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Abstract

Recently much work in Machine Learning has concentrated on using expressive representation languages that
combine aspects of logic and probability. A whole field has emerged, called Statistical Relational Learning, rich of
successful applications in a variety of domains. In this paper we present a Machine Learning technique targeted to
Probabilistic Logic Programs, a family of formalisms where uncertainty is represented using Logic Programming
tools. Among various proposals for Probabilistic Logic Programming, the one based on the distribution semantics is
gaining popularity and is the basis for languages such as ICL, PRISM, ProbLog and Logic Programs with Annotated
Disjunctions. This paper proposes a technique for learning parameters of these languages. Since their equivalent
Bayesian networks contain hidden variables, an Expectation Maximization (EM) algorithm is adopted. In order
to speed the computation up, expectations are computed directly on the Binary Decision Diagrams that are built
for inference. The resulting system, called EMBLEM for “EM over Bdds for probabilistic Logic programs Efficient
Mining”, has been applied to a number of datasets and showed good performances both in terms of speed and
memory usage. In particular its speed allows the execution of a high number of restarts, resulting in good quality
of the solutions.

Keywords Statistical Relational Learning, Probabilistic Inductive Logic Programming, Probabilistic Logic Pro-
grams, Logic Programs with Annotated Disjunctions, Expectation Maximization, Binary Decision Diagrams

1 Introduction

Machine Learning has seen the development of the field of Statistical Relational Learning, where logical-statistical lan-
guages are used in order to effectively learn in complex domains involving relations and uncertainty. These techniques
have been successfully applied in social networks analysis, entity recognition, collective classification and information
extraction, to name a few.

Similarly, in the field of Logic Programming, a large number of works have started to appear that combine logic and
probability. Among these, many share a common approach to defining the semantics of the proposed languages: the
distribution semantics [32]. It underlies for example Probabilistic Logic Programs [2], Probabilistic Horn Abduction
(PHA) [22], PRISM [32], Independent Choice Logic (ICL) [23], pD [8], Logic Programs with Annotated Disjunctions
(LPADs) [41], ProbLog [5] and CP-logic [39]. The approach is particularly appealing for its intuitiveness and because
efficient inference algorithms have started to appear [5, 27, 29, 15, 20]. Most of these techniques use Binary Decision
Diagrams (BDD) for inference: explanations for the query are found and the probability of the query is computed by
building a BDD.

In this paper we present the EMBLEM system for “EM over Bdds for probabilistic Logic programs Efficient Mining”
that learns parameters of probabilistic logic programs under the distribution semantics by using an Expectation
Maximization (EM) algorithm. The system exploits the fact that the translation of these programs into graphical
models generates models with hidden variables and therefore an EM approach is necessary. Its main characteristic
is that it computes the values of expectations using BDDs. EMBLEM is developed for the language of LPADs and
tested on the IMDB [21], Cora [34] and UW-CSE [34] datasets and compared with RIB [31], LeProbLog [5], Alchemy
[24] and CEM, an implementation of EM based on the cplint interpreter [27].
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The paper is organized as follows. Section 2 presents Probabilistic Logic Programming, concentrating on LPADs.
Section 3 describes EMBLEM together with an example of its execution. Section 4 discusses related work. In Section
5 the results of the experiments performed are presented. Finally Section 6 concludes the paper.

2 Probabilistic Logic Programming

Many languages have been proposed that integrate logic programming with probability theory. One of the most
interesting approaches to the integration is the distribution semantics [32], which was introduced for the PRISM
language but is shared by many other languages. A program in one of these languages defines a probability distribution
over normal logic programs called worlds. This distribution is then extended to queries and the probability of a query
is obtained by marginalizing the joint distribution of the query and the programs.

The distribution semantics has been defined both for programs that do not contain function symbols, and thus
have a finite set of worlds W , and for programs that contain them, that have an infinite set of worlds. We review here
the first case for the sake of simplicity. The probability of a query Q given a world w is P (Q|w) = 1 if w |= Q and 0
otherwise, where |= is truth in the well-founded model [38]. Thus the probability of a query Q is given by

P (Q) =
∑

w∈W

P (Q,w) =
∑

w∈W

P (Q|w)P (w) =
∑

w∈W :w|=Q

P (w) (1)

The languages following the distribution semantics differ in the way they define the distribution over logic programs.
Each language allows probabilistic choices among atoms in clauses: Probabilistic Logic Programs, PHA, ICL, PRISM,
and ProbLog allow probability distributions over facts, while LPADs allow probability distributions over the heads
of disjunctive clauses. All these languages have the same expressive power: there are transformations with linear
complexity that can convert each one into the others [40, 4]. In this paper we will use LPADs for their general syntax.

In LPADs the alternatives are encoded in the head of clauses in the form of a disjunction in which each atom
is annotated with a probability. Each grounding of an annotated disjunctive clause represents a probabilistic choice
between a number of ground normal clauses. By choosing a head atom for each grounding of each clause we get a
world. The probability of the world is given by the product of the annotations of the atoms selected.

Formally a Logic Program with Annotated Disjunctions [41] consists of a finite set of annotated disjunctive clauses.
An annotated disjunctive clause Ci is of the form hi1 : Πi1; . . . ;hini

: Πini
: −bi1, . . . , bimi

. In such a clause hi1, . . . hini

are logical atoms and bi1, . . . , bimi
are logical literals, Πi1, . . . ,Πini

are real numbers in the interval [0, 1] such that
∑ni

k=1 Πik ≤ 1. bi1, . . . , bimi
is called the body and is indicated with body(Ci). Note that if ni = 1 and Πi1 = 1 the

clause corresponds to a non-disjunctive clause. If
∑ni

k=1 Πik < 1 the head of the annotated disjunctive clause implicitly
contains an extra atom null that does not appear in the body of any clause and whose annotation is 1 −

∑ni

k=1 Πik.
We denote by ground(T ) the grounding of an LPAD T .

An atomic choice is a triple (Ci, θj , k) where Ci ∈ T , θj is a substitution that grounds Ci and k ∈ {1, . . . , ni}.
(Ci, θj , k) means that, for ground clause Ciθj , the head hik was chosen. In practice Ciθj corresponds to a random
variable Xij and an atomic choice (Ci, θj , k) to an assignment Xij = k. A set of atomic choices κ is consistent if
(C, θ, i) ∈ κ, (C, θ, j) ∈ κ ⇒ i = j, i.e., only one head is selected for a ground clause. A composite choice κ is a
consistent set of atomic choices. The probability P (κ) of a composite choice κ is the product of the probabilities of
the individual atomic choices, i.e. P (κ) =

∏

(Ci,θj,k)∈κ Πik.

A selection σ is a composite choice that, for each clause Ciθj in ground(T ), contains an atomic choice (Ci, θj , k).
We denote the set of all selections σ of a program T by ST and we let g(i) be the set of indexes of substitution
grounding Ci, i.e., g(i) = {j|θj is a substitution grounding Ci}. A selection σ identifies a normal logic program wσ

defined as wσ = {(hik ← body(Ci))θj |(Ci, θj , k) ∈ σ}. wσ is called a world of T . Since selections are composite choices
we can assign a probability to worlds: P (wσ) = P (σ) =

∏

(Ci,θj,k)∈σ Πik.

We consider only sound LPADs, in which every possible world has a total well-founded model. We write wσ |= Q
to mean that the query Q is true in the total well-founded model of the program wσ.

The probability of a query Q according to an LPAD T is given by

P (Q) =
∑

σ∈E(Q)

P (σ) (2)

where we define E(Q) = {σ ∈ ST , wσ |= Q} the set of selections corresponding to worlds where the query is true.
Sometimes a simplification of this semantics can be used to reduce the computational cost of answering queries. In

this simplified semantics random variables are directly associated to clauses in the programs rather than to their ground
instantiations. So, for a clause Ci, possibly non ground, there is a single random variable Xi. In this way the number
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of random variables may be significantly reduced and atomic choices take the form (Ci, k), meaning that head hik is
selected from program clause Ci, i.e., that Xi = k, and that the same head is chosen for all the ground instantiations
of the clause. In some of the experiments in Section 5 we use this simplification to contain the computational costs.

Example 1 The following LPAD T encodes a very simple model of the development of an epidemic or pandemic:

C1 = epidemic : 0.6; pandemic : 0.3 : −flu(X), cold.
C2 = cold : 0.7.
C3 = flu(david).
C4 = flu(robert).

This program models the fact that if somebody has the flu and the climate is cold, there is the possibility that an
epidemic or a pandemic arises. We are uncertain about whether the climate is cold but we know for sure that David
and Robert have the flu.

Clause C1 has two groundings, C1θ1 with θ1 = {X/david} and C1θ2 with θ2 = {X/robert} so there are two random
variables X11 and X12.

T has 18 instances, the query epidemic is true in 5 of them and its probability is P (epidemic) = 0.6 · 0.6 · 0.7 +
0.6 · 0.3 · 0.7 + 0.6 · 0.1 · 0.7 + 0.3 · 0.6 · 0.7 + 0.1 · 0.6 · 0.7 = 0.588

In the simplified semantics C1 is associated to a single random variable X1. In this case T has 6 instances, the
query epidemic is true in 1 of them and its probability is P (epidemic) = 0.6 · 0.7 = 0.42.

The worlds in which a query is true can be represented using a Multivalued Decision Diagram (MDD) [36]. An MDD
represents a function f(X) taking Boolean values on a set of multivalued variables X by means of a rooted graph
that has one level for each variable. Each node is associated to the variable of its level and has one child for each
possible value of the variable. The leaves store either 0 or 1. Given values for all the variables X, we can compute
the value of f(X) by traversing the graph starting from the root and returning the value associated to the leaf that
is reached. An MDD can be used to represent the set E(Q) by considering the multivalued variables Xijs associated
to the Ciθjs of ground(T ). Xij has values {1, . . . , ni} and atomic choice (Ci, θj , k) corresponds to the propositional
equation Xij = k. If we represent with the MDD the function f(X) =

∨

σ∈E(Q)

∧

(Ci,θj ,k)∈σ Xij = k, then the MDD
will have a path to a 1-leaf for each possible world where Q is true. MDDs can be built by combining simpler MDDs
using Boolean operators. While building MDDs simplification operations can be applied that delete or merge nodes.
Merging is performed when the diagram contains two identical sub-diagrams, while deletion is performed when all arcs
from a node point to the same node. In this way a reduced MDD is obtained, that often has a much smaller number
of nodes with respect to a Multivalued Decision Tree (MDT), i.e., an MDD in which every node has a single parent
and all the children belong to the level immediately below.

For example, the reduced MDD corresponding to the query epidemic from Example 1 is shown in Figure 1(a).
The labels on the edges represent the values of the variable associated to the node.
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(b) BDD.

Figure 1: Decision diagrams for Example 1.

It is often unfeasible to find all the instances where the query is true so inference algorithms find instead explanations
for the query, i.e. composite choices such that the query is true in all the worlds whose selections are a superset of
them. Explanations however, differently from possible worlds, are not necessarily mutually exclusive with respect to
each other, so the probability of the query can not be computed by a summation as in Formula 2. The explanations
have first to be made disjoint so that a summation can be computed. Since MDDs split paths on the basis of the values
of a variable, the branches are mutually disjoint so a dynamic programming algorithm can be applied for computing
the probability.
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Most packages for the manipulation of decision diagrams are however restricted to work on Binary Decision Di-
agrams (BDD), i.e., decision diagrams where all the variables are Boolean. These packages offer Boolean operators
between BDDs and apply simplification rules to the result of operations in order to reduce as much as possible the
size of the BDD, obtaining a reduced BDD. Usually reduced BDDs have a much smaller number of nodes than the
equivalent Binary Decision Tree (BDT).

A node n in a BDD has two children: the 1-child, also indicated with child1(n), and the 0-child, also indicated
with child0(n). When drawing BDDs, rather than using edge labels, the 0-branch, the one going to the 0-child, is
distinguished from the 1-branch by drawing it with a dashed line.

To work on MDDs with a BDD package we must represent multivalued variables by means of binary variables. Var-
ious options are possible, we found that the following, proposed in [4], gives the best performance. For a multi-valued
variable Xij , corresponding to ground clause Ciθj , having ni values, we use ni− 1 Boolean variables Xij1, . . . , Xijni−1

and we represent the equation Xij = k for k = 1, . . . ni − 1 by means of the conjunction
Xij1 ∧Xij2 ∧ . . .∧Xijk−1 ∧Xijk, and the equation Xij = ni by means of the conjunction Xij1 ∧Xij2 ∧ . . . ∧Xijni−1.
The BDD corresponding to the MDD of Figure 1(a) is shown in Figure 1(b). BDDs obtained in this way can be used
as well for computing the probability of queries by associating to each Boolean variable Xijk a parameter πik that
represents P (Xijk = 1). The parameters are obtained from those of multivalued variables in this way:

πi1 = Πi1

. . .

πik =
Πik

∏k−1
j=1 (1− πij)

. . .

up to k = ni − 1.

3 EMBLEM

EMBLEM applies the algorithms for performing EM over BDDs proposed in [37, 13, 14, 12] to the problem of learning
the parameters of an LPAD. EMBLEM takes as input a number of goals that represent the examples. For each goal
it generates the BDD encoding its explanations. The typical input for EMBLEM will be a set of interpretations, i.e.,
sets of ground facts, each describing a portion of the domain of interest. Among the predicates for the input facts the
user has to indicate which are target predicates: the facts for these predicates will then form the queries for which the
BDDs are built. The predicates can be treated as closed-world or open-world. In the first case the body of clauses is
resolved only with facts in the interpretation. In the second case the body of clauses is resolved both with facts in the
interpretation and with clauses in the theory. If the last option is set and the theory is cyclic we use a depth bound
on SLD-derivations to avoid going into infinite loops, as proposed by [10]. Given a program containing the clauses
C1 and C2 from Example 1 and the interpretation {epidemic, f lu(david), f lu(robert)}, we obtain the BDD in Figure
1(b) that represents the query epidemic.

Then EMBLEM enters the EM cycle, in which the steps of expectation and maximization are repeated until the
log-likelihood of the examples reaches a local maximum.

Let us now present the formulas for the expectation and maximization phases for the case of a single example Q:

• Expectation: computes E[cik0|Q] and E[cik1|Q] for all rules Ci and k = 1, . . . , ni−1, where cikx is the number of
times a variable Xijk takes value x for x ∈ {0, 1} and for all j ∈ g(i), i.e., E[cikx|Q] is given by

∑

j∈g(i) P (Xijk =

x|Q).

• Maximization: computes πik for all rules Ci and k = 1, . . . , ni − 1.

πik =
E[cik1|Q]

E[cik0|Q] +E[cik1|Q]

If we have more than one example the contributions of each example simply sum up when computing E[cijx].

P (Xijk = x|Q) is given by P (Xijk = x|Q) =
P (Xijk=x,Q)

P (Q) with

P (Xijk = x,Q) =
∑

σ∈E(Q)

P (Q,Xijk = x, σ)

4



=
∑

σ∈E(Q)

P (Q|σ)P (Xijk = x|σ)P (σ)

=
∑

σ∈E(Q)

P (Xijk = x|σ)P (σ)

where P (Xijk = 1|σ) = 1 if (Ci, θj , k) ∈ σ for k = 1, . . . , ni − 1 and 0 otherwise.
Since there is a one to one correspondence between the possible worlds where Q is true and the paths to a 1 leaf

in a BDT,

P (Xijk = x,Q) =
∑

ρ∈R(Q)

P (Xijk = x|ρ)
∏

d∈ρ

π(d)

where σ corresponds to a path ρ (P (Xijk = x|σ)=P (Xijk = x|ρ)), R(Q) is the set of paths in the BDD for query Q
that lead to a 1 leaf, d is an edge of ρ and π(d) is the probability associated to the edge: if d is the 1-branch from a
node associated to a variable Xijk, then π(d) = πik, if d is the 0-branch from a node associated to a variable Xijk,
then π(d) = 1− πik.

Now consider a BDT in which only the merge rule is applied, fusing together identical sub-diagrams. For example,
by applying only the merge rule in Example 1 the diagram in Figure 2 is obtained. The resulting diagram, that we
call Complete Binary Decision Diagram (CBDD), is such that every path contains a node for every level.
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Figure 2: Decision diagram after applying the merge rule for Example 1.

For a CBDD, P (Xijk = x,Q) can be further expanded as

P (Xijk = x,Q) =
∑

ρ∈R(Q),(Xijk=x)∈ρ

∏

d∈ρ

π(d)

where (Xijk = x) ∈ ρ means that ρ contains an x-edge from a node associated to Xijk. We can then write

P (Xijk = x,Q) =
∑

n∈N(Q),v(n)=Xijk,ρn∈Rn(Q),ρn∈Rn(Q,x)

∏

d∈ρn

π(d)
∏

d∈ρn

π(d)

where N(Q) is the set of nodes of the BDD, v(n) is the variable associated to node n, Rn(Q) is the set containing the
paths from the root to n and Rn(Q, x) is the set of paths from n to the 1 leaf through its x-child.

P (Xijk = x,Q) =
∑

n∈N(Q),v(n)=Xijk

∑

ρn∈Rn(Q)

∑

ρn∈Rn(Q,x)

∏

d∈ρn

π(d)
∏

d∈ρn

π(d)

=
∑

n∈N(Q),v(n)=Xijk

∑

ρn∈Rn(Q)

∏

d∈ρn

π(d)
∑

ρn∈Rn(Q,x)

∏

d∈ρn

π(d)

=
∑

n∈N(Q),v(n)=Xijk

F (n)B(childx(n))πikx

where πikx is πik if x=1 and (1− πik) if x=0, and

F (n) =
∑

ρn∈Rn(Q)

∏

d∈ρn

π(d)
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is the forward probability [14], the probability mass of the paths from the root to n, while

B(n) =
∑

ρn∈Rn(Q)

∏

d∈ρn

π(d)

is the backward probability [14], the probability mass of paths from n to the 1 leaf. Here Rn(Q) is the set of paths
from n to the 1 leaf. If root is the root of a tree for a query Q then B(root) = P (Q).

The expression F (n)B(childx(n))πikx represents the sum of the probabilities of all the paths passing through the
x-edge of node n. We indicate with ex(n) such an expression. Thus

P (Xijk = x,Q) =
∑

n∈N(Q),v(n)=Xijk

ex(n) (3)

For the case of a BDD, i.e., a diagram obtained by applying also the deletion rule, Formula 3 is no longer valid
since also paths where there is no node associated to Xijk can contribute to P (Xijk = x,Q). In fact, it is necessary
to consider also the deleted paths: suppose that a node n associated to variable Y has a level higher than variable
Xijk and suppose that child0(n) is associated to variable W that has a level lower than variable Xijk. The nodes
associated to variable Xijk have been deleted from the paths from n to child0(n). One can imagine that the current
BDD has been obtained from a BDD having a node m associated to variable Xijk that is a descendant of n along
the 0-branch and whose outgoing edges both point to child0(n). The original BDD can be reobtained by applying a
deletion operation that merges the two paths passing through m. The probability mass of the two paths that were
merged was e0(n)(1 − πik) and e0(n)πik for the paths passing through the 0-child and 1-child of m respectively.

Formally, let Delx(X) be the set of nodes n such that the level of X is below that of n and is above that of
childx(n), i.e., X is deleted between n and childx(n). For the BDD in Figure 1(b), for example, Del1(X121) = {n1},
Del0(X121) = {}, Del1(X221) = {}, Del0(X221) = {n2}. Then

P (Xijk = 0, Q) =
∑

n∈N(Q),v(n)=Xijk

ex(n) +

(1− πik)





∑

n∈Del0(Xijk)

e0(n) +
∑

n∈Del1(Xijk)

e1(n)





P (Xijk = 1, Q) =
∑

n∈N(Q),v(n)=Xijk

ex(n) +

πik





∑

n∈Del0(Xijk)

e0(n) +
∑

n∈Del1(Xijk)

e1(n)





Having shown how to compute the expected counts, we now describe EMBLEM in detail.
EMBLEM’s main procedure, shown in Algorithm 1, consists of a cycle in which the procedures Expectation and

Maximization are repeatedly called. Procedure Expectation returns the log likelihood of the data that is used in
the stopping criterion: EMBLEM stops when the difference between the log likelihood of the current and the previous
iteration drops below a threshold ǫ or when this difference is below a fraction δ of the current log likelihood.

Procedure Expectation, shown in Algorithm 2, takes as input a list of BDDs, one for each example, and computes
the expectations for each one, i.e. P (Xijk = x,Q) for all variables Xijk in the BDD. In the procedure we use ηx(i, k)
to indicate

∑

j∈g(i) P (Xijk = x,Q). Expectation first calls GetForward and GetBackward that compute the

forward, the backward probability of nodes and ηx(i, k) for non-deleted paths only. Then it updates ηx(i, k) to take
into account deleted paths.

Algorithm 1 Procedure EMBLEM
1: function EMBLEM(ǫ,δ)
2: Build BDDs
3: LL = −inf

4: repeat

5: LL0 = LL
6: LL = Expectation(BDDs)
7: Maximization

8: until LL− LL0 < ǫ ∨ LL− LL0 < −LL · δ
9: return LL,πik for all i, k
10: end function
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Algorithm 2 Procedure Expectation
1: function Expectation(BDDs)
2: LL = 0
3: for all BDD ∈ BDDs do

4: for all i ∈ Rules do

5: for k = 1 to ni − 1 do

6: η0(i, k) = 0; η1(i, k) = 0
7: end for

8: end for

9: for all variables X do

10: ς(X) = 0
11: end for

12: GetForward(root(BDD))
13: Prob=GetBackward(root(BDD))
14: T = 0
15: for l = 1 to levels(BDD) do

16: Let Xijk be the variable associated to level l
17: T = T + ς(Xijk)

18: η0(i, k) = η0(i, k) + T × (1 − πik)
19: η1(i, k) = η1(i, k) + T × πik

20: end for

21: for all i ∈ Rules do

22: for k = 1 to ni − 1 do

23: E[cik0] = E[cik0] + η0(i, k)/Prob
24: E[cik1] = E[cik1] + η1(i, k)/Prob
25: end for

26: end for

27: LL = LL+ log(Prob)
28: end for

29: return LL
30: end function

Algorithm 3 Procedure Maximization
1: procedure Maximization

2: for all i ∈ Rules do

3: for k = 1 to ni − 1 do

4: π(ik) =
E[cik1]

E[cik0]+E[cik1]

5: end for

6: end for

7: end procedure

Procedure Maximization (Algorithm 3) computes the parameters values for the next EM iteration.
Procedure GetForward, shown in Algorithm 4, computes the value of the forward probabilities. It traverses the

diagram one level at a time starting from the root level. For each level it considers each node n and computes its
contribution to the forward probabilities of its children. Then the forward probabilities of its children, stored in table
F , are updated.

Function GetBackward, shown in Algorithm 5, computes the backward probability of nodes by traversing
recursively the tree from the root to the leaves. When the calls of GetBackward for both children of a node n
return, we have all the information that is needed to compute the ex(n) values and update the values of ηx(i, k)
for non-deleted paths. Thus these computations are included in GetBackward, rather than being included in
GetOutsideExpe as in [14].
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Figure 3: Forward and backward probabilities. F indicates the forward probability and B the backward probability
of each node.

The array ς stores for every level-variable l an algebraic sum of ex(n): those for nodes in upper levels that do
not have a descendant in level l minus those for nodes in upper levels that have a descendant in level l. In this way
it is possible to add the contributions of the deleted paths by starting from the root level and accumulating ς(l) for
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Algorithm 4 Procedure GetForward: computation of the forward probability
1: procedure GetForward(root)
2: F (root) = 1
3: F (n) = 0 for all nodes
4: for l = 1 to levels do ⊲ levels is the number of levels of the BDD rooted at root
5: Nodes(l) = ∅
6: end for

7: Nodes(1) = {root}
8: for l = 1 to levels do

9: for all node ∈ Nodes(l) do

10: Let Xijk be v(node), the variable associated to node
11: if child0(node) is not terminal then
12: F (child0(node)) = F (child0(node)) + F (node) · (1 − πik)
13: Add child0(node) to Nodes(level(child0(node))) ⊲ level(node) returns the level of node
14: end if

15: if child1(node) is not terminal then
16: F (child1(node)) = F (child1(node)) + F (node) · πik

17: Add child1(node) to Nodes(level(child1(node)))
18: end if

19: end for

20: end for

21: end procedure

Algorithm 5 Procedure GetBackward: computation of the backward probability, updating of η and of ς
1: function GetBackward(node)
2: if node is a terminal then
3: return value(node)
4: else

5: Let Xijk be v(node)
6: B(child0(node)) =GetBackward(child0(node))
7: B(child1(node)) =GetBackward(child1(node))
8: e0(node) = F (node) · B(child0(node)) · (1 − πik)
9: e1(node) = F (node) · B(child1(node)) · πik

10: η0(i, k) = η0
t (i, k) + e0(node)

11: η1(i, k) = η1
t (i, k) + e1(node)

12: V Succ = succ(v(node)) ⊲ succ(X) returns the variable following X in the order
13: ς(V Succ) = ς(V Succ) + e0(node) + e1(node)
14: ς(v(child0(node))) = ς(v(child0(node))) − e0(node)
15: ς(v(child1(node))) = ς(v(child1(node))) − e1(node)
16: return B(child0(node)) · (1 − πik) + B(child1(node)) · πik

17: end if

18: end function

the various levels in a variable T : an ex(n) value which is added to the accumulator T for level l means that n is an
ancestor for nodes in this level. When the x-branch from n reaches a node in a level l′ ≤ l ex(n) is subtracted from
the accumulator, as it is not relative to a deleted node on the path anymore.

Let us see an example of execution. Suppose you have the program of Example 1 and you have the single example
epidemic. The BDD of Figure 1(b) (also shown in Figure 3) is built and passed to Expectation in the form of a
pointer to its root node n1. After initializing the η counters to 0, GetForward is called with argument n1. The F
table for n1 is set to 1 since this is the root. F is computed for the 0-child, n2, as 0 + 1 · 0.4 = 0.4 and n2 is added to
Nodes(2), the set of nodes for the second level. Then F is computed for the 1-child, n3, as 0 + 1 · 0.6 = 0.6, and n3

is added to Nodes(3). At the next iteration of the cycle level 2 is considered and node n2 is fetched from Nodes(2).
The 0-child is a terminal so it is skipped, while the 1-child is n3 and its F value is updated as 0.6 + 0.4 · 0.6 = 0.84.
In the third iteration node n3 is fetched but since its children are leaves F is not updated. The resulting forward
probabilities are shown in Figure 3.

Then GetBackward is called on n1.The function calls GetBackward(n2) that in turn callsGetBackward(0).
The latter call returns 0 because it is a terminal node. Then GetBackward(n2) calls GetBackward(n3) that in
turn calls GetBackward(1) and GetBackward(0), returning respectively 1 and 0. Then GetBackward(n3)
computes e0(n3) and e1(n3) in the following way:

e0(n3) = F (n3) ·B(0) · (1− π21) = 0.84 · 0 · 0.3 = 0
e1(n3) = F (n3) ·B(1) · (π21) = 0.84 · 1 · 0.7 = 0.588

where B(n) and F (n) are respectively the backward and forward probabilities of node n. Now the counters for clause
C2 are updated:

η0(2, 1) = 0
η1(2, 1) = 0.588

while we do not show the update of ς since its value for the level of the leaves is not used afterwards. GetBack-

ward(n3) now returns the backward probability of n3 B(n3) = 1 ·0.7+0 ·0.3 = 0.7. GetBackward(n2) can proceed
to compute
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e0(n2) = F (n2) ·B(0) · (1− π11) = 0.4 · 0.0 · 0.4 = 0
e1(n2) = F (n2) ·B(n3) · (π11) = 0.4 · 0.7 · 0.6 = 0.168

and η0(1, 1) = 0, η1(1, 1) = 0.168. The variable followingX121 isX211 so ς(X211) = e0(n2)+e1(n2) = 0+0.168 = 0.168.
Since X121 is also associated to the 1-child n2, ς(X211) = ς(X211) − e1(n2) = 0. The 0-child is a leaf so we do not
show the update of ς .

GetBackward(n2) then returns B(n2) = 0.7 · 0.6 + 0 · 0.4 = 0.42 to GetBackward(n1) that computes e0(n1)
and e1(n1) as

e0(n1) = F (n1) ·B(n2) · (1− π11) = 1 · 0.42 · 0.4 = 0.168
e1(n1) = F (n1) ·B(n3) · (π11) = 1 · 0.7 · 0.6 = 0.42

and updates the η counters as η0(1, 1) = 0.168, η1(1, 1) = 0.168 + 0.42 = 0.588.
Finally ς is updated:
ς(X121) = e0(n1) + e1(n1) = 0.168 + 0.42 = 0.588
ς(X121) = ς(X121)− e0(n1) = 0.42
ς(X211) = ς(X211)− e1(n1) = −0.42

GetBackward(n1) returns B(n1) = 0.7 · 0.6 + 0.42 · 0.4 = 0.588 to Expectation, that adds the contribution of
deleted nodes by cycling over the BDD levels and updating T . Initially T is set to 0, then for variable X111 T is
updated to T = ς(X111) = 0 which implies no modification of η0(1, 1) and η1(1, 1). For variable X121 T is updated to
T = 0 + ς(X121) = 0.42 and the η table is modified as

η0(1, 1) = 0.168 + 0.42 · 0.4 = 0.336
η1(1, 1) = 0.588 + 0.42 · 0.6 = 0.84

For variable X211 T becomes 0.42 + ς(X211) = 0 so η0(2, 1) and η0(2, 1) are not updated. At this point the expected
counts for the two rules can be computed:

E[c110] = 0 + 0.336/0.588 = 0.5714285714
E[c111] = 0 + 0.84/0.588 = 1.4285714286
E[c120] = 0
E[c121] = 0
E[c210] = 0 + 0/0.588 = 0
E[c211] = 0 + 0.588/0.588 = 1

4 Related Work

Our work has close connection with various other works. [13, 14] proposed an EM algorithm for learning the parameters
of Boolean random variables given observations of a Boolean function over them, represented by a BDD. EMBLEM is
an application of that algorithm to probabilistic logic programs. Independently also [37] proposed an EM algorithm
which computes expectations over decision diagrams. The algorithm learns parameters for the CPT-L language, a
simple probabilistic logic language for describing sequences of relational states, that is less expressive than LPADs. [12]
applies the algorithm of [13, 14] to the problem of computing the probabilistic parameters of abductive explanations.
[11] recently presented the CoPrEM algorithm that performs EM for the ProbLog language. We differ from this work
in the construction of BDDs: while they build a BDD for an interpretation that represents the application of the whole
theory to the interpretation, we focus on a target predicate, the one for which we want to obtain good predictions, and
we build BDDs starting from atoms for the target predicate. Moreover, while we compute the contributions of deleted
paths with the ς table, CoPrEM treats missing nodes as if they were there and updates the counts accordingly.

Other approaches for learning probabilistic logic programs can be classified into three categories: those that employ
constraint techniques, those that use EM and those that adopt gradient descent. In the first class [25, 26, 28] learn
a subclass of ground programs by first finding a large set of clauses satisfying certain constraints and then applying
mixed integer linear programming to identify a subset of the clauses that form a solution.

Among the approaches that use EM, [1, 18, 19] first proposed to use the EM algorithm to induce parameters of
ground LPADs and the Structural EM algorithm to induce ground LPAD structures. Their EM algorithm however
works on the underlying Bayesian network.

RIB [31] performs parameter learning using the information bottleneck approach, which is an extension of EM
targeted especially towards hidden variables. However, it works best when interpretations have the same Herbrand
base, which is not always the case.

The PRISM system [32, 33] is one of the first learning algorithms based on EM. It exploits Logic Programming
techniques for computing expectations but imposes restrictions on the language.
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In [16] the authors use EM to learn the structure of first-order rules with associated probabilistic uncertainty
parameters. Their approach involves generating the underlying graphical model using a Knowledge-Based Model
Construction approach. EM is then applied on the graphical model.

Among the works that use a gradient descent technique, LeProbLog [9, 10] starts from a set of queries annotated
with a probability and from a ProbLog program. It tries to find the values of the parameters of the program that
minimize the mean squared error of the probabilities of the queries. LeProbLog uses the Binary Decision Diagrams
that represent the queries to compute the gradient.

Alchemy [24] is a state of the art Statistical Relational Learning system that offers various tools for inference, weight
learning and structure learning of Markov Logic Networks (MLNs). [17] discusses how to perform weight learning by
applying gradient descent of the conditional likelihood of queries for target predicates. MLNs significantly differ
from the languages under the distribution semantics since they extend first-order logic by attaching weights to logical
formulas, reflecting “how strong” they are. MLNs allow the use of logical formulas without syntactic restrictions, but
do not allow to exploit logic programming techniques.

5 Experiments

EMBLEM has been tested over three real world datasets: IMDB1[21], UW-CSE2 [34] and Cora3 [34].
We implemented EMBLEM in Yap Prolog4 and we compared it with RIB [31]; CEM, an implementation of EM

based on the cplint inference library [27, 30]; LeProblog [9, 10] and Alchemy [24]. All experiments were performed
on Linux machines with an Intel Core 2 Duo E6550 (2333 MHz) processor and 4 GB of RAM.

To compare our results with LeProbLog we exploited the translation of LPADs into ProbLog proposed in [4], in

which a disjunctive clause with k head atoms and vector of variables ~X is modeled with k ProbLog clauses and k − 1
probabilistic facts with variables ~X.

To compare our results with Alchemy we exploited the translation between LPADs and MLN used in [31] and
inspired by the translation between ProbLog and MLNs proposed in [10]. An MLN clause is translated into an LPAD
clause in which the head atoms of the LPAD clause are the null atom plus the positive literals of the MLN clause
while the body atoms are the negative literals.

For the probabilistic logic programming systems (EMBLEM, RIB, CEM and LeProbLog) we consider various op-
tions. The first consists in choosing between associating a distinct random variable to each grounding of a probabilistic
clause or a single random variable to a non-ground probabilistic clause expressing whether the clause is used or not.
The latter case makes the problem easier, as stated previously. The second option is concerned with putting a limit on
the depth of derivations as done in [10], thus eliminating explanations associated to derivations exceeding the depth
limit. This is necessary for problems that contain cyclic clauses, such as transitive closure clauses. The third option
involves setting the number of restarts for EM based algorithms.

All experiments for probabilistic logic programming systems have been performed using open-world predicates,
meaning that, when resolving a literal, both facts in the database and rules are used to prove it.

All datasets are partitioned into five mega-examples, so a five-fold cross-validation approach has been adopted in
the experiments: of the five mega-examples, a single example is retained for testing, and the remaining four are used
as training data. The datasets are described in Table 1 in terms of target predicates, number of different constants,
number of different predicates and number of tuples (ground atoms) in the interpretations.

Table 1: Characteristics of the three datasets for the experiments: target predicates, number of constants, of predicates,
of tuples(ground atoms).

Dataset Target Preds Num Consts Num Preds Num Tuples

IMDB sameperson(X,Y)(SP)/
samemovie(X,Y)(SM)

316 10 1540

Cora samebib(X,Y)
sameauthor(X,Y)
samevenue(X,Y)
sametitle(X,Y)

3079 10 378589

UW-CSE advisedby(X,Y) 1158 22 3212

1http://alchemy.cs.washington.edu/data/imdb
2http://alchemy.cs.washington.edu/data/uw-cse
3http://alchemy.cs.washington.edu/data/cora
4http://www.dcc.fc.up.pt/~vsc/Yap/
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As part of the test, we drew a Precision-Recall curve and a Receiver Operating Characteristics curve, and computed
the Area Under the Curve (AUCPR and AUCROC respectively) using the methods reported in [3, 7].

IMDB regards movies, actors, directors and movie genres. Each mega-example contains all the information regard-
ing four movies. We defined 4 different LPADs, two for predicting the target predicate sameperson/2, and two for
predicting samemovie/2. We had one positive example for each fact that is true in the data, while we sampled from
the complete set of false facts three times the number of true instances in order to generate negative examples.

For predicting sameperson/2 we used the same LPAD of [31]:

sameperson(X,Y):p:- movie(M,X),movie(M,Y).

sameperson(X,Y):p:- actor(X),actor(Y),workedunder(X,Z),

workedunder(Y,Z).

sameperson(X,Y):p:- gender(X,Z),gender(Y,Z).

sameperson(X,Y):p:- director(X),director(Y),genre(X,Z),

genre(Y,Z).

where p is a tunable parameter. We ran EMBLEM on it with the following settings: no depth bound, random variables
associated to instantiations of the clauses and a number of restarts chosen to match the execution time of EMBLEM
with that of the fastest other algorithm.

The queries that LeProbLog takes as input are obtained by annotating with 1.0 each positive example for
sameperson/2 and with 0.0 each negative example. We ran LeProbLog for a maximum of 100 iterations or until
the difference in Mean Squared Error (MSE) between two iterations got smaller than 10−5.

For Alchemy we used the preconditioned rescaled conjugate gradient discriminative algorithm [17] and we specified
sameperson/2 as the only non-evidence predicate.

A second LPAD has been created to evaluate the performance of the algorithms when some atoms are unseen:

sameperson_pos(X,Y):p:- movie(M,X),movie(M,Y).

sameperson_pos(X,Y):p:- actor(X),actor(Y),

workedunder(X,Z),workedunder(Y,Z).

sameperson_pos(X,Y):p:- director(X),director(Y),genre(X,Z),

genre(Y,Z).

sameperson_neg(X,Y):p:- movie(M,X),movie(M,Y).

sameperson_neg(X,Y):p:- actor(X),actor(Y),

workedunder(X,Z),workedunder(Y,Z).

sameperson_neg(X,Y):p:- director(X),director(Y),genre(X,Z),

genre(Y,Z).

sameperson(X,Y):p:- \+ sameperson_pos(X,Y),sameperson_neg(X,Y).

sameperson(X,Y):p:- \+sameperson_pos(X,Y),\+sameperson_neg(X,Y).

sameperson(X,Y):p:- sameperson_pos(X,Y),sameperson_neg(X,Y).

sameperson(X,Y):p:- sameperson_pos(X,Y),\+ sameperson_neg(X,Y).

The sameperson_pos/2 and sameperson_neg/2predicates are unseen in the data. Alchemy was run with the −withEM
option that turns on EM learning. The other parameters for Alchemy and for the other algorithms are set as before.

Table 2 and 3 show respectively the AUCPR and AUCROC averaged over the five folds for EMBLEM, RIB,
LeProbLog, CEM and Alchemy. Results for the two programs are shown respectively in the IMDB-SP and IMDBu-SP
rows (where u stands for unseen). Table 4 shows the learning times in hours.

For predicting samemovie/2 we used the LPAD:

samemovie(X,Y):p:- movie(X,M),movie(Y,M),actor(M).

samemovie(X,Y):p:- movie(X,M),movie(Y,M),director(M).

samemovie(X,Y):p:- movie(X,A),movie(Y,B),actor(A), director(B),

workedunder(A,B).

samemovie(X,Y):p:- movie(X,A),movie(Y,B),director(A),director(B),

genre(A,G),genre(B,G).

To test the behaviour when unseen predicates are present, we transformed the program for samemovie/2 as we did for
sameperson/2, thus introducing the unseen predicates samemovie pos/2 and samemovie neg/2. We ran EMBLEM
on them with no depth bound, one variable for each instantiation of a rule and one random restart. As regards
LeProbLog and Alchemy, we ran them with the same settings as IMDB-SP and IMDBu-SP, by replacing sameperson

with samemovie.
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Table 2 and 3 show respectively the AUCPR and AUCROC averaged over the five folds. Results for the two LPADs
are shown respectively in the IMDB-SM and IMDBu-SM rows. RIB in this case obtained a memory error (indicated
with “me”), due to the exhaustion of the available stack space during the execution of the algorithm.

The Cora database contains citations to computer science research papers. For each citation we know the title,
the authors, the venue and the words that appear in them. The task is to determine which citations are referring
to the same paper, by predicting the predicate samebib(cit1,cit2). The database contains facts for the predicates
sameauthor(aut1,aut2),
sametitle(tit1,tit2),samevenue(ven1,ven2),haswordtitle(title,word)
haswordauthor(author,word) and haswordvenue(venue,word).

From the MLN proposed in [35]5 we obtained two LPADs. The first contains 559 rules and differs from the direct
translation of the MLN because rules involving words are instantiated with the different constants, only positive literals
for the hasword predicates are used and transitive rules are not included:

samebib(B,C):p:- author(B,D),author(C,E),sameauthor(D,E).

samebib(B,C):p:- title(B,D),title(C,E),sametitle(D,E).

samebib(B,C):p:- venue(B,D),venue(C,E),samevenue(D,E).

samevenue(B,C):p:-haswordvenue(B,word_06),

haswordvenue(C,word_06).

...

sametitle(B,C):p:-haswordtitle(B,word_10),

haswordtitle(C,word_10).

....

sameauthor(B,C):p:-haswordauthor(B,word_a),

haswordauthor(C,word_a).

.....

The dots stand for the rules for all the possible words. The four predicates samebib/2, samevenue/2, sametitle/2 and
sameauthor/2 have been set as target predicates and we used as negative examples those contained in the Alchemy
dataset. We ran EMBLEM on this LPAD with no depth bound, a single variable for each instantiation of a rule and
a number of restarts chosen to match the execution time of EMBLEM with that of the fastest other algorithm.

The second LPAD adds to the previous one four transitive rules:

samebib(A,B):p :- samebib(A,C), samebib(C,B).

sameauthor(A,B):p :- sameauthor(A,C), sameauthor(C,B).

sametitle(A,B):p :- sametitle(A,C), sametitle(C,B).

samevenue(A,B):p :- samevenue(A,C), samevenue(C,B).

for a total of 563 rules. In this case we had to run EMBLEM with a depth bound equal to two and a single variable
for each non-ground rule; the number of restarts was one. As for LeProbLog, we separately learned the four predicates
because learning the whole theory at once would give a lack of memory error. We annotated with 1.0 each positive
example for samebib/2, sameauthor/2, sametitle/2, samevenue/2 and with 0.0 the negative examples for the same
predicates. We ran it for a maximum of 100 iterations or until the difference in MSE between two iterations got smaller
than 10−5. For Alchemy we used the preconditioned rescaled conjugate gradient discriminative training algorithm
and we specified the four predicates as the non-evidence predicates. Table 2 and 3 show respectively, in the Cora and
CoraT (Cora transitive) rows, the average AUCPR and AUCROC. On CoraT, CEM and Alchemy gave a memory
error, for memory exhaustion and a segmentation fault (during the use of learnwts command) respectively, while RIB
was not applicable because it was not possible to split the input examples into smaller independent interpretations as
required by RIB.

The UW-CSE dataset contains information about the computer science department of the University of Wash-
ington. It contains 22 different predicates, such as yearsInProgram/2, advisedBy/2, taughtBy/3 and so on. The
predicates are typed, where possible types are person, course, publication, etc. Each mega-example contains facts for
a particular area of the CS department: artificial intelligence, graphics, programming languages, systems and theory.
The goal here is to predict the advisedby/2 predicate, namely the fact that a person is advised by another person:
this was our target predicate.

The theory used was obtained from the MLN of [34]6. It contains 86 rules, such as for instance:

5 http://alchemy.cs.washington.edu/mlns/er/.
6http://alchemy.cs.washington.edu/mlns/uw-cse .
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advisedby(S, P) :p :- courselevel(C,level_500),taughtby(C,P,Q),

ta(C, S, Q).

tempadvisedby(S, P) :p :- courselevel(C,level_500),

taughtby(C, P, Q), ta(C, S, Q).

professor(P) :p :- courselevel(C,level_500),taughtby(C,P,Q).

We ran EMBLEM on it with a single variable for each non-ground rule, a depth bound of two and one random restart.
The negative examples have been generated by considering all couple of persons (a,b) where a and b appear in an
advisedby/2 fact in the data and by adding a negative example advisedby(a,b) if it is not in the data.

The annotated queries that LeProbLog takes as input have been created by annotating with 1.0 each positive
example for advisedby/2 and with 0.0 each negative example. We ran LeProbLog for a maximum of 100 iterations or
until the difference in MSE between two iterations got smaller than 10−5 and we used a single variable for each non-
ground rule. For Alchemy, we used the preconditioned rescaled conjugate gradient discriminative training algorithm to
learn weights, by specifying advisedby/2 as the only non-evidence predicate. RIB was non applicable to this dataset
because it does not allow to have variables for non-ground rules. Table 2 and 3 show respectively the AUCPR and
AUCROC averaged over the five departments for all the algorithms.

Table 5 and 6 show the p-value of a paired two-tailed t-test at the 5% significance level of the difference respectively
in AUCPR and AUCROC between EMBLEM and RIB/LeProbLog/CEM/Alchemy (significant differences in bold).

Table 2: Results of the experiments on all datasets in terms of Area Under the PR Curve. IMDBu refers to the IMDB
dataset with the theory containing unseen predicates. CoraT refers to the theory containing transitive rules. Numbers
in parenthesis followed by r mean the number of random restarts (when different from one) to reach the area specified.
“me” means memory error during learning. “no” means that the algorithm was not applicable. AUCPR is the area
under the precision-recall curve averaged over the five folds. R is RIB, L is LeProbLog, C is CEM, A is Alchemy.

Dataset
AUCPR

EMBLEM R L C A

IMDB-SP 0.202(500r) 0.199 0.096 0.202 0.107

IMDBu-SP 0.175(40r) 0.166 0.134 0.120 0.020

IMDB-SM 1.000 me 0.933 0.537 0.820

IMDBu-SM 1.000 me 0.933 0.515 0.338

Cora 0.995(120r) 0.939 0.905 0.995 0.469

CoraT 0.991 no 0.968 me me

UW-CSE 0.749 me 0.270 0.644 0.294

Table 3: Results of the experiments on all datasets in terms of Area Under the ROC Curve. IMDBu refers to the
IMDB dataset with the theory containing unseen predicates. CoraT refers to the theory containing transitive rules.
Numbers in parenthesis followed by r mean the number of random restarts (when different from one) to reach the area
specified. “me” means memory error during learning. “no” means that the algorithm was not applicable. AUCROC
is the area under the Receiver Operating Characteristics curve averaged over the five folds. R is RIB, L is LeProbLog,
C is CEM, A is Alchemy.

Dataset
AUCROC

EMBLEM R L C A

IMDB-SP 0.931(500r) 0.929 0.870 0.930 0.907

IMDBu-SP 0.900(40r) 0.897 0.921 0.885 0.494

IMDB-SM 1.000 me 0.983 0.709 0.925

IMDBu-SM 1.000 me 0.983 0.442 0.544

Cora 1.000(120r) 0.992 0.994 0.999 0.704

CoraT 0.999 no 0.998 me me

UW-CSE 0.993 me 0.932 0.873 0.961
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Table 4: Execution time in hours of the experiments, corresponding to the average over the five folds, on all datasets.
R is RIB, L is LeProbLog, C is CEM and A is Alchemy.

Dataset
Time(h)

EMBLEM R L C A

IMDB-SP 0.01 0.016 0.35 0.01 1.54

IMDBu-SP 0.01 0.0098 0.23 0.012 1.54

IMDB-SM 0.00036 me 0.005 0.0051 0.0026

IMDBu-SM 3.22 me 0.0121 0.0467 0.0108

Cora 2.48 2.49 13.25 11.95 1.30

CoraT 0.38 no 4.61 me me

UW-CSE 2.81 me 1.49 0.53 1.95

Table 5: Results of t-test on all datasets, relative to AUCPR. p is the p-value of a paired two-tailed t-test (significant
differences in AUCPR at the 5% level in bold) between EMBLEM and all the others. R is RIB, L is LeProbLog, C is
CEM, A is Alchemy.

Dataset
p

EMBLEM-R EMBLEM-L EMBLEM-C EMBLEM-A

IMDB-SP 0.2167 0.0126 0.3739 0.0134

IMDBu-SP 0.1276 0.1995 0.001 4.5234e-5

IMDB-SM me 0.3739 0.0241 0.1790

IMDBu-SM me 0.3739 0.2780 2.2270e-4

Cora 0.011 0.0729 1.0000 0.0068

CoraT no 0.0464 me me

UW-CSE me 1.5017e-4 0.0088 4.9921e-4
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Table 6: Results of t-test on all datasets, relative to AUCROC. p is the p-value of a paired two-tailed t-test (significant
differences in AUCROC at the 5% level in bold) between EMBLEM and all the others. R is RIB, L is LeProbLog, C
is CEM, A is Alchemy.

Dataset
p

EMBLEM-R EMBLEM-L EMBLEM-C EMBLEM-A

IMDB-SP 0.3436 0.0012 0.3507 0.015

IMDBu-SP 0.2176 0.1402 0.0019 1.01e-5

IMDB-SM me 0.3739 0.018 0.2556

IMDBu-SM me 0.3739 0.055 6.54e-4

Cora 0.0493 0.0686 0.4569 0.0327

CoraT no 0.053 me me

UW-CSE me 0.0048 0.2911 0.0048

From the results we can observe that over IMDB EMBLEM has comparable performances with CEM for IMDB-SP,
with similar execution time. On IMDBu-SP it has better performances than all other systems (see AUCPR), with a
learning time equal to the fastest other algorithm. On IMDB-SM it reaches the highest area value in less time (only
one restart is needed). On IMDBu-SM it still reaches the highest area with one restart but with a longer execution
time.

Over Cora it has comparable performances with the best other system CEM but in significant lower time and over
CoraT is one of the few systems to be able to complete learning, with better performances in terms of area (especially
AUCPR) and time.

Over UW-CSE it has better performances with respect to all the algorithms.
A difference in the learning times between EMBLEM and the other systems, in favour of the latter, can be found

with the IMDBu-SM and UW-CSE datasets, in which EMBLEM takes a few hours, but it must be noted that in both
cases there is also a significant gap in the area values: EMBLEM on IMDBu-SM reaches the highest possible area and
on UW-CSE obtains a significantly higher AUCPR with respect to the other algorithms.

Among the probabilistic-logic systems, the closest to EMBLEM are RIB and LeProblog. RIB is, on one hand,
based on an efficient algorithm, shown to be superior to EM for learning parameters of Bayesian networks with hidden
variables [6] because it can avoid some local maxima, but on the other hand, it requires a different “format” for input
examples with respect to EMBLEM, which makes it unapplicable on one dataset, and is less performing in the presence
of partially hidden variables. LeProblog is the only system able to complete learning for all datasets as EMBLEM,
with good performances in almost all cases, but it takes longer execution times (except for IMDBu-SM and UW-CSE).

Looking at the overall results, EMBLEM achieves higher or equal AUCPR and AUCROC with respect to all other
systems, except on IMDBu-SP where LeProbLog achieves a non-statistically significant higher AUCROC. In the other
cases the differences between EMBLEM and the other systems are statistically significant in 22 out of 43 cases.

6 Conclusions

We have proposed a technique which applies an EM algorithm to BDDs for learning the parameters of Logic Programs
with Annotated Disjunctions. The problem we have faced is, given an LPAD for a domain, efficiently learning
parameters for the disjunctive heads of the LPAD clauses. The resulting algorithm - EMBLEM - returns the parameters
that best describe the data and can be applied to all languages that are based on the distribution semantics. It exploits
the BDDs that are built during inference to efficiently compute the expectation for hidden variables.

We executed the algorithm over the real datasets IMDB, UW-CSE and Cora, and evaluated its performances -
together with those of four other probabilistic systems - through the AUCPR and AUCROC. These results show that
EMBLEM uses less memory than RIB, CEM and Alchemy, allowing it to solve larger problems, as one can see from
Table 2 where, for some datasets, not all the mentioned algorithms are able to terminate. Moreover its speed allows
to perform a high number of restarts making it escape local maxima and achieve higher AUCPR and AUCROC.

EMBLEM is available in the cplint package in the source tree of Yap Prolog and information on its use can be
found at
http://sites.google.com/a/unife.it/ml/emblem.

In the future we plan to extend EMBLEM for learning the structure of LPADs by combining the standard Expec-
tation Maximization algorithm, which optimizes parameters, with structure search for model selection.
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