
Experimentation of an Expectation Maximization Algorithm for

Probabilistic Logic Programs

Elena Bellodi Fabrizio Riguzzi∗

ENDIF-Dipartimento di Ingegneria, Università di Ferrara
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Abstract

Statistical Relational Learning and Probabilistic Inductive Logic Programming are two emerging fields that use
representation languages able to combine logic and probability. In the field of Logic Programming, the distribution
semantics is one of the prominent approaches for representing uncertainty and underlies many languages such as
ICL, PRISM, ProbLog and LPADs. Learning the parameters for such languages requires an Expectation Maxi-
mization algorithm since their equivalent Bayesian networks contain hidden variables. EMBLEM (EM over BDDs
for probabilistic Logic programs Efficient Mining) is an EM algorithm for languages following the distribution se-
mantics that computes expectations directly on the Binary Decision Diagrams that are built for inference. In this
paper we present experiments comparing EMBLEM with LeProbLog, Alchemy, CEM, RIB and LFI-ProbLog on
six real world datasets. The results show that EMBLEM is able to solve problems on which the other systems fail
and it often achieves significantly higher areas under the Precision Recall and the ROC curves in a similar time.

Keywords Statistical Relational Learning, Probabilistic Inductive Logic Programming, Probabilistic Logic Pro-
gramming, Expectation Maximization, Binary Decision Diagrams, Logic Programs with Annotated Disjunctions

1 Introduction

In Statistical Relational Learning [8] and Probabilistic Inductive Logic Programming [6], logical-statistical languages
are used to effectively learn in complex domains involving relations and uncertainty. They have been successfully
applied to many domains such as text classification [19], entity recognition [36] or information extraction [26].

In Logic Programming, the distribution semantics [34] is a prominent approach for combining logic and probability.
It underlies for example Probabilistic Logic Programs [4], PRISM [34], the Independent Choice Logic [24], Logic
Programs with Annotated Disjunctions (LPADs) [41] and ProbLog [7]. The approach is appealing because practical
inference algorithms appeared [7, 31, 17], which adopt Binary Decision Diagrams (BDD).

Investigations on techniques for learning languages under the distribution semantics represent a very promising
research direction. Various works have started to appear on the subject: [28, 29, 30] adopt constraint optimization
techniques to learn a subclass of ground programs, [2, 21, 22] proposed to use the Expectation Maximization (EM)
algorithm for inducing parameters and the Structural EM algorithm for inducing the structure of ground LPADs,
LeProblog [9, 10] learns the parameters of ProbLog programs by using gradient descent, RIB [32] performs parameter
learning using the information bottleneck and LFI-ProbLog [11] computes the expectations needed for EM directly on
BDDs.

Recently EMBLEM (EM over BDDs for probabilistic Logic programs Efficient Mining) has been proposed [1], that
learns parameters of probabilistic logic programs under the distribution semantics by using an EM algorithm. The
main characteristic of EMBLEM is the computation of expectations using BDDs, similarly to LFI-ProbLog. EMBLEM
differs from the latter in the construction of BDDs, that is done for queries rather than for whole interpretations.
EMBLEM has been tested [1] on the IMDB, Cora and UW-CSE datasets and compared with RIB [32], LeProbLog [7],
Alchemy [27] and CEM, an implementation of EM based on the cplint interpreter [31]. For all algorithms the
Area Under the Curve has been computed for both the Precision Recall curve (AUCPR) and the Receiver Operating
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Characteristics curve (AUCROC). EMBLEM achieves higher or equal AUCPR and AUCROC with respect to all other
systems, except one case that however is non-statistically significant.

In this paper we extend this experimentation by considering three more datasets - WebKB, MovieLens and Muta-
genesis - and one more system, LFI-ProbLog.

The results of this new experimentation confirm those of [1]: the AUCPR and AUCROC for EMBLEM are higher
than or equal to those of the other systems in nearly all cases. Differences between EMBLEM and the other systems
are statistically significant in favor of EMBLEM in 31 out of 64 cases and against EMBELM in only 1 case.

The paper is organized as follows. Section 2 presents Probabilistic Logic Programming and Section 3 describes
EMBLEM. Section 4 discusses related works. Section 5 represents the main contribution of the paper, the experimental
results. Section 6 concludes the paper.

2 Probabilistic Logic Programming

A probabilistic logic program under the distribution semantics [34] defines a probability distribution over ground
normal logic programs called worlds. This distribution is then extended to queries and the probability of a query is
obtained by marginalizing the joint distribution of the query and the programs.

The distribution semantics has been defined both for programs that do not contain function symbols, and thus
have a finite set of worlds W , and for programs that contain them, that have an infinite set of worlds. We review here
the first case for the sake of simplicity. Details of the semantics with function symbols can be found in [34, 25, 33].
The probability of a query Q given a world w is P (Q|w) = 1 if w |= Q and 0 otherwise, where |= is truth in the well-
founded model [39]. Thus the probability of a query Q is given by P (Q) =

∑

w∈W P (Q,w) =
∑

w∈W P (Q|w)P (w) =
∑

w∈W :w|=Q P (w).
The languages following the distribution semantics differ in the way they define the distribution over logic programs.

Each language allows probabilistic choices among atoms in clauses: Probabilistic Logic Programs, PHA, ICL, PRISM,
and ProbLog allow probability distributions over facts, while LPADs allow probability distributions over the heads
of disjunctive clauses. All these languages have the same expressive power: there are transformations with linear
complexity that can convert each one into the others [40, 5]. In this paper we will use LPADs because the syntactic
constructs of the other languages can be directly encoded in LPADs.

2.1 Logic Programs with Annotated Disjunctions

In LPADs the alternatives are encoded in the head of clauses in the form of a disjunction in which each atom is
annotated with a probability. Each grounding of an annotated disjunctive clause represents a probabilistic choice
between a number of ground normal clauses. By choosing a head atom for each grounding of each clause we get a
world. The probability of the world is given by the product of the annotations of the atoms selected.

Formally a Logic Program with Annotated Disjunctions [41] consists of a finite set of annotated disjunctive clauses.
An annotated disjunctive clause Ci is of the form

hi1 : Πi1; . . . ;hini
: Πini

: −bi1, . . . , bimi
.

In such a clause hi1, . . . hini
are logical atoms and bi1, . . . , bimi

are logical literals, {Πi1, . . . ,Πini
} are real numbers in the

interval [0, 1] such that
∑ni

k=1 Πik ≤ 1. bi1, . . . , bimi
is called the body and is indicated with body(Ci). If

∑ni

k=1 Πik < 1,
the head of the annotated disjunctive clause implicitly contains an extra atom null that does not appear in the body of
any clause and whose annotation is 1−

∑ni

k=1 Πik. We denote by ground(T ) the grounding of an LPAD T . An atomic
choice is a triple (Ci, θj , k) where Ci ∈ T , θj is a substitution that grounds Ci and k ∈ {1, . . . , ni}. (Ci, θj , k) means
that, for the ground clause Ciθj, the head hik was chosen. In practice, Ciθj corresponds to a random variable Xij and
an atomic choice (Ci, θj , k) to an assignment Xij = k. We assume that each random variable is independent of the
others. However, this does not limit the set of joint distributions that can be defined on the atoms of the Herbrand
base seen as Boolean random variables.A set of atomic choices κ is consistent if (Ci, θj , k) ∈ κ, (Ci, θj , l) ∈ κ⇒ k = l,
i.e., only one head is selected for the same ground clause. A composite choice κ is a consistent set of atomic choices.
The probability P (κ) of a composite choice κ is the product of the probabilities of the individual atomic choices, i.e.
P (κ) =

∏

(Ci,θj ,k)∈κ Πik.

A selection σ is a composite choice that, for each clause Ciθj in ground(T ), contains an atomic choice (Ci, θj , k).
We denote the set of all selections σ of a program T by ST . A selection σ identifies a normal logic program wσ defined
as wσ = {(hik ← body(Ci))θj |(Ci, θj, k) ∈ σ}. wσ is called a world of T . Since selections are composite choices we can
assign a probability to possible worlds: P (wσ) = P (σ) =

∏

(Ci,θj,k)∈σ Πik. We consider only sound LPADs in which
every possible world has a total well-founded model, i.e., a two-valued model.
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The probability of a query Q according to an LPAD T is given by

P (Q) =
∑

σ∈E(Q)

P (σ) (1)

where E(Q) is {σ ∈ ST , wσ |= Q}, i.e., the set of selections corresponding to worlds where the query is true. To
reduce the computational cost of answering queries in our experiments, random variables can be directly associated
to clauses rather than to their ground instantiations: atomic choices then take the form (Ci, k), meaning that head
hik is selected from program clause Ci, i.e., that Xi = k.

Example 1 The following LPAD T encodes a very simple model of the development of an epidemic or pandemic:
C1 = epidemic : 0.6 ; pandemic : 0.3 : −flu(X), cold.
C2 = cold : 0.7.
C3 = flu(david).
C4 = flu(robert).

The program models the fact that if somebody has the flu and the climate is cold, there is the possibility that an epidemic
or a pandemic arises. We are uncertain whether the climate is cold but we know for sure that David and Robert have
the flu. Clause C1 has two groundings, C1θ1 with θ1 = {X/david} and C1θ2 with θ2 = {X/robert}, so it generates
two random variables X11 and X12 with three values each, since C1 has three head atoms (epidemic, pandemic and
null). Similarly, clause C2 has a single grounding C2∅ so it generates a single random variable X21 with two values,
since C2 has two head atoms (cold and null). Clauses C3 and C4 have a single head atom with probability one, which
is omitted, and an empty body: they represent true facts.

T has 18 worlds, the query epidemic is true in 5 of them and its probability is P (epidemic) = 0.6 · 0.6 · 0.7 + 0.6 ·
0.3 · 0.7 + 0.6 · 0.1 · 0.7 + 0.3 · 0.6 · 0.7 + 0.1 · 0.6 · 0.7 = 0.588.

In the simplified semantics C1 is associated to a single random variable X1. In this case T has 6 instances, the
query epidemic is true in 1 of them and its probability is P (epidemic) = 0.6 · 0.7 = 0.42.

2.2 Decision Diagrams

The possible worlds in which a query is true can be represented using a Multivalued Decision Diagram (MDD). An
MDD represents a function f(X) taking Boolean values on a set of multivalued variables X by means of a rooted
graph that has one level for each variable. Each node is associated to the variable of its level and has one child for
each possible value of the variable. The leaves store either 0 or 1. Given values for all the variables X, we can compute
the value of f(X) by traversing the graph starting from the root and returning the value associated to the leaf that
is reached. An MDD can be used to represent the set E(Q) by considering the multivalued variables Xij associated
to the Ciθjs of ground(T ). If we represent with an MDD the function f(X) =

∨

σ∈E(Q)

∧

(Ci,θj ,k)∈σ Xij = k, then
each possible world where Q is true can be associated to a path to a 1-leaf in the MDD. MDDs can be built by
combining simpler MDDs using Boolean operators. While building MDDs, simplification operations can be applied
that delete or merge nodes. Merging is performed when the diagram contains two identical sub-diagrams, while
deletion is performed when all arcs from a node point to the same node. In this way a reduced MDD is obtained with
respect to a Multivalued Decision Tree (MDT), i.e., a MDD in which every node has a single parent, all the children
belong to the level immediately below and all the variables have at least one node. For example, the reduced MDD
corresponding to the query epidemic from Example 1 is shown in Figure 1(a). The labels on the edges represent the
values of the variable associated to the source node: nodes at the first and second levels have three outgoing edges,
corresponding to the values of X11 and X12, while nodes at the third level have two outgoing edges, corresponding to
the values of X21.

It is often unfeasible to find all the worlds where the query is true so inference algorithms find instead explanations
for it, i.e. composite choices such that the query is true in all the worlds whose selections are a superset of them.
Explanations however, differently from possible worlds, are not necessarily mutually exclusive with respect to each
other, so the probability of the query cannot be computed by a summation as in Formula 1. The explanations have
first to be made disjoint so that a summation can be computed. Since MDDs split paths on the basis of the values
of a variable, the branches are mutually exclusive so a dynamic programming algorithm can be applied for computing
the probability [17].

Most packages for the manipulation of decision diagrams are however restricted to work on Binary Decision Di-
agrams (BDD), i.e., decision diagrams where all the variables are Boolean. These packages offer Boolean operators
between BDDs and apply simplification rules to the result of operations in order to reduce them as much as possible,
obtaining reduced BDDs. Usually reduced BDDs have a much smaller number of nodes than the equivalent Binary

3



X11
�� ��
�� ��

1
2

3

X12
�� ��
�� ��

1

2

3

�� ��
�� ��

1
kkkkkkkkkkkkk

2 3X21
�� ��
�� ��

1
2

TTTTTTTTTTTTT

1 0
(a) MDD.

X111
�� ��
�� ��n1 Q

G

:

X121
�� ��
�� ��n2

�

�

�

�

�

�

X211
�� ��
�� ��n3 Y

V
T

Q
O

L

1 0
(b) BDD.

Figure 1: Decision diagrams for Example 1.

Decision Tree (BDT). A node n in a BDD has two children: the 1-child, indicated with child1(n), and the 0-child,
indicated with child0(n). The 0-branch, the one going to the 0-child, is drawn with a dashed line.

To work on MDDs with a BDD package we must represent multivalued variables by means of binary variables.
Various options are possible, we found that the following, proposed in [5], gives the best performance. For a multivalued
variable Xij , corresponding to ground clause Ciθj , having ni values, we use ni− 1 Boolean variables Xij1, . . . , Xijni−1

and we represent the equation Xij = k for k = 1, . . . ni − 1 by means of the conjunction Xij1 ∧ . . . ∧ Xijk−1 ∧ Xijk,
and the equation Xij = ni by means of the conjunction Xij1 ∧ . . . ∧ Xijni−1. BDDs obtained in this way can be
used for computing the probability of queries as well by associating to each Boolean variable Xijk a parameter πik

that represents P (Xijk = 1). If we define g(i) = {j|θj is a substitution grounding Ci} then P (Xijk = 1) = πik

for all j ∈ g(i). The parameters are obtained from those of multivalued variables in this way: πi1 = Πi1, . . .,
πik = Πik

∏

k−1

j=1
(1−πij)

, . . ., up to k = ni − 1. Figure 1(b) shows the reduced BDD corresponding to the MDD of Figure

1(a).

3 EMBLEM

EMBLEM applies the algorithm for performing EM over BDDs, proposed in [38, 14], to the problem of learning the
parameters of an LPAD. EMBLEM takes as input a number of goals that represent the examples and it generates
for each one a BDD encoding its explanations. The typical input for EMBLEM will be a set of interpretations, i.e.,
sets of ground facts, each describing a portion of the domain of interest. Among the predicates for the input facts the
user has to indicate which are target predicates: the facts for these predicates will then form the queries for which the
BDDs are built. We assume that also false facts are provided for target predicates, representing negative examples,
for which a negated goal is used when finding explanations. The target predicates can be treated as closed-world
or open-world. In the first case the body of clauses with a target predicate in the head is resolved only with facts
in the interpretation, in the second case it is resolved both with facts in the interpretation and with clauses in the
theory. Using open-world predicates introduces an asymmetry with respect to the target predicates, since when trying
to prove a negative example, EMBLEM does not use other negative examples to prove the falsity of a positive body
literal, it only checks for the absence of matching positive facts and for failure of matching rules. We did not introduce
this feature in EMBLEM to keep the algorithm simple but we intend to investigate in the future if this feature can
help in improving performances.

If the second option is set and the theory is cyclic, we use a depth bound on SLD-derivations to avoid going
into infinite loops. Given a program containing the clauses C1 and C2 from Example 1 and the interpretation
{epidemic, f lu(david), f lu(robert)}, we obtain the BDD in Figure 1(b) that represents the query epidemic.

Then EMBLEM enters the EM cycle, in which the steps of expectation and maximization are repeated until the
log-likelihood of the examples reaches a local maximum.

Let us now present the formulas for the expectation and maximization phases in the case of a single example Q:

• Expectation: compute E[cik0|Q] and E[cik1|Q] for all rules Ci and k = 1, . . . , ni− 1, where cikx is the number of
times a variable Xijk takes value x for x ∈ {0, 1}, and j ∈ g(i). E[cikx|Q] is given by

∑

j∈g(i) P (Xijk = x|Q).

• Maximization: compute πik for all rules Ci and k = 1, . . . , ni − 1: πik = E[cik1|Q]
E[cik0|Q]+E[cik1|Q]

If we have more than one example, the contributions of all examples simply sum up when computing E[cijx].
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3.1 Expectation Computation

P (Xijk = x|Q) is given by
P (Xijk=x,Q)

P (Q) with

P (Xijk = x,Q) =
∑

σ∈E(Q)

P (Q,Xijk = x, σ) =
∑

σ∈E(Q)

P (Q|σ)P (Xijk = x|σ)P (σ)

=
∑

σ∈E(Q)

P (Xijk = x|σ)P (σ) =
∑

σ∈E(Q)

P (Xijk = x|σ)
∏

(Co,θ,p)∈σ

πop

where P (Xijk = 1|σ) = 1 if (Ci, θj , k) ∈ σ for k = 1, . . . , ni − 1 and 0 otherwise.
Since there is a one to one correspondence between the worlds where Q is true and the paths to a 1 leaf in a BDT,

P (Xijk = x,Q) =
∑

ρ∈R(Q)

P (Xijk = x|ρ)
∏

d∈ρ

π(d)

where ρ is a path and, if σ corresponds to ρ, then P (Xijk = x|σ)=P (Xijk = x|ρ). R(Q) is the set of paths in the
BDT for query Q that lead to a 1 leaf, d is an edge of ρ and π(d) is the probability associated to the edge: if d is the
1-branch from a node associated to a variable Xijk, then π(d) = πik, if d is the 0-branch, then π(d) = 1− πik.

Now consider a BDT in which only the merge rule is applied, fusing together identical sub-diagrams. The resulting
diagram, that we call Complete Binary Decision Diagram (CBDD), is such that every path contains a node for every
level. For a CBDD, P (Xijk = x,Q) can be further expanded as

P (Xijk = x,Q) =
∑

ρ∈R(Q)∧(Xijk=x)∈ρ

∏

d∈ρ

π(d)

where (Xijk = x) ∈ ρ means that ρ contains an x-branch from the node associated to Xijk. We can then write

P (Xijk = x,Q) =
∑

n∈N(Q)∧v(n)=Xijk∧ρn∈Rn(Q)∧ρn∈Rn(Q,x)

∏

d∈ρn

π(d)
∏

d∈ρn

π(d)

where N(Q) is the set of nodes of the BDD, v(n) is the variable associated to node n, Rn(Q) is the set containing the
paths from the root to n and Rn(Q, x) is the set of paths from n to the 1 leaf through its x-child. So

P (Xijk = x,Q) =
∑

n∈N(Q)∧v(n)=Xijk

∑

ρn∈Rn(Q)

∑

ρn∈Rn(Q,x)

∏

d∈ρn

π(d)
∏

d∈ρn

π(d)

=
∑

n∈N(Q)∧v(n)=Xijk

∑

ρn∈Rn(Q)

∏

d∈ρn

π(d)
∑

ρn∈Rn(Q,x)

∏

d∈ρn

π(d)

=
∑

n∈N(Q)∧v(n)=Xijk

F (n)B(childx(n))πikx

where πikx is πik if x = 1 and (1 − πik) if x = 0, and F (n) =
∑

ρn∈Rn(Q)

∏

d∈ρn
π(d) is the forward probability [14],

the probability mass of the paths from the root to n, and B(n) =
∑

ρn∈Rn(Q)

∏

d∈ρn π(d) is the backward probability

[14], the probability mass of paths from n to the 1 leaf. Here Rn(Q) is the set of paths from n to the 1 leaf. If root is
the root of a tree for a query Q then B(root) = P (Q).

The expression F (n)B(childx(n))πikx represents the sum of the probabilities of all the paths passing through the
x-edge of node n and is indicated with ex(n). Thus

P (Xijk = x,Q) =
∑

n∈N(Q)∧v(n)=Xijk

ex(n) (2)

For the case of a BDD, i.e., a diagram obtained by applying also the deletion rule, Formula 2 is no longer valid since
also paths where there is no node associated to Xijk can contribute to P (Xijk = x,Q). These paths might have been
obtained from a BDD having a node m associated to variable Xijk that is a descendant of n along the 0-branch and
whose outgoing edges both point to child0(n). The correction of formula (2) to take into account this aspect is applied
in the Expectation step.
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In fact, suppose that a node n associated to variable Y has a level higher than variable Xijk and suppose that
child0(n) is associated to variable W that has a level lower than variable Xijk. The nodes associated to variable Xijk

have been deleted from the paths from n to child0(n). One can imagine that the current BDD has been obtained from
a BDD having a node m associated to variable Xijk that is a descendant of n along the 0-branch and whose outgoing
edges both point to child0(n). The original BDD can be re-obtained by applying a deletion operation that merges
the two paths passing through m. The probability mass of the two paths that were merged was e0(n)(1 − πik) and
e0(n)πik for the paths passing through the 0-child and 1-child of m respectively.

Formally, let Delx(X) be the set of nodes n such that the level of X is below that of n and is above that of
childx(n), i.e., X is deleted between n and childx(n). For the BDD in Figure 1(b), for example, Del1(X111) = {},
Del0(X111) = {}, Del1(X121) = {n1}, Del0(X121) = {}, Del1(X211) = {}, Del0(X211) = {n2}. Then

P (Xijk = 0, Q) =
∑

n∈N(Q)∧v(n)=Xijk

ex(n) + (1− πik)





∑

n∈Del0(Xijk)

e0(n) +
∑

n∈Del1(Xijk)

e1(n)





P (Xijk = 1, Q) =
∑

n∈N(Q)∧v(n)=Xijk

ex(n) + πik





∑

n∈Del0(Xijk)

e0(n) +
∑

n∈Del1(Xijk)

e1(n)





We now describe EMBLEM in detail.

3.2 EMBLEM’s Algorithm

EMBLEM’s main procedure consists of a cycle in which the procedures Expectation and Maximization are repeat-
edly called. The first one returns the log likelihood LL of the data that is used in the stopping criterion: EMBLEM
stops when the difference between the LL of the current iteration and that of the previous iteration drops below a
threshold ǫ or when this difference is below a fraction δ of the previous LL.

Procedure Expectation takes as input a list of BDDs, one for each example, and computes the expectation for
each one, i.e. P (Q,Xijk = x) for all variables Xijk in the BDD. We use ηx(i, k) to indicate

∑

j∈g(i) P (Q,Xijk = x).
Expectation first calls GetForward and GetBackward that compute the forward, the backward probability
of nodes and ηx(i, k) for non-deleted paths only. Then it updates ηx(i, k) to take account of deleted paths. The
expectations are updated in this way: for all rules i and k = 1 to ni−1, E[cikx] = E[cikx]+ηx(i, k)/P (Q), where P (Q)
is the backward probability of the root. Procedure Maximization computes the parameters’ values for the next EM
iteration.

Procedure GetForward traverses the diagram one level at a time starting from the root level, where F(root)=1,
and for each node n computes its contribution to the forward probabilities of its children. Function GetBackward

computes the backward probability of nodes by traversing recursively the tree from the leaves to the root. The values
of the forward and backward probabilities for the BDD of Figure 1(b) are shown in Figure 2. More details can be
found in [1].
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Figure 2: Forward and backward probabilities on a BDD. F indicates the forward probability and B the backward
probability of each node.

4 Related Work

Our work has close connection with various other works. [15, 14] proposed an EM algorithm for learning parameters
of Boolean random variables given observations of the values of a Boolean function over them represented by a BDD.
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EMBLEM is an application of that algorithm to probabilistic logic programs. Independently [38] also proposed an EM
algorithm over BDD to learn parameters for the CPT-L language, that is less expressive than LPADs. [13] applies the
algorithm of [15, 14] to the problem of computing the probabilistic parameters of abductive explanations. [11] presented
the LFI-ProbLog algorithm that performs EM for the ProbLog language by learning from partial interpretations and
computing the expectations over BDDs. We differ from this work in the construction of BDDs: they build a BDD
for a whole partial interpretation while we build it for single ground atoms for the specified target predicate(s), the
one(s) for which we are interested in good predictions. Moreover LFI-ProbLog treats missing nodes as if they were
there and updates the counts accordingly.

Other approaches for learning probabilistic logic programs can be classified into three categories: those that employ
constraint techniques, those that use EM and those that adopt gradient descent. In the first class, the algorithms
of [28, 29, 30] learn a subclass of ground programs and then apply mixed integer linear programming to identify a
subset of the clauses that form a solution. Among the approaches that use EM, [22] first proposed to use it to induce
parameters of LPADs. However, their approach requires generating the underlying Bayesian network, which can be
costly, specially if the program is not originally ground. Moreover [22] proposed to use the Structural EM algorithm to
induce ground LPADs structures; again their algorithm works on the underlying Bayesian network. RIB [32] performs
parameter learning using the information bottleneck approach, which is an extension of EM targeted especially towards
hidden variables; it works best when interpretations have the same Herbrand base, which is not always the case. The
PRISM system [34] is one of the first learning algorithms based on EM: it exploits Logic Programming techniques
for computing expectations but imposes strong restrictions on the language. In [18] the authors use EM to learn the
structure of first-order rules with associated probabilistic uncertainty parameters. Their approach involves generating
the underlying graphical model using a Knowledge-Based Model Construction approach; EM is then applied on the
graphical model. Among the works that use a gradient descent technique, LeProbLog [9] tries to find the parameters
of a ProbLog program that minimize the mean squared error of the queries’ probability and uses BDDs to compute
the gradient.

Alchemy [27] is a state of the art SRL system that offers various tools for inference, weight learning and structure
learning of Markov Logic Networks (MLNs). [19] discusses how to perform weight learning by applying gradient
descent of the conditional likelihood of queries for target predicates. MLNs significantly differ from the languages
under the distribution semantics since they extend first-order logic by attaching weights to logical formulas, but do
not allow to exploit logic programming techniques.

5 Experiments

EMBLEM has been tested1 over several real world datasets: IMDB, Cora, UW-CSE, WebKB, MovieLens and Muta-
genesis. EMBLEM has been compared with LeProbLog [9], LFI-ProbLog [11], Alchemy [27], RIB [32] and CEM, an
implementation of EM based on the cplint inference library [31].

To compare our results with LeProbLog we exploited the translation of LPADs into ProbLog proposed in [5], in
which a disjunctive clause with k head atoms and vector of variables X is modeled with k ProbLog clauses and k − 1
probabilistic facts with variables X. For Alchemy we exploited the translation between LPADs and MLN used in [32]
and inspired by the translation between ProbLog and MLN proposed in [10]. An MLN clause is translated into an
LPAD clause in which the head atoms of the LPAD clause are the null atom plus the positive literals of the MLN
clause while the body atoms are the negative literals.

For the probabilistic logic programming systems (EMBLEM, LeProbLog, CEM, RIB and LFI-ProbLog), we con-
sider various options: associating a distinct random variable to each grounding of a probabilistic clause or a single
random variable to a non-ground clause (the latter case makes the problem easier); putting a limit on the depth of
derivations, thus eliminating explanations associated to derivations exceeding the limit (necessary for problems that
contain cyclic clauses, such as transitive closure clauses), and setting the number of restarts for EM based algorithms.

All experiments except one (see below) for the probabilistic logic programming systems have been performed using
open-world predicates, meaning that, when resolving a literal for a target predicate, both facts in the database and
rules are used to prove it. As far as the choice to associate random variables either to ground or non-ground clauses
is concerned, all experiments have been run first with the most difficult setting (a single random variable for each
grounding) and have been re-run with the second easy setting only if EMBLEM failed to terminate under the first
one. All experiments used the same value of the thresholds ǫ and δ for stopping the EM cycle.

The datasets are partitioned into four, five or ten mega-examples, where each mega-example contains a connected
group of facts and individual mega-examples are independent of each other. A cross-validation approach has been
adopted in the experiments: of the four (five, ten) mega-examples, a single example in turn is retained for testing and

1All experiments were performed on Linux machines with an Intel Core 2 Duo E6550 (2333 MHz) and 4 GB of RAM.
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the remaining ones are used as training data; at the end average values of AUCPR and AUCROC are reported. The
terms fold and mega-example will be used interchangeably in the following. The datasets are described in Table 1 in
terms of target predicates, number of different constants, number of different predicates, number of examples for the
target predicate(s), number of tuples (ground atoms) in the interpretations, number of folds (mega-examples).

Table 1: Characteristics of the six datasets for the experiments: target predicates, number of constants, of predicates,
of tuples, of tuples for target predicates only and of folds.

Dataset Target Preds Constants Predicates Tuples Facts for tar-
get predicates

Folds

IMDB sameperson(per1,per2)(SP)/
samemovie(mov1,mov2)(SM)

316 10 1540 1072 5

Cora samebib(cit1,cit2)

sameauthor(aut1,aut2)

samevenue(ven1,ven2)

sametitle(tit1,tit2)

3079 10 378589 63262 5

UW-CSE advisedBy(per1,per2) 1158 22 3212 4191 5

WEBKB coursePage(page)

facultyPage(page)

studentPage(page)

researchProjectPage(page)

4942 8 290973 16668 4

Movielens rating(user,movie,rating) 2627 7 169124 129779 5

Mutagenesis active(drug) 7045 18 15249 184 10

The IMDB dataset [23]2 regards movies, their directors and the actors who appear in them. Each director is
associated to genres based on the genres of the movies he or she directed; it is divided into five mega-examples each
containing data regarding four movies.

We defined 4 different LPADs, two for predicting the target predicate sameperson(per1, per2), and two for pre-
dicting samemovie(movie1, movie2), on the basis of the relations among actors, their movies and their directors. We
have one positive example for each fact that is true in the data, while we sampled from the complete set of false facts
three times the number of true instances in order to generate negative examples.

For predicting sameperson/2 we used the same LPAD of [32]:

sameperson(X,Y):p:- movie(M,X),movie(M,Y).

sameperson(X,Y):p:- actor(X),actor(Y),workedunder(X,Z),workedunder(Y,Z).

sameperson(X,Y):p:- gender(X,Z),gender(Y,Z).

sameperson(X,Y):p:- director(X),director(Y),genre(X,Z),genre(Y,Z).

where p is a placeholder indicating a tunable parameter to be learned by EMBLEM. We ran EMBLEM, LeProbLog,
RIB, CEM and LFI-ProbLog on it with the following settings: no depth bound (the theory is acyclic) and random
variables associated to instantiations of clauses. EMBLEM was run with a number of restarts chosen to match its
execution time with that of the fastest other algorithm.

The queries taken as input by LeProbLog were obtained by annotating with 1.0 each positive example and with
0.0 each negative example, those taken as input by LFI-ProbLog by annotating with true each positive example and
with false each negative example. The same procedure has been adopted in all experiments. We ran LeProbLog and
LFI-ProbLog for a maximum of 100 iterations or until the difference in Mean Squared Error (MSE) (for LeProbLog)
or log likelihood (for LFI-ProbLog) between two iterations got smaller than 10−5. Except where otherwise noted, we
used these parameters for all experiments.

For Alchemy we used the preconditioned rescaled conjugate gradient discriminative algorithm [19] for every dataset
and in this case we specified sameperson/2 as the only non-evidence predicate.

A second LPAD, also taken from [32], has been created to evaluate the performance of the algorithms when some
atoms are unseen:

sameperson_pos(X,Y):p:- movie(M,X),movie(M,Y).

sameperson_pos(X,Y):p:- actor(X),actor(Y),workedunder(X,Z),workedunder(Y,Z).

sameperson_pos(X,Y):p:- director(X),director(Y),genre(X,Z),genre(Y,Z).

sameperson_neg(X,Y):p:- movie(M,X),movie(M,Y).

sameperson_neg(X,Y):p:- actor(X),actor(Y),workedunder(X,Z),workedunder(Y,Z).

2Available at http://alchemy.cs.washington.edu/data/imdb.
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sameperson_neg(X,Y):p:- director(X),director(Y),genre(X,Z),genre(Y,Z).

sameperson(X,Y):p:- \+sameperson_pos(X,Y),sameperson_neg(X,Y).

sameperson(X,Y):p:- \+sameperson_pos(X,Y),\+sameperson_neg(X,Y).

sameperson(X,Y):p:- sameperson_pos(X,Y),sameperson_neg(X,Y).

sameperson(X,Y):p:- sameperson_pos(X,Y),\+sameperson_neg(X,Y).

The sameperson_pos/2 and sameperson_neg/2predicates are unseen in the data. Alchemy was run with the −withEM
option that turns on EM learning. The other parameters for all systems were set as before.

Then we drew the Precision-Recall and the Receiver Operating Characteristics curves and computed the Area Under
the Curve (AUCPR and AUCROC) for both LPADs. Tables 2 and 3 show the AUCPR and AUCROC averaged over
the five folds for EMBLEM, LeProbLog, Alchemy, RIB, CEM and LFI-ProbLog. Results are shown respectively in
the IMDB-SP and IMDBu-SP rows. Table 4 shows the learning times in hours.

For predicting samemovie/2 we used the LPAD:

samemovie(X,Y):p:- movie(X,M),movie(Y,M),actor(M).

samemovie(X,Y):p:- movie(X,M),movie(Y,M),director(M).

samemovie(X,Y):p:- movie(X,A),movie(Y,B),actor(A),director(B),workedunder(A,B).

samemovie(X,Y):p:- movie(X,A),movie(Y,B),director(A),director(B),genre(A,G),genre(B,G).

To test the behavior when unseen predicates are present, we transformed the program for samemovie/2 as we did for
sameperson/2, thus introducing the unseen predicates samemovie pos/2 and samemovie neg/2. We ran EMBLEM,
LeProbLog, RIB, CEM and LFI-ProbLog on these two programs with no depth bound (the theory is acyclic) and one
variable for each instantiation of each rule. For EMBLEM we used one random restart (since we already obtained an
AUCPR and AUCROC of 1). We ran LeProbLog, Alchemy and LFI-ProbLog with the same settings as IMDB-SP and
IMDBu-SP, by replacing sameperson/2 with samemovie/2. Tables 2 and 3 show, in the IMDB-SM and IMDBu-SM
rows, the average AUCPR and AUCROC for EMBLEM, LeProbLog, Alchemy and CEM. RIB and LFI-ProbLog in
this case gave a memory error (indicated with “me”), due to the exhaustion of the available stack space during the
execution of the algorithm.

The Cora dataset [20] contains citations to computer science research papers from the Cora Computer Science Re-
search Paper Engine. We used the version of the dataset of [35]3. For each citation we know the title, authors, venue
and the words that appear in it. The dataset encodes a problem of information integration from multiple sources and
in particular an entity resolution problem. Citations of the same paper often appear differently and the task is to deter-
mine which citations are referring to the same paper, by predicting the predicate samebib(cit1,cit2). The database is
composed of five mega-examples and contains facts for the predicates samebib(cit1,cit2), sameauthor(aut1,aut2),
sametitle(tit1,tit2), samevenue(ven1,ven2) - set as target predicates - and haswordauthor(author,word),
haswordtitle(title,word), haswordvenue(venue,word).

From the MLN proposed in [36]4 we obtained two LPADs. The first contains 559 rules and differs from the direct
translation of the MLN because rules involving words are instantiated with the different constants, only positive literals
for the hasword predicates are used and transitive rules are not included:

samebib(B,C):p:- author(B,D),author(C,E),sameauthor(D,E).

samebib(B,C):p:- title(B,D),title(C,E),sametitle(D,E).

samebib(B,C):p:- venue(B,D),venue(C,E),samevenue(D,E).

samevenue(B,C):p:-haswordvenue(B,word_06), haswordvenue(C,word_06).

...

sametitle(B,C):p:-haswordtitle(B,word_10), haswordtitle(C,word_10).

....

sameauthor(B,C):p:-haswordauthor(B,word_a), haswordauthor(C,word_a).

.....

The dots stand for the rules for all the possible words. Positive and negative examples for the four target predicates
were already available in the version of the dataset we used. We ran EMBLEM, LeProLog, RIB, CEM and LFI-
ProbLog on this LPAD with no depth bound (the theory is acyclic) and a single variable for each instantiation of a
rule. We ran EMBLEM with a number of restarts chosen to match its execution time with that of the fastest other
algorithm and LFI-ProbLog for a maximum of only 10 iterations (or until the difference in MSE between two iterations
got smaller than 10−5) due to its long learning time.

3Available at http://alchemy.cs.washington.edu/data/cora.
4Available at http://alchemy.cs.washington.edu/mlns/er.
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The second LPAD adds to the previous one the transitive rules for the predicates samebib/2, samevenue/2,
sametitle/2 and sameauthor/2:

samebib(A,B):p:- samebib(A,C), samebib(C,B).

sameauthor(A,B):p:- sameauthor(A,C), sameauthor(C,B).

sametitle(A,B):p:- sametitle(A,C), sametitle(C,B).

samevenue(A,B):p:- samevenue(A,C), samevenue(C,B).

for a total of 563 rules. In this case we had to run EMBLEM, LeProbLog, CEM and LFI-ProbLog with a depth
bound equal to two (the theory is cyclic and larger depth values led to excessive learning time), a single variable for
each non-ground rule and one restart. For LeProbLog, we separately learned the four predicates because learning the
whole theory at once gave a lack of memory error. This is equivalent to using a closed-world setting. For Alchemy,
we learned weights with the four predicates as the non-evidence predicates. Tables 2 and 3 show in the Cora and
CoraT (Cora Transitive) rows the average AUCPR and AUCROC. On CoraT Alchemy, CEM and LFI-ProbLog gave
a memory error, for a segmentation fault the first one (by the learnwts command) and for memory exhaustion the
others, while RIB was not applicable because it was not possible to split the input examples into smaller independent
interpretations as required by RIB.

The UW-CSE dataset [27]5 contains information about the Computer Science Department of the University of
Washington regarding students, professors, courses, quarters, professors’ publications, etc. The database is split into
five mega-examples, each with facts for a particular departmental area (AI, graphics, programming languages, systems
and theory). The interest in this dataset has emerged in the context of social network analysis, where one seeks to
reason about a group of people: in particular link prediction tackles the problem of predicting relationships from
people’s attributes, and UW-CSE represents a benchmark in that direction if we try to predict which professors advise
which graduate students. Hence, our target predicate was set to advisedBy(per1,per2).

The theory used has been obtained from the MLN of [35]6 and contains 86 rules. We ran EMBLEM, LeProbLog,
CEM, RIB and LFI-ProbLog on it with a single variable for each non-ground rule and a depth bound of two (the theory
is cyclic). For EMBLEM we used one random restart (to make the time comparable with that of the other fastest
algorithm). The parameters for LeProbLog and LFI-ProbLog were set as for the IMDB experiments. For Alchemy,
we learned weights with advisedBy/2 as the only non-evidence predicate. Tables 2 and 3 show the AUCPR and
AUCROC averaged over the five folds for all algorithms. RIB and LFI-ProbLog in this case exhausted the available
memory.

The WebKB dataset [3]7 consists of labeled web pages from the computer science departments of four universities,
along with the words on the web pages and the links among them. We used the same set of training examples of [3]
which differs from the one used in [19, 11]. Each web page is labeled with some subset of the following categories:
student, faculty, research project and course. This dataset may be seen as a text classification problem, since we wish
to infer the page’s class given the information about words and links.

The dataset is split into four mega-examples, one for each university. Our goal is to predict the four predicates
coursePage(page), facultyPage(page), studentPage(page) and researchProjectPage(page), representing the
various possible page’s classes, for which the dataset contains both positive and negative examples.

The theory was obtained by translating the MLN of [19]8 into an LPAD. The theory contains a rule of the form

<class1>Page(Page1):p :- linkTo(Page2,Page1),<class2>Page(Page2).

for each couple of classes (<class1>,<class2>), and rules of the form

<class>Page(Page):p :- has(<word>,Page).

for each possible class and word. The resulting LPAD contains 3112 rules. Examples of rules are:

coursePage(Page1):p :- linkTo(Page2,Page1),coursePage(Page2).

coursePage(Page):p :- has(‘abstract’,Page).

Running EMBLEM with a depth bound equal to the lowest value (two) and an open-world setting gave a lack of
memory error, so we used a closed-world setting for the target predicates in the body of clauses, resolving target
predicates only with facts in the database. Moreover, we used a single variable for each rule instantiation and one
random restart to match the execution time with that of the other fastest algorithm. For Alchemy, we learned weights

5Available at http://alchemy.cs.washington.edu/data/uw-cse .
6Available at http://alchemy.cs.washington.edu/mlns/uw-cse .
7Available at http://alchemy.cs.washington.edu/data/webkb.
8Available at http://alchemy.cs.washington.edu/mlns/webkb.
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with the target predicates specified as non-evidence predicates. We also set the flag -noAddUnitClauses to 1 (unit
predicates with attached weights are not added) since otherwise inference would give a lack of memory error. For
LeProbLog and LFI-ProbLog, we ran them on a sample containing respectively 5% and 1% of the training set since
the complete set of training examples led to exceedingly long learning times, and in addition LFI-ProbLog was run
for a maximum of 10 iterations. Despite that, LFI-ProbLog spent anyway a considerable time. Tables 2 and 3 show
the AUCPR and AUCROC averaged over the four mega-examples. RIB and CEM in this case terminated for lack of
memory.

The MovieLens [12] dataset contains information about movies, users and ratings that users expressed about
movies. We used the version of the dataset of [16]9 containing 82623 ratings and 170143 total ground atoms. For
each movie the dataset records the genres to which it belongs, by means of predicates of the form <genre>(movie,

<gen value>), where <genre> can be either drama, action or horror and gen value is either <genre> 0, if the movie
does not belong to the genre, or <genre> 1, if the movie belongs to the genre. The age, gender and occupation of users
are recorded. Ratings from users on the movies range from 1 to 5. This dataset can be used to build a recommender
system, i.e. a system that suggests items of interest to users based on their previous preferences, the preferences of
other users, and attributes of users and items. Hence the target predicate is rating(user,movie,rating): we wish
to predict the rating on a movie by a user.

The dataset is split into five mega-examples. The theory we used contains 4 rules:

rating(A,B,R):p:- rating(A,C,R),B\==C,drama(B,drama_1),drama(C,drama_1).

rating(A,B,R):p:- rating(A,C,R),B\==C,action(B,action_1),action(C,action_1).

rating(A,B,R):p:- rating(A,C,R),B\==C,horror(B,horror_1),horror(C,horror_1).

rating(A,B,R):p:- rating(C,B,R),A\==C.

We ran EMBLEM, LeProbLog, RIB, CEM and LFI-Problog on it with a single variable for each non-ground rule and
a depth bound of two (the theory is cyclic). EMBLEM was run with one random restart to match the execution time
with that of the other fastest algorithm. Tables 2 and 3 show the AUCPR and AUCROC averaged over the five folds
for all the algorithms. RIB, CEM, Alchemy and LFI-ProbLog gave a memory error.

The Mutagenesis dataset [37] contains information about a number of aromatic and heteroaromatic nitro drugs,
including their chemical structures in terms of atoms, bonds and a number of molecular substructures such as six and
five membered rings, benzenes, phenantrenes and others. The problem here is to predict the mutagenicity of the drugs.
The prediction of mutagenesis is important as it is relevant to the understanding and prediction of carcinogenesis, and
not all compounds can be empirically tested for mutagenesis, e.g. antibiotics.

Of the compounds, those having positive levels of log mutagenicity are labeled “active” and constitute the positive
examples, the remaining ones are “inactive” and constitute the negative examples. The goal is to predict if a drug is
active, so the target predicate was active(drug).

We split the dataset into ten mega-examples. The theory has been obtained by running Aleph10 on it with a
ten-fold cross-validation and choosing randomly one of the ten theories for parameters learning. The selected theory
contains 17 rules, such as:

active(A):p :- bond(A,B,C,2), bond(A,C,D,1), ring_size_5(A,E).

We ran EMBLEM, LeProbLog, RIB, CEM and LFI-ProbLog on it with a single variable for each instantiation of a
rule and no depth bound (acyclic theory). EMBLEM was run with one random restart, to match its execution time
with that of the fastest other algorithm.

The predicates representing molecular substructures use function symbols to represent lists of atoms, for example,
in ring size 5(drug,ring), ring is a list of atoms composing a five membered ring in the drug’s structure. Alchemy
was not applicable to this dataset because it does not handle function symbols. Tables 2 and 3 show the AUCPR and
AUCROC averaged over the ten mega-examples for all the algorithms.

Table 5 shows the p-value of a paired two-tailed t-test at the 5% significance level of the difference in AUCPR
and AUCROC between EMBLEM and LeProbLog/Alchemy/RIB/CEM/LFI-ProbLog on all datasets (significant dif-
ferences in favor of EMBLEM in bold)11. From the results we can observe that over IMDB-SP EMBLEM has better
performances than the other systems in both AUCPR and AUCROC (except for CEM/AUCPR), with six differences
out of ten statistically significant. Moreover, EMBLEM takes less time than all other systems except CEM. Over
IMDBu-SP EMBLEM has the best performances except for the AUCROC of LeProbLog, again with six significant
differences and a low execution time. Over IMDB-SM, it reaches the highest area value in less time (only one restart is

9Available at http://www.cs.sfu.ca/~oschulte/jbn/dataset.html.
10http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html
11Please note that, even if many datasets have a small number of folds, the t-test takes this into account by “spreading” the distribution.

11
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Table 2: Results of the experiments on all datasets in terms of Area Under the Curve PR. Numbers in parenthesis
followed by r mean the number of random restarts (when different from one) to reach the area specified. “me” means
memory error during learning. “no” means that the algorithm was not applicable.

Dataset
AUCPR

EMBLEM LeProbLog Alchemy RIB CEM LFI-ProbLog

IMDB-SP 0.202(500r) 0.096 0.107 0.199 0.202 0.139

IMDBu-SP 0.175(40r) 0.134 0.020 0.166 0.120 0.019

IMDB-SM 1.000 0.933 0.820 me 0.537 me

IMDBu-SM 1.000 0.933 0.338 me 0.515 me

Cora 0.995(120r) 0.905 0.469 0.939 0.995 0.996

CoraT 0.991 0.975 me no me me

UW-CSE 0.749 0.279 0.294 me 0.644 me

WebKB 0.341 0.065 0.495 me me 0.072

MovieLens 0.869 0.820 me me me me

Mutagenesis 0.992 0.991 no 0.949 0.961 0.928

Table 3: Results of the experiments on all datasets in terms of Area Under the Curve ROC. Numbers in parenthesis
followed by r mean the number of random restarts (when different from one) to reach the area specified. “me” means
memory error during learning. “no” means that the algorithm was not applicable.

Dataset
AUCROC

EMBLEM LeProbLog Alchemy RIB CEM LFI-ProbLog

IMDB-SP 0.931(500r) 0.870 0.907 0.929 0.930 0.890

IMDBu-SP 0.900(40r) 0.921 0.494 0.897 0.885 0.500

IMDB-SM 1.000 0.983 0.925 me 0.709 me

IMDBu-SM 1.000 0.983 0.544 me 0.442 me

Cora 1.000(120r) 0.994 0.704 0.992 0.999 0.999

CoraT 0.999 0.998 me no me me

UW-CSE 0.993 0.939 0.961 me 0.873 me

WebKB 0.853 0.512 0.884 me me 0.545

MovieLens 0.841 0.772 me me me me

Mutagenesis 0.986 0.984 no 0.903 0.919 0.895

needed) and two out of six differences are significant; on IMDBu-SM, it still reaches the highest area with one restart
but with a longer execution time and one out of six differences are significant. RIB and LFI-ProbLog are not able to
terminate on this dataset. Over Cora, EMBLEM shows the best performances along with CEM and LFI-ProbLog,
but in much less time, with four significant differences out of ten. Over CoraT, EMBLEM has slightly better perfor-
mances (with a much lower learning time) than LeProbLog - the only other system able to complete learning on this
more complex theory. Over UW-CSE, it has better performances with respect to all the algorithms for AUCPR and
AUCROC with five out of six differences significant. Again RIB and LFI-ProbLog are not able to terminate. Over
WebKB, EMBLEM shows significantly better areas with respect to LeProbLog and LFI-ProbLog, and worse areas
with respect to Alchemy, with the difference in AUCPR being statistically significant. We remind that this dataset is
one of the most problematic: it is the only one where EMBLEM has been run with a closed-world setting for the target
predicates (simpler than an open-world setting, which failed in this case) and we reduced the size of the training set
for LeProbLog and LFI-ProbLog to contain the computation time. Over MovieLens, EMBLEM achieved significantly
better areas with respect to LeProbLog in less time, with the differences statistically significant, while all the others
systems were not able to complete. Over Mutagenesis, EMBLEM has better performances than all other systems,
with the differences being statistically significant in three out of eight cases. Moreover, it is the fastest.

LeProbLog seems to be the closest system to EMBLEM from the point of view of performances, being able to
always complete learning as EMBLEM, but with longer times (except for two cases). On the contrary, RIB and
LFI-ProbLog incurred in many difficulties in treating the datasets.

Looking at the overall results, EMBLEM’s AUCPR and AUCROC are higher or equal than those of the other
systems except on IMDBu-SP, where LeProbLog achieves a non-statistically significant higher AUCROC, and We-
bKB, where Alchemy achieves a higher AUCROC and a statistically significant higher AUCPR. Differences between
EMBLEM and the other systems are statistically significant in favor of EMBLEM in 34 out of 64 cases at the 5%
significance level and in 21 out of 64 cases at the 1% significance level.

12



Table 4: Execution time in hours of the experiments, corresponding to the average over the folds, on all datasets.

Dataset
Time(h)

EMBLEM LeProbLog Alchemy RIB CEM LFI-ProbLog

IMDB-SP 0.010 0.350 1.540 0.016 0.010 0.037

IMDBu-SP 0.0100 0.2300 1.5400 0.0098 0.0120 0.0570

IMDB-SM 0.00036 0.0050 0.0026 me 0.0051 me

IMDBu-SM 3.2200 0.0121 0.0108 me 0.0467 me

Cora 2.48 13.25 1.30 2.49 11.95 44.07

CoraT 0.38 5.67 me no me me

UW-CSE 2.81 2.92 1.95 me 0.53 me

WebKB 0.048 0.114 0.052 me me 11.32

MovieLens 0.07 20.01 me me me me

Mutagenesis 2.49e-5 0.130 no 0.040 0.040 0.019

Table 5: Results of t-test on all datasets, relative to AUCPR and AUCROC. p is the p-value of a paired two-tailed
t-test between EMBLEM and the other systems (significant differences in favor of EMBLEM at the 5% level in bold).
LeP is LeProbLog, A is Alchemy, C is CEM, LFI is LFI-ProbLog.

Dataset
p-AUCPR p-AUCROC

E-LeP E-A E-R E-C E-LFI E-LeP E-A E-R E-C E-LFI

IMDB-SP 0.0126 0.0134 0.2167 0.3739 0.0038 0.0012 0.015 0.3436 0.3507 0.0061

IMDBu-SP 0.1995 4.5e-5 0.1276 0.001 5.5e-5 0.1402 1e-5 0.2176 0.0019 5.3e-7

IMDB-SM 0.3739 0.1790 me 0.0241 me 0.3739 0.2556 me 0.018 me

IMDBu-SM 0.3739 2.2e-4 me 0.2780 me 0.3739 0.2556 me 0.055 me

Cora 0.0729 0.0068 0.011 1.000 0.6807 0.0686 0.0327 0.0493 0.4569 0.7661

CoraT 0.104 me no me me 0.131 me no me me

UW-CSE 2.6e-4 4.9e-4 me 0.0088 me 0.0276 0.0048 me 0.2911 me

WebKB 0.0177 0.0012 me me 0.0157 0.002 0.1709 me me 0.0053

MovieLens 8e-7 me me me me 7.6e-7 me me me me

Mutagenesis 0.16 no 0.0457 0.0969 0.0011 0.1993 no 0.1088 0.1956 5.4e-4

6 Conclusions

EMBLEM applies an EM algorithm for learning the parameters of probabilistic logic programs under the distribution
semantics. It can be applied to all languages that are based on the distribution semantics and exploits the BDDs that
are built during inference to efficiently compute the expectations for hidden variables.

We experimented the algorithm over the real datasets IMDB, Cora, UW-CSE, WebKB, MovieLens and Mutagenesis
and evaluated its performances by means of the AUCPR and the AUCROC. These results show that EMBLEM
achieves higher areas in all cases except two and that the improvements are statistically significant in 34 out of 66
cases. Moreover, EMBLEM uses less memory than Alchemy, RIB, CEM and LFI-ProbLog allowing it to solve larger
problems, and often in less time than LeProbLog.

Work is currently under way to extend EMBLEM for learning the structure of probabilistic logic programs.
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