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Abstract. Complex and flexible business processes are critical not only
because they are difficult to handle, but also because they often tend
to be less intelligible. Monitoring and verifying complex and flexible
processes becomes therefore a fundamental requirement. We propose
a framework for performing compliance checking of process execution
traces w.r.t. expressive reactive business rules, tailored to the MXML
meta-model. Rules are mapped to (extensions of) Logic Programming,
to the aim of providing both monitoring and a-posteriori verification ca-
pabilities. We show how different rule templates, inspired by the ConDec
language, can be easily specified and then customized in the context of a
real industrial case study. We finally describe how the proposed language
and its underlying a-posteriori reasoning technique have been concretely
implemented as a ProM analysis plug-in.

1 Introduction

Recently, Workflow Management Systems (WfMS) have been increasingly ap-
plied by companies in order to efficiently implement their Business Processes.
A plethora of tools, systems and notations have been proposed to cover all the
phases of the Business Process Management life-cycle, from Process Design and
Modeling to Execution and Monitoring/Analysis. To deal with needs and re-
quirements of business users, two main dimensions have been recently tack-
led: flexibility and complextity. On one side, to be successfully employed WfMS
should make a trade-off between controlling the way workers do their business
and turning them loose to exploit their expertise during execution [1]; while con-
straining workers to follow a business process model, flexible WfMS support the
? An short version of this paper, focused on the application, is currently submitted to
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possibility of deviating from its prescriptions and even changing it at run-time.
On the other side, business processes are exploited to model complex problems
and domains under different perspectives (e.g. the control flow perspective and
the organizational one); to have an idea of such a complexity, just take a look
to the Worfklow Patterns [2] initiative4.

Both dimensions are critical not only because they are difficult to handle,
but also because they contribute to make the process less intelligible. Monitoring
and verifying complex and flexible processes becomes therefore a fundamental
requirement. On the one hand, as claimed in [3] “deviations from the ‘normal
process’ may be desiderable but may also point to inefficiencies or even fraud”,
and therefore flexibility could lead the organization to miss its strategic goals
or even to violate regulations and governance directives. On the other hand,
as complexity increases it becomes important to provide support for a business
manager in the task of analyzing past/ongoing process executions, in particular
to verify whether they meet certain requirements or business rules. This analysis
can help the business manager in the process of assessing business trends and
consequently making strategic decisions.

In this paper, we focus on this specific task, proposing a framework for per-
forming compliance checking of process execution traces w.r.t. reactive business
rules. Such rules are specified by means of a powerful declarative language, in-
spired by the SCIFF one [4]. SCIFF is a framework based on Abductive Logic
Programming, originally devised for modeling interaction within open Multi-
Agent Systems and verifying whether interacting agents indeed comply with the
prescribed model. Such a compliance verification can be seamlessly exploited
at run-time, by dynamically acquiring and reasoning upon occurring events, or
a-posteriori, by analyzing log traces of already completed executions.

In the last few years, SCIFF has been applied in the context of Business
Process Management and Service Oriented Computing, by investigating its rea-
soning capabilities to verify a-priori interoperability between a service behav-
ioral interfaces and a choreography [5] and to perform run-time monitoring of
exchanged messages checking adherence to choreography rules of engagement [6].
Even more recently, it has been shown that SCIFF is able to formalize all core
ConDec [7] constraints, supporting temporal-oriented extensions of such graphi-
cal languages and providing different underlying verification capabilities [8]. The
work here presented is therefore part of a larger framework, called CLIMB5,
which aims at applying (extensions of) Logic Programming for modeling and
verifying business processes. Although CLIMB business rules stem from Con-
Dec constraints, their expressiveness is extended not only as regards temporal
aspects but also as regards event data, such as involved originators, event types
and activity identifiers.

The need for a flexible and easy-comprehensible language to specify these
kind of rules and the importance of a corresponding compliance verification

4 http://www.workflowpatterns.com
5 The interested reader is referred to http://www.lia.deis.unibo.it/research/
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framework are motivated by describing its concrete application on a real business
process of Think3 R©6, a company working in the Computer Aided Design (CAD)
and Product Life-cycle Management (PLM) market.

We sketch how the proposed language can be mapped to Logic Programming
(SCIFF and Prolog in particular), enabling compliance verification both at run-
time and a posteriori. The latter technique has been exploited to implement
a ProM [9] plug-in, called SCIFFChecker, that classifies a set of MXML [10]
execution traces as compliant/non-compliant w.r.t. a certain business rule, in
the style of LTL Checker [3].

The paper is organized as follows. Section 2 grounds the compliance checking
problem on the Think3 case study. Language and methodology for specifying
and applying CLIMB business rules are presented in Section 3. Section 4 briefly
sketches how CLIMB rules can be mapped to Logic Programming and illustrates
the implementation of a-posteriori compliance checking inside ProM, reporting
experiments made on the Think3 case study. Related works and conclusions
follow.

2 An industrial case study

An important current challenge in the manufactoring industry is to handle, ver-
ify and distribute the technical information produced by the design, development
and production processes of the company. The adoption of a system supporting
the management of technical data and the coordination of the people involved
is of key importance, in order to improve productivity and competitiveness. The
main issue is to provide solutions for managing all the technical information and
documentation (such as CAD projects, test results, photos, revisions), mainly
focusing on the design phase, which produces most such data. Storing and track-
ing relevant information concerning an item is necessary in this context, because
an important part of the design process is spent by testing, modifying and im-
proving previously released versions.

Think3 is one of the leading global players in the field of CAD and PLM so-
lutions: it provides an integrated software which bridges the gap between CAD
modeling environments and other tools involved in the process of designing (and
then manufacturing) products. All these tools are transparently combined with
a non-intrusive information system which handles the underlying product work-
flow, recording all the relevant information and making it easily accessible to
the workers involved, enabling its consultation, use and modification. Such an
information system supplies a detailed, shared and constantly updated vision of
the life-cycle of each product, as regards documentation of its features as well
as traceability of the activities performed on it.

The underlying Think3 workflow centres around the design of a manufactur-
ing product. Different activities can be executed to affect the progress status of
an item, involving the modification and even the evolution of multiple co-existing

6 http://www.think3.com



versions of its corresponding project. Such a workflow can be adapted to each
single Think3 client company in order to meet different specific requirements.

2.1 Compliance Checking and Decision Making Support: Think3
Requirements

To support a business manager in decision making, and in particular in the
tasks of analyzing the life-cycle of different projects and pinpointing problems
and bottlenecks, Think3 is investigating the development of a Business Intelli-
gence dashboard. The feasibility of such a dashboard relies on the traceability
provided by its solution: all the relevant technical and documental information
as well as the history of involved executed activities are stored by the informa-
tion system. Within the TOCAI.IT FIRB Project7, Think3 and the University of
Bologna are collaborating for realizing one of the main dashboard components: a
tool supporting compliance verification (both on and off-line) of design processes
w.r.t. configurable business rules. This will facilitate the manager in the iden-
tification of behavioural trends and non-compliances to regulations or internal
policies. In this particular case study, we elicitated the following non-exaustive
lists of interesting properties:

(Br1) Quantifying projects which have been subject to a certain activity within
a given time interval (e.g., How many projects have been modified between
01/2007 and 04/2007? ).

(Br2) Evaluating the time relationship between the execution of two given ac-
tivities (e.g. Was a project committed by 18 days after its creation? ).

(Br3) Identifying which projects passed too many times through a certain ac-
tivity (e.g., Which projects have been modified twice? ).

(Br4) Analysing activities originators, i.e., workers involved in the process (e.g.,
Was a project checked by a person different than the one who published
it? ).

Note that such rules can be seamlessly exploited either to analyze process execu-
tions or in a prescriptive (deontic) manner; for example, rule (Br2) could be used
to obtain an overview about projects throughput as well as to monitor workers
in order to detect as soon as possible the violation of a certain deadline (and
acting consequently).

3 CLIMB Business Rules

We propose a language, inspired by the SCIFF one [4], for specifying reactive
business rules (called CLIMB business rules throughout the paper). Their struc-
ture resembles the one of ECA (Event-Condition-Action) rules [11, 12]; the main
difference is that, since they are used for checking, they envisage expectations
about executions rather than actions to be executed. Expectations represent
7 http://www.dis.uniroma1.it/~tocai/



events that should (not) happen. Therefore, CLIMB rules are used to constrain
the process execution when a given situation holds. Both positive and negative
constraints can be imposed on the execution, i.e., it is possible to specify what
is mandatory as well as forbidden in the process.

Rules follow an IF Body having BodyConditions THEN Head structure,
where Body is a conjunction of occurred events, with zero or more associated
conditions BodyConditions, and Head is a disjunction of conjunctions of posi-
tive and negative expectations (or false). Each head element can be subject to
conditions as well. An excerpt of the grammar is shown in Figure 1.

Rule ::= [IF Body THEN ] Head
Body ::= Activity Exec

[AND Activity Exec]? [AND Constraints]
Activity Exec ::= Simple Activity | Repeated Activity

Simple Activity ::= activity A ID is performed [by O ID] [at time O T ]
Repeated Activity ::= activity A ID is performed N times [by O ID]

[between time O T and time O T ]
Head ::= Head Disjunct [OR Head Disjunct]?

Head Disjunct ::= Activity Exp
[AND Activity Exp]? [AND Constraints]

Activity Exp ::= Simple Activity Exp|Repeated Activity Exp
Simple Activity Exp ::= activity A ID should [not] be performed

[by O ID] [at time O T ]
Repeated Activity Exp ::= activity A ID should be performed N times

[by O ID] [between time O T and time O T ]

Fig. 1. An excerpt of the CLIMB rules grammar.

The underlying intuitive semantics is that whenever a set of occurred events
makes Body (and the corresponding conditions BodyConditions) true, then also
Head must eventually be satisfied8 (see Section 4). Furthermore, it is possible
to specify rules without the IF part: such rules are used to impose what the
business manager expects (not) to find inside the process instances in any case.

The concept of event is tailored to the one of audit trail entry in the MXML
meta-model [10]. An event is atomic and is mainly characterized by:

– the identifier/name of the activity it is associated to;
– an event type, according to the MXML transactional model [10];
– an originator, identifying the worker who generated the event;
– an execution time;
– one or more involved data items (for simplicity, in the paper we will not take

into account this aspect, but it can be seamlessly treated in our framework).

8 Therefore, rules having false in the head are used to express denials.
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Fig. 2. A methodology for building, configuring and applying business rules.

The main distinctive feature of our rules is that all these parameters are treated,
by default, as variables. To specify that a generic activity A has been subject
to a whatsoever event, the rule body will simply contain a string like: activity
A is performed by OA at time TA, where A stands for the activity’s name,
OA and TA represent the involved originator and execution time respectively,
and performed is a keyword denoting any event type. To facilitate readibility,
the part concerning originator and execution time can be omitted if the corre-
sponding variables are not involved in any condition.

Such a generic sentence will match with any kind of event, because all the
involved variables (A, OA and TA) are completely free, and the event type is not
specified. It can then be configured to constrain involved variables or ground
them to specific values, and by fixing a specific event type. To deal with the first
case, explicit conditions are attached to variables, whereas for the latter case
it is enough to substitute the generic performed keyword with the specific one
(e.g., completed to represent the completion of a certain activity).

Finally, positive and negative expectations are represented similarly to oc-
curred events, by simply changing the is part with should be or should not
be respectively.

3.1 A Methodology for Building Rules

To clarify the methodology we propose for developing rules, let us consider a
completely configured business rule, namely the specification of the (Br4) rule:

IF activity A is performed by OA having A equal to Check

THEN activity B should NOT be performed by OB

having B equal to Publish and OB equal to OA

(Think3-4)

By analyzing this rule, we can easily recognize two different aspects: on one
hand, the rule contains generic elements, free variables and constraints, whereas
on the other hand it specifically refers to concrete activities. The first aspect
captures re-usable patterns: in this case, the fact that the same person cannot
perform two different activities A and B, which is known as the four-eyes prin-
ciple. The second aspect instantiates the rules in a specific domain, in this case
grounding the four-eyes principle in the context of Think3’s workflow.



To reflect such a separation, we foresee a three-step methodology to build,
configure and apply business rules (see Figure 2): (i) a set of re-usable rules,
called rule templates, are developed and organized into groups by a technical
expert (i.e., someone having a deep knowledge of rules syntax and semantics); (ii)
rule templates are further configured, constrained and customized by a business
manager to deal with her specific requirements and needs; (iii) configured rules
are exploited to perform compliance checking of company’s execution traces.

In the next sections we will introduce the different conditions supported
by the language, and we will propose a core set of rule templates, inspired by
ConDec constraints, showing how they can be easily customized to deal with the
Think3 case study.

3.2 Specification of Conditions

As already pointed out, conditions are exploited to constrain variables associ-
ated to event occurences and expectations inside business rules (namely activity
names, originators and execution times). Two main families of conditions are
currently envisaged: string and time conditions. String conditions are used to
constrain an activity/originator by specifying that it is equal to or different
than another activity/originator, either variable or constant. An example of a
string condition constraining two originator variables is the “OB equal to OA”
part in rule (Think3-4).

Time conditions are used instead to relate execution times, in particular for
specifying ordering among events or imposing quantitative constraints, such as
deadlines and delays. The semantics of constraints is determined by time oper-
ators, which intuitively capture basic time relationships (such as before or at).
Absolute time conditions constrain a time variable w.r.t. a certain time/date,
whereas relative time conditions define orderings and constraints between two
variables. Relative conditions can optionally attach a displacement to the target
time variable as well. A displacement is defined by a time duration and by an
operator which determines whether the duration will translate the involved time
variable forward or backward in time. For example, to specify that the time vari-
able TB must be within 2 days after TA, we simply write TB BEFORE TA+2days.

3.3 Rule Templates

The first step in our methodology envisages the creation of rule templates, i.e. re-
usable partially constrained rules. They typically fix the rule structure, e.g. de-
ciding how many events are contained in the body, and use variable string con-
ditions and/or relative time conditions. They do not involve absolute time and
constant conditions, which are exploited to ground rules on a specific domain.

We have developed a hierarchy of rules which strictly resembles the one
proposed for ConDec. Part of this hierarchy is depicted in Figure 3. Three basic
groups, similar to the ConDec ones, are defined: existence rules, IF. . . THEN
rules and IF. . . THEN NOT rules. Such hierarchy is not fixed: it can be adapted
or even replaced by writing other rules and by organizing them differently.
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Existence Rules impose the presence/absence of some events in the execution
trace, independently from the occurrence of other events (except from the At
Most N rule), they therefore have a true body. The presence (absence) template
simply state that a certain event is expected to occur (not to occur), and is sim-
ply formalized as: activity A should (NOT) be performed. Choice extends
presence by introducing disjunction of expectations. The at least N (at most
N ) rule extends the presence (absence) one by stating that the specified event
should (not) be repeated N times. Such rules are useful for modeling the pres-
ence/absence of multiple instances of a certain event in the execution trace, as
in the (Br3) Think3 example, but they are rather difficult to be represented,
especially when N increases.

For this reason, we have extended the syntax of the language for support-
ing repetitions as first-class entities. To specify that activity A should be per-
formed at least 3 times, we will then write: activity A should be performed
3 times between TsA and TcA. The two involved time variables extend the
concept of execution time when dealing with multiple events, by identifying the
two time points at which the repetition starts and completes9. Finally, to express
that A must be performed at most 3 times, we can exploit repetitions as follows:
IF activity A is performed 4 times THEN false.
IF. . . THEN Rules are positive relationships which specify that when certain
events happen, then also other events should occur, satisfying the imposed time
orderings. The simplest rule belonging to this group is the responded existence
one, which simply states that when a certain event happens, then another event
should happen too, either before or afterward. Starting from this rule, response
and precedence templates extend it by adding respectively an after and before
relative time condition among the involved execution times.

Response and precedence rules can then be specialized to express more com-
plex event patterns, e.g. introducing conjunctions and disjunctions of events.
For example, the following template represents a synchronized response, i.e. a

9 This kind of rules obviously involve multiple originators, but for space reasons we
do not describe here how they can be constrained.



response triggered by the occurrence of two events:

IF activity A is performed at time TA

and activity B is performed at time TB

THEN activity C should be performed at time TC

having TC after TA and TC after TB .

By inverting the last temporal condition (i.e. by imposing TC before TB) the
user can express an interposition template, which states that C should be per-
formed between A and B. Finally, note that more complex ConDec constraints
can be specified by combining two different templates: for example, the alter-
nate precedence ConDec constraint is specified by means of CLIMB response
and interposition.
IF. . . THEN NOT Rules are the negative version of positive relationships:
they express events to be forbidden when other events happen. Roughly speak-
ing, they replace positive expectations with negative ones; e.g., the negation of
the interposition template is the proximity one, which states that between two
given activities A and B another activity C cannot be performed 10.

The responded absence pattern is a good example to illustrate templates
which involve conditions about originators; in its basic form it states that IF
activity A is performed THEN activity B should not be performed,
but by adding an equal to constraint between the originators of A and B, it
actually models the already cited four-eyes principle.

3.4 From Templates to Customized Business Rules

In a second phase, rule templates are configured by a business manager to deal
with her specific requirements. This step exploits constant string conditions,
absolute time conditions and relative time conditions with displacements, in-
volving activities, originators and times specifically referring to the company’s
domain. For example, while Rule (Br3) simply grounds the at least N template
with the Modify activity, rule (Br2) is formalized by adding a before relative
time constraint with a displacement of 18 days, thus modeling the presence of a
deadline:

IF activity A is performed at time TA

having A equal to Creation

THEN activity B should be performed at time TB

having B equal to Commit

and TB after TA and TB before TA + 18days.

(Think3-2)

10 If activity C is left unspecified also in the customized version, it will match with any
performed activity, and therefore the rule will be used for checking that A and B
are next to each other.



Rule (Br1) constrains the presence template with absolute time conditions:

activity A should be performed at time TA

having A equal to Modify and

TA after 01/2007 and TA before 04/2007.

(Think3-1)

4 Compliance Verification with Logic Programming

Having described syntax and features of our rules language, we now briefly
sketch how they can be automatically mapped to two Logic Programming frame-
works (namely SCIFF [4] and Prolog), enabling monitoring (run-time com-
pliance verification) and a-posteriori compliance checking of process execution
traces w.r.t. CLIMB rules.

Mapping to SCIFF is straightforward because of the deep similarities be-
tween the two languages. For space reasons, we report here a mapping example,
referring to [8] for more details. Occurred events and positive/negative expecta-
tions are directly mapped to SCIFF happened events and expectations, repre-
sented respectively by the special predicates H(Ev, T ) and E/EN(Ev, T ) where
Ev is an event with the structure proposed in this paper and T is the corre-
sponding execution time. For example, the customized four-eyes principle shown
in rule (Think3-4) is simply specified in SCIFF as follows11:

H(event( , A, OA), TA) ∧A = ’Check’

→EN(event( , B, OB), TB) ∧A = ’Publish’ ∧OB 6= OA.

The constraints among the variables, and in particular those on the activity exe-
cution times, are treated in SCIFF by means of Constraint Logic Programming.

The declarative semantics of a SCIFF specification is given in terms of an
Abductive Logic Program (ALP). In general, an ALP [13] is a triple 〈P,A, IC〉,
where P is a logic program, A is a set of predicates named abducibles, and IC
is a set of integrity constraints. Reasoning in abductive logic programming is
usually goal-directed and it accounts to finding a set of abduced hypotheses ∆
built from predicates in A such that P ∪ ∆ |= G and P ∪ ∆ |= IC where G is
a goal. Abduction is exploited to dynamically generate the expectations and to
perform the compliance check. Expectations are defined as abducibles, and are
hypothesised by the abductive proof procedure, i.e. the proof procedure makes
hypotheses about the happening of the events. A confirmation step, where these
hypotheses must be confirmed by happened events, is then performed: if no set
of hypotheses can be fulfilled, a violation is detected.

Given a set HAP representing a process execution trace, a knowledge base
KB, the set E of positive and negative expectations, and a set IC (obtained

11 The first parameter of event is an anonymous variable because it represents the event
type, which is not specified when the keyword performed is used.



by translating CLIMB rules), we provide semantics to a SCIFF specification
S ≡ 〈KB, E , IC〉 by defining those sets EXP ⊆ E (∆ ⊆ A in the abductive
framework) of expectations which, together with the knowledge base and the
happened events HAP, imply an instance of the goal (Eq. 1) - if any - and
satisfy the integrity constraints (Eq. 2).

KB ∪HAP ∪EXP |= G (1)
KB ∪HAP ∪EXP |= IC (2)

Moreover, we require the set EXP (namely, an abductive explanation) to be also
E-consistent: for any p, EXP cannot include {E(p),EN(p)} (an event cannot
be both expected to happen and expected not to happen).

We define the compliance of a process execution trace HAP with respect to a
SCIFF specification (composed of a knowledge base KB and of a set IC of rules)
in terms of the fulfillment of a EXP set of expectations: each positive expectation
should have a matching happened event, and for each negative expectation there
should not be any matching happened event.

Definition 1. (Fulfillment) Given a process execution trace HAP and a SCIFF
specification, a set of expectations EXP that is E− consistent is fulfilled if and
only if for all (ground) terms p:

HAP ∪EXP ∪ {E(p)→ H(p)} ∪ {EN(p)→ ¬H(p)} 6|= false (3)

Definition 2. (Compliance) Given an execution trace HAP and a SCIFF
specification S, HAP is compliant to S if and only if there exists an E-consistent
set EXP such that Equations 1 and 2, and Definition 1 hold.

SCIFF has an operational proof-theoretic counterpart whose main purpose
is (i) to dynamically acquire occurred events during execution, (ii) to generate
expectations when the corresponding rule’s body is triggered by such happened
events, and (iii) to finally verify if the execution actually complies with the
expectations raised. SCIFF supports the compliance verification task both at
run-time and a-posteriori. At run-time, the proof procedure is exploited by the
SOCS-SI tool [4] to dynamically monitor and analyze the process behaviour.
A posteriori, the same SCIFF proof can be exploited to analyze the execution
trace of a process. While in the following we will concentrate on the verification
a posteriori, the interested reader can refer to [4] for run-time verification.

4.1 SCIFFChecker: Compliance Checking in ProM

If compliance checking is performed a-posteriori (and therefore reactivity is not
required anymore), then also pure Prolog can be exploited to reason upon execu-
tion traces, with an appreciable advantage in terms of performances with respect
to the SCIFF proof procedure. In this setting, the execution trace under study
is treated as a knowledge base storing each audit trail entry as a fact of the type



happened(event(EventType, ActivityName, Originator), ExecutionT ime).

The rule used for checking is instead transformed into a Prolog query by com-
puting the negation of the implication represented by the CLIMB rule. So, if the
CLIMB rule is represented by the implication B → H, then the query would be
B∧¬H. Such a query tries to find a set of occurred events in the execution trace
that satisfy the rule body but violate the rule head. For example, rule (Br4) is
translated to the following query:

?−A = ’Check’, happened(event( , A, OA), TA),

not(B = ’Publish’, OB 6= OA, not(happened(event( , B, OB), TB))).

Note that since the analysis is performed a-posteriori, positive expectations are
flattened to occurred events, and negative expectations to the absence of events.
If the query succeeds, then a counter-example which violates the rule has been
found in the execution trace, which is then evaluated as non-compliant. Although
Prolog does not provide any explanation about the reasoning outcome (as SCIFF
does), it turns out to be very efficient, in particular if a huge number of execution
traces have to be checked. However, the Prolog translation can be applied only to
a subset of all the possible SCIFF rules: this is not a problem when translating
CLIMB rules, since they belong to such a set.

Drawing inspiration from the LTL Checker [3], we have therefore developed a
ProM [9] analysis plug-in, called SCIFFChecker, for the classification of MXML
execution traces w.r.t. CLIMB business rules. In particular, we took inspira-
tion from LTL Checker for what regards the functionalities offered, while not
relying on temporal logic. SCIFFChecker relies on the three-steps methodology
described in Section 3.1, providing a user-friendly graphical interface for the
customization of rule templates.

At start-up, rule templates are loaded from a templates file: the available
templates follows the classification proposed in Section 3.3. More templates can
be added by simply extending the templates file. Once a template has been
chosen, it can be easily customized by clicking the “configuration” button (Figure
4): the modifiable elements becomes highlighted, and the user can set specific
parameters by clicking on them. To proceed with the compliance checking, the
user has to choose also a time granularity, which ranges from milliseconds to
months and defines the time unit for converting involved time quantities into
coherent integer values.

For each execution trace contained in the considered MXML log, three steps
are then automatically performed: (i) the execution trace is translated into a
Prolog knowledge base, converting involved execution times; (ii) the CLIMB
business rule is mapped to a Prolog query, repetitions are re-written as conjunc-
tion of simple sentences, and dates and time displacements are converted; (iii)



Fig. 4. A screenshot of the main SCIFFChecker window.

finally a Prolog engine based on SWI12 is exploited to perform the compliance
checking.

All verification outcomes are collected and a summarizing pie chart is shown13,
together with the explicit list of compliant/non-compliant traces (Figure 5). At
this point, the user can start a new classification by considering either the whole
log or only the compliant/non-compliant execution traces. In this way, a con-
junction of CLIMB rules can be verified by performing a sequence of tests, each
dealing with only one rule, and by then selecting the compliant/non-compliant
resulting set.

4.2 Applying SCIFFChecker to the Think3 Case Study

SCIFFChecker has been concretely applied to analyze execution traces of a
Think3 client. We have first exploited the ProM Import tool14 in order to convert
the relevant information from the client database into an MXML format, by
considering the project name as the case identifier. In particular, we extracted
a portion of 9000 execution traces, ranging from 4 to 15 events. We then used,
together with a Think3 business manager, the plug-in to express and test the
business rules of interest described in Section 3.4. The overall average time for
performing compliance checking have been assessed to be around 10-12 seconds.
The verification outcomes have been finally analyzed by the business manager,
who found them useful in order to obtain a clear overview about the overall
process behavior. For example, considering rules (Br3) and (Br4), we discovered
that, fortunately, only the 2% of execution traces involved more than two project
revisions, and that in only the 3.5% cases the same person was responsible for
both publishing and checking the project.

12 http://www.swi-prolog.com/
13 Thanks to the JFreeChart library, available from http://www.jfree.org/

jfreechart.
14 http://promimport.sourceforge.net



Fig. 5. Compliance chart produced by SCIFFChecker at the end of verification.

The verification of rules like (Br2) was found interesting especially by varying
the deadline involved. Indeed, the business manager wanted to detect projects
taking too much time as well as projects released too soon, to point out both
possible bottlenecks and potential inaccuracies. This kind of rule would be even
more useful in a monitoring perspective: it would allow to identify at run-time
non-compliant projects and to take as soon as possible specific countermeasures
or further analysis.

5 Related Works

The closest work to the one here presented is the ProM LTL-Checker [3], that
shares with our approach the motivation and purposes. While LTL-Checker ex-
ploits linear temporal logic for the formalization of properties, our approach
belongs to the Logic Programming setting; CLIMB business rules are more ex-
pressive for what concerns the possibility of expressing rules triggering when
a conjunction of events occur, and regarding the support of relative time con-
straints. Furthermore, through the mapping to SCIFF, we can seamlessly check
compliance at run-time, monitoring running process instances. A posteriori veri-
fication of execution traces has been deeply investigated also when the considered
model is a procedural specification rather than a set of declarative business rules.
For example, in [14] the authors tackle “conformance testing” between execution
traces and a Petri Net-based process model, introducing metrics to measure how
well a given execution fits into the model.

Our work, as part of the CLIMB framework, belongs to the recently inves-
tigated research stream aiming at exploiting declarative models and underlying
formal methods for specifying and verifying IT-systems. The application of Logic
Programming techniques to formalize and verify loosely-coupled processes and
business rules has taken inspiration from ConDec [7].

An interesting research topic concerns the integration of SCIFFChecker with
the process mining algorithm described in [15], which follows the opposite direc-
tion: it aims at discovering a set of declarative business rules, specified in the
SCIFF language, starting from execution traces previously classified as correct



or wrong, s.t. the mined specification evaluates as compliant the correct sub-
set and as non-compliant the wrong one. We could first mine a set of CLIMB
business rules, use them to classify new traces, or exploit SCIFFChecker to
split a given MXML log into the wrong and correct subsets required as input
for the mining algorithm. The latter approach could be exploited to discover a
declarative model giving an explanation of the SCIFFChecker classification.

6 Conclusions and Future Works

We have described a framework for checking the compliance of process execution
traces to declarative reactive business rules, proposing a three-steps methodol-
ogy for developing and applying rules. The approach has been tested on a real
industrial case study, identifying what kind of rules the Think3 company would
be able to check and showing how they can be easily expressed by customiz-
ing rule templates (re-usable patterns resembling ConDec constraints). In order
to effectively use such rules for reasoning, we have sketched how they can be
mapped to (extensions of) Logic Programming, namely SCIFF and Prolog. The
two mappings allow the monitoring of process executions at run-time or the
checking of the compliance of already completed execution traces, helping a
business manager in the assessment of business trends and providing decision
making support. The latter approach has been implemented as a ProM plug-in
that classifies MXML execution traces w.r.t. CLIMB business rules.

Many ongoing and future works concern both the framework itself and its
ProM implementation. Regarding the underlying formal framework, we plan to
investigate the relationships between Logic Programming and other formal lan-
guages, such as temporal logics, and to evaluate to what extent CLIMB rules can
be expressed as queries in temporal databases [11]. We are applying our plug-in
to different domains, such as a regional screening protocol, and, in cooperation
with ENEA, in the context of a chemo-physical process of wastewater treatment
plants. The tool will be extended, by introducing the possibility of dealing with
case and event data. Finally, we will investigate how SCIFFChecker and the min-
ing algorithm presented in [15] can be jointly exploited to realize a declarative
checking-mining cycle, discovering untrivial explanations for a given classifica-
tion.

Acknowledgments This work has been partially supported by the FIRB project
TOCAI.IT: Tecnologie orientate alla conoscenza per aggregazioni di imprese in
internet.

References

1. Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint-
based workflow models: Change made easy. In Meersman, R., Tari, Z., eds.: Pro-
ceedings of the OTM 2007 Confederated International Conferences CoopIS, DOA,
ODBASE, GADA, and IS. Volume 4803 of LNCS., Springer (2007) 77–94



2. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(1) (2003) 5–51

3. van der Aalst, W., de Beer, H., van Dongen, B.: Process Mining and Verification
of Properties: An Approach based on Temporal Logic. In Meersman, R., Tari,
Z., eds.: Proceedings of the OTM 2005 Confederated International Conferences
CoopIS, DOA, and ODBASE. Volume 3760. (2005) 130–147

4. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Ver-
ifiable agent interaction in abductive logic programming: the SCIFF framework.
ACM Transactions on Computational Logic 9(4) (10 2008) To appear.

5. Alberti, M., Gavanelli, M., Lamma, E., Chesani, F., Mello, P., Montali, M.: An
abductive framework for a-priori verification of web services. In Bossi, A., Maher,
M.J., eds.: Proceedings of the 8th ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programming, ACM (2006) 39–50

6. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Montali, M., Storari,
S., Torroni, P.: Computational logic for run-time verification of web services chore-
ographies: Exploiting the socs-si tool. In Bravetti, M., Núñez, M., Zavattaro, G.,
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