^- = \{(f_1, \{X/0\}, 0), (f_2, \{X/0\}, 0)\} \]

\[\kappa_1^- = \{(f_1, \{X/0\}, 0), (f_2, \{X/0\}, 1), (f_1, \{X/s(0)\}, 0), (f_2, \{X/s(0)\}, 0)\} \]

\[\ldots \]

\[\kappa_i^- = \{(f_1, \{X/0\}, 0), (f_2, \{X/0\}, 1), \ldots, (f_1, \{X/s^{i-1}(0)\}, 0), (f_2, \{X/s^i(0)\}, 1), (f_1, \{X/s^i(0)\}, 0), (f_2, \{X/s^i(0)\}, 0)\} \]

\[\ldots \]

For a probabilistic logic program \(P \) and a ground atom \(q \), we define the function \(Q : \mathcal{W}_P \rightarrow \{0, 1\} \) as

\[Q(w) = \begin{cases}
1 & \text{if } w \models q \\
0 & \text{otherwise}
\end{cases} \] \hspace{1cm} (2)

Given a probabilistic logic program \(P \), we call \(\Omega_P \) the set of sets of worlds identified by countable sets of countable composite choices, i.e., \(\Omega_P = \{\omega_K \mid K \text{ is a countable set of countable composite choices}\} \).
Lemma 1 (σ-algebra of a Program, Lemma 2 of [21]). \(\Omega_P \) is a σ-algebra over \(W_P \).

We can define a probability measure \(\mu_P \) as follows: \(\mu_P : \Omega_P \rightarrow [0, 1] \). Given \(K = \{ \kappa_1, \kappa_2, \ldots \} \) (\(K \) may be also infinite, i.e., it may contain an infinite number of \(\kappa_i \)), consider the sequence \(\{ K_n \mid n \geq 1 \} \) where \(K_n = \{ \kappa_1, \ldots, \kappa_n \} \). \(K_n \) is an increasing sequence and so \(\lim_{n \to \infty} K_n \) exists and is equal to \(\bigcup_{n=1}^{\infty} K_n = K \) [1]. Consider the sequence \(\{ K'_n \mid n \geq 1 \} \) constructed as follows: \(K'_1 = \{ \kappa_1 \} \) and \(K'_n \) is obtained by the union of \(K'_{n-1} \) with the splitting of each element of \(K'_{n-1} \) with \(\kappa_n \). It is possible to prove by induction that \(K'_n \) is pairwise incompatible and equivalent to \(K_n \).

Since \(\mu(\kappa) = 0 \) for infinite composite choices, we can compute \(\mu(K'_n) \) for each \(K'_n \). Consider \(\lim_{n \to \infty} \mu(K'_n) \), then the following lemma holds:

Lemma 2 (Existence of the limit of the measure of countable union of countable composite choices, Lemma 3 from [21]). \(\lim_{n \to \infty} \mu(K'_n) \) exists.

We can now introduce the definition of the probability space of a program.

Theorem 3 (Probability space of a program, Theorem 8 from [21]). Given a set of composite choices \(K = \{ \kappa_1, \kappa_2, \ldots \} \) and a pairwise incompatible set of composite choices \(K'_n \) equivalent to \(\{ \kappa_1, \ldots, \kappa_n \} \), the triple \(\langle W_P, \Omega_P, \mu_P \rangle \) with

\[
\mu_P(\omega_K) = \lim_{n \to \infty} \mu(K'_n)
\]

is a probability space.

Given a probabilistic logic program \(P \) and a ground atom \(q \) with a countable set \(K \) of explanations that is covering with respect to \(q \), Equation 2 represents a random variable, since \(\{ w \mid w \in W_P \land w \models q \} = \omega_K \in \Omega_P \).

For brevity, we indicate \(P(Q = 1) \) with \(P(q) \) and we say that \(q \) is well-defined according to the distribution semantics. If the probability of all ground atoms in the grounding of a probabilistic logic program \(P \) is well-defined, then \(P \) is well-defined.
Example 5 (Probability of the query for Example 3). From Example 4, the explanations in K^+ are pairwise incompatible. The probability of the query \texttt{at least once.1} can be computed as:

\[
P(\texttt{at least once.1}) = \mu((f_1, \{X/0\}, 1)) + \\
+ \mu((f_1, \{X/0\}, 0), (f_2, \{X/0\}, 1), (f_1, \{X/s(0)\}, 1)) + \ldots
\]

So:

\[
P(\texttt{at least once.1}) = \frac{1}{3} + \frac{1}{3} \cdot \left(\frac{2}{3} \cdot \frac{1}{2}\right) + \frac{1}{3} \cdot \left(\frac{2}{3} \cdot \frac{1}{2}\right)^2 + \ldots
\]

\[
= \frac{1}{3} + \frac{1}{3} \cdot \left(\frac{1}{3}\right) + \frac{1}{3} \cdot \left(\frac{1}{3}\right)^2 + \ldots
\]

\[
= \frac{1}{3} \cdot \frac{1}{1 - \frac{1}{3}} = \frac{1}{3} \cdot \frac{3}{2} = \frac{1}{2}
\]

since the sum represents a geometric series and $\sum_{n=0}^{\infty} k \cdot q^n = k \cdot \frac{1}{1-q}$.

Analogously, for the query \texttt{never.1}, the explanations in K^- are pairwise incompatible, so the probability of \texttt{never.1} can be computed as

\[
P(\texttt{never.1}) = \frac{2}{3} \cdot \frac{1}{2} + \frac{2}{3} \cdot \frac{1}{2} \cdot \left(\frac{2}{3} \cdot \frac{1}{2}\right) + \\
\frac{2}{3} \cdot \frac{1}{2} \cdot \left(\frac{2}{3} \cdot \frac{1}{2}\right)^2 + \ldots
\]

\[
= \frac{1}{3} + \frac{1}{3} \cdot \left(\frac{1}{3}\right) + \frac{1}{3} \cdot \left(\frac{1}{3}\right)^2 + \ldots
\]

\[
= \frac{1}{3} \cdot \frac{1}{1 - \frac{1}{3}} = \frac{1}{3} \cdot \frac{3}{2} = \frac{1}{2}
\]

As expected, $P(\texttt{never.1}) = 1 - P(\texttt{at least once.1})$.

In [20, 21] it was proved that any query to a sound ProbLog program can be assigned a probability so that the program is well-defined. In this paper, we want to do the same for PCLP.

3. Probabilistic Constraint Logic Programming (PCLP)

In this section, we introduce the basic concepts described in [13].
A program P in PCLP is composed by a set of rules (R) and a countable set of random variables (X). The rules define the truth value of the atoms in the Herbrand base of the program given the values of the random variables. Let $X = \{X_1, X_2, \ldots\}$ be the countable set of random variables. Each random variable X_i has an associated range $Range_i$ that can be discrete, \mathbb{R} or \mathbb{R}^n.

The sample space of a set X is defined as $W_X = Range_1 \times Range_2 \times \ldots$. Each random variable X_i is associated to a probability space $(Range_i, \Omega_i, \mu_i)$. The measure space (W_X, Ω) is the product of measure spaces $(Range_i, \Omega_i)$, so it is an infinite-dimensional product measure space $[1]$. It is possible to build a probability space for any finite subset of X as a product probability space.

Theorem 6.4.1 from $[1]$ states that these finite dimensional probability spaces can be extended to an infinite dimensional probability space (W_X, Ω_X, μ_X).

A constraint φ is a function $\varphi : W_X \rightarrow \{true, false\}$, i.e., a function from $X_1 = x_1$, $X_2 = x_2$, \ldots, to $\{true, false\}$, where $x_i \in Range_i$. Given a sample space W_X, and a constraint φ, we can define the constraint solution space $CSS(\varphi)$ as the subset of the sample space W_X where the constraint φ holds: $CSS(\varphi) = \{x \in W_X \mid \varphi(x)\}$.

We indicate with $satisfiable(\omega_X)$ the set of all constraints that are satisfiable given a valuation w_X of the random variables in X.

Each atom in the Herbrand base B_P of R is a Boolean random variable. There is a countable number of them. The sample space W_R is defined as

$$W_R = \prod_{a \in B_P} \{true, false\}.$$

The authors of $[13]$ define the event space of the logic part of the theory as

$$\Omega_R = \mathcal{P}(W_R)$$

because they say that the sample space W_R is countable. However, this is not true and can be proved with Cantor’s diagonal argument: it is not possible to put in a one-to-one correspondence the elements of W_R with the set of natural numbers \mathbb{N}.

Theorem 4 (From $[20, 21]$). W_R is uncountable.
Proof. If the program contains at least one function symbol and one constant, the Herbrand base B_P is denumerable. We can thus represent each element of W_R as a denumerable sequence of Boolean values. Equivalently, we can represent it with a denumerable sequence of bits b_1, b_2, b_3, \ldots

Suppose W_R is denumerable. Then it is possible to write its element in a list such as

\begin{align*}
 b_{1,1}, b_{1,2}, b_{1,3}, \\
 b_{2,1}, b_{2,2}, b_{2,3}, \\
 b_{3,1}, b_{3,2}, b_{3,3}, \\
 &\ldots
\end{align*}

Since W_R is denumerable, the list should contain all of its elements.

Now, pick element $\neg b_{1,1}, \neg b_{2,2}, \neg b_{3,3}, \ldots$. This element belongs to W_R because it is a denumerable sequence of Booleans. However, it is not in the list, because it differs from the first element in the first bit, from the second element in the second bit, and so on. So it differs from each element of the list. This is against the hypothesis that the list contains all elements of W_R. Thus, W_R is not denumerable and so W_R is uncountable.

We recall here the definition of product σ-algebra.

Definition 1 (Product σ-algebra). Given two measurable spaces (W_1, Ω_1) and (W_2, Ω_2), the product σ-algebra $\Omega_1 \otimes \Omega_2$ is defined as $\Omega_1 \otimes \Omega_2 = \sigma(\{\omega_1 \times \omega_2 | \omega_1 \in \Omega_1, \omega_2 \in \Omega_2\})$. The result of $\Omega_1 \otimes \Omega_2$ is different from the Cartesian product $\Omega_1 \times \Omega_2$ because it is the minimal σ-algebra generated by all the possible couples of elements from Ω_1 and Ω_2. $\Omega_1 \otimes \Omega_2$ is also called a tensor product.

The sample space of the entire theory is

$$W_P = W_X \times W_R$$

and the event space of the entire theory is

$$\Omega_P = \Omega_X \otimes \Omega_R.$$
The probability measure μ_X is extended to a probability measure of the entire theory μ_P by observing that knowing which constraints are true uniquely determines the truth value of all atoms in the entire theory.

An element w_X of the sample space W_X uniquely determines which constraints are true: we assume that the logic theory $R \cup \text{satisfiable}(w_X)$ has a unique well-founded model which we denote by $WFM(w_X)$.

The probability measure on the entire theory P’s event space is defined as

$$\mu_P(\omega) = \mu_X(\{w_X \mid (w_X, w_R) \in \omega, WFM(w_X) \models w_R\}).$$

The probability of a query q is defined as

$$P(q) = \mu_P(\{(w_X, w_R) \in W_P \mid w_R \models q\}).$$

The authors of [13] (pp. 11-12) say:

We further know that the event defined by the equation above is an element of the event space Ω_P, since we do not put any restrictions on values of random variables and the event space concerning the logic atoms is defined as the powerset of the sample space [...] thus each subset of the sample space is in the event space.

Since the event space of the logic atoms cannot be defined as the powerset of the sample space, the fact that $\{(w_X, w_R) \in W_P \mid w_R \models q\}$ is measurable is not obvious and must be proved.

4. PCLP Examples

In this section, we show some examples of PCLP. Discrete and continuous random variables are described by their distribution with facts of the form

Variable \sim distribution

where variable names start with an uppercase character and are bold. For example,

Time_comp \sim exp(1)
represents a continuous random variable $\text{Time}_{\text{comp}}$ that follows an exponential distribution with parameter 1. Moreover, the body of rules can contain special atoms enclosed in square brackets $\langle \rangle$, encoding constraints among random variables.

The following two examples are taken from [13]. The first one describes the development of fire on a ship, while the second models the behavior of a consumer.

Example 6 (Fire on a ship [13]). *Suppose a fire breaks out in a compartment of a ship. After 0.75 minutes also the next compartment will be on fire. After 1.25 minutes the fire will breach the hull. With this information, we know for sure that if the fire is under control within 0.75 minutes the ship is saved. This can be represented as:*

$$\text{saved} \leftarrow \langle \text{Time}_{\text{comp}}_1 < 0.75 \rangle$$

In detail, the previous line says that the value of the continuous random variable $\text{Time}_{\text{comp}}_1$ should be less than 0.75 in order to saved to be true. The second compartment is more fragile than the first one, and the fire must be extinguished within 0.625 minutes. However, to reach the second compartment, the fire in the first one must be under control. This means that both fires must be extinguished in $0.75 + 0.625 = 1.375$ minutes. In the second compartment four people can work simultaneously, since it is not as isolated as the first one. This means that the fire will be extinguished four times faster. We can encode this situation with:

$$\text{saved} \leftarrow \langle \text{Time}_{\text{comp}}_1 < 1.25 \rangle, \langle \text{Time}_{\text{comp}}_1 + 0.25 \cdot \text{Time}_{\text{comp}}_2 < 1.375 \rangle$$

We also suppose that both time durations to extinguish the fire are exponentially distributed:

$$\text{Time}_{\text{comp}}_1 \sim \text{exp}(1)$$

$$\text{Time}_{\text{comp}}_2 \sim \text{exp}(1)$$

*Given these time constraints and these distributions, we want to know the probability that the ship is saved, i.e., $P(\text{saved})$.

14
Example 7 (Fruit selling [13]). We want to compute the likelihood of a consumer buying a certain fruit. The price of the fruit depends on its yield, which is modeled with a Gaussian distribution. For apples and bananas, we have:

\[\text{Yield(apple)} \sim \text{gaussian}(12000.0, 1000.0) \]
\[\text{Yield(banana)} \sim \text{gaussian}(10000.0, 1500.0) \]

The government may or may not support the market, this is modeled with discrete random variables:

\[\text{Support(apple)} \sim \{0.3 : \text{yes}, 0.7 : \text{no}\} \]
\[\text{Support(banana)} \sim \{0.5 : \text{yes}, 0.5 : \text{no}\} \]

The basic price is computed on the basis of the yield with a linear function:

\[\text{basic_price(apple)} \leftarrow 250 - 0.007 \times \text{Yield(apple)} \]
\[\text{basic_price(banana)} \leftarrow 200 - 0.006 \times \text{Yield(banana)} \]

Constraints of the form \(\text{Variable} = \text{Expression} \) are special as they give a name to an expression involving random variables that can be reused afterwards in other constraints. In fact, we do not have to specify a density for \text{Variable} as its density is completely determined by that of the variables in \text{Expression}.

The actual price is computed from the basic price by raising it by a fixed amount in case of government support:

\[\text{price(Fruit)} \leftarrow \text{basic_price(Fruit)}, \]
\[\langle \text{Price(Fruit)} = \text{Basic_price(Fruit)} + 50, \text{Support(Fruit)} = \text{yes} \rangle \]
\[\text{price(Fruit)} \leftarrow \text{basic_price(Fruit)}, \]
\[\langle \text{Price(Fruit)} = \text{Basic_price(Fruit)}, \text{Support(Fruit)} = \text{no} \rangle \]

Note that variable Fruit is not bold, since it is a logical variable, and not a random variable.

A customer buys a certain fruit provided that its price is below a maximum:

\[\text{buy(Fruit)} \leftarrow \text{price(Fruit)}, \langle \text{Price(Fruit)} \leq \text{Max_price(Fruit)} \rangle \]

The maximum price follows a gamma distribution:

\[\text{Max_price(apple)} \sim \Gamma(10.0, 18.0) \]
\[\text{Max_price(banana)} \sim \Gamma(12.0, 10.0) \]

We can now ask for the probability of the customer of buying a certain fruit, \(P(\text{buy(apple)}) \) or \(P(\text{buy(banana)}) \).
The previous two examples illustrate the expressive power of PCLP. However, they do not contain function symbols, so the set of random variables is finite. A semantics for such programs was given in [6]. The following two examples use integers that are representable only by using function symbols (for example, 0 for 0, \(s(0)\) for 1, \(s(s(0))\) for 2, \ldots).

Example 8 (Gambling). Consider a gambling game that involves spinning a roulette wheel and drawing a card from a deck. The player repeatedly spins the wheel and draws a card. The card is reinserted in the deck after each play. The player records the position of the axis of the wheel when it stops, i.e., the angle it creates with the geographic east. If the player draws a red card the game ends, otherwise she/he keeps playing. The angle of the wheel and the color of the card define four available prizes. In particular, prize a if the card is black and the angle is less than \(\pi\), prize b if the card is black and the angle is greater than \(\pi\), prize c if the card is red and the angle is less than \(\pi\) and prize d otherwise. The angle of the wheel can be described with an uniform distribution in \([0, 2\pi]\) and the color of the card with a Bernoulli distribution with \(P(red) = P(black) = 0.5\).
\textbf{Card}(_) \sim \{ \text{red} : 0.5, \text{black} : 0.5 \}

\textbf{Angle}(_) \sim \text{uniform}(0, 2\pi)

\text{prize}(0, a) \leftarrow \langle \text{Card}(0) = \text{black}, \langle \text{Angle}(0) < \pi \rangle \rangle

\text{prize}(0, b) \leftarrow \langle \text{Card}(0) = \text{black}, \langle \text{Angle}(0) \geq \pi \rangle \rangle

\text{prize}(0, c) \leftarrow \langle \text{Card}(0) = \text{red}, \langle \text{Angle}(0) < \pi \rangle \rangle

\text{prize}(0, d) \leftarrow \langle \text{Card}(0) = \text{red}, \langle \text{Angle}(0) \geq \pi \rangle \rangle

\text{prize}(s(X), a) \leftarrow \text{prize}(X), \langle \text{Card}(X) = \text{black} \rangle,

\langle \text{Card}(s(X)) = \text{black}, \langle \text{Angle}(s(X)) < \pi \rangle \rangle

\text{prize}(s(X), b) \leftarrow \text{prize}(X), \langle \text{Card}(X) = \text{black} \rangle,

\langle \text{Card}(s(X)) = \text{black}, \langle \text{Angle}(s(X)) \geq \pi \rangle \rangle

\text{prize}(s(X), c) \leftarrow \text{prize}(X), \langle \text{Card}(X) = \text{black} \rangle,

\langle \text{Card}(s(X)) = \text{red}, \langle \text{Angle}(s(X)) < \pi \rangle \rangle

\text{prize}(s(X), d) \leftarrow \text{prize}(X), \langle \text{Card}(X) = \text{black} \rangle,

\langle \text{Card}(s(X)) = \text{red}, \langle \text{Angle}(s(X)) \geq \pi \rangle \rangle

\text{at least once prize}_a \leftarrow \text{prize}(X, a)

\text{never prize}_a \leftarrow \text{at least once prize}_a

We can ask for the probability that the player wins at least one time prize \(a\) with \(P(\text{at least once prize}_a)\). Similarly, we can ask the probability that the player never wins prize \(a\) with \(P(\text{never prize}_a)\).

Example 9 (Hybrid Hidden Markov Model). A Hybrid Hidden Markov Model (Hybrid HMM) combines a Hidden Markov Model (HMM, with discrete states) and a Kalman Filter (with continuous states). At every integer time point \(t\), the system is in a state \([S(t), \text{Type}(t)]\) which is composed of a discrete random variable \(\text{Type}(t)\), taking values in \{\(a, b\)\}, and a continuous variable \(S(t)\) taking values in \(\mathbb{R}\). At time \(t\) it emits one value \(V(t) = S(t) + \text{Obs}_\text{err}(t)\), where \(\text{Obs}_\text{err}(t)\) is an error that follows a probability distribution that does not depend on time but depends on \(\text{Type}(t)\), \(a\) or \(b\). At time \(t' = t + 1\), the systems transitions to a new state \([S(t'), \text{Type}(t')]\), with \(S(t') = S(t) + \text{Trans}_\text{err}(t)\) where \(\text{Trans}_\text{err}(t)\) is also an error that follows a probability distribution that does not depend on time but depends on \(\text{Type}(t)\). \(\text{Type}(t')\) depends on \(\text{Type}(t)\).
The state at time 0 is described by random variable Init. Here, all the random variables except Init are indexed by the integer \(t \).

\[
\text{ok} \leftarrow \text{kf}(2), \langle V(2) > 2 \rangle
\]

\[
\text{kf}(N) \leftarrow \langle S(0) = \text{Init}, \langle \text{Type}(0) = \text{TypeInit}, \text{kf}_\text{part}(0,N) \rangle
\]

\[
\text{kf}_\text{part}(I,N) \leftarrow I < N, \text{NextI is } I + 1,
\]

\[
\text{trans}(I,\text{NextI}), \text{emit}(I),
\]

\[
\text{kf}_\text{part}(\text{NextI},N)
\]

\[
kf_\text{part}(N,N) \leftarrow N \neq 0
\]

\[
\text{trans}(I,\text{NextI}) \leftarrow
\]

\[
\langle \text{Type}(I) = a, \langle S(\text{NextI}) = S(I) + \text{Trans.err}_a(I) \rangle,
\]

\[
\langle \text{Type}(\text{NextI}) = \text{Type}_a(\text{NextI}) \rangle
\]

\[
\text{trans}(I,\text{NextI}) \leftarrow
\]

\[
\langle \text{Type}(I) = b, \langle S(\text{NextI}) = S(I) + \text{Trans.err}_b(I) \rangle,
\]

\[
\langle \text{Type}(\text{NextI}) = \text{Type}_b(\text{NextI}) \rangle
\]

\[
\text{emit}(S,I,V) \leftarrow
\]

\[
\langle \text{Type}(I) = a, \langle V(I) = S(I) + \text{Obs.err}_a(I) \rangle,
\]

\[
\langle \text{Type}(I) = b, \langle V(I) = S(I) + \text{Obs.err}_b(I) \rangle
\]

\[
\text{Init} \sim \text{gaussian}(0,1)
\]

\[
\text{Trans.err}_a(\cdot) \sim \text{gaussian}(0,2)
\]

\[
\text{Trans.err}_b(\cdot) \sim \text{gaussian}(0,4)
\]

\[
\text{Obs.err}_a(\cdot) \sim \text{gaussian}(0,1)
\]

\[
\text{Obs.err}_b(\cdot) \sim \text{gaussian}(0,1)
\]

\[
\text{TypeInit} \sim \{a : 0.4, b : 0.6\}
\]

\[
\text{Type}_a(I) \sim \{a : 0.3, b : 0.7\}
\]

\[
\text{Type}_b(I) \sim \{a : 0.7, b : 0.3\}
\]

5. A New Semantics for Probabilistic Constraint Logic Programming

This section represents the core of our work. Here we provide a new semantics for PCLP and prove that it is well-defined, i.e., each query can be assigned a probability. In giving a new semantics for PCLP, we consider discrete and
continuous random variables separately. Discrete random variables are encoded using probabilistic facts as in ProbLog. With Boolean probabilistic facts it is possible to encode any discrete random variable: if the variable V has n values v_1, \ldots, v_n, we can use $n - 1$ ProbLog probabilistic facts f_i and encode that $V = v_i$ for $i = 1, \ldots, n - 1$ with the conjunction

$$\sim f_1, \ldots, \sim f_{i-1}, f_i$$

and $V = v_n$ with the conjunction

$$\sim f_1, \ldots, \sim f_{n-1}$$

with the probability π_i of fact f_i given by

$$\pi_i = \frac{\Pi_i}{\prod_{j=1}^{i-1} (1 - \pi_j)}$$

where Π_i is the probability of value v_i of variable V.

We consider that a program P in PCLP is composed by a set of rules R, a set of Boolean probabilistic facts F and a countable set of continuous random variables X. The rules define the truth value of the atoms in the Herbrand base of the program given the values of the random variables. Let $X = \{X_1, X_2, \ldots\}$ be the countable set of continuous random variables. Each random variable X_i has an associated range Range_i that can be \mathbb{R} or \mathbb{R}^n.

The sample space for the continuous variables is defined as $W_X = \text{Range}_1 \times \text{Range}_2 \times \ldots$. As shown in Section 3, the probability spaces of individual variables generate an infinite dimensional probability space (W_X, Ω_X, μ_X).

We can now define a Probabilistic Constraint Logic Theory.

Definition 2 (Probabilistic constraint logic theory). A probabilistic constraint logic theory P is a tuple $(X, W_X, \Omega_X, \mu_X, \text{Constr}, R, F)$ where:

- X is a countable set of continuous random variables $\{X_1, X_2, \ldots\}$. Each random variable X_i has a non-empty range Range_i;
- $W_X = \text{Range}_1 \times \text{Range}_2 \times \ldots$ is the sample space;
• Ω_X is the event space;

• μ_X is a probability measure, i.e., (W_X, Ω_X, μ_X) is a probability space;

• Constr is a set of constraints closed under conjunction, disjunction and negation such that $\forall \varphi \in \text{Constr}, \text{CSS}(\varphi) \in \Omega_X$, i.e., such that CSS($\varphi$) is measurable for all φ;

• R is a set of rules with logical constraints of the form:
 $$h \leftarrow l_1, \ldots, l_n, \langle \varphi_1(X) \rangle, \ldots, \langle \varphi_m(X) \rangle$$
 where l_i is a literal for $i = 1, \ldots, n$, $\varphi_j \in \text{Constr}$ and $\langle \varphi_j(X) \rangle$ is called constraint atom for $j = 1, \ldots, m$;

• F is a set of probabilistic facts.

Note that our definition differs from the definition provided in [13] since we define X as the set containing continuous random variables only. Moreover, we also introduce a set of discrete probabilistic facts F. That is, we consider separately discrete and continuous random variables. The probabilistic facts of a program form a countable set of Boolean random variables $Y = \{Y_1, Y_2, \ldots\}$ with sample space $W_Y = \{(y_1, y_2, \ldots) \mid y_i \in \{0, 1\}, i \in 1, 2, \ldots\}$. The event space Ω_Y is the σ-algebra of set of worlds identified by countable set of countable composite choices. A composite choice $\kappa = \{(f_1, \theta_1, y_1), (f_2, \theta_2, y_2), \ldots\}$ can be interpreted as the assignments $Y_1 = y_1, Y_2 = y_2, \ldots$ if the random variable Y_1 is associated to $f_1 \theta_1, Y_2$ to $f_2 \theta_2$ and so on.

The probability space for the whole program (W_P, Ω_P, μ_P) is the product of the probability spaces (W_X, Ω_X, μ_X) and (W_Y, Ω_Y, μ_Y), which is guaranteed to exist by the following theorem.

Theorem 5 (Theorem 6.3.1 from [1]). Given two probability spaces (W_X, Ω_X, μ_X) and (W_Y, Ω_Y, μ_Y), there exists a unique probability space (W, Ω, μ), called the product space, such that $W = W_X \times W_Y$, $\Omega = \Omega_X \otimes \Omega_Y$ and

$$\mu(\omega_X \times \omega_Y) = \mu_X(\omega_X) \cdot \mu_Y(\omega_Y)$$

for $\omega_X \in \Omega_X$ and $\omega_Y \in \Omega_Y$. Measure μ is called the product measure of μ_X and μ_Y and is denoted also by $\mu_X \times \mu_Y$. Moreover, for any $\omega \in \Omega$, let’s define its
sections as

\[\omega^{(X)}(w_X) = \{w_Y \mid (w_X, w_Y) \in \omega\} \quad \omega^{(Y)}(w_Y) = \{w_X \mid (w_X, w_Y) \in \omega\}. \]

Then, both \(\omega^{(X)}(w_X) \) and \(\omega^{(Y)}(w_Y) \) are measurable according to \((W_Y, \Omega_Y, \mu_Y) \) and \((W_X, \Omega_X, \mu_X) \) respectively, i.e., \(\omega^{(X)}(w_X) \in \Omega_Y \) and \(\omega^{(Y)}(w_Y) \in \Omega_X \). \(\mu_Y(\omega^{(X)}(w_X)) \) and \(\mu_X(\omega^{(Y)}(w_Y)) \) are well-defined real functions, the first on \(W_X \) and the second on \(W_Y \).

Measure \(\mu = \mu_X \times \mu_Y \) for every \(\omega \in \Omega \) also satisfies

\[
\mu(\omega) = \int_{W_Y} \mu_X(\omega^{(Y)}(w_Y))d\mu_Y = \int_{W_X} \mu_Y(\omega^{(X)}(w_X))d\mu_X.
\]

So, \(W_P = W_X \times W_Y, \Omega_P = \Omega_X \otimes \Omega_Y \), and we indicate with \(\text{satisfiable}(w_X) \) the set of all constraints that are satisfiable given a valuation \(w_X \) of the random variables in \(X \). We say that a world \(\text{satisfies} \) a constraint if the values of the continuous variables in the world satisfy the constraint.

Given a sample \(w = (w_X, w_Y) \) from \(W_P \), a ground normal logic program \(P_w \) is defined by:

- the grounding of the rules whose constraints belong to \(\text{satisfiable}(w_X) \), with the constraints removed from the body of the rules;
- the probabilistic facts that are associated to random variables \(Y_i \) whose value is 1.

We define the well-founded model \(WFM(w) \) of \(w \in W_P \) as the well-founded model of \(P_w \), \(WFM(P_w) \), and we require that it is two-valued. We call \(\text{sound} \) the programs that satisfy this constraint for each sample \(w \) from \(W_P \).

An explanation for an atom (a query) \(q \) of a PCLP program is a set of worlds \(\omega_i \) such that the query is true in every element of the set, i.e., \(\forall w \in \omega_i : w \models q \).

A covering set of explanation is such that every world in which the query is true belongs to the set. A set \(\omega = \bigcup_{j} \omega_j \) is pairwise incompatible if \(\omega_j \cap \omega_k = \emptyset \) for \(j \neq k \). The probability of a query can be defined as the measure of a covering set of explanations, \(P(q) = \mu(\{w \mid w \models q\}) \) where, from Theorem 5 \(\mu(w) \) is the product of measures \(\mu(w_X) \) and \(\mu(w_Y) \).
In the following examples we show how to compute the probability of a query.

Example 10 (Pairwise incompatible covering set of explanations for Example 8). For Example 8, the extraction of a black card can be represented with $F_1 = \text{black}(_): 0.5$. Then, $(f_1, \theta, 1)$ means that the card is black and $(f_1, \theta, 0)$ means that the card is not black (red). Let us use random variable Y_i to represent $\text{black}(s^i(0))$, with value $y_i = 1$ meaning that in round i a black card was picked. The query at least once prize a has the mutually disjoint covering set of explanations

$$
\omega^+ = \omega^+_0 \cup \omega^+_1 \cup \ldots
$$

with $\omega^+_0 = \{(w_X, w_Y) \mid w_X = (x_1, x_2, \ldots), w_Y = (y_1, y_2, \ldots), x_1 \in [0, \pi], y_1 = 1\}$

and $\omega^+_1 = \{(w_X, w_Y) \mid w_X = (x_1, x_2, \ldots), w_Y = (y_1, y_2, \ldots), x_1 \in [\pi, 2\pi], y_1 = 1, x_2 \in [0, \pi], y_2 = 1\}$

and

$$
\ldots
$$

Similarly, the query never prize a has the pairwise incompatible covering set of explanations

$$
\omega^- = \omega^-_0 \cup \omega^-_1 \cup \omega^-_2 \cup \omega^-_3 \cup \ldots
$$
Example 11 (Probability of the query for Example 8). For example, consider sets ω_0 and ω_0 from Example 10. From Theorem 5

$$
\mu_p(\omega_0) = \int_{w_X} \mu_Y(\omega_X(w_Y))d\mu_X = \int_{w_X} \mu_Y(\{w_Y \mid (w_X, w_Y) \in \omega\})d\mu_X
$$

and so

$$
\mu(\omega_0) = \int_0^\pi \mu_Y(\{(y_1, y_2, \ldots) \mid y_1 = 1\})d\mu_X
= \int_0^\pi \frac{1}{2} \cdot \frac{1}{2\pi} dx_1 = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}
$$

since, for the discrete variables, $\mu_Y(\{(y_1, y_2, \ldots) \mid y_1 = 0\}) = \mu_Y(\{(y_1, y_2, \ldots) \mid y_1 = 1\}) = 1/2$ and μ_X is the Lebesgue measure of the set $[0, \pi]$. Similarly,

$$
\mu(\omega_0) = \int_0^\pi \mu_Y(\{(y_1, y_2, \ldots) \mid y_1 = 0\})d\mu_X
= \int_0^\pi \frac{1}{2} \cdot \frac{1}{2\pi} dx_1 = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}.
$$

From Example 10, the sets ω_0^+ are pairwise incompatible so measure of ω^+ can be computed by summing the measures of ω_0^+. Thus, iteratively applying the previous computations, the probability of the query at least once prize-a can be
computed as:

\[
P(\text{at least once prize } a) = \frac{1}{4} + \frac{1}{4} \cdot \left(\frac{1}{4} \right) + \frac{1}{4} \cdot \left(\frac{1}{4} \right)^2 + \ldots
\]

\[
= \frac{1}{4} \cdot \frac{1}{1 - \frac{1}{4}} = \frac{1}{4} \cdot \frac{4}{3} = \frac{1}{3}
\]

since the sum represents a geometric series. Similarly, for the query never prize a, the sets forming \(\omega^-\) are pairwise incompatible, so its probability can be computed as

\[
P(\text{never prize } a) = \left(\frac{1}{4} + \frac{1}{4} \right) + \left(\frac{1}{4} + \frac{1}{4} \right) \cdot \frac{1}{4} + \left(\frac{1}{4} + \frac{1}{4} \right) \cdot \left(\frac{1}{4} \right) + \ldots
\]

\[
= \frac{1}{2} + \frac{1}{2} \cdot \left(\frac{1}{4} \right) + \frac{1}{2} \cdot \left(\frac{1}{4} \right)^2 + \ldots
\]

\[
= \frac{1}{2} \cdot \frac{1}{1 - \frac{1}{4}} = \frac{1}{2} \cdot \frac{4}{3} = \frac{2}{3}
\]

As expected, \(P(\text{never prize } a) = 1 - P(\text{at least once prize } a)\).

Example 12 (Pairwise incompatible covering set of explanations for Example 9). Consider Example 9. The discrete state variable can be represented with:

\(F1 = \text{type}_a : P\). Then, \((f_1, \theta, 0)\) means that the filter is of type \(a\) and \((f_1, \theta, 1)\) means that the filter is of type \(b\). A covering set of explanations for the query \(\text{ok}\) is:

\[\omega = \omega_0 \cup \omega_1 \cup \omega_2 \cup \omega_3\]

with

\[\omega_0 = \{(w_X, w_Y)|\]

\[w_X = (\text{Init}, \text{Trans.err}_a(0), \text{Trans.err}_a(1), \text{Obs.err}_a(1), \ldots),\]

\[w_Y = (\text{TypeInit}, \text{Type}(1), \ldots),\]

\[\text{Init} + \text{Trans.err}_a(0) + \text{Trans.err}_a(1) + \text{Obs.err}_a(1) > 2,\]
\[\text{TypeInit} = 0, \text{Type}(1) = 0 \]

\[\omega_1 = \{(w_X, w_Y) \mid \]

\[w_X = (\text{Init}, \text{Trans.err}.a(0), \text{Trans.err}.b(1), \text{Obs.err}.b(1), \ldots), \]

\[w_Y = (\text{TypeInit}, \text{Type}(1), \ldots), \]

\[\text{Init} + \text{Trans.err}.a(0) + \text{Trans.err}.b(1) + \text{Obs.err}.b(1) > 2, \]

\[\text{TypeInit} = 0, \text{Type}(1) = 1 \]

\[\omega_2 = \{(w_X, w_Y) \mid \]

\[w_X = (\text{Init}, \text{Trans.err}.b(0), \text{Trans.err}.a(1), \text{Obs.err}.a(1), \ldots), \]

\[w_Y = (\text{TypeInit}, \text{Type}(1), \ldots), \]

\[\text{Init} + \text{Trans.err}.b(0) + \text{Trans.err}.a(1) + \text{Obs.err}.a(1) > 2, \]

\[\text{TypeInit} = 1, \text{Type}(1) = 0 \]

\[\omega_3 = \{(w_X, w_X) \mid \]

\[w_X = (\text{Init}, \text{Trans.err}.b(0), \text{Trans.err}.b(1), \text{Obs.err}.b(1), \ldots), \]

\[w_Y = (\text{TypeInit}, \text{Type}(1), \ldots), \]

\[\text{Init} + \text{Trans.err}.b(0) + \text{Trans.err}.b(1) + \text{Obs.err}.b(1) > 2, \]

\[\text{TypeInit} = 1, \text{Type}(1) = 1 \]

Example 13 (Probability of the query for Example 9). Consider the set \(\omega_0 \) from Example 12. Let us denote discrete random variables \(\text{Type}(i) \) with \(y_i \). So, \(\text{TypeInit} = y_0 \) and \(\text{Type}(1) = y_1 \). From Theorem 3

\[\mu(\omega_0) = \int_{w_X} \mu_Y(\omega_X(w_X))d\mu_X = \int_{w_X} \mu_Y(\{w_Y \mid (w_X, w_Y) \in \omega\})d\mu_X. \]

In this example, continuous random variables are independent and normally distributed. Recall that, if \(X \sim \text{gaussian}(\mu_X, \sigma^2_X) \), \(Y \sim \text{gaussian}(\mu_Y, \sigma^2_Y) \) and \(Z = X + Y \), then \(Z \sim \text{gaussian}(\mu_X + \mu_Y, \sigma^2_X + \sigma^2_Y) \). We indicate with
\(N(x, \mu, \sigma^2)\) the Gaussian pdf with mean \(\mu\) and variance \(\sigma^2\). We have:

\[
\mu(\omega_0) = \int_{-\infty}^{\infty} \mu_Y((y_1, y_2, \ldots) \mid y_1 = 0, y_2 = 0) d\mu_X \\
= \int_{-\infty}^{\infty} 0.4 \cdot 0.3 \cdot N(x, 0, 1 + 2 + 2 + 1) dx = 0.12 \cdot 0.207 = 0.0248.
\]

The computation is similar for \(\omega_1\), \(\omega_2\) and \(\omega_3\). The probability of \(\omega\) can be computed as:

\[
P(\omega) = \mu(\omega_0) + \mu(\omega_1) + \mu(\omega_2) + \mu(\omega_3) = 0.25.
\]

We now want to show that every sound program is well-defined, i.e., each query can be assigned a probability. In the following part of the section we consider only ground programs. This is not a restriction since they may be the result of the grounding of a program also with function symbols, and so they can be countably infinite.

Definition 3 (Parameterized two-valued interpretations). Given a ground probabilistic constraint logic program \(P\) with Herbrand base \(B_P\), a parameterized positive two-valued interpretation \(\mathcal{I}_P\) is a set of pairs \((a, \omega_a)\) with \(a \in B_P\) and \(\omega_a \in \Omega_P\). Similarly, a parameterized negative two-valued interpretation \(\mathcal{F}_P\) is a set of pairs \((a, \omega_{\neg a})\) with \(a \in \text{atoms}\) and \(\omega_{\neg a} \in \Omega_P\).

Parameterized two-valued interpretations form a complete lattice where the partial order is defined as \(I \leq J\) if \(\forall (a, \omega_a) \in I, (a, \theta_a) \in J : \omega_a \subseteq \theta_a\). For a set \(T\) of parameterized two-valued interpretations, the least upper bound and greatest lower bound always exist and are respectively

\[
\text{lub}(T) = \{(a, \bigcup_{(a, \omega_a) \in I} \omega_a) \mid a \in B_P\}
\]

and

\[
\text{glb}(T) = \{(a, \bigcap_{(a, \omega_a) \in I} \omega_a) \mid a \in B_P\}.
\]

The top element \(\top\) is

\[
\{(a, W_X \times W_Y) \mid a \in B_P\}
\]
and the bottom element \bot is

$$\{(a, \emptyset) \mid a \in \mathcal{B}_P\}.$$

Definition 4 (Parameterized three-valued interpretations). Given a ground probabilistic constraint logic program P with Herbrand base \mathcal{B}_P, a parameterized three-valued interpretation \mathcal{I} is a set of triples $(a, \omega_a, \omega_{\neg a})$ with $a \in \mathcal{B}_P$, $\omega_a \in \Omega_P$ and $\omega_{\neg a} \in \Omega_P$. A parameterized three-valued interpretation \mathcal{I} is consistent if

$$\forall (a, \omega_a, \omega_{\neg a}) \in \mathcal{I} : \omega_a \cap \omega_{\neg a} = \emptyset.$$

Parameterized three-valued interpretations form a complete lattice where the partial order is defined as $I \preceq J$ if $\forall (a, \omega_a, \omega_{\neg a}) \in I, (a, \theta_a, \theta_{\neg a}) \in J : \omega_a \subseteq \theta_a$ and $\omega_{\neg a} \subseteq \theta_{\neg a}$. For a set T of parameterized three-valued interpretations, the least upper bound and greatest lower bound always exist and are respectively

$$\text{lub}(T) = \{(a, \bigcup_{I \in T, (a, \omega_a, \omega_{\neg a}) \in I} \omega_a, \bigcup_{I \in T, (a, \omega_a, \omega_{\neg a}) \in I} \omega_{\neg a}) \mid a \in \mathcal{B}_P\}$$

and

$$\text{glb}(T) = \{(a, \bigcap_{I \in T, (a, \omega_a, \omega_{\neg a}) \in I} \omega_a, \bigcap_{I \in T, (a, \omega_a, \omega_{\neg a}) \in I} \omega_{\neg a}) \mid a \in \mathcal{B}_P\}.$$

The top element \top is

$$\{(a, W_X \times W_Y, W_X \times W_Y) \mid a \in \mathcal{B}_P\}$$

and the bottom element \bot is

$$\{(a, \emptyset, \emptyset) \mid a \in \mathcal{B}_P\}.$$

Definition 5 ($\text{OpTrue}_P^P(\mathcal{I})$ and $\text{OpFalse}_P^P(\mathcal{I})$). For a ground probabilistic constraint logic program P with rules \mathcal{R} and facts F, a parameterized two-valued positive interpretation \mathcal{I}_P with pairs (a, θ_a), a parameterized two-valued negative interpretation \mathcal{I}_A with pairs $(a, \theta_{\neg a})$, and a parameterized three-valued interpretation \mathcal{I} with triplets $(a, \omega_a, \omega_{\neg a})$, we define $\text{OpTrue}_P^P(\mathcal{I}_P) = \{(a, \gamma_a) \mid a \in \mathcal{B}_P\}$
where

$$\gamma_a = \begin{cases} W_X \times \omega_{\{(a, \emptyset, 1)\}} & \text{if } a \in F \\ \bigcup_{a \in b_1, \ldots, b_n, \sim c_1, \ldots, \sim c_m, \sigma_1, \ldots, \sigma_l \in R} (\theta_{b_1} \cup \omega_{b_1}) \cap \ldots \cap (\theta_{b_n} \cup \omega_{b_n}) \cap \omega_{c_1} \cap \ldots \cap \omega_{c_m} & \text{if } a \in B_P \setminus F \\ \cap CSS(\varphi_1) \times W_Y \cap \ldots \cap CSS(\varphi_l) \times W_Y \end{cases}$$

and \(OpFalseP_P^T(Fa) = \{(a, \gamma_{\sim a}) \mid a \in B_P\}\) where

$$\gamma_{\sim a} = \begin{cases} W_X \times \omega_{\{(a, \emptyset, 0)\}} & \text{if } a \in F \\ \bigcap_{a \in b_1, \ldots, b_n, \sim c_1, \ldots, \sim c_m, \sigma_1, \ldots, \sigma_l \in R} (\theta_{\sim b_1} \cap \omega_{\sim b_1}) \cup \ldots \cup (\theta_{\sim b_n} \cap \omega_{\sim b_n}) \cup \omega_{c_1} \cup \ldots \cup \omega_{c_m} & \text{if } a \in B_P \setminus F \\ \cup (W_X \setminus CSS(\varphi_1)) \times W_Y \cup \ldots \cup (W_X \setminus CSS(\varphi_l)) \times W_Y \end{cases}$$

Proposition 1 (Monotonicity of \(OpTrueP_P^T\) and \(OpFalseP_P^T\)). \(OpTrueP_P^T\) and \(OpFalseP_P^T\) are monotonic.

Proof. Here we only consider \(OpTrueP_P^T\), since the proof for \(OpFalseP_P^T\) can be constructed in a similar way. We have to prove that if \(Tr_1 \subseteq Tr_2\) then \(OpTrueP_P^T(Tr_1) \subseteq OpTrueP_P^T(Tr_2)\). By definition, \(Tr_1 \subseteq Tr_2\) means that

$$\forall (a, \omega_a) \in Tr_1, (a, \theta_a) \in Tr_2 : \omega_a \subseteq \theta_a.$$

Let \((a, \omega'_a)\) be the elements of \(OpTrueP_P^T(Tr_1)\) and \((a, \theta'_a)\) the elements of \(OpTrueP_P^T(Tr_2)\). To prove the monotonicity, we have to prove that \(\omega'_a \subseteq \theta'_a\).

If \(a \in F\) then \(\omega'_a = \theta'_a = W_X \times \omega_{\{(a, \emptyset, 1)\}}\). If \(a \in B_P \setminus F\), then \(\omega'_a\) and \(\theta'_a\) have the same structure. Since \(\forall b \in B_P : \omega_b \subseteq \theta_b\), then \(\omega'_a \subseteq \theta'_a\).

\(\square\)

\(OpTrueP_P^T\) and \(OpFalseP_P^T\) are monotonic so they both have a least fixpoint and a greatest fixpoint.

Definition 6 (Iterated fixed point for probabilistic constraint logic programs). For a ground probabilistic constraint logic program \(P\), and a parameterized three-valued interpretation \(I\), let \(IFPCP_P^T(I)\) be defined as

$$IFPCP_P^T(I) = \{(a, \omega_a, \omega_{\sim a}) \mid (a, \omega_a) \in \text{lfp}(OpTrueP_P^T), (a, \omega_{\sim a}) \in \text{gfp}(OpFalseP_P^T)\}.$$

28
Proposition 2 (Monotonicity of IFPCP^P). IFPCP^P is monotonic.

Proof. As above, we have to prove that, if $\mathcal{I}_1 \leq \mathcal{I}_2$, then $\text{IFPCP}^P(\mathcal{I}_1) \leq \text{IFPCP}^P(\mathcal{I}_2)$. By definition, $\mathcal{I}_1 \leq \mathcal{I}_2$ means that

$$\forall (a, \omega_a, \omega_{\sim a}) \in I_1, (a, \theta_a, \theta_{\sim a}) \in I_2 : \omega_a \subseteq \theta_a, \omega_{\sim a} \subseteq \theta_{\sim a}.$$

Let $(a, \omega_a, \omega_{\sim a})$ be the elements of $\text{IFPCP}^P(\mathcal{I}_1)$ and $(a, \theta_a, \theta_{\sim a})$ the elements of $\text{IFPCP}^P(\mathcal{I}_2)$. We have to prove that $\omega_a' \subseteq \theta_a'$ and $\omega_{\sim a}' \subseteq \theta_{\sim a}'$. This is a direct consequence of the monotonicity of OpTrue^P and OpFalse^P in \mathcal{I}, which can be proved as in Proposition 1.

The monotonicity property ensures that IFPCP^P has a least fixpoint. Let us identify $\text{lfp}(\text{IFPCP}^P)$ with $\text{WFMP}(P)$. We call depth of P the smallest ordinal δ such that $\text{IFPCP}^P \uparrow \delta = \text{WFMP}(P)$.

Now we prove that OpTrue^P and OpFalse^P are sound.

Lemma 3 (Soundness of OpTrue^P). For a ground probabilistic constraint logic program P with probabilistic facts F, rules R, and a parameterized three-valued interpretation \mathcal{I}, denote with θ_a^α the set associated to atom a in $\text{OpTrue}^P \uparrow \alpha$. For every atom a, world w and iteration α, the following holds:

$$w \in \theta_a^\alpha \rightarrow \text{WFM}(w \mid \mathcal{I}) \models a$$

where $w \mid \mathcal{I}$ is obtained by adding to w the atoms a for which $(a, \omega_a, \omega_{\sim a}) \in \mathcal{I}$ and $w \in \omega_a$, and by removing all the rules with a in the head for which $(a, \omega_a, \omega_{\sim a}) \in \mathcal{I}$ and $w \in \omega_{\sim a}$.

Proof. We prove the lemma by transfinite induction (see Appendix B for its definition): we assume that the thesis is true for all ordinals $\beta < \alpha$ and we prove it for α. We need to consider two cases: α is a successor ordinal and α is a limit ordinal. Consider α a successor ordinal. If $a \in F$ then the statement is
easily verified. If $a \notin F$ consider $w \in \theta^\alpha_a$ where
\[
\theta^\alpha_a = \bigcup_{a \leftarrow b_1, \ldots, b_n, \sim c_1, \ldots, \sim c_m, \varphi_1, \ldots, \varphi_l \in R} ((\theta^\alpha_{b_1} \cup \omega_{b_1}) \cap \ldots \cap (\theta^\alpha_{b_n} \cup \omega_{b_n}) \cap \omega_{c_1} \cap \ldots \cap \omega_{c_m} \cap \text{CSS}(\varphi_1) \times W_X \cap \ldots \cap \text{CSS}(\varphi_l) \times W_X).
\]
This means that there is a rule $a \leftarrow b_1, \ldots, b_n, \sim c_1, \ldots, \sim c_m, \varphi_1, \ldots, \varphi_l \in R$ such that $w \in \theta^\alpha_{b_i} \cup \omega_{b_i}$ for $i = 1, \ldots, n$, $w \in \omega_{c_j}$ for $j = 1, \ldots, m$ and $w \models \varphi_k$ for $k = 1, \ldots, l$. By the inductive assumption and because of how $w \mid I$ is built, $WFM(w \mid I) \models b_i$, $WFM(w \mid I) \models \sim c_j$ and $w \models \varphi_k$ so $WFM(w \mid I) \models a$.

Consider now α a limit ordinal. Then,
\[
\theta^\alpha_a = \text{lub}(\{\theta^\beta_a \mid \beta < \alpha\}) = \bigcup_{\beta < \alpha} \theta^\beta_a.
\]
If $w \in \theta^\alpha_a$ then there must exist a $\beta < \alpha$ such that $w \in \theta^\beta_a$. By the inductive assumption the hypothesis holds.

\[\text{Lemma 4 (Soundness of OpFalseP}_I^P). \text{ For a ground probabilistic constraint logic program } P \text{ with probabilistic facts } F \text{ and rules } R, \text{ and a parameterized three-valued interpretation } I, \text{ denote with } \theta^\alpha_a \text{ the set associated with atom } a \text{ in the operator } \text{OpFalseP}_I^P \downarrow \alpha. \text{ For every atom } a, \text{ world } w \text{ and iteration } \alpha, \text{ the following holds:}
\]
\[
w \in \theta^\alpha_{a \leftarrow a} \rightarrow WFM(w \mid I) \models \sim a
\]
where $w \mid I$ is built as in Lemma 3.

\[\text{Proof. Similarly to the proof of Lemma 3 we prove the lemma by transfinite induction: we assume that the thesis is true for all ordinals } \beta < \alpha \text{ and we prove it for } \alpha. \text{ We need to consider two cases: } \alpha \text{ is a successor ordinal and } \alpha \text{ is a limit ordinal. Consider } \alpha \text{ a successor ordinal. If } a \in F \text{ then the statement is easily verified since probabilistic facts do not appear in the head of any rule. If } a \notin F \text{ consider } w \in \theta^\alpha_{a \leftarrow a} \text{ where}
\]
\[\theta_{\approx a}^\alpha = \bigwedge_{\approx \sim b_1, \ldots, b_n, \sim c_1, \ldots, \sim c_m, \phi_1, \ldots, \phi_l \in R} \left((\theta_{\sim b_1}^{a^{-1}} \cap \omega_{\sim b_1}) \cup \ldots \right. \\
\left. \cup (\theta_{\sim b_n}^{a^{-1}} \cap \omega_{\sim b_n}) \cup \omega_{c_1} \cup \ldots \cup \omega_{c_m} \right) \\
\cup (W_X \setminus CSS(\varphi_1)) \times W_Y \cup \ldots \cup (W_X \setminus CSS(\varphi_l)) \times W_Y. \]

This means that, for each \(a \sim b_1, \ldots, b_n, \sim c_1, \ldots, \sim c_m, \phi_1, \ldots, \phi_l \in R \) there exists an \(i \) such that \(w \in \theta_{\sim b_i}^{a^{-1}} \cap \omega_{\sim b_i} \) or there exists a \(j \) such that \(w \in \omega_{c_j} \) or there exists a \(k \) such that \(w \not\in \varphi_k \). By the inductive assumption and because of how \(w \mid \mathcal{I} \) is built, either \(WFM(w \mid \mathcal{I}) \models b_i \), \(WFM(w \mid \mathcal{I}) \models c_j \) or \(w \not\models \varphi_k \), so \(WFM(w \mid \mathcal{I}) \models \sim a \).

Consider now \(\alpha \) a limit ordinal. Then,
\[\theta_{\sim a}^\alpha = \operatorname{glb}(\{\theta_{\sim a}^\beta \mid \beta < \alpha\}) = \bigwedge_{\beta < \alpha} \theta_{\sim a}^\beta. \]

If \(w \in \theta_{\sim a}^\alpha \) then for all \(\beta < \alpha \) we have that \(w \in \theta_{\sim a}^\beta \). By the inductive assumption, for all \(\beta < \alpha \), if \(w \in \theta_{\sim a}^\beta \) this implies that \(WFM(w \mid \mathcal{I}) \models \sim a \). Because of the way \(\theta_{\sim a}^\alpha \) is defined, \(w \in \theta_{\sim a}^\alpha \) means that \(w \in \theta_{\sim a}^\beta \) for all \(\beta < \alpha \) and so \(WFM(w \mid \mathcal{I}) \models \sim a \).

We now introduce two lemmas needed to prove the soundness of IFPCP\(^P\).

Lemma 5 (Partial evaluation, Lemma 6 from [21]). For a ground normal logic program \(P \) and a three-valued interpretation \(\mathcal{I} = \langle I_T, I_F \rangle \) such that \(\mathcal{I} \preceq WFM(P) \), define \(P|\mathcal{I} \) as the program obtained from \(P \) by adding all atoms \(a \in I_T \) and by removing all rules with atoms \(a \in I_F \) in the head. Then \(WFM(P) = WFM(P|\mathcal{I}) \).

Lemma 6 (Model equivalence). Given a ground probabilistic constraint logic program \(P \), for every world \(w \) and iteration \(\alpha \), the following holds:
\[WFM(w) = WFM(w \mid IFPCP\(^P\) \uparrow \alpha). \]

Proof. Let \((a, \omega_a^\alpha, \omega_a^\alpha) \) be the elements of \(IFPCP\(^P\) \uparrow \alpha \). Consider a three-valued interpretation \(\mathcal{I}_\alpha = \langle I_T, I_F \rangle \) with \(I_T = \{a \mid w \in \omega_a^\alpha\} \) and \(I_F = \{a \mid w \in \omega_a^\alpha\} \).
Then, \(\forall a \in I_T \), \(\text{WFM}(w) \models a \) and \(\forall a \in I_F \), \(\text{WFM}(w) \models \neg a \). Therefore \(\mathcal{I}_\alpha \preceq \text{WFM}(w) \).

Since \(w \models \text{IFPCP}^P \uparrow \alpha = w \models \mathcal{I}_\alpha \), by Lemma 5

\[
\text{WFM}(w) = \text{WFM}(w \models \mathcal{I}_\alpha) = \text{WFM}(w \models \text{IFPCP}^P \uparrow \alpha).
\]

Now we can prove the soundness and completeness of \(\text{IFPCP}^P \).

Lemma 7 (Soundness of \(\text{IFPCP}^P \)). For a ground probabilistic constraint logic program \(P \) with probabilistic facts \(F \) and rules \(R \), denote with \(\omega^\alpha_a \) and \(\omega^\alpha_{\neg a} \) the formulas associated with atom \(a \) in \(\text{IFPCP}^P \uparrow \alpha \). For every atom \(a \), world \(w \) and iteration \(\alpha \), the following holds:

\[
w \in \omega^\alpha_a \rightarrow \text{WFM}(w) \models a \quad (3)
\]

\[
w \in \omega^\alpha_{\neg a} \rightarrow \text{WFM}(w) \models \neg a \quad (4)
\]

Proof. The proof is a consequence of Lemma 6. \(w \in \omega^\alpha_a \) means that \(a \) is a fact in \(w \models \text{IFPCP}^P \uparrow \alpha \). Thus, \(\text{WFM}(w \models \text{IFPCP}^P \uparrow \alpha) \models a \) and \(\text{WFM}(w) \models a \).

Similarly, \(w \in \omega^\alpha_{\neg a} \) means that there are no rules for \(a \) in \(w \models \text{IFPCP}^P \uparrow \alpha \), so \(\text{WFM}(w \models \text{IFPCP}^P \uparrow \alpha) \models \neg a \) and \(\text{WFM}(w) \models \neg a \).

Lemma 8 (Completeness of \(\text{IFPCP}^P \)). For a ground probabilistic constraint logic program \(P \) with probabilistic facts \(F \) and rules \(R \), let \(\omega^\alpha_a \) and \(\omega^\alpha_{\neg a} \) be the sets associated with atom \(a \) in \(\text{IFPCP}^P \uparrow \alpha \). For every atom \(a \), world \(w \) and iteration \(\alpha \), we have:

\[
a \in \text{IFP}^w \uparrow \alpha \rightarrow w \in \omega^\alpha_a
\]

\[
\neg a \in \text{IFP}^w \uparrow \alpha \rightarrow w \in \omega^\alpha_{\neg a}
\]

Proof. We prove it by double transfinite induction. If \(\alpha \) is a successor ordinal, assume that

\[
a \in \text{IFP}^w \uparrow (\alpha - 1) \rightarrow w \in \omega^\alpha_{a - 1}
\]

\[
\neg a \in \text{IFP}^w \uparrow (\alpha - 1) \rightarrow w \in \omega^\alpha_{\neg a - 1}
\]
Let us perform transfinite induction on the iterations of \(\text{OpTrue}^w_{\uparrow \alpha - 1} \) and \(\text{OpFalse}^w_{\uparrow \alpha - 1} \). Consider a successor ordinal \(\delta \) and assume that

\[
\begin{align*}
 a & \in \text{OpTrue}^w_{\uparrow \alpha - 1} \uparrow (\delta - 1) \rightarrow w \in \omega_a^\delta - 1 \\
 \sim a & \in \text{OpFalse}^w_{\uparrow \alpha - 1} \downarrow (\delta - 1) \rightarrow w \in \theta_a^\delta - 1
\end{align*}
\]

where \((a, \omega_a^\delta - 1) \) are the elements of \(\text{OpTrue}^p_{\uparrow \alpha - 1} \uparrow (\delta - 1) \) and \((a, \theta_a^\delta - 1) \) are the elements of \(\text{OpFalse}^p_{\uparrow \alpha - 1} \downarrow (\delta - 1) \). We now prove that

\[
\begin{align*}
 a & \in \text{OpTrue}^w_{\uparrow \alpha - 1} \uparrow (\delta - 1) \rightarrow w \in \omega_a^\delta \\
 \sim a & \in \text{OpFalse}^w_{\uparrow \alpha - 1} \downarrow (\delta - 1) \rightarrow w \in \theta_a^\delta
\end{align*}
\]

Consider an atom \(a \). If \(a \in F \), the previous statement can be easily proved. Otherwise, \(a \in \text{OpTrue}^w_{\uparrow \alpha - 1} \uparrow (\delta - 1) \) means that there is a rule \(a \leftarrow b_1, \ldots, b_n, \sim c_1, \ldots, c_m, \varphi_1, \ldots, \varphi_l \) such that for all \(i = 1, \ldots, n, \)

\[
b_i \in \text{OpTrue}^w_{\uparrow \alpha - 1} \uparrow (\delta - 1) \vee b_i \in \text{IFP}^w \uparrow (\alpha - 1)
\]

for all \(j = 1, \ldots, m, \sim c_j \in \text{IFP}^w \uparrow (\alpha - 1) \) and for all \(k = 1, \ldots, l, \varphi_k(w) = \text{true} \). For the inductive hypothesis, \(\forall \alpha : w \in \omega_a^{\alpha - 1} \vee w \in \omega_b^{\alpha - 1} \) and \(\forall j : w \in \omega_a^{\alpha - 1} \) so \(w \in \omega_a^\delta \). The proof is similar for \(\sim a \).

Consider now \(\delta \) a limit ordinal, so \(\omega_a^\delta = \bigcup_{\mu < \delta} \omega_a^\mu \) and \(\theta_a^\mu = \bigcap_{\mu < \delta} \theta_a^\mu \). If \(a \in \text{OpTrue}^w_{\uparrow \alpha - 1} \uparrow \delta \), then there exists a \(\mu < \delta \) such that

\[
a \in \text{OpTrue}^w_{\uparrow \alpha - 1} \uparrow \mu.
\]

For the inductive hypothesis, \(w \in \omega_a^\delta \).

If \(\sim a \in \text{OpFalse}^w_{\uparrow \alpha - 1} \downarrow \delta \), then, for all \(\mu < \delta \),

\[
\sim a \in \text{OpFalse}^w_{\uparrow \alpha - 1} \downarrow \mu.
\]

For the inductive hypothesis, \(w \in \theta_a^\delta \).

Consider now \(\alpha \) a limit ordinal. Then \(\omega_a^\alpha = \bigcup_{\beta < \alpha} \omega_a^\beta \) and \(\omega_a^\alpha = \bigcup_{\beta < \alpha} \omega_a^\beta \). If \(a \in \text{IFP}^w \uparrow \alpha \), then there exists a \(\beta < \alpha \) such that \(a \in \text{IFP}^w \uparrow \beta \). For the inductive hypothesis \(w \in \omega_a^\beta \) so \(w \in \omega_a^\alpha \). The proof is similar for \(\sim a \). \(\square \)
Now we can prove that $IFPCP^P$ is sound and complete.

Theorem 6 (Soundness and completeness of $IFPCP^P$). For a sound ground probabilistic constraint logic program P, let ω^a and ω^a_β be the formulas associated with atom a in $IFPCP^P \uparrow \alpha$. For every atom a and world w there is an iteration α_0 such that for all $\alpha > \alpha_0$ we have:

\[
\begin{align*}
 w \in \omega^a_\alpha & \iff WFM(w) \models a \quad (5) \\
 w \in \omega^a_\alpha & \iff WFM(w) \models \neg a \quad (6)
\end{align*}
\]

Proof. The \to direction of equations (5) and (6) is proven in Lemma 7. In the other direction, $WFM(w) \models a$ implies that there exists a α_0 such that $\forall \alpha : \alpha \geq \alpha_0 \rightarrow IFP^w \uparrow \alpha \models a$. For Lemma 8, $w \in \omega^a_\alpha$. Similarly, $WFM(w) \models \neg a$ implies that there exists a α_0 such that $\forall \alpha : \alpha \geq \alpha_0 \rightarrow IFP^w \uparrow \alpha \models \neg a$. As before, for Lemma 8, $w \in \omega^a_\alpha$. \hfill \square

Now we can prove that every query for every sound program is well-defined.

Theorem 7 (Well-definedness of the distribution semantics). For a sound ground probabilistic constraint logic program P, for all ground atoms a, $\mu_P(\{w \mid w \in W_P, w \models a\})$ is well-defined.

Proof. Let ω^a_δ and ω^a_α be the sets associated with atom a in $IFPCP^P \uparrow \delta$ where δ denotes the depth of the program. Since $IFPCP^P$ is sound and complete, $\{w \mid w \in W_P, w \models a\} = \omega^a_\alpha$.

Each iteration of $OpTrue_{IFPCP^P \uparrow \beta}$ and $OpFalse_{IFPCP^P \uparrow \beta}$ for all β generates sets belonging to Ω_P, since the set of rules is countable. So $\mu_P(\{w \mid w \in W_P, w \models a\})$ is well-defined. \hfill \square

In addition, if the program is sound, for all atoms a, $\omega^a_\delta = (\omega^a_\alpha)^c$ holds, where δ is the depth of the program. Otherwise, there would exist a world w such that $w \notin \omega^a_\delta$ and $w \notin \omega^a_\alpha$. But w has a two-valued well-founded model, so either $WFM(w) \models a$ or $WFM(w) \models \neg a$. In the first case $w \in \omega^a_\delta$ and in the latter $w \in \omega^a_\alpha$, against the hypothesis.
6. Related Work

In the following section, we review existing semantics proposals for hybrid programs.

There are other languages that support the definition of hybrid programs, i.e., programs that allow both discrete and continuous random variables.

Hybrid ProbLog \cite{5} extends ProbLog with continuous probabilistic facts of the form \((X, \phi) \triangleright f\), where \(X\) is a logical variable, called continuous variable, that appears in atom \(f\). \(\phi\) is an atom used to specify the continuous distribution (only Gaussian distributions are allowed). A Hybrid ProbLog program \(\mathcal{P}\) is composed by a set of definite rules \(\mathcal{R}\) and a set of probabilistic facts \(\mathcal{F}\) both discrete \(\mathcal{F}^d\) (as in ProbLog) and continuous \(\mathcal{F}^c\), such that \(\mathcal{F} = \mathcal{F}^d \cup \mathcal{F}^c\). The language offers a set of predefined predicates to impose constraints on continuous variables. Consider a continuous variable \(V\) and two numeric constants \(n_1\) and \(n_2\). The predefined predicates are: below\((V, n_1)\) and above\((V, n_2)\), that succeed if \(V\) is respectively less than and greater than \(n_2\), and ininterval\((n_1, n_2)\), that succeeds if \(n_1 \leq V \leq n_2\).

The set of continuous variables in Hybrid ProbLog is finite since the semantics only allows a finite set of continuous probabilistic facts and no function symbols. We indicate the set of continuous variables as \(X = \{X_1, \ldots, X_n\}\). This set is defined by the set of atoms for probabilistic facts \(F = \{f_1, \ldots, f_n\}\) where each \(f_i\) is ground except for variable \(X_i\). Each continuous variable \(X_i\) has an associated probability density \(p_{X_i}\). An assignment \(x = \{x_1, \ldots, x_n\}\) to \(X\) defines a substitution \(\theta_x = \{X_1/x_1, \ldots, X_n/x_n\}\) and a set of ground facts \(F_{\theta_x}\). A world \(w_{\sigma, x}\) is defined as \(w_{\sigma, x} = \mathcal{R} \cup \{f \triangleright (f, \theta, 1) \mid (f, \theta, 1) \in \sigma\} \cup F_{\theta_x}\) where \(\sigma\) is a selection for discrete facts and \(x\) is an assignment to continuous variables.

Since all continuous variables are independent, the probability density of an assignment \(p(x)\) can be computed as \(p(x) = \prod_{i=1}^{n} p_{X_i}(x_i)\). Moreover, \(p(x)\) is a joint probability density over \(X\) and thus \(p(x)\) and \(P(\sigma)\) define a joint probability
density over the worlds:
\[
 p(w_{\sigma,x}) = p(x) \prod_{(f_i, \theta) \in \sigma} \Pi_i \prod_{(f_i, \theta) \in \sigma} (1 - \Pi_i)
\]
where \(\Pi_i \) is the probability associated to the discrete fact \(f_i \).

Finally, if we consider a ground atom \(q \) which is not an atom of a continuous probabilistic fact and the set \(S_P \) of all selections over discrete probabilistic facts, \(P(q) \) is defined as in the distribution semantics for discrete programs:
\[
 P(q) = \sum_{\sigma \in S_P} \int_{x \in \mathbb{R}^n : w_{\sigma,x} = q} p(w_{\sigma,x}) \, dx.
\]
A key feature is that, if the set \(\{(\sigma, x) : \sigma \in S_P, x \in \mathbb{R}^n : w_{\sigma,x} = q\} \) is measurable, then the probability is well-defined.

Moreover, for each instance \(\sigma \), the set \(\{x : x \in \mathbb{R}^n : w_{\sigma,x} = q\} \) can be considered as a \(n \)-dimensional interval of the form \(I = \times_{i=1}^n [a_i, b_i] \) on \(\mathbb{R}^n \), where \(-\infty\) and \(+\infty\) are allowed for \(a_i \) and \(b_i \) respectively [5]. The probability that \(X \in I \) is then given by
\[
 P(X \in I) = \int_{a_1}^{b_1} \ldots \int_{a_n}^{b_n} p(x) \, dx.
\]

One limitation of Hybrid ProbLog is that it does not allow function symbols and does not allow continuous variables in expressions involving other continuous variables.

Hybrid programs can also be expressed using Distributional Clauses (DC) [6]. DC are definite clauses of the form \(h \sim D \leftarrow b_1, \ldots, b_n \) where \(D \) is a term used to specify the probability distribution (continuous or discrete) and can be non-ground (i.e., it can be related to conditions in the body). Each ground instance of a distributional clause, call it \(C_{\theta} \), defines a random variable \(h\theta \) with distribution \(D\theta \) if \((b_1, \ldots, b_n) \theta \) holds. As for Hybrid ProbLog, also in DC there is a set of predicates, call it \(rel_preds \), used to compare the outcome of a random variable (indicated with \(\simeq/1 \)) with constants or other random variables.

A DC program \(\mathcal{P} \) is composed by a set of definite clauses \(\mathcal{R} \) and a set of Distributional Clauses \(\mathcal{C} \). The set \(\mathcal{R} \cup \mathcal{F} \), where \(\mathcal{F} \) is the set of true ground atoms
for the predicates in \(\text{rel.preds} \) for each random variable in the program, defines a world. Furthermore, a valid DC program must satisfy several conditions related to the grounding of variables.

The semantics of DC programs can be described with a stochastic extension of the \(T_P \) operator \([10]\), \(ST_P \). A function \(\text{ReadTable}(\cdot) \) is also needed to evaluate probabilistic facts and to store sampled values for the random variables. If this function is applied to a probabilistic fact it returns the truth values of the fact according to the values of the random variables as arguments, by computing them or by looking into the table.

Given a valid DC program \(P \) and a set of ground facts \(I \), the \(ST_P \) operator is defined as \([6]\):

\[
ST_P(I) = \{ h \mid h \leftarrow b_1, \ldots, b_n \in \text{ground}(P) \land \forall b_i : (b_i \in I \lor (b_i = \text{rel}(t_1, t_2) \land (t_2 = \sim h \Rightarrow (h \sim D) \in I) \land \text{ReadTable}(b_i) = \text{true})) \}
\]

One limitation is that negation is not allowed in the body of a clause. The previous definition was further refined to \([14]\):

\[
ST_P(I) = \{ h = v \mid h \sim D \leftarrow b_1, \ldots, b_n \in \text{ground}(P) \land \forall b_i : \\
(b_i \in I \lor b_i = \text{rel}(t_1, t_2) \land t_1 = v_1 \in I \land t_2 = v_2 \in I \land \\
\text{rel}(v_1, v_2) \land v \text{ is sampled from } D) \} \cup \\
\{ h \mid h \leftarrow b_1, \ldots, b_n \in \text{ground}(P) \land h \neq (r \sim D) \land \forall b_i : \\
(b_i \in I \lor b_i = \text{rel}(t_1, t_2) \land t_1 = v_1 \in I \land \\
t_2 = v_2 \in I \land \text{rel}(v_1, v_2)) \}
\]

where \(\text{rel} \in \{=, <, \leq, >, \geq\} \). In word, for each DC clause, when the body is true in \(I \), we sample a value \(v \) from the specified distribution for the random variable in the head and add \(\text{head} = v \) to the interpretation. For deterministic clauses, when the body is true, new ground atoms are added to the interpretation. Computing the least fixpoint of the \(ST_P \) operator returns a model of an instance of the program. The \(ST_P \) operator is stochastic, so it defines a sampling process,
and, consequently, a probability density over truth values of queries. However, DC programs do not admit negation in the body of rules.

Another proposal based on the DC semantics is HAL-ProbLog [26]. With this language, continuous random variables are represented with clauses of the form $D :: t \leftarrow l_1, \ldots, l_n$. Negative literals are also allowed in the body of clauses. For a grounding substitution θ, if $l_1\theta, \ldots, l_n\theta$ are true, $t\theta$ represents a continuous random variable that follows the distribution $D\theta$. Two built-in predicates allow the management of continuous random variables: $valS/2$, that unifies the random variable as the first argument with a logical variable in the second argument representing its value, and $conS/1$, that represents a constraint imposed on logical variables. Rules with identical head must have mutually exclusive bodies. This feature prevents the definition of a random variable following two different distributions, since only one of the distribution is allowed by the mutual exclusivity of the bodies. In detail, $valS(v, V)$ allows the logic variable V to unify with values for v, where v is a continuous variable that follows a certain distribution. Variable V then appears in predicate $conS/1$, also called \textit{Iverson predicate}, where it is constrained by an algebraic condition. For example, $valS(v, V), conS(V > 10)$ constrain the value of the continuous random variable v to be greater than 10. The semantics of HAL-ProbLog extends those of DC but does not allow function symbols.

Extended PRISM [8] also allows the definition of continuous variables. The authors extended the PRISM language [22] to include continuous random variables with Gamma or Gaussian distributions, specified with the directive set_sw. So, for instance, $set_sw(p, norm(Mean, Variance))$ states that the outcomes of the random process p follow a Gaussian distribution with the specified parameters. Moreover, it is possible to define linear equality constraints over the reals. The authors also propose an exact inference algorithm that symbolically reasons over the constraints on the random variables, exploiting the restrictions on the allowed continuous distributions and constraints.

The semantics of Extended PRISM is based on an extension of the distribution semantics for programs containing only discrete variables using the least
model semantics of constraint logic programs [9]. In this way, the probability space is extended to a probability space of the entire program starting from the one defined for msw. The sample space of a single random variable is defined as \(\mathbb{R} \) and it is extended to the product of the sample spaces for a set of random variables. For continuous random variables, the probability space for \(N \) random variables is defined as the Borel \(\sigma \)-algebra over \(\mathbb{R}^N \) and the Lebesgue measure is used as probability measure. Also in this language, negations are not allowed in the body.

7. Conclusions

In this paper, we have presented a new approach for defining the semantics of hybrid programs, i.e., programs with both discrete and continuous random variables. Our approach assigns a probability value to every query for programs containing negations and function symbols provided they are sound, i.e., each world must have a total well-founded model. In the future we plan to develop exact inference algorithms for hybrid programs exploiting weighted model integration, also for programs with function symbols.

References

Appendix A. Set Theory

A one-to-one function \(f : A \rightarrow B \) is such that if \(f(a) = f(b) \), then \(a = b \), i.e., no element of \(B \) is the image of more than one element of \(A \). A set \(A \) is equipotent with a set \(B \) if there exists a one-to-one function from \(A \) to \(B \). A set \(A \) is denumerable if it is equipotent to the set of natural numbers \(\mathbb{N} \). A set \(A \) is countable if there exists a one-to-one correspondence between the elements of \(A \) and the elements of some subset \(B \) of the set of natural numbers. Otherwise, \(A \) is termed uncountable. If \(A \) is countable and \(B = \{1, 2, \ldots, n\} \), then \(A \) is called finite with \(n \) elements. \(\emptyset \) (empty set) is considered a finite set with 0 elements. We define powerset of any set \(A \), indicated with \(\mathcal{P}(A) \), the set of all subsets including the empty set. For any reference space \(S \) and subset \(A \) of \(S \), we denote with \(A^c \) the complement of \(A \), i.e., \(S \setminus A \), the set of all elements of \(S \) that do not belong to \(A \).
An order on a set A is a binary relation \leq that is reflexive, antisymmetric and transitive. If a set A has an order relation \leq, it is termed a partially ordered set, sometimes abbreviated with ordered set. A partial order \leq on a set A is called a total order if $\forall a, b \in A$, $a \geq b$ or $b \geq a$. In this case, A is called totally ordered. The upper bound of a subset A of some ordered set B is an element $b \in B$ such that $\forall a \in A$, $a \leq b$. If $b \leq b'$ for all upper bounds b', then b is the least upper bound (lub). The definitions for lower bound and greatest lower bound (glb) are similar. If glb and lub exist, they are unique. A partially ordered set (A, \leq) is a complete lattice if glb and lub exist for every subset S of A. A complete lattice A always has a top element \top such that $\forall a \in A$, $a \leq \top$ and a bottom element \bot such that $\forall a \in A$, $\bot \leq a$. A function $f : A \to B$ between two partially ordered set A and B is called monotonic if, $\forall a, b \in A$, $a \leq b$ implies that $f(a) \leq f(b)$. For an in-depth treatment of this topic see [2].

Appendix B. Ordinal Numbers, Mappings and Fixpoints

We denote the set of ordinal numbers with Ω. Ordinal numbers extend the definition of natural numbers. The elements of Ω are called ordinals and are represented with lower case Greek letters. Ω is well-ordered, i.e., is a totally ordered set and every subset of it has a smallest element. The smallest element of Ω is 0. Given two ordinals α and β, we say that α is a predecessor of β, or equivalently β is a successor of α, if $\alpha < \beta$. If α is the largest ordinal smaller than β, α is termed immediate predecessor. The immediate successor of α is the smallest ordinal larger than α, denoted as $\alpha + 1$. Every ordinal has an immediate successor called successor ordinal. Ordinals that have predecessors but no immediate predecessor are called limit ordinals. So, ordinal numbers can be limit ordinals or successor ordinals.

The first elements of Ω are the naturals 0, 1, 2, After all the natural numbers comes ω, the first infinite ordinal. Successors of ω are $\omega + 1$, $\omega + 2$ and so on. The generalization of the concept of sequence for ordinal number is the so-called transfinite sequence. The technique of induction for ordinal numbers
is called transfinite induction: this states that, if a property $P(\alpha)$ is defined for all ordinals α, to prove that it is true for all ordinals we need to assume that $P(\beta)$ is true $\forall \beta < \alpha$ and then prove that $P(\alpha)$ is true. Transfinite induction proofs are usually structured in three steps: prove that $P(0)$ is true and prove $P(\alpha)$ for α both successor and limit ordinal.

Consider a lattice A. A mapping is a function $f : A \rightarrow A$. It is monotonic if $f(x) \leq f(y)$, $\forall x, y \in A, x \leq y$. If $a \in A$ and $f(a) = a$, then a is a fixpoint. The least fixpoint is the smallest fixpoint. The greatest fixpoint can be defined analogously.

We define increasing ordinal powers of a monotonic mapping f as $f \uparrow 0 = \bot$, $f \uparrow (\alpha + 1) = f(f(\alpha))$ if α is a successor ordinal and $f \uparrow \alpha = \text{lub}(\{f \uparrow \beta \mid \beta < \alpha\})$ if α is a limit ordinal. Similarly, decreasing ordinal powers are defined as $f \downarrow 0 = \top$, $f \downarrow \alpha = f(f(\alpha - 1))$ if α is a successor ordinal and $f \downarrow \alpha = \text{glb}(\{f \downarrow \beta \mid \beta < \alpha\})$ if α is a limit ordinal. If A is a complete lattice and f is a monotonic mapping, then the set of fixpoints of f in A is also a lattice (Knaster-Tarski theorem [7]). Moreover, f has a least fixpoint ($\text{lfp}(A)$) and a greatest fixpoint ($\text{gfp}(A)$). See [7] for a complete analysis of the topic.

Appendix C. Logic Programming and Well-founded Semantics

A normal logic program [10] is a set of normal clauses of the form

$$h \leftarrow l_1, \ldots, l_n$$

with $(n \geq 0)$, where h is an atom and each l_i is a literal. An atom is an expression of the form $p(t_1, \ldots, t_n)$ where p is a predicate name and t_1, \ldots, t_n are terms. If the terms do not contain variables, the atom is called ground. A literal is an atom a or its negation (denoted with $\sim a$). Variables and constants are terms and, if f is a function symbol with arity n and t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is also a term. In this example, h is called the head of the clause, while the conjunctions of literal l_1, \ldots, l_n represent the body. A substitution $\theta = \{X_1/t_1, \ldots, X_n/t_n\}$ is a function mapping variables (X_i) to terms (t_i), i.e.,
it replaces all the occurrences of variables X_i in a formula with terms t_i, where a formula can be a term, atom, literal, clause or program. Given a formula F, the result of the substitution is denoted with $F\theta$ and is called instance of F.

A substitution θ is grounding for a formula F if $F\theta$ is ground, i.e., $F\theta$ does not contain variables. The Herbrand universe \mathcal{U}_P of a program P is the set of all the ground terms obtained by the possible combinations of the symbols in the program. Similarly, the Herbrand base \mathcal{B}_P of a program P is the set of all ground atoms constructed using the symbols in the program. The grounding of a program is obtained by replacing the variables of clauses in the program with the terms from the Herbrand universe in all possible ways. For a complete treatment of logic programming see [10].

We now focus on the semantics of logic programs. A two-valued interpretation $I \subseteq \mathcal{B}_P$ represents the set of true atoms: a is true in I if $a \in I$ and a is false in I if $a \notin I$. Given an interpretation I, a ground atom $p(t_1, \ldots, t_n)$ is true in I if $p(t_1, \ldots, t_n) \in I$, a ground clause $h \leftarrow b_1, \ldots, b_n$ is true in I if h is true when b_1, \ldots, b_n are true in I, a clause c is true in I if all of its groundings with terms from \mathcal{U}_P are true in I and a set of clauses C is true in I if $\forall c \in C, c$ is true in I.

An interpretation I is a model for a set of clauses Σ, denoted with $I \models \Sigma$, if Σ is true in I. We call Int^2_P the set of two-valued interpretations for a program P. The set Int^2_P forms a complete lattice where the partial order \subseteq is defined by the subset relation \subseteq. A three-valued interpretation \mathcal{I} is a pair $\langle I_T, I_F \rangle$ where I_T and I_F are subsets of \mathcal{B}_P and represent respectively the set of true and false atoms. An atom a is true in \mathcal{I} if $a \in I_T$ and is false in \mathcal{I} if $a \in I_F$. A negated atom $\sim a$ is true in \mathcal{I} if $a \in I_F$ and is false in \mathcal{I} if $a \in I_T$. If $a \notin I_T$ and $a \notin I_F$, then a assumes the third truth value, undefined. We also write $\mathcal{I} \models a$ if $a \in I_T$ and $\mathcal{I} \models \sim a$ if $a \in I_F$. We call Int^3_P the set of three-valued interpretations for a program P. A three-valued interpretation $\mathcal{I} = \langle I_T, I_F \rangle$ is consistent if $I_T \cap I_F = \emptyset$. The union of two three-valued interpretations $\langle I_T, I_F \rangle$ and $\langle J_T, J_F \rangle$ is defined as $\langle I_T, I_F \rangle \cup \langle J_T, J_F \rangle = \langle I_T \cup J_T, I_F \cup J_F \rangle$. The intersection of two three-valued interpretations $\langle I_T, I_F \rangle$ and $\langle J_T, J_F \rangle$ is defined as $\langle I_T, I_F \rangle \cap \langle J_T, J_F \rangle = \langle I_T \cap J_T, I_F \cap J_F \rangle$. In the following, we represent a three-valued interpretation.
The set \(\text{Int}_3^P \) of three-valued interpretations for a program \(P \) forms a complete lattice where the partial order \(\leq \) is defined as \(\langle I_T, I_F \rangle \leq \langle J_T, J_F \rangle \) if \(I_T \subseteq J_T \) and \(I_F \subseteq J_F \). The bottom and top element for \(\text{Int}_2^P \) are respectively \(\emptyset \) and \(\mathcal{B}_P \) while for \(\text{Int}_3^P \) are respectively \(\langle \emptyset, \emptyset \rangle \) and \(\langle \mathcal{B}_P, \mathcal{B}_P \rangle \).

Given a three-valued interpretation \(\mathcal{I} = \langle I_T, I_F \rangle \), we define the functions \(\text{true}(\mathcal{I}) = I_T, \text{false}(\mathcal{I}) = I_F \) and \(\text{undef}(\mathcal{I}) = \mathcal{B}_P \setminus (I_T \cup I_F) \), that return the set of true, false and undefined atoms, respectively.

The Well-founded semantics (WFS) \cite{23} assigns a three-valued model to a normal logic program, i.e., it identifies a consistent three-valued interpretation as the meaning of the program. The WFS was given in \cite{23} in terms of the least fixpoint of an operator that is composed by two sub-operators, one computing consequences and the other computing unfounded sets. We give here the alternative definition of the WFS of \cite{19} that is based on an iterated fixpoint.

Definition 7 (\(\text{OpTrue}_I^P \) and \(\text{OpFalse}_I^P \) operators). For a normal logic program \(P \), sets \(T \) and \(F \) of ground atoms, and a 3-valued interpretation \(\mathcal{I} \), we define the operators \(\text{OpTrue}_I^P : \text{Int}_3^P \to \text{Int}_3^P \) and \(\text{OpFalse}_I^P : \text{Int}_3^P \to \text{Int}_3^P \) as

\[
\text{OpTrue}_I^P(\mathcal{T}) = \{ a \mid a \text{ is not true in } \mathcal{I} \text{ and there is a clause } b \leftarrow l_1, \ldots, l_n \text{ in } P \\
\text{ and a grounding substitution } \theta \text{ such that } a = b\theta \text{ and, for every } 1 \leq i \leq n, \\
either l_i\theta \text{ is true in } \mathcal{I} \text{ or } l_i\theta \in \mathcal{T} \}
\]

\[
\text{OpFalse}_I^P(\mathcal{F}) = \{ a \mid a \text{ is not false in } \mathcal{I} \text{ and for every clause } b \leftarrow l_1, \ldots, l_n \text{ in } P \\
\text{ and grounding substitution } \theta \text{ such that } a = b\theta \text{ there is some } i \ (1 \leq i \leq n) \\
such that } l_i\theta \text{ is false in } \mathcal{I} \text{ or } l_i\theta \in \mathcal{F} \}
\]

In words, the operator \(\text{OpTrue}_I^P(\mathcal{T}) \) extends the interpretation \(\mathcal{I} \) to add the new true atoms that can be derived from \(P \) knowing \(\mathcal{I} \) and true atoms \(\mathcal{T} \), while \(\text{OpFalse}_I^P(\mathcal{F}) \) computes new false atoms in \(P \) by knowing \(\mathcal{I} \) and false atoms \(\mathcal{F} \). \(\text{OpTrue}_I^P \) and \(\text{OpFalse}_I^P \) are both monotonic \cite{19}, so they both have
least and greatest fixpoint. An iterated fixpoint operator builds up dynamic strata by constructing successive three-valued interpretations as follows.

Definition 8 (Iterated fixed point). For a normal logic program \(P \), let \(\text{IFP}^P : \text{Int}^P \rightarrow \text{Int}^P \) be defined as

\[
\text{IFP}^P(\mathcal{I}) = \mathcal{I} \cup \langle \text{lfp}(\text{OpTrue}_\mathcal{I}^P), \text{gfp}(\text{OpFalse}_\mathcal{I}^P) \rangle
\]

where \(\text{lfp} \) and \(\text{gfp} \) denote respectively the least and the greatest fixpoint. \(\text{IFP}^P \) is monotonic \([19]\) and thus it has a least fixpoint \(\text{lfp}(\text{IFP}^P) \). The Well-Founded Model (WFM) of \(P \), denoted as \(\text{WFM}(P) \), is \(\text{lfp}(\text{IFP}^P) \). Let \(\delta \) be the smallest ordinal such that \(\text{WFM}(P) = \text{IFP}^P \uparrow \delta \). We refer to \(\delta \) as the depth of \(P \). The stratum of atom \(a \) is the least ordinal \(\beta \) such that \(a \in \text{IFP}^P \uparrow \beta \) (where \(a \) may be either in the true or false component of \(\text{IFP}^P \uparrow \beta \)). Undefined atoms of the WFM do not belong to any stratum, i.e., they are not added to \(\text{IFP}^P \uparrow \delta \) for any ordinal \(\delta \).

If \(\text{undef}(\text{WFM}(P)) = \emptyset \), then the WFM is called total or two-valued and the program is dynamically stratified.

Appendix D. Probability Theory

In this section, we review some background on probability theory, in particular Kolmogorov probability theory, that will be needed in the following. Most of the definitions are taken from \([1]\) and \([21]\).

We define the sample space \(W \) as the set composed by the elements that are outcomes of the random process we want to model. For instance, if we consider the toss of a coin whose outcome could be heads \(h \) or tails \(t \), the sample space is defined as \(W^{\text{coin}} = \{h, t\} \). If we throw 2 coins, then \(W^{2\text{coins}} = \{(h, h), (h, t), (t, h), (t, t)\} \). If the number of coins is infinite then \(W^{\text{coins}} = \{\{o_1, o_2, \ldots \} \mid o_i \in \{h, t\}\} \).

Definition 9 (\(\sigma \)-Algebra). A non-empty set \(\Omega \) of subsets of \(W \) is a \(\sigma \)-algebra on the set \(W \) iff:

47
• $W \in \Omega$

• Ω is closed under complementation: $\omega \in \Omega \Rightarrow \omega^c = \Omega \setminus \omega \in \Omega$

• Ω is closed under countable union: if $\omega_i \in \Omega \Rightarrow \bigcup_i \omega_i \in \Omega$

The elements of a σ-algebra Ω are called measurable sets or events, Ω is called event space and (W, Ω) is called measurable space. When W is finite, Ω is usually the powerset of W, but, in general, it is not necessary that every subset of W must be present in Ω. For example, to model a coin toss, we can consider the set of events $\Omega^{\text{coin}} = \mathcal{P}(W^{\text{coin}})$ and $\{h\}$ an event corresponding to the outcome heads.

Definition 10 (Minimal σ-algebra). Let \mathcal{C} be an arbitrary non-empty collection of subsets of W. The intersection of all σ-algebras containing all the elements of \mathcal{C} is called the σ-algebra generated by \mathcal{C} or the minimal sigma-algebra containing \mathcal{C}. It is denoted by $\sigma(\mathcal{C})$. Moreover, $\sigma(\mathcal{C})$ always exists and is unique [1].

Now we introduce the definition of probability measure:

Definition 11 (Probability measure). Given a measurable space (W, Ω), a probability measure is a finite set function $\mu : \Omega \rightarrow \mathbb{R}$ that satisfies the following three axioms (called Kolmogorov axioms):

- a_1: $\mu(\omega) \geq 0 \forall \omega \in \Omega$
- a_2: $\mu(W) = 1$
- a_3: μ is countably additive (or σ-additive): if $O = \{\omega_1, \omega_2, \ldots\} \subseteq \Omega$ is a countable collection of pairwise disjoint sets, then $\mu(\bigcup_{\omega \in O}) = \sum_i \mu(\omega_i)$

Axioms a_1 and a_2 state that we measure the probability of an event with a number between 0 and 1. Axiom a_3 states that the probability of the union of disjoint events is equal to the sum of the probability of every single event. (W, Ω, μ) is called a probability space.

For example, if we consider the toss of a coin, $(W^{\text{coin}}, \Omega^{\text{coin}}, \mu^{\text{coin}})$ with $\mu^{\text{coin}}(\emptyset) = 0$, $\mu^{\text{coin}}(\{h\}) = 0.5$, $\mu^{\text{coin}}(\{t\}) = 0.5$ and $\mu^{\text{coin}}(\{h, t\}) = 1$ is a probability space.
Definition 12 (Measurable function). Given a probability space \((W, \Omega, \mu)\) and a measurable space \((S, \Sigma)\), a function \(X : W \to S\) is measurable if \(X^{-1}(\sigma) = \{ w \in W | X(w) \in \sigma \} \in \Omega, \forall \sigma \in \Sigma\).

Definition 13 (Random variable). Let \((W, \Omega, \mu)\) be a probability space and \((S, \Sigma)\) be a measurable space. A measurable function \(X : W \to S\) is a random variable. The elements of \(S\) are called values of \(X\). We indicate with \(P(X \in \sigma)\) for all \(\sigma \in \Sigma\) the probability that a random variable \(X\) has value in \(\sigma\), that is, \(\mu(X^{-1}(\sigma))\). If \(S\) is finite or countable, \(X\) is a discrete random variable. If \(S\) is uncountable, \(X\) is a continuous random variable.

The probability distribution of a discrete random variable is defined as \(P(X \in \{x\}) \forall x \in S\) and it is often abbreviated with \(P(X = x)\) or \(P(x)\). The probability density \(p(X)\) of a continuous random variable \(X : (W, \Omega) \to (\mathbb{R}, \mathcal{B})\) is defined such as \(P(X \in A) = \int_A p(x)dx\) for any measurable set \(A \in \mathcal{B}\).