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1 Introduction

We propose an approach for the integration of ab-

duction and induction in Logic Programming. In particular,

we show how it is possible to learn, by induction, an abduc-

tive logic program. Abducibles and integrity constraints can

be speci�ed by the user as content of the background knowl-

edge or can be generated by the abductive/inductive process.

We ground our framework on the generalized stable model

semantics de�ned for abductive logic programs, and its asso-

ciated proof procedure. By integrating Inductive Logic Pro-

gramming with Abductive Logic Programming we can learn

in presence of incomplete knowledge, take into account nega-

tive examples and generate exceptions to (possibly induced)

rules.

Both abduction and induction have been recognized as pow-

erful mechanisms for hypothetical reasoning in the presence

of incomplete knowledge [9, 10, 16, 19, 22, 23]. Abduction is

generally understood as reasoning from e�ects to causes or

explanations. Given a theory and a formula , the goal of

abduction is to �nd a (possibly minimal) set of atoms � which

together with entails . Induction is generally understood

as inferring general rules from speci�c data. Given a theory

and a formula (observation) , the goal of induction is to �nd

a set of general rules � (of the type ) which together

with entails .

In this work, we address the problem of how we can adapt

Inductive Logic Programming (ILP, for short [4]) so that we

can learn in cases where there is some missing information

from the background theory, by exploiting proof procedures

for Abductive Logic Programming (ALP, for short [18]). In

particular, we propose a general approach where it is possible

to learn, by induction, an abductive logic program. In more

detail, the background knowledge of the inductive framework

here considered is now an abductive logic program [16, 18],

i.e., a logic program (possibly with abducible atoms in

clause bodies), a set of abducibles and a set of integrity

constraints . Thus, we start from abductive logic programs,

and generate abductive programs as well. Abducibles and in-

tegrity constraints can be speci�ed by the user as content

of the background knowledge, and are also generated by the

learning process.

The inductive algorithm here applied is an extension of

a top-down algorithm adopted in ILP [4, 17]. The extended

algorithm takes into account abducibles and integrity con-

straints, and is intertwined with the proof procedure de�ned

in [20] for abductive logic programs.

By integrating ILP with ALP, we develop a generic frame-

work for the problem of completing incomplete knowledge, as,

for instance, in [14, 2]. We can take into account user-de�ned

abducibles, and generate exceptions (as in [13]) to induced

rules, by the introduction of new abducibles and integrity

constraints as well.

The underlying declarative semantics for our framework is

the generalized stable model semantics, de�ned for abductive

logic programs by Kakas and Mancarella [19]. If no generalized

stable model exists for the abductive program, then a 3-valued

semantics can be adopted, as in [6].

The paper is organized as follows. In section 2, we describe

the basic structure of our framework in terms of its top-level

algorithm. Section 3 presents examples in order to better clar-

ify the framework behaviour. Section 4 discusses some issues

concerning the approach to abduction, optimizations to be

introduced in the algorithm and the generation of integrity

constraints. Related work is discussed in section 5. Conclu-

sions and future work follow.
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2 The Basic Algorithm
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do

while do
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p X :
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C
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C

e ; : : : ; e

e ; : : : ; e :

C

e ; : : : ; e

not e ; : : : ; not e :

not p

p:

L

not e ; : : : ; not e :

not abnorm

not e ; : : : ; not e :

abnorm

abnorm

In the following, we �rst brie
y recall Abductive Logic Pro-

gramming (ALP), then we describe, at a high level, a basic

Inductive Logic Programming (ILP) algorithm suitably ex-

tended in order to deal with abduction and incomplete knowl-

edge. This extended algorithm exploits proof procedures for

ALP, and the abductive and consistency derivation de�ned in

[20] in particular. For the sake of completeness, the abductive

and consistency derivation used, taken from [20], are reported

in the Appendix.

In the context of abduction, missing information is repre-

sented by (user-de�ned) abducible predicates, possibly con-

strained by integrity constraints. The background theory is

thus an , i.e., a triple where:

is a normal logic program, that is, a set of clauses of the

form , where

0 and each ( = 1 + ) is an atom;

a set of ;

is a set of integrity constraints (denials, for simplicity).

Following [19], this program can be transformed into its

by transforming and . The basic idea

is to view default literals of the kind as new positive

(abducible) atoms (as in, e.g., [16, 15]) and introduce

additional integrity constraints of the kind: . From

now on, when speaking of an abductive logic program we in-

tend its positive version.

The purpose of our framework is (in analogy with [14])

is to synthesize a new abductive theory , start-

ing from an abductive logic program and a set of

positive and negative observations for a concept . The new

theory contains rules for the concept , and new abducibles

and integrity constrains are possibly introduced in order to

cope with exceptions and rule specialization. In particular,

in order to rule out negative examples, we intertwine the in-

troduction of new abducibles with the generation of integrity

constraints (and rules) in order to block (some instances of)

a rule.

The basic, top-down inductive algorithm [4] learns pro-

grams by generating clauses one after the other, and generates

clauses by means of specialization. Let denote the set of in-

duced clauses, initially empty, and and be the training

set (positive and negative examples, respectively). The basic

inductive algorithm can be sketched as follows:

some positive example in is not covered by a clause

in

Generate one clause

Remove from the positive examples covered by

Add to

where the generation of a clause is performed as follows:

Select a predicate that must be learned, and set clause

to be ( )

covers some negative example

Select a literal from the language bias

Add to the antecedent of

does not cover any positive example backtrack

to di�erent choices for

(or fail if backtracking exhausts all choices for ).

This basic inductive algorithm is extended into the follow-

ing respects:

First, when clause is generated in order to cover positive

examples, this explanation might also contain abducibles,

in analogy with the framework in [14]. Thus, the selected

literal is in the language bias, i.e., it can be a literal of the

background knowledge, of the training set or a user-de�ned

abducible.

Second, in order to determine the positive examples covered

by the generated clause , and to be removed, an

derivation is started (this is achieved by exploiting the ab-

ductive proof procedure de�ned in [20]). In the context of

abductive reasoning, it is matter of discussion (see section

4) whether the set of positive examples , has

to be intended as a conjunction (i.e., a successful abductive

derivation exists for ) or they can be proved

separately, possibly with incompatible sets of abducibles.

In terms of model-theory, the issue is whether we are inter-

ested in a model satisfying all the positive examples or it

su�ces that each positive example belongs to at least one

model. Of course this problem does not arise in standard

ILP, since in this case only one least Herbrand model exists.

As well, in order to check that no negative example is cov-

ered by the generated clause , an derivation

is started (this is achieved, again, by exploiting the ab-

ductive proof procedure de�ned in [20]). In particular, if

the set of negative examples is , then an ab-

ductive derivation for is attempted.

If this derivation succeeds returning an empty set of ab-

ducibles, no negative example is covered. If a (non-empty)

set of abducibles � is returned, these hypotheses must be

assumed true in order to rule out negative examples. Ab-

ducibles in � can be positive atoms or default atoms of the

kind . The set of positive abducibles is then added to

the background knowledge, whereas default abducibles can

be added as additional integrity constraints (of the kind

). A new phase of the inductive algorithm takes place

in order to possibly generalize these (positive and default)

abducibles.

Finally, when generating a clause, rather than failing if

backtracking exhausts all choices for literal , we choose

to exploit abduction in order to rule out covered negative

examples possibly introducing new abducibles and integrity

constraints. If no abducible is determined at previous step

(i.e., the abductive derivation for

fails), instead, then a new abducible predicate is automati-

cally generated. In particular, a new atom, ,

is introduced in the body of the generated rule. Previ-

ous step is then tried again, in order to determine the set

of abducibles, �, leading the abductive derivation for

to succeed. This set will contain atoms

for the newly introduced abductive predicate . In-

tuitively, at this point, we could just add these facts to the

learned program, or better, try to generate a rule for them.

Then, a new rule for predicate is synthesized as

exception to the previous one in order to rule out the neg-

ative examples, as done in [13]. The rule generalization for

the new abducible would lead to a loop in some cases (see



�

0

0

0

0 0 0

�

�

by default

by default

rests

not plays e

not plays f

+

1

+

2

1

2

1 1

1 1

1

1 1

+

3

1

2 3

+

1

1

1

1 1

+

1

1

1

1

1

2

1

2

 

 

f g

f g

 

 

 

 

 

 

 

 

 

A A [ f g

[ f g

h i

 

f g

fg

f g

 

 

 

 

 

3 Examples

3.1 Learning Rules with Exceptions

3.2 Learning from Integrity Constraints

We will analyze the case of later.

We remove from the sets of abducibles leading to the success of

the abductive derivation the (trivial) elements ( ) and

( ).

P

bird X penguin X :

penguin X superpenguin X :

bird a :

bird b :

penguin c :

penguin d :

superpenguin e :

superpenguin f :

E flies a ; flies b ; flies e ; flies f

E flies c ; flies d

A IC

bird penguin superpenguin flies

R

flies X superpenguin X :

flies e flies f E

R

flies X bird X :

not flies c ;not flies d

not abnorm

R

abnorm X ;not abnorm X :

not flies c ; not flies d

abnorm c abnorm d

abnorm

abnorm a abnorm b

E

R

abnorm X penguin X :

R R

E

P

flies X superpenguin X :

flies X bird X ;not abnorm X :

abnorm X penguin X :

not abnorm

IC IC not abnorm X ;abnorm X

P

P ;A ; IC

I

rests X ;plays X :

E plays a ; plays b ; rests e ; rests f

E

bird penguin superpenguin

plays rests

I

E rests a ; rests b ; plays e ; plays f

plays X bird X :

plays

not plays e ; not plays f :

not abnorm

plays X bird X ;not abnorm X

not plays e ; not plays f :

abnorm e

abnorm f

plays plays

bird

rests

rests X superpenguin X :

the example in section 3.3). To avoid loop, we prefer to re-

strict the algorithm and not generate a rule for an abducible

predicate containing only (new) abducible predicates in its

body. Thus, rule generation possibly returns more than one

clause (in general, it will return clauses and integrity con-

straints).

This behaviour is informally explained in section 3 through

examples.

The �rst example is inspired to [13]. Let us consider the fol-

lowing background knowledge :

( ) ( )

( ) ( )

( )

( )

( )

( )

( )

( )

and the set of examples:

= ( ) ( ) ( ) ( )

= ( ) ( )

Let and be the empty set.

Let , and be the bias for .

The algorithm generates the following rule ( ):

( ) ( )

and removes ( ) and ( ) from . Then, rule gen-

eration produce the following rule ( ):

( ) ( )

which covers all the remaining positive examples, but also

the negative ones, i.e., in other words, when added to the

background knowledge it generates an inconsistency. Inconsis-

tency is detected by checking that the abductive derivation for

( ) ( ) succeeds. This means that some

negative example (at least one) is covered. In order to restore

consistency, by exploiting abduction, a new (abducible) pred-

icate is generated, , and added to the body of

. Moreover, the integrity constraint:

( ) ( )

is also added to the background knowledge. Now, the abduc-

tive derivation for ( ) ( ) succeeds pro-

vided that the abducibles ( ) and ( ) are

assumed true. Intuitively, at this point, we could just add

these facts to the learned program, or better, try to generate

a rule for them and generalize it, as they were considered as

new positive examples to be covered for predicate .

The negative examples for this new concept to be learned cor-

respond to the positive ones (i.e., ( ), ( )

which correspond to the elements of ). The resulting in-

duced rule is ( ):

( ) ( )

At this point, via rules and all the remaining positive

examples are covered, whereas the negative ones are uncov-

ered. Thus, becomes empty, and the algorithm ends by

producing the following abductive program, where is:

( ) ( )

( ) ( ) ( )

( ) ( )

the set of abducibles is = and the set

of integrity constraints is:

= ( ) ( )

An equivalent program for the same example is obtained in

[13], but exploiting negation rather than abduction. However,

in [16] the authors have argued that negation can

be seen as a special case of abduction. The power of nega-

tion in induction is preserved and, what is more, is

generalized by abduction. Thus, by integrating induction and

abduction, we can achieve greater generality with respect to

[13]. Nonetheless, the treatment of exceptions here adopted is

very similar to that introduced in [13] through a limited form

of \classical" negation and priority relations between rules

(see also section 5).

In the previous example, the background knowledge is very

simple since the program does not contain abducibles and

integrity constraints de�ned by the user. As a further exam-

ple, let us consider the abductive program gen-

erated in previous subsection, and add to it the following con-

straint, , de�ned by the user:

( ) ( )

Consider now the new training set:

= ( ) ( ) ( ) ( )

=

Let , and (and any abducible pred-

icate) be the bias for and . Notice that the added

integrity constraint can be mapped into the following (non-

empty) set of negative examples:

= ( ) ( ) ( ) ( )

The inductive algorithm �rst generates the following rule:

( ) ( )

which covers all the positive examples for , but arises an

inconsistency since the abductive derivation for

( ) ( )

fails. In practice, the generated rule violates the original in-

tegrity constraint.

Di�erently from example of section 3.1, in order to special-

ize the rule and possibly restore consistency, supposing that

the predicate is in the language bias, we can ex-

ploit this predicate, and add it to the body of the generated

rule:

( ) ( ) ( ).

Now the the abductive derivation for

( ) ( )

succeeds provided that both the abducibles ( ) and

( ) are assumed. This su�ces for ruling out the neg-

ative examples for . Therefore, the predicate holds

only for one subclass of the class , i.e., only for birds which

are not penguins.

When iterating, the algorithm also generates a rule for :

( ) ( )

In this way, we have increased the power of the learning pro-

cess. We can learn not only from (positive and negative) ex-
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Remove from

the positive examples covered by C

3.3 Learning Integrity Constraints

4 Discussion

E plays a ; rests b

E plays b ; rests a

plays X :

plays b

rests X :

rests a

plays a :

rests b :

plays X :

plays b

not plays b

not abnorm

plays X not abnorm X :

abnorm X ;not abnorm X :

not plays b

abnorm b

abnorm b

not abnorm

abnorm

abnorm b :

rests

rests X abnorm X :

abnorm X ;not abnorm X :

plays X ; rests X :

a b

plays rests

X

plays rests

P e : : : P e P e : : : e

abd ; abd :

abd :

P

E p ; p

E p

abd

p X abd X :

p ; p : p p

e ; e ; : : : ; e

E

amples but also from integrity constraints, like in [12].

Let us analyze another case. Suppose we have an empty back-

ground knowledge, no abducible and no integrity constraint.

Suppose also we have the following positive and negative ex-

amples:

= ( ) ( )

= ( ) ( )

A standard inductive algorithm cannot infer any general in-

formation, since the fact:

( )

covers the negative example ( ), and the fact:

( )

covers the negative example ( ). This problem clearly

derives from the universal quanti�cation. The facts inferred

are too general, and the only way in which they can be spe-

cialized is by adding the facts:

( )

( )

which are too speci�c. Therefore, we can think of an interme-

diate way of learning from these examples. By induction, our

algorithm �rst generates the rule:

( )

that also covers the negative example ( ) (the abductive

derivation for ( ) being a failure). In order to

restore consistency, a new (abducible) predicate is generated,

, and added to the body of the rule:

( ) ( )

Moreover, the following integrity constraint is generated:

( ) ( )

Now, the abductive derivation for ( ) succeeds

provided that ( ) is assumed. At this point, we could

just add this fact to the learned program, or better, try to

generate a rule for it and generalize. Di�erently from exam-

ple in section 3.1, however, rule generalization would lead to a

loop. In fact, by following the proposed algorithm, ( )

would be generalized by introducing a new (default) abducible

, thus leading to a loop. To avoid loop, we pre-

fer to restrict the algorithm and not generate a rule for an

abducible predicate containing only abducible predicates in

its body. Thus, we prefer to avoid generalization, and de�ne

as:

( )

Then, the algorithm generates a rule for :

( ) ( )

and terminates. It is matter of discussion whether it is con-

venient to generalize the induced integrity constraint or not.

By generalizing the integrity constraint:

( ) ( )

one obtains the constraint:

( ) ( )

This problem is part of a wider issue that is if to generalize

negative examples or not. In fact, since negative examples can

be considered as exceptions, it could be worthless to generate

rules for exceptions.

In this case, however, the generated integrity constraint is

quite meaningful. In fact, even if there is no relation between

and , and we do not have information on them, we can

observe that the property and are somehow con-

tradictory. In our world, in fact, there is nothing that has

both these properties. By induction and generalization of the

learned integrity constraint, we can infer the integrity con-

straint which asserts that it is not possible that an object

in our world both and .

In this section, we consider some issues that are still matter

of discussion.

First, we point out that the properties of soundness and

completeness of inductive logic programs should be carefully

evaluated in the context of abductive programs. In fact, with

respect to completeness, while in ILP we can test each positive

example separately and be sure that their conjunction is true,

in our approach this is no longer true. More formally, if

= = =

For instance, suppose we have the following program with a

background knowledge containing only the two integrity con-

straints:

(1) (2)

(3)

and and be empty. Let the training set be:

= (1) (2)

= (3)

Suppose also the bias contains only the abducible . If we

generate the rule:

( ) ( )

the query (1) (2) fails even if (1) and (2) are sepa-

rately covered by the program.

Therefore, the generated program should cover the conjunc-

tion of positive examples and of the negation of negative ones

(see section 2). In fact, the set of abduced literals must be con-

sistent for all the examples. This means that all the positive

examples are true (and the negative false) in the same model.

If we relax this assumption, we have a semantics in which

each positive example must be true (each negative false) in

at least one feasible model of the program. Consequently, dif-

ferent positive examples can be true (and negative false) in

di�erent models. This second approach is obviously simpler

from a computational point of view, but less interesting in

many cases.

In the following, we concentrate on the �rst approach and

we point out some implementation issues. In order to check

the completeness of the program generated so far, we have

to test, the conjunction of positive examples, as sketched in

section 2.

.

If the conjunction succeeds, the algorithm terminates. Other-

wise, a new rule is generated accordingly. In practice, if the

conjunction fails in covering one of the positive example, we

have no information on which positive example has led to a

failure. On the other hand, if we test each positive example

separately by means of an abductive derivation, we are not

ensured to �nd a unique model that covers all the examples.

A solution to this problem is to test each positive example

separately, but in a sort of pipeline, by taking into account

the set of abduced literals generated in the previous step.

In the algorithm, we have to replace the step

with the following

steps:
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Note that this represents a choice point for the abductive deriva-

tion which has to be considered during backtracking.

e E

e

E

E

not e ; not e ; : : : ; not e

E plays a ; plays b ; rests b ; rests c ; eats a ;

eats c

E plays c ; rests a ; eats b

abd abd abd

abd X ; abd X ;abd X :

plays X abd X :

rests X abd X :

eats X abd X :

rests X ;plays X ; eats X :

P;A; IC

c

P ;A; IC P

c

new

P E new

P

new

Initialize � = � where � is a set of predicates

abduced during the test of negative examples, as shown

in the following ;

For each an abductive derivation is started with

an initial set of abducibles � where � is the set of

literals abduced in the previous step;

If the abductive derivation for succeeds, the positive ex-

ample is removed from . Otherwise, the positive example

is still in , and we impose � = � .

Analogous steps must be performed in order to guarantee the

soundness of the generated program. After the specialization

of each rule we have to test the set of negative examples via

an abductive derivation for:

We check this conjunction with the initial set of abducibles

resulting from the test of positive examples (the �rst time,

this set is empty). The resulting set of abducibles � is

used as positive examples for the induction of a new rule, as

shown in section 3.1.

Another open issue concerns the possibility of learning in-

tegrity constraints. In section 3.3, we have shown how to learn

binary integrity constraints. With the current algorithm, we

are not able to learn general constraints. If we want to learn

general constraints, we have to change the algorithm pro-

posed. For instance, suppose we have the following set of pos-

itive and negative examples:

= ( ) ( ) ( ) ( ) ( )

( )

= ( ) ( ) ( )

The bias is , and . We want to obtain the fol-

lowing constraint

( ) ( ) ( )

which can be generalized by means of the following rules:

( ) ( )

( ) ( )

( ) ( )

as:

( ) ( ) ( )

We are currently investigating how to provide restrictions on

the language bias in order to obtain a specialization of the

integrity constraint instead of the specialization of the gener-

ated rules.

The relationship between abduction and learning has been

studied recently by several authors, mainly in the �eld of Ar-

ti�cial Intelligence (see, for instance, [7, 24]). In general, the

question of how abduction and induction could be integrated

and how they would cooperate, complement and a�ect each

other is emerging as an important problem.

Our work is an attempt to bring closer the �elds of Ab-

ductive and Inductive Logic Programming. In particular, it

addresses two issues:

How to learn concepts in a possibly incomplete framework,

where some (unde�ned) predicates can be assumed, pro-

vided that their assumption is consistent with integrity con-

straints;

How to treat exceptions to induced rules by means of (user

de�ned) abducibles, when possible, or by introducing new

(default) abducibles and then synthesizing a rule for their

complement literal.

In the following we compare our work with other related work

within the Logic Programming area. To the best of our knowl-

edge, related literature has been focussed on the two issues

above separately, and this is the �rst, preliminary, attempt to

integrate both.

As concern the integration of abduction and induction, a

notable work is that by Dimopoulos and Kakas [14]. In this

paper, the authors suggest a methodology for the integra-

tion of abduction in learning, where abduction is used �rst

to explain the training data of a learning problem in order

to generate suitable or relevant background data on which to

base the inductive generalization. As in our framework, the

main advantage of the integration in [14] is that it allows us

to possibly learn more accurate rules in presence of missing

information, and later classify new examples that may be in-

completely described. Also the framework in [14] starts from

an abductive logic program and a set of positive

and negative observations for a concept , and synthesize a

new abductive theory , where contains rules

for the concept . Minimality in �nding the abducibles sup-

porting an observation ensures that the inductive algorithm

uses abducibles only when it is really needed. Di�erently from

us, no new abducible is introduced when rule specialization

is needed in order to rule out negative observations. Rather,

they prefer to add new integrity constraints in order to partly

specialize rules. We intertwine, instead, the introduction of

new abducibles with the generation of integrity constraints

(and rules) for their complement in order to block (some in-

stances of) a rule. We generate new integrity constraints that

would exclude abductive coverage of the negative examples.

In [2] an integrated abductive and inductive framework is

proposed in which abductive explanations that may include

general rules can be generated by incorporating an inductive

learning method into abduction. In particular, the framework

of [2] is based on Bry's work for intensional knowledge base

updating [5]. To cope with program updating, a set of log-

ical formulas is de�ned for a meta-predicate . A set of

rewrite rules translates the predicate de�nition into opera-

tions on the object level program. More in detail, given a

logic program and an evidence , meta-predicate ex-

presses statements that describe the desired (updated) logic

program . This meta-predicate is de�ned (for both posi-

tive and negative atoms) in terms of operations on the object

program facts and clauses. The de�nition for is then ex-

tended with respect to [5] with additional rules in order to

cope with abduction and induction. To cope with abduction,

when a positive abducible atom is encountered, it is simply

added to the program. When a negative abducible is encoun-

tered, it is properly constrained in order to not unify with any

of the abduced atoms. To cope with induction, when a posi-

tive atom (i.e., an atom corresponding to a concept

to be learned) is encountered, �rst it is checked if it is already

covered by program clauses; otherwise, a new clause is con-

structed that covers the atom and that is consistent with the

negative evidence seen so far. When a negative inducible is

encountered, instead, if it is covered by program clauses then

clauses are re�ned, i.e., made more speci�c. In this way, the
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6 Conclusions and Future Work
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two techniques are mixed, as in our framework, in order to

address the problem of completing incomplete knowledge.

In [12] the authors present a method to automatically mod-

ify a knowledge base when violating a newly supplied in-

tegrity constraint. The method uses inductive learning tech-

niques and relies on an oracle. The proposed method extends

Shapiro's method and MIS system [25]. Even if with a dif-

ferent purpose and approach (i.e., knowledge updating), the

work in [12] shows (as we do in our framework) that integrity

constraints form a very useful way of generalization of exam-

ples in concept- learning.

Another related work is reported in [1], where the authors

present a system, called RUTH, for theory revision based on

ILP. RUTH is able to cope with de�nite, functor-free clauses,

and (as the system described in [12]) integrates intensional

database updating with incremental concept-learning. Apart

from adding and deleting clauses and facts, in [1] the au-

thors also employ an abductive operator which allows RUTH

to introduce missing factual knowledge into the knowledge

base. Added (and possibly violated) integrity constraints cor-

respond to positive (uncovered) and negative (covered) exam-

ples. In order to handle (uncovered) positive examples, theory

revision recovers from the arisen inconsistency by either ( )

adding an example as a fact in the database, or ( ) building

a maximally general clause that covers the example, or ( )

abducing one or more new facts. In order to handle (covered)

negative examples, theory revision recovers from the arisen

inconsistency by deleting one of the clauses that contribute

to the SLDNF proof of the example. As [1] (which adopts

standard SLDNF), we do not rely on any oracle, but rather

on abductive proof procedure for determining the proof of

an atom. Furthermore, both RUTH and our framework can

treat as abducibles of the program predicates. Di�er-

ently from [1], we avoid clause retraction, and rather prefer

to add integrity constraints in order to rule out negative exam-

ples. In this respect, we do not fully support theory revision.

As concerns the treatment of exception to induced rules, in

[3], the authors have shown that is not possible, in general, to

preserve correct information when incrementally specializing

within a classical logic framework. They avoid this empass

by using learning algorithms which employ a non-monotonic

knowledge representation. Several other authors have also ad-

dressed this problem, in the context of Logic Programming, by

allowing for exceptions to (possibly induced) rules [13, 11]. In

these frameworks, non-monotonicity and exceptions are dealt

with by learning logic programs with negation. Our approach

in the treatment of exceptions is very related to the work by

Dimopoulos and Kakas [13]. They propose a framework for

learning where the language is extended from de�nite to non-

monotonic logic programs. They rely on a language which

uses a limited form of \classical" negation together with a

priority relations between the sentences of the program [21].

Nonetheless, a program written in this language can be easily

translated in a normal logic program (i.e., in a logic program

where literals possibly occur in rule bodies), by in-

troducing new predicates and capturing the priority between

rules into the notion of abnormality. In this respect, when

the starting background knowledge is a (de�nite) logic pro-

gram, their and our approach coincide. On the other hand, in

[16] the authors have argued that negation can be

seen as a special case of abduction. Thus, in our framework,

relying on ALP [18], we can achieve greater generality than

[13]. In their paper, they also prove that their algorithm ter-

minates under proper conditions. In particular, they consider

a (which corresponds to impose that

more general rules have lower priority) plus a

(which imposes to generate a single clause covering all

the given examples). In our case, this is not true since we

generate clauses which possibly cover only a subset of the

given input examples, and loop may arise (even if we are able

to avoid loop situations as discussed in section 3.3).

We have discussed how it is possible to learn an abductive

logic program, addressing in this way non-monotonicity and

exceptions. In the devised framework, abducibles and integrity

constraints can be speci�ed by the user as content of the back-

ground knowledge, and are also generated by the learning

process. In this way, we increase the expressive power of the

background knowledge and ameliorate the learning process.

We have grounded our framework on the generalized sta-

ble model semantics de�ned for abductive logic programs by

Kakas and Mancarella [19]. There are cases, however, where

no generalized stable model exists for an abductive logic pro-

gram. This can occur, in general, because of the particular

background knowledge or because of generated clauses and

integrity constraints. In this case, a three-valued rather than

a total semantics could be adopted as, for instance, the ab-

ductive semantics de�ned in [6]. The study of which class of

programs is generated by the abductive-inductive algorithm

here introduced and its properties is scope for future work.

In this respect, matter of investigation is the soundness and

completeness of our system. That means, if the system pro-

duces an abductive logic program, it will be consistent (i.e.,

have a meaning with respect to the adopted underlying se-

mantics). And if there exists a solution (namely an abductive

logic program), the system will �nd one by using induction

and abduction.

At the time being, this is a very preliminary paper. The ba-

sic algorithm is just sketched, and must be better formalized,

and few examples have been considered till now. A number of

issues are not considered in the paper, but they are subject

for future work. First of all, the use and meaning of integrity

constraints have to be better clari�ed. In ALP, integrity con-

straints can be de�ned by the user in order to constrain the

generated explanations. In ILP, integrity constraints are usu-

ally implicit. Nonetheless, there is an intimate bond between

the use of integrity constraints in both systems. In the pa-

per, we have shown that ALP integrity constraints can be

interpreted as negative examples for ILP, in accordance with

[12]. How to learn integrity constraints and how and when

generalize them is matter of discussion.

Another crucial notion present both in abductive and in-

ductive reasoning is the minimality (respectively generality)

of the explanation given (respectively, of rules inferred). A

basis for discussion is [8] where the authors relate di�erent

notions of minimality applied in abductive reasoning with dif-

ferent kinds of generality achieved in inductive reasoning.
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Computational Intelli-

gence

In the following we recall the abductive and consistency deriva-

tion used by our algorithm, which are taken from [20].

An abductive derivation from ( � ) to ( � ) in the

abductive program via a selection rule is a se-

quence

( � ) ( � ) ( � )

such that each has the form , ( ) =

and ( � ) is obtained according to one of the following

rules:

(1) If is not abducible or default, then = and

� = � where is the resolvent of some clause in

with on the selected literal ;

(2) If is abducible or default and � then =

and � = � ;

(3) If is abducible or default, � and � and

there exists a from ( � )

to ( � ) then = and

� = � .

Steps (1) and (2) are SLD-resolution steps with the rules of

and abductive or default hypotheses, respectively. In step

(3) a new abductive or default hypotheses is required and

it is added to the current set of hypotheses provided it is

consistent.

A consistency derivation for an abducible or default literal

from ( � ) to ( � ) in is a sequence

( � ) ( � ) ( � ) ( � )

where :

(i) is the union of all goals of the form ob-

tained by resolving the abducible or default with the

denials in with no such goal being empty, ;

(ii) for each 1, has the form and

for some = 1 ( � ) is obtained according to

one of the following rules:

(C1) If is not abducible or default, then =

where is the set of all resolvents of clauses in with

on the literal and , and � =

� ;

(C2) If is abducible or default, � and 1, then

=

and � = � ;
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(C3) If is abducible or default, � then =

and � = � ;

(C4) If is abducible or default, � and � , and

there exists an from ( � ) to

( � ) then = and � = � .

In case (C1) the current branch splits into as many branches

as the number of resolvents of with the clauses

in on . If the empty clause is one of such resolvents the

whole consistency check fails. In case (C2) the goal under

consideration is made simpler if literal belongs to the cur-

rent set of hypotheses � . In case (C3) the current branch

is already consistent under the assumptions in � , and this

branch is dropped from the consistency checking. In case (C4)

the current branch of the consistency search space can be

dropped provided is abductively provable.

Given a query (atomic, for the sake of simplicity), the

procedure of [20] succeeds, and returns the set of abducibles

� if there exists an abductive derivation from ( ) to

( �). With abuse of terminology, in this case, we also say

that the abductive derivation succeeds with answer �.


