A System for Measuring Function Points from
Specifications

Technical Report DEIS-LIA-97-006
FaustoGramantier}, Evelina Lammé, Paola Mell@, Fabrizio Riguzz

1DEIS - Universitadi Bologna

Viale Risorgimento, 2 40136 Bologna
{elamma, friguzzi} @lei s. uni bo.it

2Dipartimentodi IngegnerialUniversitadi Ferrara

Via Saragat, 1 4410Berrara
prel lo@ng. unife.it

Abstract: We propose a knowledge based approach for the aittomated measurement of the
Function Point metric starting from the spedfications of a software system expressed in the form of
an Entity Relationship (ER) diagram plus a Data Flow Diagram (DFD). We mnsider an integration
of the two diagrams, which we cdl ER-DFD, in which the data stores of DFD are substituted by the
entities and relationships of the ER. We have spedalized the genera rules for counting Function
Points for the cae of a spedfication in the form of an ER-DFD model. The informal counting rule
expressed in retural language have been trandated into formal rules that express properties of the
ER-DFD graph. A knowledge based system has been implemented in Prolog that automaticdly
counts Function Point by analyzing the graph.

Keywords: Software Engineering, Software Metrics, Knowledge Based Systems

1 Introduction

Software metrics are eanerging as a powerful tool for the management of the software development
process The field of software metrics is a relatively young one, its origins are in the work by
Halstead published in 1972 From then on, the interest in software metrics has tealily increased
becaise they have been reamgnized as an helpful instrument for managing effedively the software
process Software metrics alow to use ared engineging approach to software development,
providing the quantitative and objedive base that software engineaing was lacking. In fad, their use
in industry is becoming more and more widespread.

Among software metrics, Function Points [Albredt 79] [Albredt and Gaffney 83] (FP for short
in the following) give ameasure of the size of the system by measuring the functionaities that the
system offers to the user. This metrics is applicable both at the beginning of the development
process in the requirements or spedficaion phases, and at the end of the process after
implementation. When FP are measured from requirements or spedfications, the metric is used in
order to make prediction about effort and therefore msts: [Albrecht and Gaffney 83] showed that
FP are highly correlated with work-hours and argued that FP can be used effedively for estimating
effort. When a developed application is measured, the metric can be used for evaluating the

effediveness of the process by comparing the atieved productivity with productivity on previous
projects of the same organization or with the average productivity of the industry.

FP measurement rules are defined in the International Function Point User Group (IFPUG)
Counting Manual [I FPUG 94a]. The method is based on identifying and counting the functions that
the system has to perform, i.e. logicd internal files and externa interface file (data functions),
external inputs, external outputs and external inquiries (transadion functions). Each function
identified in the system is then clasdfied to three levels of complexity (i.e. Smple, average and
complex), and acarding to the mmplexity and the function type, a number of FP is assgned to ead
function. The sum of the contributions from all the functions gives the unadjusted FP count. The final
FP count is then obtained by multiplying the unadjusted count by an adjustment fador that expresses
the influence of 14 general system characteristics.

A gred number of tools[Mendes et al. 96] exists on the market that help the software enginee in
the process of FP counting. However, only a very limited number of them is able to completely
automate the identification of functions and the evaluation of their complexity.

Identification is a well-known problem which can be solved by applying knowledge-based
techniques. In this work, we propose an approach for the auitomated measurement of the FP metric
starting from the spedficaions of a software system expressed in the form of an Entity Relationship
(ER) diagram plus a Data Flow Diagram (DFD). In particular, we consider an integration of the two
diagrams inspired to [Fuggetta @ al. 88|, which we cdl ER-DFD, in which the data stores of DFD
are subgtituted by the etities and relationships of the ER. In order to automate the measurement
process we have spedalized the rules for counting FP for the cae of a spedficaion in the form of
ER-DFD model. The informal counting rule expressed in netural language in [| FPUG 94a] have been
trandated into formal rules that express properties of the ER-DFD graph. The overall system has
been implemented in Prolog and automaticdly counts Function Points by analyzing the ER-DFD
graph according to the formal rules expressed as clauses.

The advantages we obtain by our approach are twofold: first we provide atool which automate
the FP method in the identificaion task, at least for a cetain kind of spedficaion (i.e., ER and
DFD). Furthermore, the formalizaion of the rules eliminates the anbiguous points in the IFPUG
rules when counting from ER-DFD diagrams and can be beneficia to improve our understanding of
the strengths and weaknesses of FP.

Finally, by applying a knowledge-base gproach to the identification of FP functions, we adtieve
for the implemented system the usual advantages of this approad, such as readability, easiness of
maintenance, modularity, separation of domain knowledge and control knowledge (seg for instence,
[Stefik 95).

The paper is organized as follows. In Sedion 2 we describe the FP measurement process In
Sedion 3 we recdl ER and DFD spedficaion and present their integration into ER-DFD model.
Sedion 4 formalizes the FP rules for ER-DFD model, and sedion 5 shows and example. The
implementation of the system is described in sedion 6. Related works are mentioned in sedion 7.
Conclusions and future work follows. In the Appendix the IFPUG counting rules are reported in
details and it is shown how they have been translated to formal rules.

2 Function Point M easur ement Process

The calculation of FP is performed in 6 steps:

1) Identifying the type of FP count: development project, enhancement project or application.

2) Identifying the boundary of the application subject to the measure.

3) ldentifying the data functions, classfied as Internal Logicd Files (ILF) and Externa Interface
Files (EIF), and evaluating their complexity by counting the number of Data Element Types
(DET) and Record Element Types (RET)

4) ldentifying the transadion functions, divided in External Inputs (El), External Outputs (EO) and
Externa Inquiries (EQ) and their complexity by counting the number of Data Element Types
(DET) and File Types Referenced (FTR)

5) Determining the number of unadjusted FP by summing the contributions of all functions

6) Calculating the final number of FP by multiplying the unadjusted FP count for an adjustment
fador. The fador is obtained by evaluating the 14 general charaderistics of the system on which
the application will run.

Our am is to automate steps 3), 4) and 5). Steps 3) and 4) are the most complex, time cnsuming

and prone to error, therefore they are the most interesting to automate. We asume that the type of

FP and the boundary of the gplicaion are known. The boundary of the gplication is indicaed in

the ER-DFD diagram. We did not automate step 6 because it requires many other notions on the

applicaion and on the environment not present in the ER-DFD spedfication and because, for some
characteristics, it requires the subjective judgment of the counter.

3 Entity Relationship - Data Flow Diagrams

We will perform the measurement on a spedficaion of the gplicaion composed of an Entity
Relationship (ER) diagram [Chen 76] integrated with a Data Flow Diagram (DFD) [DeMarco 7§].
We mnsider an integration of the diagrams which is smilar to the one in Formal Data Flows
Diagrams [Fugcetta @ al. 88]: the data stores of DFD are replacel by entities and relationships of
the ER diagrams, therefore we have data flows diredly entering and coming out from entities and
relationships. We cdl such an integration ER-DFD. In order to distinguish between elements of the
DFD and ER diagrams which have asimilar graphicd symbol, we alopt the following conventions:
external agents of DFD are represented with a shadowed box to distinguish it from entities
represented as normal boxes and data flows are represented by arrows while the @nnedions
between entities and a relationships are represented by lines. In figure 1 an example diagram is
shown.

A number of fields are asociated to ead data flow: a field corresponds to an attribute of an
entity or a relationship when it has the same name. When the field does not correspond to any
atribute, it can represent control information used to influence the function performed by the
process, or it can represent data derived from attributes through an elaboration.

We suppose that the diagram contains also the indicaion of the boundaries of the different
applications in the form of dashed lines.

al o
Entity
O—

Relationship Enityt

External
\A_gﬂant

Figure 1. example of an ER-DFD diagram.

4 Formal Rulesfor Counting Function Pointson ER-DFD

In this dion we present the formal rules for counting Function Points from the spedficaion of an
applicaion expressed in the form of an ER-DFD diagram. The detailed analysis of IFPUG counting
rules and the description of how ead single mndition has been trandated to a formal condition is
reported in the Appendix. For ILFs we present both the IFPUG identificaion rule and the formal
rule, so that the reader can compare the two. For the other data and transadion functions, we
directly present the formal rules.

In order to make possble the trandation to formal rules, we had to make anumber of smplifying
assumptions:

1) Every process in the DFD is an elementary process i.e. it is the smallest unit of meaningful
adivity from the user perspedive, it is =lf contained and leares the gplication in a mnsistent
state.

2) The processing logic of every process in the DFD is unique.

3) Every attribute of an entity or arelationship is unique, user reagnizeble and non reaursive, i.e., it
isa DET. Attributes are not reaursive becaise areaursive field is an externa key and externa
keys are not explicitly represented in ER.

4) Every field associated to a data flow that is not an attribute of a logicd file, represent control
information spedfied by the user in order to ensure conformity with the requirements or
represents information derived from attributes of entities.

5) All the fields of the data flows from or to an ILF are DETSs of the ILF.

6) All the fields of the data flows from an EO or an EQ to the user are ather DETs of the referenced
files or data derived from these DETs. We asume to have no details about the format of the
output in the data flow fields. These details are wnsidered only when counting from
implementation.

These asumptions are not very restrictive since they represent the typicd situation and ensure the

corredness of the spedficaion. For example, it is normal that every process in the DFD is

elementary and unique, otherwise the DFD would be a bad spedficaion document because of
redundant information. It isnormal also that ead attribute of an ER is unique, user recognizable and
does not represent a foreign key, if the ER has been corredly laid down. Also, the fields of the data
flows from or to an ILF must be DETSs, because no other data can come from or go to an ILF.
In sedion 4.1 we describe the formal rules for the identification of the Data Function Types, while
in sedion 4.2 we give the complexity rules for them. In sedion 4.3 we describe the identification
rules for the Transaction Function Types and we give the complexity rules in section 4.4.

4.1 Identification Rulesfor Data Function Types

Data Function Types are Internal Logicd Files and External InterfaceFiles. The IFPUG definition of
an ILF is:
"an ILF isagroup of logicdly related data or control information, user identifiable, maintained
inside the application boundary” [IFPUG 94a].
The identification rule for ILF is. agroup of data or control information isan ILF if it satisfies all the
following conditions:
1) "The group of data of control information is a logicd, or user identifiable, group of data that
fulfills specific user requirements.
2) The group of data is maintained within the application boundary.
3) The group of data is modified, or maintained, through an elementary process of the application.
4) The group of data identified has not been counted as an EIF for the application.” [[IFPUG 94a].
We propose the following identification rule: a set of conneded entities and relationshipsis an ILF
if:

1) All the elements of the set are inside the application boundary.

2) Thereis at least one processthat has data flows entering in ead element of the set and no flows
entering in entities or relationships outside the set.

In the following we show some examples of the possble caes that can occur in pradice In figure 2

it is $rown the smplest case: an ILF composed by a single aitity. In this case the attity is clealy

modified through an elementary process of the application and therefore forms an ILF by itself.

ILF
T

p ~
- / N\
Agent)@ > \
/

e \

~ 7

Figure 2: ILF composed of one entity

Figure 3 shows the cae of an ILF composed by two entities and the relationship conneding them.
Ead entity separately would not be an ILF because they are not maintained by an elementary
process Infad, modifying just one aitity does not leave the goplicaion in a wnsistent state. Both
entities and the relationship between them must be updated to read a new consistent state, therefore

they form a single ILF.

Agent

Figure 3: ILF composed of two entities and one relationship.

In figure 4 we present a more complex case: two ILFsthat have an entity in common. It may seem
unnatural to have an entity intwo ILFs. However, if we consider the entity in the intersedion as an
ILF in itself, we mntradict the ndition that requires that an ILF is maintained through an
elementary process of the application, because no process maintains only that entity.

Figure 4: two ILFs composed of two entities and a relationship.

The IFPUG definition of an EIF is:
"an ElIF isagroup of logicdly related data or control information, user identifiable, referenced
by the gplicaion but maintained inside the boundary of another. This means that an EIF
counted for an application must be an ILF for another." [[FPUG 94a].
The formal rule we proposeis. aset of conneded entities and relationshipsin an external applicaion
is an EIF if:
1) The set satisfies the condition for ILFs with respect to the external application.
2) There is at least one data flow crossng the boundary that go from an element of the set to
processes inside the application.
3) There are no data flows from the counted application to any entities or relationships of the set.
In figure 5 we show an example in which we have an EIF composed of two entities and a
relationship. The set is outside the counted application boundary and satisfies the rule for ILFs.
Moreover, it has a data flow going from one antity to a processin the munted application: it is
important to note that it is not necessary to have data flows from all the dements of the set. Finally,
no data flow enters in the set from the counted application.
External Application Counted Application

User

- - .

Figure 5: example of an EIF.

6

4.2 Complexity Rulesfor Data Function Types

In order to assgn the right number of FP to ead identified data function, we have to count the Data
Element Types and Rewrd Element Types assciated with the function. "A Data Element Type
(DET) is an unique field, user reagnizable and non reaursive on an ILF or EIF" [IFPUG 94a]. We
count DETSs in the following way.

1) One DET for each attribute of the entities and relationships in the logical file.

2) One DET for ead attribute cmposing the key of the eantities in other files conneaded by
relationships to entities of the file (external keys). We do not count any DET for an external key
in the cae in which it contains the internal key of an entity of the ILF, otherwise we would
doubly count the internal key.

"A Recoord Element Type (RET) is an user identifiable subgroup of data dementsin an ILF or
EIF" [IFPUG 94a].

We munt one RET for ead entity and for ead relationship with attributes of the logicd file. If the

file cntains hierarchies, then we cunt RETs in the following way. Let us consider the cae of an

entity with two sub-entities. Depending on the type of hierarchy, we have four cases.

1) Exclusve and total hierarchy: we have 2 mandatory RETs becaise we have two possble
subgroups, one made by the atributes of the father entity plus the dtributes of one sub-entity and
the other made by the father plus the other sub-entity.

2) Exclusive hierarchy: we munt 3 RETSs, 1 mandatory for the father entity and 2 optional for the
sons, because an instance of the father may not be in any of the sons.

3) Tota hierarchy: we count 3 mandatory RETs, one made by the father entity plus one son, one
made by the father entity plus the other son and one made by the father entity plus two sons.

4) Neither total nor exclusive hierarchy: we munt 1 mandatory RET for the father and 2 optional
RETSs for the sons.

4.3 ldentification Rulesfor Transaction Function Types

Transactional Function Types are External Inputs, External Outputs and External Inquiry.
"An Externa Input (El) elaborates data or control information coming from outside the
applicaion boundary. The External Input is itself an elementary process Elaborated data
maintain one or more ILFs. Control information may or may not maintain an ILF" [IFPUG
94a].

We have to distinguish between El of data and EI of control information. In order to identify an El

of data, we have to consider a process of the ER-DFD diagram. The process is an El if the

following conditions are satisfied:

1) It has one data flow from outside the application boundary.

2) It has a data flow entering in an ILF.

The simplest case of an El of data is shown in figure 2.

A process in the ER-DFD is an El of control information if

1) It has one data flow from outside the application.

2) The fields of the data flows are not attributes of any entity in an ILF.

The simplest case of an EI of control information is shown in figure 6.

Figure 6: simplest case of El of control information.

The only difference between El identificaion rules for data and control information is that control
information may or may not maintain an ILF. Therefore, we do not have to ched for a data flow
going from the process to an ILF.

"An External Output (EO) is an elementary processthat generates data or control information

that are sent outside the application boundary" [IFPUG 94a].

A process is an EO if

1) it has at least one data flow from an ILF;

2) it is has one data flowdgr going outside the application boundary;

3) Four contains at least one field that is not contained in none of the data flows from ILFs.

In figure 7 it is shown the simplest case of an EO.

e

Figure 7: simplest case of an EO.

"An External Inquiry (EQ) is an elementary process composed by a combination of input and
output that resultsin data retrieval. The output side does not contain derived data. No ILF is
maintained during the process" [IFPUG 94a].

A process is an EQ if

1) it has at least one data flow from outside the application (input part);

2) it has at least one data flowJr that goes outside the application (output part);

3) it has at least one data flow FFfrom an ILF;

4) Foyr and ki have the same fields.

In figure 8 the simplest example of an EQ is siown. What distinguishes an EO from an EQ is the

fact that an EQ does not elaborate the data retrieved, while an EO outputs derived data.

Figure 8: simplest case of an EQ.

4.4 Complexity Rulesfor Transaction Function Types

In order to assgn the right number of FP to ead identified transadion function, we have to count
the File Types Referenced and DETs associated with the function.

"A File Type Referenced (FTR) is

» an internal logical file read or maintained by the function

» an external interface files read by the function" [IFPUG 94a].

For ElI we count one FTR for ead file that is conneded to the processand one DET for ead field
of the data flows from ILFs to the process.

For EO, we ount one FTR for ead file that is conneded to the processand one DET for eah
field of the data flows from the process to the user.

For EQ, we have to distinguish between the input side and the output side. We @nsider the input
side & the data flow from the user to the EQ, while the output side is composed of the data flows
from the files to the EQ and from the EQ to the user. As regards the cdculation of FTRs, for the
input side we ansider the fields of the data flow from outside and we @unt one FTR for eah
logicd file that has a DET among those fields. For the output side, we cunt one FTR for eath

logicd file is conneded to the processthrough a data flow. As regards the cdculation of DETS, for
the input side we @unt one DET for ead field of the data flow from the user to the process For
the output side, we count one DET for each field of the data flows from the files to the process.

5 Example

In this eaion we describe the goplication of the formal rules to the measurement of an applicaion
for the management of Human Resources. This application is the subjed of a series of case studies
of Function Point measurement published by IFPUG, we will consider the case study [I FPUG 94b] in
which the measurement is performed starting from the spedfication of the gplicaion expressed as
an ER diagram and a DFD.

The am of the gplicaion is to manage information about employees of a firm. In particular, the
user requires to store information about ead employee comprehending data on the dependents of
the enployee data on the salary or the hourly rate and data on the work location. The locaion must
be avalid locaion in the Fixed Asset System. If the employeeworks abroad, the hourly rate must be
converted to US dollars by accessng the Currency Application System and retrieving the mnversion
rate. Moreover, the gplicaion has to store information about different jobs, together with a
description composed of a series of text lines. Finaly, the user requires to store information about
the assignment of jobs to employees. In figure 9 is reported the ER diagram alone.

Some of the operations required by the user are:

» add an employeg together with data on his dependents and on the salary or hourly wage (figure
10);

» report on al employee printing the list of employeetogether with the total number of employee
(figure 11);

* inquire on the data of an employee, given his social security number (figure 12);

» add job information, together with its description (figure 13);

* add a job assignment (figure 14).

Conversion
Rate

mp.Conv.

Location

Employee

Job
Assighmen

Job

Salaried
t,e
Hourly
Emp.
Dependent Dependent

Job
Descriptio

Description

Entities or relationshipg Attributes

Employee Social_Security Number (key), Nanihr Dependentsype Code.

Salaried Supervisory level

Hourly Standard_Hourly Rat&lS_Hourly Rate,
Collective_Bargaining_Unit Number

Dependent Dep_SSN (key)Dep_nameDep_birth_date

Job Name,Job _Number (keyRay grade

Description Line_NumberDescription_Line

Job Assignment

Effective Date, SalarfRerformance_Rating

Location

Location_Name (key), Address, City, State, Zip, Country.

Conversion Rate

Conversion Rate To Base Currency.

Figure 9: complete ER diagram for the Human Resource application.

1C

Emp.

Employee Dependent

Dependent

‘Salaried ‘ Hourly ‘

Add Employee

User
Figure 10: Add Employee process.
Employee Dependent
Ssn, namess... dep_ssn, dep_name,....
‘Salaried‘ ‘ Hourly ‘
$ Report Employee
User

ssn, name,....
dep_ssn, dep_name,....
total _number_emp

Figure 11: Report Employee process.

Employee Dependent

ssn, name.... dep_ssn, dep_name,....
‘Salaried‘ ‘ Hourly ‘

ssn

o

Inquire Employee

ssn, name,....
dep_ssn, dep_name,....

Figure 12: Inquire Employee process.

11

Description

Add Job

Figure 13: Add Job process.

User
User

We onsder first the identificaion of ILFs. The set formed by the eitities Employee and
Dependents, their relationship and the sub-entities of Employee Salary and Hourly, is an ILF becaise
it is inside the gplicaion boundary and the process Add Employee has data flows to al of them.
This means that the anitities of the set are maintained through the dementary process Add
Employee it is not possble to add an Employeewithout adding also his Dependents and therefore
they must be put together in asingle logicd file. As regards the complexity count, the ILF has one
DET for ead attribute of its entities plus 2 DET for the external keys. one of the key of the entity
Location and one for key of Conversion Rate. We then count 2 RET for Employee ad its two
subentities, since the hierarchy is total and exclusive, 1 RET for Dependent and no RET for the
relationship Employee Dependent because it does not have any attribute.

The set made by the ettities bb and Description and by the relation between them is an ILF
becaise it is inside the gplicaion boundary and the process Add Job has data flows to al of them.
Job Assgnment is an ILF because it is inside the gplicaion boundary and the process Add Job
Assignment has a data flow to it.

The ILF Job-Description hes 2 RETsand 5DETs: 1 RET for Job, 1 for Description, 5 DETSs for
the five atributes of Job and Description. We do not count 1 DET for the key of Job Assgnment
becaise it is constituted by the keys of Employee and Job, otherwise we would doubly count the
attribute Job_number. The ILF Job Assgnment has 1 RET and 5 DETs. 3 DETs for the three
atributes of the relationship and 2 DET for the externa keys Social_Seaurity Number (link to
Employee) andob_Number (link to Job).

Asregards EIF, we ae not ableto fully apply the rules becaise we do not know the processes for
the external applications. However, we can observe that the entity Locaion hes a data flow from the
counted applicaion and, supposing it is maintained by a processof the externa application, we can
consider it as an EIF. The same reasoning applies to the entity Conversion Rate and the relationship
Employee-Conversion Rate that constitute another EIF.

Let us now identify transadiona functions. The processes Add Employee Add Job Assgnment
and Add Job are Els becaise they have adata flow from outside the gplication (the user in this
case) and they have data flows entering in all elements of an ILF.

The process Report Employeeis an EO becaise it has data flows from an ILF, a data flow Four
going outside the gplication, and Four contains one field, total_number_emp, that is not in the flows
from the ILF.

Job
Assignment

Figure 14: Add Job Assignment process.

12

The processinquire Employeeis an EQ becaise it has a data flow from outside, a data flow Four
going outside and a data flows from an ILF. Moreover, the fields in the data flow Four are the same
as those of the flows from the ILF.

6 | mplementation

The system was developed using Sicstus Prolog 3#5[SICS 95]. The ER-DFD diagram is given as
input to the system in the form of a Prolog program, using the following predicates:

e application(nane,[entityl,..entityN, relationshipl,...,relationshipM,
[processl, ..., processP])
indicates which processes, entities and relationships are contained in the applanation

e entity(nanme, [keyattributel,...,keyattributeN],[attributel,...,attribu
teN])
relationship(nane,attributel,...,attributeN])

connection(relation,entity,cardm n, cardmax)
specialization(entity,[entitychildl,...entitychildN], Total, Excl usive)

represent entities and relationships, together with their attributes, the connedions between them,
the cardinality of connections, and the hierarchies of entities.
e dataflowsorg,dest,[fieldl..,fieldN])
represent a data flow between processes and entities or relationships, together with the list of
associated fields.
From this input and through a set of clauses that implement FP rules, the system identifies the
functions, evaluates their complexity and returns the unadjusted FP count. In order to ill ustrate the
behavior of the system, let us dow how the ILF are remgnized. The predicae
i | f(Appl, EntList), giventhe gplicaion name Appl , returns in Ent Li st the list of entities
and relationships of an ILF of the gplicaion. By badtradking on the solutions, we obtain all the
ILFs of the gplication, possbly with dupicaes, which are successvely removed by another
predicate. The clause for ILF identification is:

ilf(Appl,EntList):-
application(Appl, EntList1, ProcList),
menber (Proc, ProclLi st),
findall (Ent, datafl ow Proc, Ent,), EntList),
sublist(EntList,EntListl),
EntList \==[].

The predicae appl i cati on returnsin Ent | i st 1 the list of all entities of the gplicaion Appl ,
then we seled a processPr oc with menber and we find the list Ent Li st of all the antities that are
readed by data flows from Proc. These attities form an ILF if they are dl contained in the
applicaion (predicae subl i st) and if the set is not empty. For the ladk of spacethe rest of the
code is not reported but is available from the authors.

7 Related Works

[Mendes et a.] is asurvey of FP tools available on the market. The authors review 52 toals, out of
which only 8 perform automatic FP counting:

13

Tool Vendor

Autopoint Integrated Software Specialists
Before You Leap v. 1.52 Strategic Systems Technology Ltd.
Composer FP Report Texas Instruments

FP Analyst Cayenne Software Inc.

LDA - LINC Development Assistant Unisys

Revolve v. 3.1 Micro Focus Ltd.

PCA Calc Add-on (prototype) System House SHQuébec

VIA RECAP: ESW Portfolio Analysis VIASOFT Inc.

Among these 8 toadls, 3 perform the counting starting from ER, DFD or similar diagrams. FP
Analyst counts FP starting from Cayenne models that contain DFD, Composer FP Report starts from
ER diagram plus Dialog Flow / Process Action diagrams, Before You Leap starts from DFD an ER-
D. All these toals perform identificaion of the functions and evaluation of their complexity, except
for Before You Leap that is not able to count DETs and RETs for data function types. Moreover FP
Analyst and Composer FP Report are dso able to automaticdly identify the gplicaion boundary
and FP Analyst is able to dedde which files and processes are unique, while we consider all files and
procesEes as unique by assumptions. However, being commercial products, it was not possble to
get to know the detailed behavior of these system and therefore a @mparison with our system is
difficult. In any case, our analysis, besides leading to a munting tool, has the benefit of increasing
our understanding of the FP counting rules when counting from ER-DFD, removing the anbiguities
that are present in the wunting rules and trandating them into simple unambiguous formal rules by
making only a limited number of assumptions.

Moreover, by adopting a knowledge based approach for the achitecure of our tool, we obtain a
system that is very easy to maintain, allowing us to modify the rules as our understanding of them
improves or because of introduction of new rules

6 Conclusions and futureworks

In this paper we have presented a knowledge based system for the aittomatic counting of the FP
metric starting from an ER-DFD diagram, a formalism that integrates ER and DFD by repladng the
data stores of DFD with the aitities and relationships of ER. The FP counting rules have been
spedalized for the cae of ER-DFD and made forma by making a number of simplifying
asaumptions. The formal rules express @mple properties of the ER-DFD graph that can be ealy
chedked both by a human or a computer program. In this way we have obtained a twofold result: we
have obtained an automated counting tool and we have removed the anbiguities in FP rules when
counting from ER-DFD.

In the future, on one side we intend to continue the testing of the system on pradicd cases and,
on the other side, we intend to investigate the wunting of FP from other, more formal, spedfication
languages, such as 3givey 89].

Bibliography
[Albrecht 79] A. Albrecht. Measuring application development productivity. in Proc.

Joint SHARE/GUIDE/IBM Applications Development Symposium,
Monterey, CA, 1979

14

[Albrecht, Gaffney 83]

[Chen 76]
[DeMarco 78]
[Fenton 94]

[Fuggetta ¢ al. 88]

[l FPUG 944]
[l FPUG 94b]

[Mendes et al. 96]

[SICS 95]

[Spivey 89]
[Stefik 95]

A. Albredht, J. Gaffney: Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science Validation; in IEEE
Trans. Software Eng., 9(6), 1983, pp. 639-648

P.P. Chen. The Entity-Relationship model. Toward a unified view of data.
ACM Transactions On Database System, Vol. 1, NMdrzo, 1976

T. DeMarco. Sructured Analysis and System Specification. Yourdon
Press, New York, 1978.

N. Fenton, Software Measurement: a Necessary Scientific Basis, IEEE
Trans. Software Eng., 20, 1994, pp. 199-206.

A. Fuggetta, C. Ghez4, D. Mandrioli, A. Morzenti, "VLP: a Visua
Language for Prototyping”, IEEE Workshop on Languages for
Automation, College Park, MD, August 1988.

International Function Points User Group, Function Point Counting
Practices Manual, Version 4.0, 1994.

International Function Points User Group, Function Point Counting
Practices. Case Studies, Case Sudy 2, Release 1.0, 1994.

O. Mendes, A Abran, P. Bourque, Function Point Tool Market Survey
1996, Research Report, Software Engineaing Management Laboratory,
Université du Quebec a Montreal, 14 December 1996.

SCSus Prolog User Manual, Release 3#0, Swedish Ingtitute of
Computer Science, 1995.

J. M. Spivey, The Z Notation: A Reference Manual, Prentice Hall, 1989.
M. Stefik, Introduction to Knowledge Systems, Morgan Kaufmann Pub.,
S. Francisco CA, (USA), 1995

15

Appendix

We mnsider ead condition of the IFPUG counting rules sngularly and we eplain how it has
been translated to a formal condition on the ER-DFD diagram.

| dentification Rulesfor Data Function Types

ILF: identification rules

IFPUG rules

Formal rules

1) The group of data of control information is a
logicd, or user identifiable, group of data that
fulfills specific user requirements.

1) An ILF is formed by a set S of conreded
entities and relationships.

2) The group of data is maintained within the
application boundary.

2) S is inside the application boundary.

3) The group of data is modified, or maintained,
through an eementary process of the
application.

3) There is a process P such that al the data
flows from it go to one of the dements of S
and al the dements of S are readed by a
data flow from P. Moreover P is elementary
by assumption.

4) The group of data identified has not been
counted as an EIF for the application.

4) The fad that S is internal excludes this
possibility.

EIF: identification rules

IFPUG rules

Formal rules

1) The group of data of control information is a
logicd, or user identifiable, group of data that
fulfills specific user requirements.

1) An EIF is formed by a set S of conreded
entities and relationships.

2) The group of data or control information is
referenced by, and external to, the gplication
being counted.

2) The dements of S must be outside the
applicaion boundary and must have & least a
data flow going from S to processes inside
the application.

3) The group of data is not maintained by the
application being counted.

3) S has no data flow coming from inside the
applicaion boundary. If it has one, we have
probably made amistake in the identificaion
of the application boundary.

4) The group of datais counted as an ILF for at
least one other application.

4) This hasto be verified by applying the rule for
ILFs to the external application.

5) The group of data has not been counted as an
ILF for the application.

5) The fad that S is externa excludes this
possibility.

16

Complexity Rulesfor Data Function Types

ILF, EIF: rulesfor DETs

IFPUG rules

Formal rules

1) Count one DET for ead unique field, user
recognizable, non recursive on an ILF or E

1) We w@unt one DET for ead attribute of
F entities and relationships of the file cmnsidered.
We asaume that ead attribute is unique, user
recognizeble. In fad, rearsive field are
external keys that represent relationships
between entities, while in ER diagrams
external keys are not represented.

2) Count one DET for ead field in an ILF or
EIF that exist because the user has request the
relation with another ILF.

2) We ount one DET for ead attribute in the
key of the aitities of other ILFs or EIFs in
relation with the entities of the file considered
(external keys).

3) Count the following technicd solutions as one
DET for the group of fields

3)

i) Fieldsthat appea more than one time in an
ILF or EIF becaise of tedchnology or
implementation techniques.

i) Thisisthe cae of a reflexive relationship.
In this case, no DET is counted in 2) for
the external key because the related entity
is not outside the file.

i) Repeded fields that have the same format
and exist in order to give multiple
occurrences of a datum.

i) ER can have atributes with multiple
values, therefore no extra DET are
counted in 2) for repeated fields.

ILF, EIF: rulesfor RETs

IFPUG rules

Formal rules

1) Count one RET for
mandatory subgroup.

eah optional or

1) Count one RET for ead entity and for eat
relationship with attributes in the file. If there
are sub-entities, count them depending on the
type of the hierarchy (see below).

2) If there ae no subgroups, count the ILF or
EIF as one RET.

2) The file is congtituted by at least one entity or
relationship, therefore this case is arealy

accounted for in 1).

Let us consider the case in which an entity has an hierarchy of sub-entities.

NS

Type of hierarchy | Number of RETs

total, exclusive 1 RET for each son

exclusive 1 RET for the father plus 1 RET for each son

total 1 RET for the father plus 1 RET for each possible combination of the so
none 1 RET for the father plus 1 RET for each son

17

| dentification Rulesfor Transaction Function Types

El of data: identification rules

IFPUG rules

Formal rules

1) The data ae recaved from outside the
application boundary.

1) An El is a process P with at least one data
flow from outside the application boundary

2) Data in an ILF is maintained through an
elementary process of the application.

2) The processP has a data flow entering in an
ILF.

3) The processis the smallest unit of meaningful
activity from the user perspective.

3) This condition is true by hypothesis, we
asume that ead process in the DFD is an
elementary process.

4) The process is =lf contained and leaes the
business in a consistent state.

4) True because P is elementary by hypotheg

5) For the identified process one of the following
two rules applies:

5)

i) Processng logic is unique from other
external inputs.

i) True by hypothesis, we assume that al the
processes in the DFD are unique.

i) Data dements are different from other
external inputs.

i) This condition is not verified becaise i) is
always true.

El of control information: identification rules

IFPUG rules

Formal rules

1) The data ae recaved from outside the
application boundary.

1) An El is a process P with at least one data
flow from outside the application boundary

2) Control information are spedfied by the user
in order to ensure the nformity with
functional requirements.

2) We asume that all the filed asciated to the
data flows going into the processthat are not
DET, are oontrol information spedfied by the
user in order to ensure @nformity with the
requirements.

3) For the identified process one of the following
two rules applies:

3)

i) Processng logic is unique from other
external inputs.

i) True by hypothesis, we assume that al the
processes in the DFD are unique.

i) Data dements are different from other

external inputs.

i) This condition is not verified becaise i) is
always true.

18

is.

EO: identification rules

IFPUG rules

Formal rules

1) The process ®nds data or control information
outside the application boundary.

1) An EO is a process P with at least one data
flow that goes outside the gplication
boundary.

2) The processis the smallest unit of meaningful
activity from the user perspective.

2) True because P is elementary by hypothes

3) The process is =lf contained and leaves the
business in a consistent state.

3) True because P is elementary by hypothes

4) For the identified process one of the following
two rules applies:

4) This condition is true dso for the hypothesis
that the proceses in the DFD are d
elementary.

i) Processng logic is unique from other
external outputs.

i) True by hypothesis, we assume that al the
processes in the DFD are unique.

i) Data dements are different from other
external outputs.

i) This condition is not verified becaise i) is
always true.

Moreover, we require two other conditions EDs:

DIt must have & least one flow from an ILF. This is natural becaise the cae in which the
process outputs data without retrieving it from an ILF is not very significant.

2)The flows going outside must have & least on field that is not present in the flows from the
files. Thisisrequired in order to ensure that the output contains derived data, that is the mndition
for distinguishing EO from EQ, as explained below.

EQ: identification rules

IFPUG rules

Formal rules

1) An input request enters the gplicaion
boundary.

1) An El is a process P with at least one data
flow from outside the application boundary

2) Output results exit the application boundary.

2) P has at least one data flow that goes outside
the application boundary.

3) Data is retrieved.

3) P has at least one data flow from an ILF.

4) The data retrieved does not contain derived
data.

4) The field in the data flow going outside the
applicaion are the same & the ones in the
data flow from the ILF. Otherwise it is an
EO.

5) The process is =lf contained and leaves the
business in a consistent state.

5) True because P is elementary by hypothes

6) The process is &if contained and leaves the
business in a consistent state.

6) True because P is elementary by hypothes

7) For the identified process one of the following
two rules applies:

7)

i) Processng logic is unique from other
external inquiries.

i) True by hypothesis, we assume that al the
processes in the DFD are unique.

i) Data dements are different from other

external inquiries.

i) This condition is not verified becaise i) is

always true.

19

is.

is.

is.

is.

Complexity Rulesfor Transaction Function Types

El: rules

for FTRs

IFPUG rules

Formal rules

1) Count one FTR for each ILF only maintaing

d) Count one FTR for ead ILF that has data
flows coming from the process

2) Count one FTR for ead ILF or EIF only
referenced

2) Count one FTR for ead ILF or EIF that has
data flows going to the process

3) Count one FTR for ead ILF referenced and

3) Count one FTR for ead ILF that has data

maintained

flows going to and coming from the proces;s

El: rules

for DETs

1) Count one DET for ead user recognizable,
non recursive field maintained in ILF by an

1) We oount one DET for ead field associated
E|. with the data flow from the El to the ILF. We
assume that all this fields are DETSs of the |

2) Count one DET for ead field that is not
inserted by the user but is maintained, through
an external input, in an ILF.

2) Thisis drealy acounted for in 1) because we
do not count the fields on the data flow from
the user to the processhbut from the processto
the ILF.

3) Count the following technicd solutions as one
DET for the group of fields

3)

i) Fields that are stored on more physicd
fields but is requested by the user as a
single information.

i) Sincefields in the data flow correspond to
DETs of the ILF, we dready do not
consder the way they are stored. This
regards the ount from the
implementation.

i) Fieldsthat appea more than one time in an
ILF becaise of tecnology or
implementation techniques.

i) As i), true since we have monsider DETs
for the ILF.

i) Fields that indicae an error during an
elaboration or the @mpletion of an
elaboration.

i) This is considered only when counting
from implementation.

iv)Count one DET for the posshility of
spedfying the adion that must be exeauted

iv) As iii).

by the EI.

2C

EO: rulesfor FTRs

1) Count one FTR for eat ILF or EIF

referenced

1) Count one FTR for ead ILF or EIF that has
data flows going to the process

EO: rulesfor DETs

1) Count one DET for ead user recognizable,
non recursive field that appears in the EO.

1) We oount one DET for ead field associated
with the data flow from the EO to the user.

2) Do not count constant as DETs

2) We asaume that the fields of the data flows are
either DETs of the referenced files or data
derived from these DETs. We asume not to
have details about the format of the output in
the data flow fields. These detals are
consdered only when counting from
implementation.

3) Do not count variables containing the page

number or notation generated by the system. do not contain details about the output forn

3) Alrealy verified by assumption that the fields

nat.

4) Count the following technicd solutions as one
DET for the group of fields

4) Already verified by the assumption that fields
are DETSs for the file referenced.

i) Fields that are stored on more physicd
fields but is requested by the user as a
single information.

i) Every variable type axd every type of
numericd value asciated reported in a
graphical output.

ji) Textual information that cen be a single
word, phrase or period.

21

For EQ, we monsider the input side & the data flow from the user to the EQ, while the output side
is composed of the data flows from the files to the EQ and from the EQ to the user.

EQ: rulesfor FTRs

Input side
1) Count one FTR for eat ILF or EIF|1) Consider the DETs associated with the flow
referenced. from the processto the user. Count one FTR
for ead different ILF or EIF to which these
DETs belong.
Output side
1) Count one FTR for eat ILF or EIF|1) Count one FTR for ead ILF or EIF that has

referenced.

data flows going to the process

EQ: rulesfor DETs

Input side

1) Count one DET for ead user recognizable,
non reaursive field that appeas in the input
side of an EQ.

1) We oount one DET for ead field associated
with the data flow from the user to the EQ.

2) Count one DET for ead field that spedfies
the data selection criteria.

2) We do not see ay difference with 1): the
field that appea on the input side ae dealy
used as the data selection criteria.

3) Count the following technicd solutions as one
DET for the group of fields

3)

i) Fields that indicae an error during an

i) This is considered only when counting

elaboration or the @mpletion of an from implementation.
elaboration.
i) Count one DET for the posshility of i) Asi).
specifying which EQ must be executed.
Output side

1) Count one DET for ead user recognizable,
non reaursive field that appeas in the output
side of an EQ.

1) We oount one DET for ead field associated
with the data flow from the files to the EQ.
They must be the same & the ones on the data
flow from the EQ to the user, since the output
can not contain derived data.

2) Do not count constant as DETs

2) We asaume that the fields of the data flows are
DETSs of the referenced files. We asume not
to have details about the format of the output
in the data flow fields. These detals are
consdered only when counting from
implementation.

3) Do not count variables containing the page
number or notation generated by the systel

3) Alrealy verified by assumption that the fields
m. do not contain details about the output forn

nat.

4) Count the following technicd solutions as one
DET for the group of fields

4) Already verified by the assumption that fields
are DETSs for the file referenced.

i) Fields that are stored on more physicd
fields but is requested by the user as a
single information.

i) Fieldsthat appea more than one time in an
ILF or EIF becaise of tedchnology or

implementation techniques.

22

