
Approximate Inference for Logic Programs with Annotated Disjunctions

Stefano Bragaglia and Fabrizio Riguzzi
DEIS – University of Bologna, ENDIF – University of Ferrara.

{stefano.bragaglia@unibo.it, fabrizio.riguzzi@unife.it}

Combining logic and probability is a field of research that
has received much attention in the last few years.

In this vein, many formalisms have been introduced such as
Markov Logic Networks, ProbLog and Logic Programs with
Annotated Disjunction (LPADs), that allow to represent prob-
abilistic information in logic.

LPADs are particularly interesting because they can ex-
press cause-effect relationships among events, possible ef-
fects of a cause and the contemporary contribution of more
causes to the same effect in a very natural way.

From a syntactic point of view, an LPAD consists of a set
of disjunctive clauses in which each atom in the head is anno-
tated with a probability value between0 and1. The atoms of
the head represent the mutually exclusive and exhaustive set
of effects of the event represented by the body. The sum of
the probabilities associated to the head atoms must be1.

Their semantic is based on the concept ofinstance, that is
a normal logic program obtained by choosing a logical atom
from the head of each grounding of every clause of the LPAD.
The probability of an instance is computed by multiplying the
probability values of all the atoms chosen for that instance.
The probability of a query is given by the sum of the proba-
bilities of each instance where the query is true.

Inference with LPADs can be performed with thecplint
system1 that first computes explanations for a query and then
computes the probability of the query by making the expla-
nations mutually exclusive by means of Binary Decision Dia-
grams (BDDs). An explanation for a query is a set of choices
for head atoms such that the query is true in all the instances
that respect the choices.
cplint finds the explanation by using a meta-interpreter

approach that performs resolution and keeps the current set
of choices. Each time the selected goal is resolved with a
disjunctive clause, the set of choices is enlarged with the new
choice performed. A derivation branch may fail because no
resolution is applicable or because the set of choices becomes
inconsistent.

Once all the explanations for the query have been found, a
BDD is built that allows to compute the probability by using a
dynamic programming algorithm that traverses the diagram.

In some domains, exact inference may be impossible.
Therefore we considered approximate algorithms, both de-

1http://www.ing.unife.it/software/cplint/

terministic and stochastic.
The approximate deterministic algorithm based onitera-

tive deepening builds the set of explanations incrementally
by building the proof tree partially. Given a partial proof tree,
the branches corresponding to successful derivations provide
a lower bound of the probability of the query, while the
branches corresponding to successful or incomplete deriva-
tions provide an upper bound of the probability of the query.

The algorithm stops when the difference between the up-
per and the lower bound is below a user defined threshold.
Otherwise, it further extends the proof tree.

Another approximate deterministic algorithm usesbranch
and bound to find thek most probable explanations. These
provide a lower bound of the probability of the query.

We considered also a stochastic algorithm based on a
Monte Carlo approach: instances are repeatedly sampled
from the LPAD and the probability of the query is given by
the fraction of sampled instances where the query is true.
Sampling is done efficiently by considering only the clauses
that are relevant for the query. The algorithm uses a meta-
-interpreter that chooses stochastically head atoms of resolv-
ing clauses.

Each algorithm has been applied to several datasets, both
artificial and real.

One of the real world dataset consists of biological graphs
sampled from a network with5220 nodes and11530 edges
that describes the biological entities responsible for theAlz-
heimer’s disease together with their relationships.

The results we gathered from experiments on this dataset
show that the Monte Carlo algorithm can solve almost three
times as many sampled graphs than the standard inference. In
fact Monte Carlo can easily handle any sampled graph up to
3400 edges while standard inference starts to fail with only
1200 edges.

The experimental results show that the CPU time required
by Monte Carlo does not grow proportionally with the prob-
lem size as it happens with the standard inference. In addi-
tion, despite being slower on smaller problems, Monte Carlo
algorithm is less demanding in terms of computational re-
sources and it achieves better performances than standard in-
ference on problems with more than2400 edges.


