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Abstract. Recently much work in Machine Learning has concentrated
on representation languages able to combine logic and probability, lead-
ing to the birth of a whole field called Statistical Relational Learning.
In this paper we present a technique for parameter learning targeted
to a family of formalisms where uncertainty is represented using Logic
Programming tools - the so-called Probabilistic Logic Programs such as
ICL, PRISM, ProbLog and LPAD. Since their equivalent Bayesian net-
works contain hidden variables, an EM algorithm is adopted. To speed
the computation expectations are computed directly on the Binary De-
cision Diagrams that are built for inference. The resulting system, called
EMBLEM for “EM over BDDs for probabilistic Logic programs Efficient
Mining”, has been applied to various datasets and showed good perfor-
mances both in terms of speed and memory.

1 Introduction

In the field of Statistical Relational Learning (SRL) logical-statistical languages
are used to effectively learn in complex domains involving relations and uncer-
tainty. They have been successfully applied in social networks analysis, entity
recognition, information extraction, etc.

Similarly, a large number of works in Logic Programming has attempted
to combine logic and probability, among which the distribution semantics [11]
is a prominent approach. It underlies for example PRISM [11], the Indepen-
dent Choice Logic, Logic Programs with Annotated Disjunctions (LPADs) [15],
ProbLog [3] and CP-logic. The approach is appealing because efficient inference
algorithms appeared [3,9], which adopt Binary Decision Diagrams (BDD).

In this paper we present the EMBLEM system for “EM over BDDs for prob-
abilistic Logic programs Efficient Mining” that learns parameters of probabilistic
logic programs under the distribution semantics by using an Expectation Max-
imization (EM) algorithm: it is an iterative method to estimate some unknown
parameters Θ of a model, given a dataset where some of the data is missing,to
find maximum likelihood estimates of Θ. The translation of these programs into
graphical models requires the use of hidden variables and therefore of EM: the
main characteristic of our system is the computation of expectations using BDDs.
Since there are transformations with linear complexity that can convert a pro-
gram in a language into the others[2], we will use LPADs for their general syntax.



EMBLEM has been tested on the IMDB, Cora and UW-CSE datasets and com-
pared with RIB [10], LeProbLog [3], Alchemy [8] and CEM, an implementation
of EM based on the cplint interpreter [9].

The paper is organized as follows. Section 2 presents LPADs and Section 3
describes EMBLEM. Section 4 presents experimental results. Section 5 discusses
related works and Section 6 concludes the paper.

2 Logic Programs with Annotated Disjunctions

Formally a Logic Program with Annotated Disjunctions [15] consists of a finite
set of annotated disjunctive clauses. An annotated disjunctive clause Ci is of
the form hi1 : Πi1; . . . ;hini : Πini : −bi1, . . . , bimi . In such a clause hi1, . . . hini

are logical atoms and bi1, . . . , bimi are logical literals, {Πi1, . . . ,Πini} are real
numbers in the interval [0, 1] such that

∑ni

k=1Πik ≤ 1. bi1, . . . , bimi
is called the

body and is indicated with body(Ci). If
∑ni

k=1Πik < 1 the head of the annotated
disjunctive clause implicitly contains an extra atom null that does not appear
in the body of any clause and whose annotation is 1−

∑ni

k=1Πik. We denote by
ground(T ) the grounding of an LPAD T .

An atomic choice is a triple (Ci, θj , k) where Ci ∈ T , θj is a substitution
that grounds Ci and k ∈ {1, . . . , ni}. (Ci, θj , k) means that, for the ground
clause Ciθj , the head hik was chosen. In practice Ciθj corresponds to a random
variable Xij and an atomic choice (Ci, θj , k) to an assignment Xij = k. A set of
atomic choices κ is consistent if (C, θ, i) ∈ κ, (C, θ, j) ∈ κ⇒ i = j, i.e., only one
head is selected for the same ground clause. A composite choice κ is a consistent
set of atomic choices. The probability P (κ) of a composite choice κ is the product
of the probabilities of the individual atomic choices, i.e. P (κ) =

∏
(Ci,θj ,k)∈κΠik.

A selection σ is a composite choice that, for each clause Ciθj in ground(T ),
contains an atomic choice (Ci, θj , k). We denote the set of all selections σ of a
program T by ST . A selection σ identifies a normal logic program wσ defined
as wσ = {(hik ← body(Ci))θj |(Ci, θj , k) ∈ σ}. wσ is called a world of T . Since
selections are composite choices we can assign a probability to possible worlds:
P (wσ) = P (σ) =

∏
(Ci,θj ,k)∈σΠik. We consider only sound LPADs in which

every possible world has a total well-founded model. Subsequently we will write
wσ |= Q to mean that the query Q is true in the well-founded model of the
program wσ.

The probability of a query Q according to an LPAD T is given by P (Q) =∑
σ∈E(Q) P (σ) where E(Q) is {σ ∈ ST , wσ |= Q}, i.e., the set of selections

corresponding to worlds where the query is true. To reduce the computational
cost of answering queries in our experiments, random variables can be directly
associated to clauses rather than to their ground instantiations: atomic choices
then take the form (Ci, k), meaning that head hik is selected from program clause
Ci, i.e., that Xi = k.

Example 1. The following LPAD T encodes a very simple model of the develop-
ment of an epidemic or pandemic:
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C1 = epidemic : 0.6; pandemic : 0.3 : −flu(X), cold.
C2 = cold : 0.7.
C3 = flu(david).
C4 = flu(robert).

Clause C1 has two groundings, C1θ1 with θ1 = {X/david} and C1θ2 with θ2 =
{X/robert}, so there are two random variables X11 and X12.

The possible worlds in which a query is true can be represented using a Multi-
valued Decision Diagram (MDD). An MDD represents a function f(X) taking
Boolean values on a set of multivalued variables X by means of a rooted graph
that has one level for each variable. Each node is associated to the variable of
its level and has one child for each possible value of the variable. The leaves
store either 0 or 1. Given values for all the variables X, we can compute the
value of f(X) by traversing the graph starting from the root and returning the
value associated to the leaf that is reached. A MDD can be used to represent
the set E(Q) by considering the multivalued variable Xij associated to Ciθj of
ground(T ). Xij has values {1, . . . , ni} and the atomic choice (Ci, θj , k) corre-
sponds to the propositional equation Xij = k. If we represent with an MDD
the function f(X) =

∨
σ∈E(Q)

∧
(Ci,θj ,k)∈σXij = k then the MDD will have a

path to a 1-leaf for each possible world where Q is true. While building MDDs
simplification operations can be applied that delete or merge nodes. In this way
a reduced MDD is obtained with respect to a Multivalued Decision Tree (MDT),
i.e., a MDD in which every node has a single parent, all the children belong to
the level immediately below and all the variables have at least one node. For
example, the reduced MDD corresponding to the query epidemic from Exam-
ple 1 is shown in Figure 1(a). The labels on the edges represent the values of
the variable associated to the node: nodes at first and second level have three
outgoing edges, corresponding to the values of X11 and X12, since C1 has three
head atoms (epidemic, pandemic, null); similarly X21 has two values since C2

has two head atoms (cold, null), hence the associated node has two outgoing
edges.
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Fig. 1. Decision diagrams for Example 1.
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It is often unfeasible to find all the worlds where the query is true so inference
algorithms find instead explanations for it, i.e. composite choices such that the
query is true in all the worlds whose selections are a superset of them. Expla-
nations however, differently from possible worlds, are not necessarily mutually
exclusive with respect to each other, but exploiting the fact that MDDs split
paths on the basis of the values of a variable and the branches are mutually
disjoint, the probability of the query can be computed.

Most packages for the manipulation of a decision diagram are however re-
stricted to work on Binary Decision Diagrams (BDD), i.e., decision diagrams
where all the variables are Boolean. A node n in a BDD has two children: the
1-child, indicated with child1(n), and the 0-child, indicated with child0(n). The
0-branch, the one going to the 0-child, is drawn with a dashed line.

To work on MDDs with a BDD package we must represent multivalued vari-
ables by means of binary variables. For a multivalued variable Xij , correspond-
ing to ground clause Ciθj , having ni values we use ni − 1 Boolean variables
Xij1, . . . , Xijni−1 and we represent the equation Xij = k for k = 1, . . . ni − 1 by
means of the conjunction Xij1 ∧ Xij2 ∧ . . . ∧ Xijk−1 ∧ Xijk, and the equation
Xij = ni by means of the conjunction Xij1∧Xij2∧ . . .∧Xijni−1. BDDs obtained
in this way can be used as well for computing the probability of queries by associ-
ating to each Boolean variable Xijk a parameter πik that represents P (Xijk = 1).
If we define g(i) = {j|θj is a substitution grounding Ci} then P (Xijk = 1) = πik
for all j ∈ g(i). The parameters are obtained from those of multivalued variables
in this way: πi1 = Πi1, . . . πik = Πik∏k−1

j=1
(1−πij)

up to k = ni−1. Figure 1(b) shows

the reduced BDD corresponding to the MDD on the left, with binary variables
for each level.

3 EMBLEM

EMBLEM applies the algorithm for performing EM over BDDs, proposed in
[14,6], to the problem of learning the parameters of an LPAD. EMBLEM takes
as input a number of goals that represent the examples and for each one generates
the BDD encoding its explanations. The examples are organized in a set of inter-
pretations (sets of ground facts) each describing a portion of the domain of inter-
est. The queries correspond to ground atoms whose predicate has been indicated
as “target” by the user. The predicates can be treated as closed-world or open-
-world. In the first case the body of clauses with a target predicate in the head
is resolved only with facts in the interpretation, in the second case it is resolved
both with facts in the interpretation and with clauses in the theory. If the last
option is set and the theory is cyclic, we use a depth bound on SLD-derivations
to avoid going into infinite loops. Given a program containing the clauses C1 and
C2 from Example 1 and the interpretation {epidemic, flu(david), f lu(robert)},
we obtain the BDD in Figure 1(b) that represents the query epidemic.

Then EMBLEM enters the EM cycle, in which the steps of expectation and
maximization are repeated until the log-likelihood of the examples reaches a
local maximum. For a single example Q:
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– Expectation: computes E[cik0|Q] and E[cik1|Q] for all rules Ci and k =
1, . . . , ni−1, where cikx is the number of times a variable Xijk takes value x
for x ∈ {0, 1}, with j in g(i). E[cikx|Q] is given by

∑
j∈g(i) P (Xijk = x|Q).

– Maximization: computes πik for all rules Ci and k = 1, . . . , ni − 1: πik =
E[cik1|Q]

E[cik0|Q]+E[cik1|Q]

If we have more than one example the contributions of each example simply sum
up when computing E[cijx].

P (Xijk = x|Q) is given by P (Xijk = x|Q) =
P (Xijk=x,Q)

P (Q) with

P (Xijk = x,Q) =
∑

σ∈E(Q)

P (Q,Xijk = x, σ)

=
∑

σ∈E(Q)

P (Q|σ)P (Xijk = x|σ)P (σ)

=
∑

σ∈E(Q)

P (Xijk = x|σ)P (σ)

where P (Xijk = 1|σ) = 1 if (Ci, θj , k) ∈ σ for k = 1, . . . , ni − 1 and 0 otherwise.
Since there is a one to one correspondence between the worlds where Q is

true and the paths to a 1 leaf in a Binary Decision Tree (a MDT with binary
variables),

P (Xijk = x,Q) =
∑

ρ∈R(Q)

P (Xijk = x|ρ)
∏
d∈ρ

π(d)

where ρ is a path and if σ corresponds to ρ then P (Xijk = x|σ)=P (Xijk = x|ρ).
R(Q) is the set of paths in the BDD for query Q that lead to a 1 leaf, d is an
edge of ρ and π(d) is the probability associated to the edge: if d is the 1-branch
from a node associated to a variable Xijk, then π(d) = πik, if d is the 0-branch
from a node associated to a variable Xijk, then π(d) = 1− πik.

Now consider a BDT in which only the merge rule is applied, fusing together
identical sub-diagrams. The resulting diagram, that we call Complete Binary
Decision Diagram (CBDD), is such that every path contains a node for every
level. For a CBDD P (Xijk = x,Q) can be further expanded as

P (Xijk = x,Q) =
∑

ρ∈R(Q)∧(Xijk=x)∈ρ

∏
d∈ρ

π(d)

where (Xijk = x) ∈ ρ means that ρ contains an x-edge from a node associated
to Xijk. We can then write

P (Xijk = x,Q) =
∑

n∈N(Q)∧v(n)=Xijk∧ρn∈Rn(Q)∧ρn∈Rn(Q,x)

∏
d∈ρn

π(d)
∏
d∈ρn

π(d)

where N(Q) is the set of nodes of the BDD, v(n) is the variable associated to
node n, Rn(Q) is the set containing the paths from the root to n and Rn(Q, x)
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is the set of paths from n to the 1 leaf through its x-child.

P (Xijk = x,Q) =
∑

n∈N(Q)∧v(n)=Xijk

∑
ρn∈Rn(Q)

∑
ρn∈Rn(Q,x)

∏
d∈ρn

π(d)
∏
d∈ρn

π(d)

=
∑

n∈N(Q)∧v(n)=Xijk

∑
ρn∈Rn(Q)

∏
d∈ρn

π(d)
∑

ρn∈Rn(Q,x)

∏
d∈ρn

π(d)

=
∑

n∈N(Q)∧v(n)=Xijk

F (n)B(childx(n))πikx

where πikx is πik if x=1 and (1−πik) if x=0. F (n) is the forward probability [6],
the probability mass of the paths from the root to n, while B(n) is the backward
probability [6], the probability mass of paths from n to the 1 leaf. If root is the
root of a tree for a query Q then B(root) = P (Q).

The expression F (n)B(childx(n))πikx represents the sum of the probabilities
of all the paths passing through the x-edge of node n and is indicated with ex(n).
Thus

P (Xijk = x,Q) =
∑

n∈N(Q),v(n)=Xijk

ex(n) (1)

For the case of a BDD, i.e., a diagram obtained by applying also the dele-
tion rule, Formula 1 is no longer valid since also paths where there is no node
associated to Xijk can contribute to P (Xijk = x,Q). These paths might have
been obtained from a BDD having a node m associated to variable Xijk that is
a descendant of n along the 0-branch and whose outgoing edges both point to
child0(n). The correction of formula (1) to take into account of this aspect is
applied in the Expectation step.

We now describe EMBLEM in detail. EMBLEM’s main procedure consists of
a cycle in which the procedures Expectation and Maximization are repeat-
edly called. The first one returns the log likelihood LL of the data that is used in
the stopping criterion: EMBLEM stops when the difference between LL of the
current iteration and the one of the previous iteration drops below a threshold
ε or when this difference is below a fraction δ of the current LL.

Procedure Expectation takes as input a list of BDDs, one for each ex-
ample, and computes the expectation for each one, i.e. P (Q,Xijk = x) for
all variables Xijk in the BDD. In the procedure we use ηx(i, k) to indicate∑
j∈g(i) P (Q,Xijk = x). Expectation first calls GetForward and GetBack-

ward that compute the forward, the backward probability of nodes and ηx(i, k)
for non-deleted paths only. Then it updates ηx(i, k) to take into account deleted
paths. The expectations are updated in this way: for all rules i and k = 1 to
ni−1 E[cikx] = E[cikx]+ηx(i, k)/P (Q),where P (Q) is the backward probability
of the root. Procedure Maximization computes the parameters values for the
next EM iteration.

Procedure GetForward traverses the diagram one level at a time starting
from the root level, where F(root)=1, and for each node n computes its con-
tribution to the forward probabilities of its children. Function GetBackward
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computes the backward probability of nodes by traversing recursively the tree
from the root to the leaves. More details can be found in [1].

4 Experiments

EMBLEM has been tested over three real world datasets: IMDB1, UW-CSE2

and Cora3. We implemented EMBLEM in Yap Prolog4 and we compared it
with RIB [10]; CEM, an implementation of EM based on the cplint inference
library [9]; LeProblog [4], and Alchemy [8]. All experiments were performed on
Linux machines with an Intel Core 2 Duo E6550 (2333 MHz) and 4 GB of RAM.

To compare our results with LeProbLog and Alchemy we exploited the trans-
lations of LPADs into ProbLog [2] and MLN [10] respectively.

For the probabilistic logic programming systems (EMBLEM, RIB, CEM and
LeProbLog) we consider various options: associating a distinct random variable
to each grounding of a probabilistic clause or a single random variable to a non-
ground clause, to express whether the clause is used or not (the latter case makes
the problem easier); putting a limit on the depth of derivations, thus eliminating
explanations associated to derivations exceeding the limit (necessary for prob-
lems that contain cyclic clauses, such as transitive closure clauses); setting the
number of restarts for EM based algorithms. All experiments for probabilistic
logic programming systems have been performed using open-world predicates.

IMDB regards movies, actors, directors and movie genres and is divided into
five mega-examples. We performed training on four mega-examples and testing
on the remaining one. Then we drew a Precision-Recall curve and computed the
Area Under the Curve (AUCPR and AUCROC). We defined 4 different LPADs,
two for predicting the target predicate sameperson/2, and two for predicting
samemovie/2. We had one positive example for each fact that is true in the
data, while we sampled from the complete set of false facts three times the
number of true instances in order to generate negative examples.

For predicting sameperson/2 we used the same LPAD of [10]. We ran EM-
BLEM on it with the following settings: no depth bound (theory is acyclic),
random variables associated to instantiations of the clauses (learning time is
very low) and a number of restarts chosen to match the execution time of EM-
BLEM with that of the fastest other algorithm.

The queries that LeProbLog take as input are obtained by annotating with
1.0 each positive example for sameperson/2 and with 0.0 each negative exam-
ple for sameperson/2 obtained by random sampling. We ran LeProbLog for a
maximum of 100 iterations or until the difference in Mean Squared Error (MSE)
between two iterations got smaller than 10−5; this was done also in all the subse-
quent experiments. For Alchemy we used the preconditioned rescaled conjugate

1 http://alchemy.cs.washington.edu/data/imdb
2 http://alchemy.cs.washington.edu/data/uw-cse
3 http://alchemy.cs.washington.edu/data/cora
4 http://www.dcc.fc.up.pt/~vsc/Yap
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gradient discriminative algorithm for every dataset and in this case we specified
sameperson/2 as the only non-evidence predicate.

A second LPAD, also taken from [10], has been created to evaluate the per-
formance of the algorithms when some atoms are unseen. The settings are the
same as the ones for the previous LPAD. In this experiment Alchemy was run
with the −withEM option that turns on EM learning.

Table 1 shows the AUCPR and AUCROC averaged over the five folds for
EMBLEM, RIB, LeProbLog, CEM and Alchemy. Results for the two LPADs
are shown respectively in the IMDB-SP and IMDBu-SP rows. Table 2 shows the
learning times in hours.

For predicting samemovie/2 we used the LPAD:

samemovie(X,Y):p:- movie(X,M),movie(Y,M),actor(M).

samemovie(X,Y):p:- movie(X,M),movie(Y,M),director(M).

samemovie(X,Y):p:- movie(X,A),movie(Y,B),actor(A),director(B),

workedunder(A,B).

samemovie(X,Y):p:- movie(X,A),movie(Y,B),director(A),director(B),

genre(A,G),genre(B,G).

To test the behaviour when unseen predicates are present, we transformed the
program for samemovie/2 as we did for sameperson/2 [10]. We ran EMBLEM
on them with no depth bound, one variable for each instantiation of a rule and
one random restart. With regard to LeProbLog and Alchemy, we ran them with
the same settings as IMDB-SP and IMDBu-SP, by replacing sameperson with
samemovie. Table 1 shows, in the IMDB-SM and IMDBu-SM rows, the average
AUCPR and AUCROC for EMBLEM, LeProblog and Alchemy. For RIB and
CEM we obtained a lack of memory error (indicated with “me”).

The Cora database contains citations to computer science research papers.
For each citation we know the title, authors, venue and the words that appear in
them. The task is to determine which citations are referring to the same paper,
by predicting the predicate samebib(cit1,cit2).

From the MLN proposed in [13]5 we obtained two LPADs. The first contains
559 rules and differs from the direct translation of the MLN because rules involv-
ing words are instantiated with the different constants, only positive literals for
the hasword predicates are used and transitive rules are not included. The Cora
dataset comprises five mega-examples each containing facts for the four pred-
icates samebib/2, samevenue/2, sametitle/2 and sameauthor/2, which have
been set as target predicates. We ran EMBLEM on this LPAD with no depth
bound (theory is acyclic), a single variable for each instantiation of a rule (learn-
ing time is reasonable) and a number of restarts chosen to match the execution
time of EMBLEM with that of the fastest other algorithm.

The second LPAD adds to the previous one the transitive rules for the pred-
icates samebib/2, samevenue/2, sametitle/2, for a total of 563 rules. In this
case we had to run EMBLEM with a depth bound equal to two (theory becomes
cyclic and with higher values of depth learning time was overlong) and a single

5 Available at http://alchemy.cs.washington.edu/mlns/er.

8

http://alchemy.cs.washington.edu/mlns/er


variable for each non-ground rule (LPAD too complex to be treated with a vari-
able for each instantiation); the number of restarts was one. As for LeProbLog,
we separately learned the four predicates because learning the whole theory at
once would give a lack of memory error. We annotated with 1.0 each positive
example for samebib/2, sameauthor/2, sametitle/2, samevenue/2 and with
0.0 the negative examples for the same predicates, which were contained in the
dataset provided with the MLN. As for Alchemy, we learned weights with the
four predicates as the non-evidence predicates. Table 1 shows in the Cora and
CoraT (Cora transitive) rows the average AUCPR and AUCROC obtained by
training on four mega-examples and testing on the remaining one. CEM and
Alchemy on CoraT gave a memory error while RIB was not applicable because
it was not possible to split the input examples into smaller independent inter-
pretations as required by RIB.

The UW-CSE dataset contains information about the Computer Science de-
partment of the University of Washington through 22 different predicates, such
as yearsInProgram/2, advisedBy/2, taughtBy/3 and is split into five mega-
-examples. The goal here is to predict the advisedBy/2 predicate, namely the
fact that a person is advised by another person: this was our target predicate.
The negative examples have been generated by applying the closed world as-
sumption to advisedBy/2. The theory used was obtained from the MLN of [12]6

and contains 86 rules. We ran EMBLEM on it with a single variable for each
instantiation of a rule, a depth bound of two (cyclic theory) and one random
restart (to limit time, in comparison with the other faster algorithms).

The annotated queries that LeProbLog takes as input have been created by
annotating with 1.0 each positive example and with 0.0 each negative example
for advisedBy/2. As for Alchemy, we learned weights with advisedBy/2 as the
only non-evidence predicate. Table 1 shows the AUCPR and AUCROC averaged
over the five mega-examples for all the algorithms.

Table 3 shows the p-value of a paired two-tailed t-test at the 5% signifi-
cance level of the difference in AUCPR and AUCROC between EMBLEM and
RIB/LeProbLog/CEM/Alchemy (significant differences in bold).

From the results we can observe that over IMDB EMBLEM has compa-
rable performances with CEM for IMDB-SP, with similar execution time. On
IMDBu-SP it has better performances than all other systems(see AUCPR), with
a learning time equal to the fastest other algorithm. On IMDB-SM it reaches
the highest area value in less time (only one restart is needed). On IMDBu-SM
it still reaches the highest area with one restart but with a longer execution
time. Over Cora it has comparable performances with the best other system
CEM but in a significantly lower time and over CoraT is one of the few sys-
tems to be able to complete learning, with better performances in terms of area
(especially AUCPR) and time. Over UW-CSE it has significant better perfor-
mances with respect to all the algorithms. Longer learning times are needed for
EMBLEM on IMDBu-SM and UW-CSE datasets, but in both cases AUCPR
achieves significantly higher values. LeProblog reveals itself to be the closest

6 Available at http://alchemy.cs.washington.edu/mlns/uw-cse.
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Table 1. Results of the experiments on all datasets. IMDBu refers to the IMDB dataset
with the theory containing unseen predicates. CoraT refers to the theory containing
transitive rules. Numbers in parenthesis followed by r mean the number of random
restarts (when different from one) to reach the area specified. “me” means memory
error during learning, “no” means that the algorithm was not applicable. AUCPR is
the area under the Precision-Recall curve, AUCROC is the area under the ROC curve,
both averaged over the five folds. E is EMBLEM, R is RIB, L is LeProbLog, C is CEM,
A is Alchemy.

Dataset
AUCPR AUCROC

E R L C A E R L C A

IMDB-SP 0.202(500r) 0.199 0.096 0.202 0.107 0.931(500r) 0.929 0.870 0.930 0.907

IMDBu-SP 0.175(40r) 0.166 0.134 0.120 0.020 0.900(40r) 0.897 0.921 0.885 0.494

IMDB-SM 1.000 me 0.933 0.537 0.820 1.000 me 0.983 0.709 0.925

IMDBu-SM 1.000 me 0.933 0.515 0.338 1.000 me 0.983 0.442 0.544

Cora 0.995(120r) 0.939 0.905 0.995 0.469 1.000(120r) 0.992 0.994 0.999 0.704

CoraT 0.991 no 0.970 me me 0.999 no 0.998 me me

UW-CSE 0.883 me 0.270 0.644 0.294 0.993 me 0.932 0.873 0.961

Table 2. Execution time in hours of the experiments on all datasets. R is RIB, L is
LeProbLog, C is CEM and A is Alchemy.

Dataset
Time(h)

EMBLEM R L C A

IMDB-SP 0.01 0.016 0.35 0.01 1.54

IMDBu-SP 0.01 0.0098 0.23 0.012 1.54

IMDB-SM 0.00036 me 0.005 0.0051 0.0026

IMDBu-SM 3.22 me 0.0121 0.0467 0.0108

Cora 2.48 2.49 13.25 11.95 1.30

CoraT 0.38 no 4.61 me me

UW-CSE 2.81 me 1.49 0.53 1.95

Table 3. Results of t-test on all datasets, relative to AUCPR and AUCROC. p is the
p-value of a paired two-tailed t-test (significant differences at the 5% level in bold)
between EMBLEM and all the others. R is RIB, L is LeProbLog, C is CEM, A is
Alchemy.

Dataset
p - AUCPR p - AUCROC

E-R E-L E-C E-A E-R E-L E-C E-A

IMDB-SP 0.2167 0.0126 0.3739 0.0134 0.3436 0.0012 0.3507 0.015

IMDBu-SP 0.1276 0.1995 0.001 4.5234e-5 0.2176 0.1402 0.0019 1.01e-5

IMDB-SM me 0.3739 0.0241 0.1790 me 0.3739 0.018 0.2556

IMDBu-SM me 0.3739 0.2780 2.2270e-4 me 0.3739 0.055 6.54e-4

Cora 0.011 0.0729 1 0.0068 0.0493 0.0686 0.4569 0.0327

CoraT no 0.0464 me me no 0.053 me me

UW-CSE me 1.5017e-4 0.0088 4.9921e-4 me 0.0048 0.2911 0.0048
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system to EMBLEM from the point of view of performances, able in addition
to always complete learning, but with longer times (except for IMDBu-SM and
UW-CSE). Looking at the overall results, AUCPR and AUCROC are higher
or equal for EMBLEM than the other systems except on IMDBu-SP, where
LeProbLog achieves a non-statistically significant higher AUCROC. Differences
between EMBLEM and the other systems are statistically significant in 22 out
of 43 cases.

5 Related Work

Our work has close connection with various other works. [6] proposed an EM
algorithm for learning the parameters of Boolean random variables given obser-
vations of the values of a Boolean function over them, represented by a BDD.
EMBLEM is an application of that algorithm to probabilistic logic programs. In-
dependently [14] also proposed an EM algorithm over BDD to learn parameters
for the CPT-L language. [5] presented the CoPrEM algorithm that performs
EM for the ProbLog language. We differ from this work in the construction of
BDDs: they build a BDD for an interpretation while we build it for single ground
atoms for the specified target predicate(s), the one(s) for which we are interested
in good predictions. Moreover CoPrEM treats missing nodes as if they were
there and updates the counts accordingly.

Other approaches for learning probabilistic logic programs employ constraint
techniques, or use EM, or adopt gradient descent. Among the approaches that
use EM, [7] first proposed to use it to induce parameters and the Structural
EM algorithm to induce ground LPADs structures. Their EM algorithm however
works on the underlying Bayesian network. RIB [10] performs parameter learning
using the information bottleneck approach, which is an extension of EM targeted
especially towards hidden variables. Among the works that use a gradient descent
technique we remind LeProbLog [4], which tries to find the parameters of a
ProbLog program that minimize the MSE of the query probability and uses
BDD to compute the gradient.

Alchemy [8] is a state of the art SRL system that offers various tools for infer-
ence, weight learning and structure learning of Markov Logic Networks (MLNs).
MLNs significantly differ from the languages under the distribution semantics
since they extend first-order logic by attaching weights to logical formulas, but
do not allow to exploit logic programming techniques.

6 Conclusions

We have proposed a technique which applies an EM algorithm to BDDs for
learning the parameters of Logic Programs with Annotated Disjunctions. It can
be applied to all languages that are based on the distribution semantics and
exploits the BDDs that are built during inference to efficiently compute the ex-
pectations for hidden variables. We executed the algorithm over the real datasets
IMDB, UW-CSE and Cora, and evaluated its performances - together with four
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other systems - through the AUCPR. These results show that EMBLEM uses
less memory than RIB, CEM and Alchemy, allowing it to solve larger problems.
Moreover its speed allows to perform a high number of restarts making it escape
local maxima. In the future we plan to extend EMBLEM for learning LPADs
structure.
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