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Abstract. Logic Programs with Annotated Disjunctions (LPADs) pro-
vide a simple and elegant framework for representing probabilistic knowl-
edge in logic programming. In this paper I consider the problem of learn-
ing ground LPADs starting from a set of interpretations annotated with
their probability. I present the system ALLPAD for solving this problem.
ALLPAD modifies the previous system LLPAD in order to tackle real
world learning problems more effectively. This is achieved by looking for
an approximate solution rather than a perfect one. ALLPAD has been
tested on the problem of classifying proteins according to their tertiary
structures and the results compare favorably with most other approaches.

1 Introduction

Logic Programs with Annotated Disjunctions (LPADs) [38, 37] are a relatively
new formalism for representing probabilistic information in logic programming.
They have been recognized as one of the simplest and most expressive [4] lan-
guages that combine logic and probability.

In [29] the definition of a learning problem for LPADs has been proposed
together with an algorithm for solving it called LLPAD. However, LLPAD does
not work well on non-toy problems because it relies on the exact solution of a
large constraint satisfaction problem. On real world problems such a solution
may not exist or may be too expensive to find. Therefore in this paper I propose
the system ALLPAD (Approximate Learning of Logic Programs with Anno-
tated Disjunctions) that modifies LLPAD in order to be able to solve real world
problems by looking for a solution that “approximately” satisfies the learning
problem. ALLPAD solves the constraint satisfaction problem in an approximate
way by transforming it into an optimization problem. Moreover, the clause search
phase is also modified in order to return only the most significant clauses so that
the complexity of the optimization problem is kept inside acceptable limits.

To show that ALLPAD is able to work in practice, I have applied it to
the problem of classifying proteins into SCOP classes. The accuracy obtained
is compared to that of a naive Bayes approach and with the results of previous
works. The comparison shows that the accuracy is significantly better than naive
Bayes and that it is superior to all previous approaches apart from [15].



The paper is organized as follows. Section 2 provides some preliminary no-
tions regarding LPADs together with their semantics as given in [38]. In section
3 I discuss two properties of ground LPADs that are exploited by LLPAD. In
section 4 I introduce the learning problem and I describe LLPAD and ALLPAD.
Section 5 shows under what conditions ALLPAD is correct. Section 7 presents
the experiments performed in the SCOP domain. In section 8 I discuss related
works and in section 9 I conclude and present directions for future work.

2 Preliminaries

2.1 LPADs

A disjunctive logic program [23] is a set of disjunctive clauses. A disjunctive
clause is a formula of the form

h1 ∨ h2 ∨ . . . ∨ hn ← b1, b2, . . . , bm

where hi are logical atoms and bi are logical literals, i.e., an atomic formula p
or its negation ¬p. If p is an atomic formula, then p is its positive literal, ¬p
its negative literal and these two literals are said to be the complement of each
other. If S is a set of literals, I denote the set formed by taking the complement
of each literal in S by ¬S. The disjunction h1 ∨ h2 ∨ . . . ∨ hn is called the head
of the clause and the conjunction b1 ∧ b2 ∧ . . .∧ bm is the called the body. Let us
define the two functions head(C) and body(C) that, given a disjunctive clause
C, return respectively the head and the body of C. In some cases, I will use the
functions head(C) and body(C) to denote the set of the atoms in the head or of
the literals of the body respectively. The meaning of head(C) and body(C) will
be clear from the context. I indicate with body(C)+ the set of positive literals of
body(C) and with body(C)− the set of its negative literals.

A term (clause) is ground if it does not contain variables. The Herbrand
universe H(P ) of a disjunctive logic program P is the set of all the ground terms
that can be constructed with the constant and function symbols appearing in
P . The Herbrand base HB(P ) of a disjunctive logic program P is the set of
all the atoms constructed with the predicates appearing in P and the terms
of H(P ). The grounding of a program P is the set of all the ground clauses
obtained by picking a clause C from P and by substituting constants from H(P )
to each variable. If P contains function symbols then H(P ) and HB(P ) are
infinite but countable, otherwise they are finite. If P contains functions symbols
and variables then its grounding is infinite but countable, otherwise it is finite.
A Herbrand interpretation is a subset of HB(P ). Let us denote the set of all
Herbrand interpretations by IP .

Let us now discuss how to ascertain the truth of formulas in an interpretation.
A ground atom a is true in an interpretation I iff a ∈ I. A ground negative literal
¬a is true in an interpretation I iff a 6∈ I. A conjunction of ground literals from
a set B is true iff B+ ⊆ I and ¬B−∩I = ∅, where B+ (B−) is the set of positive
(negative) literals of B. A disjunction of ground atoms from a set D is true iff
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D ∩ I 6= ∅. A disjunctive non ground clause C is true in an interpretation I iff
for all grounding substitution θ of C: body(C)+θ ⊂ I ∧ ¬body(C)−θ ∩ I = ∅ →
head(C)θ ∩ I 6= ∅. The truth of a ground clause is a simple case of this.

As was observed by [8], the truth of a range restricted clause C in a finite
interpretation I can be tested by running the query ? − body(C), not head(C)
on a database containing I. If the query succeeds C is false in I. If the query
fails C is true in I.

A Logic Program with Annotated Disjunctions consists of a set of formulas
of the form

(h1 : p1) ∨ (h2 : p2) ∨ . . . ∨ (hn : pn)← b1, b2, . . . bm

called annotated disjunctive clauses. In such a clause the hi are logical atoms,
the bi are logical literals and the pi are real numbers in the interval [0, 1] such
that

∑n
i=1 pi = 1. For a clause C of the form above, I define head(C) as the set

{(hi : pi)|1 ≤ i ≤ n} and body(C) as the set {bi|1 ≤ i ≤ m}. If head(C) contains
a single element (a : 1) I will simply denote the head as a. I denote with PG the
set of all finite ground LPADs.

Example 1. Let us see an example of an LPAD taken from [38].

(heads(Coin) : 0.5) ∨ (tails(Coin) : 0.5)← toss(Coin),¬biased(Coin).

(heads(Coin) : 0.6) ∨ (tails(Coin) : 0.4)← toss(Coin), biased(Coin).

(fair(coin) : 0.9) ∨ (biased(coin) : 0.1).

toss(coin).

The program can be read in the following way: if I toss a coin that is not biased,
it has probability 50% of landing heads and probability 50% of landing tails. If I
toss a coin that is biased, it has probability 60% of landing heads and probability
40% of landing tails. The coin coin is tossed and is fair with probability 90%
and baised with probability 10%.

Example 2. Let us see another example of an LPAD taken from [4].

father(f, s). mother(m, s).

cg(f, 1, p). cg(f, 2, w).

cg(m, 1, w). cg(m, 2, w).

(cg(X, 1, A) : 0.5) ∨ (cg(X, 1, B) : 0.5)← father(Y,X), cg(Y, 1, A), cg(Y, 2, B).

(cg(X, 2, A) : 0.5) ∨ (cg(X, 2, B) : 0.5)← mother(Y,X), cg(Y, 1, A), cg(Y, 2, B).

color(X, purple)← cg(X, N, p).

color(X,white)← cg(X, 1, w), cg(X, 2, w).

This program encodes the Mendelian rules of inheritance of the color of pea
plants. The color of a pea plant is determined by a gene that exists in two forms
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(alleles), p and w, that stand for purple and white. Each plant has two alleles
for the color gene that reside on a couple of chromosomes. cg(X,N,A) indicates
that plant X has allele A on chromosome N. The facts of the program express
that s is the offspring of f and m and that the alleles of f are pw and of m are
ww. The disjunctive rules encode the fact that an offspring inherits the allele
on chromosome 1 from the father and the allele on chromosome 2 from the
mother. In particular, each allele of the parent has a probability of 50% of being
transmitted. The definite clauses for color express the fact that the color of a
plant is purple if at least one of the alleles is p, i.e., that the p allele is dominant.

2.2 Semantics of LPADs

The semantics of an LPAD was given in [38] for finite ground programs, i.e.,
programs in PG . A non-ground program can be assigned a semantics only if its
grounding is finite, i.e., if it does not contain function symbols. The semantics is
given in this case in terms of its grounding. Note that a finite ground program can
have an infinite Herbrand base in the case where it contains function symbols.
Let us denote with AB(P ) the set of all the atoms appearing in a program
P ∈ PG . AB(P ), differently from HB(P ), is always finite.

Each ground annotated disjunctive clause represents a probabilistic choice
between a number of ground non-disjunctive clauses. By choosing a head atom
for each ground clause of an LPAD I get a normal logic program called an
instance of the LPAD. For example, the LPAD in example 1 has the following
grounding

(heads(coin) : 0.5) ∨ (tails(coin) : 0.5)← toss(coin),¬biased(coin).

(heads(coin) : 0.6) ∨ (tails(coin) : 0.4)← toss(coin), biased(coin).

(fair(coin) : 0.9) ∨ (biased(coin) : 0.1).

toss(coin).

since there is only the constant coin in the Herbrand universe of the program.
The LPAD has thus 2 ·2 ·2 ·1 = 8 possible instances one of which is (formula

1)

heads(coin)← toss(coin),¬biased(coin).

heads(coin)← toss(coin), biased(coin). (1)

fair(coin).

toss(coin).

A probability is assigned to every instance by assuming independence between
the choices made for each clause. Therefore, the probability of the instance above
is 0.5 · 0.6 · 0.9 · 1 = 0.27.

An instance is identified by means of a selection function.

Definition 1 (Selection function [38]). Let P be a program in PG. A se-
lection σ is a function which selects one pair (h : p) from each rule of P , i.e.
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σ : P → (HB(P )× [0, 1]) such that, for each R in P , σ(R) ∈ head(R). For each
rule R, I denote the selected atom h by σatom(R) and the selected probability p
by σprob(R). Furthermore, I denote the set of all selections σ by SP .

Let me now give the formal definition of an instance.

Definition 2 (Instance [38]). Let P be a program in PG and σ a selection in
SP . The instance Pσ chosen by σ is obtained by keeping only the atom selected
for R in the head of each rule R ∈ P , i.e. Pσ = {“σatom(R)← body(R)”|R ∈ P}.

I now assign a probability to a selection function σ and therefore also to the
associated program Pσ.

Definition 3 (Probability of a selection [38]). Let P be a program in PG.
The probability of a selection σ in SP is the product of the probability of the
individual choices made by that selection, i.e.

Cσ =
∏

R∈P

σprob(R)

The semantics of the instances of an LPAD can be given by any of the semantics
defined for normal logic programs (e.g. Clark’s completion [6], Fitting semantics
[11], stable models [13], well founded semantics [36]). In [38] the authors have
considered only the well founded semantics, the most skeptical one. Since in
LPAD the uncertainty is modeled by means of the annotated disjunctions, the
instances of an LPAD should contain no uncertainty, i.e. they should have a
single two-valued model. Therefore, given an instance Pσ, its semantics is given
by its well founded model WFM(Pσ) and I require that it is two-valued.

Definition 4 (Sound LPAD [38]). P ∈ PG is called sound iff for each selec-
tion σ in SP , the well founded model WFM(Pσ) of the program Pσ chosen by
σ is two-valued.

For example, if the LPAD is acyclic (meaning that all its instances are acyclic
[1]) then the LPAD is sound. I denote with Pσ |=WFM F the fact that the
formula F is true in the well founded model of Pσ.

Let me note that, in the case a clause of a non ground LPAD generates two
or more ground clauses, a selection can select different heads for the different
groundings. For example, consider the following LPAD (formula 2)

(heads(Coin) : 0.5) ∨ (tails(Coin) : 0.5)← toss(Coin),¬biased(Coin).

(heads(Coin) : 0.6) ∨ (tails(Coin) : 0.4)← toss(Coin), biased(Coin). (2)

(fair(Coin) : 0.9) ∨ (biased(Coin) : 0.1).

toss(c1).

toss(c2).

An instance of this LPAD is for example:

heads(c1)← toss(c1),¬biased(c1).

5



tails(c2)← toss(c2),¬biased(c2).

tails(c1)← toss(c1), biased(c1).

heads(c2)← toss(c2), biased(c2).

fair(c1).

biased(c2).

toss(c1).

toss(c2).

I now define the probability of interpretations.

Definition 5 (Probability of an interpretation [38]). Let P be a sound
program in PG. For each of its interpretations I in IP , the probability π∗

P (I)
assigned by P to I is the sum of the probabilities of all selections which lead to
I, i.e. with S(I) being the set of all the selections σ for which WFM(Pσ) = I:

π∗
P (I) =

∑

σ∈S(I)

Cσ

For example, consider the interpretation {toss(coin), fair(coin), heads(coin)}.
This interpretation is the well founded model of two instances of the LPAD of
example 1, one is the instance represented by formula 1 and the other is the
instance:

heads(coin)← toss(coin),¬biased(coin).

tails(coin)← toss(coin), biased(coin).

fair(coin).

toss(coin).

The probability of this latter instance is 0.5 · 0.4 · 0.9 · 1 = 0.18. Therefore, the
probability of the interpretation above is 0.5 · 0.4 · 0.9 · 1 + 0.5 · 0.6 · 0.9 · 1 =
0.5 · (0.4 + 0.6) · 0.9 · 1 = 0.45.

Let me now introduce the definition of the probability of a formula.

Definition 6 (Probability of a formula [38]). Let P be a sound program in
PG. For each formula φ, the probability π∗

P (φ) of φ according to P is the sum of
the probability of all interpretations in which φ holds, i.e.

π∗
P (φ) =

∑

I∈Iφ

P

π∗
P (I)

with Iφ
P = {I ∈ IP I |= φ}.

In the case of the example 1, the probability of the formula heads(coin) is given
by the sum of the probabilities of the interpretations where heads(coin) is true.
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The interpretations where heads(coin) is true that have a non-zero probability
are:

I1 = {toss(coin), fair(coin), heads(coin)}

I2 = {toss(coin), biased(coin), heads(coin)}

where π∗
P (I1) = 0.45 and π∗

P (I2) = (0.5+0.5) ·0.6 ·0.1 = 0.6 ·0.1 ·1 = 0.06. Thus
π∗

P (heads(coin)) = 0.51.
I can also define the conditional probability of a formula given another one.

Definition 7 (Conditional probability of a formula). Let P be a sound
LPAD in PG. Given two formulas φ and ψ, the conditional probability of φ given
ψ according to P is indicated by π∗

P (φ|ψ).

According to Bayes theorem, I have

π∗
P (φ|ψ) =

π∗
P (φ ∧ ψ)

π∗
P (ψ)

2.3 Well Founded Semantics

A normal logic program is a disjunctive logic program where each clause head
contains a single atom, i.e., it is a logic program containing clauses C of the
following form:

h← b1, b2, . . . , bn

where h is an atom and each bi is a literal. The literals bi are called subgoals of
C.

A literal q is inconsistent with a set of literals S iff q ∈ ¬S. Sets of literals
S and R are inconsistent iff R ∩ ¬S 6= ∅. A set of literals is inconsistent iff it is
inconsistent with itself, otherwise it is consistent.

Given a normal logic program P , a partial interpretation I is a consistent set
of literals whose atoms are in HB(P ). A total interpretation is a partial interpre-
tation that contains every atom of HB(P ) or its negation. A total interpretation
I corresponds to the Herbrand interpretation I ∩HB(P ). I say a ground literal
is true in a partial interpretation I when it is in I and it is false in a partial
interpretation I when its complement is in I. I say that a ground conjunction
of literals B is true in a partial interpretation I when B ⊆ I and I say B is
false in a partial interpretation I when ¬B ∩ I 6= ∅. Note that if the partial
interpretation is not total, then the fact that B is not true does not imply that
it is false.

The definition of the well founded semantics was given in [36].

Definition 8 (Unfounded set [36]). Let a normal program P , its associated
Herbrand base HB(P ) and a partial interpretation I be given. I say A ⊆ HB(P )
is an unfounded set ( of P ) with respect to I if each atom p ∈ A satisfies the
following condition: For each instantiated clause C of P whose head is p, (at
least) one of the following holds:
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1. Some (positive or negative) subgoal q of C are false in I.
2. Some positive subgoal of C occurs in A.

In other words: for each atom p of A, for each instantiated clause p← E of P ,
the following holds:

1. ¬E ∩ I 6= ∅ or
2. E ∩A 6= ∅.

The union of arbitrary unfounded sets is an unfounded set. The greatest
unfounded set (of P ) with respect to I, denoted UP (I) is the union of all sets
that are unfounded of P with respect to I.

A transformation is a function from a set of literals to a set of literals. A
transformation T is monotonic iff T (I) ⊆ T (J) whenever I ⊆ J .

Definition 9 (TP , UP and WP transformations [36]). Transformations TP ,

UP and WP are defined as follows:

– p ∈ TP (I) iff there is some instantiated clause C of P such that C has head
p and each subgoal in the body of C is true in I.

– UP (I) is the greatest unfounded set of P with respect to I, as in definition
8.

– WP (I) = TP (I) ∪ ¬UP (I).

Lemma 1 ([36]). TP , UP and WP are monotonic transformations.

Definition 10 (Iα sets [36]). Let α range over all countable ordinals. The sets
Iα and I∞, whose elements are literals whose atoms are in HB(P ), are defined
recursively by:

1. For limit ordinal α,

Iα =
⋃

β<α

Iβ

Note that 0 is a limit ordinal, and I0 = ∅.
2. For successor ordinal α = γ + 1,

Iγ+1 = WP (Iγ)

3. Finally, define

I∞ =
⋃

α

Iα

For any literal p in I∞, I define the stage of p the least ordinal α such that p ∈ Iα.
For any conjunction of literals B I define the stage of B the least ordinal α such
that p ∈ Iα for every literal p of B.

Lemma 2 ([36]). Iα as defined in Definition 10 is a monotonic sequence of
partial interpretations (i.e., is consistent and Iβ ⊆ Iα if β < α)
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Definition 11 (Well founded semantics [36]). The well founded semantics
of a program P is the least fixed point of WP , or the limit I∞ described above.
If I∞ is a total interpretation, then I call it the well-founded model, otherwise
I call it the well-founded partial model. In the first case I write WFM(P ) =
I∞∩HB(P ), i.e., WFM(P ) is the Herbrand interpretation corresponding to the
total interpretation I∞.

Thus a program P is sound iff I∞ is a total interpretation. I now define the
dependency graph LD(P ) of a program P . The nodes of LD(P ) are the atoms
of HB(P ). The arcs are labeled either with + or − and are called respectively
positive and negative arcs. There is a positive arc from node b to node a if there
exists a clause in the grounding of P such that a is the head and b is in the body.
There is a negative arc from b to a if there exists a clause in the grounding of P
such that a is the head and ¬b is in the body.

An atom a depends positively on an atom b if there is a path from b to a

in the dependency graph containing an even number (zero included) of negative
arcs. I also say that a depends on the literal b. An atom a depends negatively on
an atom b if there is path from b to a in the dependency graph containing an
odd number of negative arcs. I also say that a depends on the literal ¬b.

I will indicate with Da the set of literals on which atom a depends. Note that
it can be an inconsistent set. I indicate with D−

a the set of negative literals of
Da.

If B is a conjunction of literals, I can define the dependencies of B by aug-
menting the local dependency graph with an extra node nB , by drawing a posi-
tive arc to nB from every atom a that appears positively in B and by drawing
a negative arc to nB from every atom a that appears negatively in B. Then the
set of literals on which B depends, indicated by DB , is defined as DnB

.
A negative path from atom b to atom a is a path from b to a in the dependency

graph that contains at least one negative arc. I will indicate with Na the set of
atoms that can reach a via a negative path.

I define NB for a conjunction B in a way similar to the definition of DB , i.e.
NB = NnB

.

Lemma 3. If a ground atom a of a program P belongs to DX where X is either
an atom or a conjunction of literals, then, for every clause a← B in the ground-
ing of P , B ⊆ DX . If a ground literal ¬a belongs to DX then, for every clause
a← B in the grounding of P , ¬B ⊆ DX . If a belongs to NX then NX ⊇ Na.

Proof. Obvious from the definition of dependency graph.

Lemma 4. Let P be a program, let X be a ground atom of P or a conjunction
of ground literals of P and let I be a partial interpretation of P . Then A =
UP (I) ∩ ¬DX is an unfounded set of P with respect to I.

Proof. I must verify that for each couple (c, c← E) such that c ∈ A and c← E

belongs to the grounding of P , it holds that ¬E ∩ I 6= ∅ or E ∩A 6= ∅. Since A is
a subset of UP (I), I must verify the conditions for those couples (c, c ← E) for

9



which ¬E∩I = ∅ and E∩UP (I) 6= ∅. Observe that, for lemma 3 and for the fact
that c ∈ ¬DX , then ¬E ⊆ DX . Thus E ⊆ ¬DX and E∩A = E∩¬DX∩UP (I) =
E ∩ UP (I) 6= ∅. So A is an unfounded set of P with respect to I.

Definition 12 (Locally stratified normal program [28]). A normal pro-
gram P is locally stratified iff all the atoms in HB(P ) can be assigned assigned
a countable ordinal rank such that, for every rule h← B in the grounding P ′ of
P

– the rank of h is higher than the rank of every atom that appears negatively
in B,

– the rank of h is higher or equal to the rank of every atom that appears
positively in B.

Theorem 1 ([36]). If P is locally stratified, then it has a well founded model,
i.e., I∞ is a total interpretation.

I extend the definitions of dependency graph and local stratification to disjunc-
tive logic programs and thus to LPADs. The definition of dependency graph
remains unaltered. The definition of local stratification is the natural extension
of the one for normal programs.

Definition 13 (Locally stratified disjunctive program). A disjunctive pro-
gram P is locally stratified iff all of the atoms in HB(P ) can be assigned a count-
able ordinal rank such that, for every rule h1 ∨ . . . ∨ hn ← B in the grounding
P ′ of P , for every hi

– the rank of hi is greater than the rank of every atom that appears negatively
in B,

– the rank of hi is greater or equal to the rank of every atom that appears
positively in B.

Note that this definition of local stratification for disjunctive logic programs
differs from the one in [28] because there the atoms in the head of a disjunctive
clause were forced to have the same rank. I will now prove a lemma that will be
useful in the following

Lemma 5. If P is a finite ground program, then P is locally stratified iff there
does not exist an atom a ∈ HB(P ) such that a ∈ Na.

Proof. In one sense it is obvious. In the other sense, I want to show that if
∀a ∈ HB(P ) a 6∈ Na then P is locally stratified. I will do it by showing how to
build a ranking that respects the definition of local stratification. Consider the
set of atoms An defined recursively in the following way:

– A0 = {a|a ∈ HB(P ) ∧Na = ∅}

– An = {a|a ∈ HB(P ) \ (
⋃n−1

i=0 Ai) ∧Na \ (
⋃n−1

i=0 Ai) = ∅} for n = 1, . . . ,∞
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The ranking assigns rank n to all the atoms in An. Let us call r(a) the rank
of atom a, thus r(a) = n iff a ∈ An. I will first prove that, if ∀a ∈ HB(P )
a 6∈ Na, then

⋃∞
i=0Ai = HB(P ). Then I will prove that the ranking satisfies the

definition of local stratification.

If
⋃∞

i=0Ai 6= HB(P ) then consider the set A = HB(P ) \
⋃∞

i=0Ai. Since
all the atoms a ∈ HB(P ) \ AB(P ) belong to A0 because Na = ∅, then A =
AB(P ) \

⋃∞
i=0Ai.

a ∈ A is such that 6 ∃n such that a ∈ An, i.e., ∀n Na \ (
⋃n−1

i=1 Ai) 6= ∅. This
means that Na \ (

⋃∞
i=1Ai) 6= ∅. Since Na ⊆ AB(P ) then Na \ (

⋃∞
i=1Ai) ⊆ A.

Thus ∀a ∈ A ∃b ∈ A such that b ∈ Na.

If A 6= ∅, since ∀a ∈ A, a 6∈ Na, it is possible to order the elements ai of
A so that ai ∈ Nai+1

. But A is finite, i.e. A = {ai, . . . , am}. Then am must be
such that am ∈ Naj

with j ≤ m. Since Nai+1
⊇ Nai

, then Nam
⊇ Naj

, then
am ∈ Nam

against the hypothesis, so A is empty.

Let us define Pn as the program containing all the clauses of P that contain
an atom in the head belonging to

⋃n
i=0Ai. I will prove by induction that the

ranking satisfies the definition of local stratification for every Pn thus also for
P =

⋃∞
n=0 Pn.

Consider a clause h1∨ . . .∨hm ← b1, . . . , bp,¬c1, . . . ,¬cr from P0. In it r = 0
because it exists an a such that ha ∈ A0 thus Nha

= ∅. Moreover, ∀j bj ∈ A0

because ∀j Nha
⊇ Nbj

. Since ∀j r(bj) = 0 and ∀i r(hi) ≥ 0, the ranking satisfies
the constraints for local stratification for P0.

Now consider a program Pn. Given that the ranking satisfies the constraints
for local stratification for Pn−1, I must prove that the constraints are satisfied
for the clauses in Pn \ Pn−1. Let h1 ∨ . . . ∨ hm ← b1, . . . , bp,¬c1, . . . ,¬cr be
a clause from Pn \ Pn−1. For the definition of Pn, ∀i ∃s hi ∈ As with s ≥ n

thus ∀i r(hi) ≥ n. Moreover, ∃a ha ∈ An. This means that Nha
\

⋃n−1
l=0 Al = ∅

and, since ∀j Nha
⊇ Nbj

and ∀k Nha
⊇ Nck

, then ∀j Nbj
\

⋃n−1
l=0 Al = ∅ and

∀k Nck
\

⋃n−1
l=0 Al = ∅ thus ∀j ∃t bj ∈ At with t ≤ n and ∀k ∃s ck ∈ As with

s ≤ n.

I will prove that in reality s < n. In fact if s = n then ck ∈ An and, since
ck ∈ Nha

, ck ∈ Nha
\

⋃n−1
l=0 Al thus ha 6∈ An against what I have assumed. Thus

∀i, j r(hi) ≥ r(bj) and ∀i, k r(hi) > r(ck).

Lemma 6. A finite ground disjunctive program P is locally stratified iff all its
instances are locally stratified.

Proof. An instance of P imposes on the rank a subset of the constraints that
are imposed by P so if P is locally stratified then the instance is as well.

In the other direction, I will prove that if P is not locally stratified, then it
exists an instance that is not locally stratified. By lemma 5 it exists an atom a

such that a ∈ Na. This means that it exists a negative path from a to a. Then
consider the instance obtained by selecting the atoms on the path from the heads
of the clauses giving rise to the arcs on the path and selecting any head from
the other clauses. Such an instance is not locally stratified because in it a ∈ Na.
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Lemma 7. Let P be a locally stratified normal program, let P ′ be its ground-
ing and let Q be a (possibly countably infinite) subset of P ′. Then Q is locally
stratified.

Proof. If there exists a ranking for P that satisfied the conditions of local strat-
ification, the same ranking satisfies the conditions for Q because the conditions
of Q are a subset of those for P .

I now present a lemma that will be used in the proof of theorem 5.

Lemma 8. Let P, P 1 and P 2 be finite ground normal logic programs, with P 1 =
P ∪ {h1 ← B}, P 2 = P ∪ {h2 ← B} where h1 and h2 are ground atoms and B
is a conjunction of ground literals. Moreover, let P 1 and P 2 be locally stratified.
If WFM(P 1) |= B then WFM(P 2) |= B.

Proof. Let us first define D1
B (D2

B) as the set of literals on which B depends on
in P 1 (P 2). Let us also consider the set DB of literals on which B depends on
in P . I will prove that D1

B = D2
B = DB . Let us consider P 1. Consider the local

dependency graph of P 1 augmented with the node nB and with the arcs to it.
It contains all the edges of the local dependency graph of P plus a positive edge
to h1 from every atom appearing in a positive literal of B and a negative edge
to h1 from every atom appearing in a negative literal of B.

Since P 1 is locally stratified, by lemma 5 h1 6∈ N
1
B (N1

B is the set of atoms
that can reach nB in P 1 via a negative path) and the paths from h1 to every
atom of B must contain zero negative arcs.

Thus an atom can reach nB via a path in P containing an even number of
negative arcs iff it can reach nB via a path in P 1 containing an even number of
negative arcs. So D1

B = DB .
The same reasoning can be applied for P 2. So D1

B = D2
B = DB .

Moreover, iff ¬h1 ∈ D
1
B , then h1 ∈ N

1
B and P1 would not be locally stratified.

Similarly for ¬h2 and D2
B . So ¬h1 6∈ DB and ¬h2 6∈ DB .

Let Iα be the set defined in the well founded semantics for P . Similarly for
I1
α and I2

α for P 1 and P 2 respectively.
Let ρ be the stage of B in P 1. I will prove that, for any ordinal α ≤ ρ,

I1
α ∩DB = Iα ∩DB = I2

α ∩DB .
Since P 1 is finite, then ρ is finite as well, so I can prove the above statement

using the principle of mathematical induction.
I first prove that for any ordinal α ≤ ρ, I1

α ∩ DB = Iα ∩ DB . For α = 0
the statement is true because I1

α = Iα = ∅. For α 6= 0, let δ = α − 1. Thus
I1
α = WP 1(I1

δ ) and Iα = WP (Iδ).
Consider a literal g belonging to I1

α ∩DB . I will distinguish two cases: that
g is positive and that g is negative.

If g is positive (i.e. g = a) then there exists a ground clause a ← E ∈ P 1

such that E ⊆ I1
δ . By lemma 3 E ⊆ DB thus E ⊆ I1

δ ∩ DB . For the inductive
hypothesis E ⊆ Iδ ∩ DB . Moreover, a ← E can not be h1 ← B since B is not
true in I1

δ because δ < ρ. Therefore a ← E is also in P . Thus a ∈ TP (Iδ) and
g ∈ Iα ∩DB .
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If g is negative (i.e. g = ¬b) then it belongs to (¬UP 1(I1
δ )) ∩DB . By lemma

4 the set A = UP 1(I1
δ ) ∩ ¬DB is unfounded of P 1 with respect to I1

δ . From the
definition of unfounded set, for every atom c ∈ A and for each ground rule of P 1

of the form c← E it holds that ¬E ∩ I1
δ 6= ∅ or E ∩A 6= ∅. I will now prove that

A is also an unfounded set of P with respect to Iδ. In fact, for each atom c ∈ A,
the set of ground rules of P of the form c← E is the same as that of P 1 since DB

does not contain ¬h1. For each such rule, the conditions holding for P 1 also hold
for P . The second condition is in fact the same. As regards the first condition,
from lemma 3, ¬E ⊆ DB . From ¬E ∩ I1

δ 6= ∅ I have ¬E ∩ I1
δ ∩ DB 6= ∅ and

¬E ∩ Iδ ∩DB 6= ∅ for the inductive hypothesis. Thus A is also an unfounded set
of P with respect to Iδ. Since ¬g ∈ A then ¬g ∈ UP (Iδ) and thus g ∈ Iα ∩DB .

Analogously I can prove that every literal g belonging to Iα∩DB also belongs
to I1

α ∩DB . So I1
α ∩DB = Iα ∩DB for every α ≤ ρ is proved.

The proof that I2
α ∩DB = Iα ∩DB α ≤ ρ can be conducted in a similar way,

observing that if g is positive and the clause g ← E is h2 ← B then B is true in
WFM(P 2) and the theorem is proved.

Thus I1
ρ ∩ DB = I2

ρ ∩ DB . Since B ⊆ I1
ρ and, given the definition of DB ,

B ⊆ DB , then B ⊆ I2
ρ and WFM(P 2) |= B.

The following two lemmas will be used in the proof of theorem 4. The principle
of transfinite induction is as follows. Let P (α) be a property of ordinals. Suppose
that, for all ordinals β, if P (γ) holds for all γ < β, then P (β) holds. Then P (α)
holds for all ordinals α.

Lemma 9. Consider the grounding P ′ of a sound normal logic program P and
consider a (possibly countably infinite) set of ground clauses Z of P ′ such that
every rule in Z has the body false in WFM(P ′). Then P ′ \ Z is sound and
WFM(P ′ \ Z) = WFM(P ′).

Proof. Let us call P 1 the program P ′ and P 2 the program P ′ \ Z. Let I1
α (I2

α)
be the Iα set of definition 10 for P 1 (P 2). Thus I1

∞ ∩HB(P 1) = WFM(P 1).
I will first prove that I2

α ⊇ I
1
α ∩ (HB(P 2) ∪ ¬HB(P 2)) for all α by using the

principle of transfinite induction: I assume that, given an ordinal β, for all γ < β,
I2
γ ⊇ I

1
γ∩(HB(P 2)∪¬HB(P 2)) and I prove that I2

β ⊇ I
1
β∩(HB(P 2)∪¬HB(P 2)).

I distinguish two cases: the one where β is a successor ordinal and the one
where β is a limit ordinal.

If β is a successor ordinal, then there exist an ordinal δ such that δ + 1 = β.
Consider a literal g belonging to I1

β ∩ (HB(P 2)∪ ¬HB(P 2)), I will prove that it

belongs to I2
β .

If g is positive (i.e. g = a), then a ∈ TP 1(I1
δ ). This means that there exist

a ground clause a ← E ∈ P 1 such that E ⊆ I1
δ . But a ← E 6∈ Z because

otherwise E 6⊆ I1
∞ and E 6⊆ I1

δ since I1
δ ⊆ I1

∞. Therefore a ← E ∈ P 2 and
E ⊆ HB(P 2) ∪ ¬HB(P 2). Since I2

δ ⊇ I1
δ ∩ (HB(P 2) ∪ ¬HB(P 2)) then E ⊆ I2

δ

and g ∈ I2
β .

If g is negative (i.e. g = ¬a), then a ∈ UP 1(I1
δ )∩HB(P 2). Let A be UP 1(I1

δ )∩
HB(P 2), I will prove that A is an unfounded set of P 2 with respect to I2

δ . For
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all c ∈ A, for all c ← E ∈ P 2, I must prove that ¬E ∩ I2
δ 6= ∅ or E ∩ A 6= ∅.

Since c ∈ UP 1(I1
δ ) and c ← E ∈ P 1, then ¬E ∩ I1

δ 6= ∅ or E ∩ UP 1(I1
δ ) 6= ∅.

The first condition implies that ¬E ∩ I1
δ ∩ (HB(P 2) ∪ ¬HB(P 2)) 6= ∅ since E ⊆

HB(P 2)∪¬HB(P 2). Thus for the inductive hypothesis ¬E∩ I2
δ 6= ∅. The second

condition implies that E∩UP 1(I1
δ )∩HB(P 2) 6= ∅ since E ⊆ HB(P 2)∪¬HB(P 2)

and UP 1(I1
δ ) ∩ ¬HB(P 2) = ∅. Thus E ∩ A 6= ∅. So A is an unfounded set of P 2

with respect to I2
δ , a ∈ UP 2(I2

δ ) and g ∈ I2
β .

If β is a limit ordinal then

I2
β = ∪γ<βI

2
γ and I1

β = ∪γ<βI
1
γ

For the inductive hypothesis I2
γ ⊇ I

1
γ ∩ (HB(P 2)∪¬HB(P 2)) for all γ < β, thus

I2
β ⊇ I

1
β ∩ (HB(P 2) ∪ ¬HB(P 2)).

So I2
∞ ⊇ I

1
∞∩ (HB(P 2)∪¬HB(P 2)). But I1

∞ is two valued, i.e. every atom of
HB(P 1) is present in positive or negative form in I1

∞. Since HB(P 2) ⊆ HB(P 1),
then every atom of HB(P 2) is present in positive or negative form in I1

∞. As a
consequence, every atom of HB(P 2) is present in positive or negative form in
I1
∞ ∩ (HB(P 2) ∪ ¬HB(P 2)) and thus also in I2

∞. So I2
∞ is two valued (P 2 is

sound) and WFM(P 2) = I2
∞ ∩HB(P 2) = I1

∞ ∩HB(P 2). But I1
∞ ∩ (HB(P 1) \

HB(P 2)) = ∅, because all the clauses of Z have the body false in I1
∞ and so no

atom of HB(P 1) \ HB(P 2) can be true in I1
∞. So WFM(P 1) = I1

∞ ∩ HB(P 2)
and WFM(P 2) = WFM(P 1).

Lemma 10. Consider the grounding P ′ of a sound normal logic program P and
consider a (possibly countably infinite) set of ground clauses Z such that every
clause in Z has the body false in the Herbrand interpretation WFM(P ′) and
such that P ′ ∪ Z is sound. Then WFM(P ′ ∪ Z) = WFM(P ′).

Proof. Let us call P 1 the program P ′ ∪Z and P 2 the program P ′. Let I1 be the
total interpretation of P 1 corresponding to WFM(P 2) (i.e. I1 = WFM(P 2) ∪
¬(HB(P 1)\WFM(P 2))). Let I2 be the total interpretation of P 2 corresponding
to WFM(P 2) (i.e. I2 = WFM(P 2) ∪ ¬(HB(P 2) \WFM(P 2))). The fact that
the clauses of Z have the body false in the Herbrand interpretation WFM(P 2)
means that they have the body false in the total interpretation I1, i.e., that
∀a← E ∈ Z, ¬E ∩ I1 6= ∅. Let I1

+ (I1
−) be the set of positive (negative) literals

of I1 and similarly for I2
+ and I2

−. Note that: HB(P 2) ⊆ HB(P 1), I2
+ = I1

+,
I2
− = I1

− ∩ ¬HB(P 2), I1
− = I2

− ∪ ¬(HB(P 1) \HB(P 2)) and I2 ⊆ I1.
I will prove that I1 is a fixed point of WP 1 , i.e., that WP 1(I1) = I1, know-

ing that I2 is a fixed point of WP 2 . I will do this by showing that TP 1(I1) =
TP 2(I2) = I2

+ = I1
+ and that UP 1(I1) = ¬I1

−.
As regards the first statement, let us consider an atom g ∈ TP 1(I1). Then

there exists a clause of P 1 of the form g ← E such that E is true in I1. This
clause cannot be in Z since every clause of Z has the body false in I1. Therefore
this clause is also present in P 2. Thus the atoms of the literals of E are inHB(P 2)
and E ⊆ I2. Therefore g ∈ TP 2(I2). Let us now consider an atom g ∈ TP 2(I2).
Then there exists a clause of P 2 of the form g ← E such that E ⊆ I2. This
clause is also in P 1 and, since I2 ⊆ I1, E is true also in I1. Thus g ∈ TP 1(I1).
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As regards the second statement, consider an atom g ∈ UP 1(I1). Let us
suppose that g ∈ HB(P 2). Then there exists an unfounded set A ⊆ HB(P 1) of
P 1 with respect to I1 such that g ∈ A. For every atom a ∈ A, for each clause
a← E ∈ P 1, ¬E∩I1 6= ∅ or E∩A 6= ∅. A′ = A∩HB(P 2) is an unfounded set of
P 2 with respect to I2. In fact, for every atom a ∈ A′ for each clause a← E ∈ P 2,
the atoms of the literals of E belong to HB(P 2) thus ¬E ∩ I2 6= ∅ or E ∩A′ 6= ∅.
So g ∈ UP 2(I2), ¬g ∈ I2 and ¬g ∈ I1 since I2 ⊆ I1. If g ∈ HB(P 1) \HB(P 2),
then ¬g ∈ I1.

Now consider an atom g such that ¬g ∈ I1. If g ∈ HB(P 2) then ¬g ∈ I2. So
there exists an unfounded set A of P 2 with respect to I2 such that g ∈ A. For
every atom a ∈ A, for every clause a ← E in P 2 it holds that ¬E ∩ I2 6= ∅ or
E∩A 6= ∅. Then A is also an unfounded set of P 1. In fact, for the clauses a← E

of P 2, ¬E ∩ I1 6= ∅ or E ∩ A 6= ∅ holds since I2 ⊆ I1. For the clauses a← E of
Z, if holds that ¬E ∩ I1 6= ∅. Thus g ∈ UP 1(I1). If g ∈ HB(P 1) \HB(P 2) then
A′ = HB(P 1) \ HB(P 2) is an unfounded set of P 1 with respect to I1. In fact,
for every atom a ∈ A′, every clause of the form a← E must belong to Z, so E
is false in I1. So g ∈ UP 1(I1).

Due to proposition 5.1 in [22], the least fixed point of WP 1 is the intersection
of all the fixed points of WP 1 . Since I1 is a fixed point, then the least fixed point
of WP 1 is a subset of I1. If the least fixed point of WP 1 is a proper subset of
I1 it would not be total, contrary to the fact that, since P 1 is sound, the least
fixed point of WP 1 is a total interpretation. Thus the least fixed point of WP 1

is equal to I1. So WFM(P 1) = I1
+ = WFM(P 2).

Note that the fact that P ′ ∪ Z is sound is necessary for the lemma to hold. In
fact consider the program P ′ = {a ← ¬b} and the set Z = {b ← ¬a}. Then
WFM(P ′) = {a} and the body of the clause in Z is not true in WFM(P ′) but
P ′ ∪ Z has the well founded partial model ∅.

Let me now introduce some definitions and theorems that will be needed for
proving the correctness of ALLPAD (theorem 6). I first introduce the Fitting
semantics [12].

Definition 14. Given a normal program P , NP is defined as the transformation
that, given a partial interpretation I, gives as NP (I) the set of atoms p such that,
for every instantiated rule of P of the form p← B, B is false in I, i.e. ¬B∩I 6= ∅.
Note that Np is the portion of UP produced by condition (1) of definition 8. The
transformation FP is defined in the following way: FP (I) = TP (I) ∪ ¬NP (I).

Definition 15. Given a normal program P , its Fitting model is the least fixed
point of the transformation FP .

Theorem 2 (Corollary 4.3 of [36]). Given a normal program P , the Fitting
model of P is a subset of I∞.

I now define a class of programs for which the Fitting and the well founded
semantics coincide, the class of acyclic programs.
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Definition 16 ([1]). A normal program P is acyclic iff all of the atoms in
HB(P ) can be assigned a countable ordinal rank such that, for every rule p← B

in the grounding P , the rank of p is greater than the rank of every atom on which
a literal that appears in B is built.

Theorem 3 (Theorem 11.1 in [2]). If P is an acyclic program, then (1)
FM(P ) = WFM(P ) and (2) they are two valued.

I will now give the definition of an acyclic LPAD.

Definition 17. An LPAD P ∈ PG is acyclic iff all of the atoms in HB(P ) can
be assigned a countable ordinal rank such that, for every rule h1 : p1 ∨ . . .∨ hn :
pn ← B in the grounding P , every hi has the same rank r and r is greater than
the rank of every atom on which a literal that appears in B is built.

3 Properties of LPADs

In [30] a definition and two theorems were given that will be useful in the fol-
lowing. I will report them here, together with a correction: in [30] it was not
specified that the theorems hold only for ground clauses and for locally strati-
fied programs. Moreover, I report also more detailed proofs for them.

The first theorem states that, under certain conditions, the probabilities of
the head disjuncts of a ground rule can be computed from the probabilities of
the interpretations. In particular, the probability of a disjunct hi is given by the
conditional probability of hi given the body, i.e. by the sum of the probabilities
of interpretations where the body of the clause and hi are true divided by the
sum of the probabilities of interpretations where the body is true.

The second theorem states that, given an interpretation I, under certain
conditions, all the selections σ in the set S(I) agree on all the rules in program
with the body true in I and that the probability of I can be computed by
multiplying the probabilities of the head disjuncts selected by a σ ∈ S(I) for all
the clauses with the body true.

Definition 18 (Mutually exclusive bodies). Ground clauses H1 ← B1 and
H2 ← B2 have mutually exclusive bodies over a set of interpretations J if,
∀I ∈ J , B1 and B2 are not both true in I.

Theorem 4. Consider a locally stratified LPAD P in PG and a clause C ∈ P
of the form

C = h1 : p1 ∨ h2 : p2 ∨ . . . hm : pm ← B.

Suppose you are given the function π∗
P and suppose that all the clauses of P that

share an atom in the head with C have mutually exclusive bodies with C over
the set of interpretations J = {I|π∗

P (I) > 0}. The probabilities pi are given by
the conditional probability of the head atoms given the body:

pi = π∗
P (hi|B)
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Proof. Using Bayes theorem I get

pi =
π∗

P (hi ∧B)

π∗
P (B)

which gives

pi =

∑

I∈IP ,I|=B,hi
π∗

P (I)
∑

I∈IP ,I|=B π
∗
P (I)

Let us first expand the numerator:

∑

I∈IP ,I|=B,hi

π∗
P (I) =

∑

I∈J,I|=B,hi

∑

σ∈S(I)

∏

R∈P

σprob(R)

A selection σ such that WFM(Pσ) = I for an I such that I |= B, hi is
a selection such that Pσ |=WFM B, hi. Therefore the above expression can be
written as

∑

σ∈T

∏

R∈P

σprob(R)

where T = {σ|Pσ |=WFM B, hi}. Since clause C has a mutually exclusive body
over the set of interpretations J with all the other clauses of P that contain hi

in the head, the truth of hi in Pσ can be obtained only if σ(C) = (hi : pi) for all
σ ∈ T , therefore the numerator becomes

∑

σ∈T

∏

R∈P\{C}

σprob(R)σprob(C) =

∑

σ∈T

∏

R∈P\{C}

σprob(R)pi =

pi

∑

σ∈T

∏

R∈P\{C}

σprob(R)

Let us expand the denominator in a similar way

∑

I∈IP ,I|=B

π∗
P (I) =

∑

σ∈Q

∏

R∈P

σprob(R)

where Q = {σ|Pσ |=WFM B}. Let us define Qj as the set that contains all
the selections σ that differ from a selection σ′ from T only on clause C in the
following way: σ(C) = (hj : pj) while σ′(C) = (hi : pi). Then Qj ∩ Qk = ∅ for
all j, k = 1, . . .m, j 6= k.

I will show that Q = Q1 ∪ . . . ∪Qm. I start by showing that if σ ∈ Qj then
σ ∈ Q. Let σ be a selection in Qj and let σ′ be the selection from T that differs
from σ only on clause C. Thus Pσ = (Pσ′ \ {hi ← B}) ∪ {hj ← B}. Since
Pσ′ |=WFM B, hi then Pσ′ |=WFM B. From lemma 8 and from the fact that P
is locally stratified, Pσ |=WFM B. Thus σ ∈ Q.

I now show that if σ ∈ Q then there exists a j such that σ ∈ Qj . Let σ be
a selection in Q, then Pσ |=WFM B. Let (hj : pj) be the disjunct that σ selects
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on C. Now consider a selection σ′ that differs from σ only on clause C: σ′(C) =
(hi : pi). Then Pσ′ = (Pσ \ {hj ← B}) ∪ {hi ← B}. From lemma 8 and from
the fact that P is locally stratified, Pσ′ |=WFM B. Moreover Pσ′ |=WFM B, hi.
Thus σ′ ∈ T and σ ∈ Qj .

Therefore the denominator becomes

m
∑

j=1

∑

σ∈Qj

∏

R∈P

σprob(R) =

m
∑

j=1

∑

σ∈Qj

∏

R∈P\{C}

σprob(R)pj =

m
∑

j=1

pj

∑

σ∈Qj

∏

R∈P\{C}

σprob(R)

By the definition of Qj the elements of T and Qj are in one-to-one correspon-
dence and

∑

σ∈T

∏

R∈P\{C}

σprob(R) =
∑

σ∈Qj

∏

R∈P\{C}

σprob(R)

for all j = 1, . . . ,m. Thus, the fraction becomes

pi

∑

σ∈T

∏

R∈P\{C} σprob(R)
(

∑m
j=1 pj

)

∑

σ∈T

∏

R∈P\{C} σprob(R)
= pi

Theorem 5. Consider an interpretation I and a locally stratified LPAD P in
PG such that all the couples of clauses of P that share an atom in the head
have mutually exclusive bodies with respect to the set of interpretations {I}. If
S(I) 6= ∅ then all the selection σ ∈ S(I) agree on the clauses of P with body true
in I and

π∗
P (I) =

∏

R∈P,I|=body(R)

σprob(R) (3)

where σ is any element of S(I). If S(I) = ∅ then π∗
P (I) = 0.

Proof. If S(I) = ∅ then, by the definition of π∗
P (I), π∗

P (I) = 0.
If S(I) 6= ∅, consider the set F of clauses of P with the body false in I.

Since P is finite, F is also finite. Thus F = {R1, R2, . . . , Rm}. Consider the
following sequence of subprograms of P : P 0 = P \F and Pn = Pn−1 ∪{Rn} for
1 ≤ n ≤ m. Note that, by lemma 7 and by the fact that P is locally stratified,
every Pn is locally stratified.

Let Sn(I) be the set of all selections σ such that WFM(Pn
σ ) = I. I will first

prove that Sn(I) 6= ∅ for all n = 0, . . . ,m. Consider a selection σ ∈ S(I) and the
program Pσ selected by it. Moreover, let Pn

σ be the program selected by it from
Pn. Pn

σ = Pσ \ T where T is a set of clauses with the body false in I and Pσ is
locally stratified. For lemma 9 WFM(Pn

σ ) = I thus the restriction of σ to the
clauses of Pn belongs to Sn(I).
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Now I will prove formula 3 by induction on the sequence of programs Pn.

Case n = 0. For each atom a ∈ I, there is only one clause C of P 0 that has
it in the head for the assumption of mutual exclusion. Therefore, for a to be in
I, every σ ∈ S(I) must select atom a for clause C. Moreover, all the clauses of
P 0 have the body true in I, therefore for each clause one atom in the head must
be in I. Therefore there is a single σ in S(I) and the theorem holds.

I assume that the theorem holds for Pn−1 and I prove that the theorem holds
for Pn. Suppose that Rn is

h1 : p1 ∨ h2 : p2 ∨ . . . ∨ hm : pm ← B

Moreover, let Si
n(I) be the set of all the selections σ of Pn such that they

extend a selection σ′ of Sn−1(I) over clause Rn (i.e., ∀R ∈ Pn−1 : σ(R) = σ′(R))
and σ(Rn) = (hi : pi). Thus Si

n ∩ S
j
n = ∅ for all i, j = 1, . . . ,m, i 6= j.

I will show that Sn(I) = S1
n(I)∪ . . .∪Sm

n (I). Consider a selection σ ∈ Sn(I):
σ is such that WFM(Pn

σ ) = I. Let us call (hi : pi) the disjunct it selects from
Rn. Consider the selection σ′ obtained by restricting σ on the clauses of Pn−1.
Since Rn has the body false in I and Pn is locally stratified, by lemma 9 then I is
also the well founded model of Pn−1

σ′ . Thus σ ∈ Si
n(I). Now consider a selection

σ ∈ Si
n(I). By the definition of Si

n(I), σ is such that WFM(Pn−1
σ ) = I. Since

Rn has the body false in I and Pn is locally stratified by lemma 10 I is also the
well founded model of Pn

σ . Thus σ ∈ Sn(I).

I can write:

π∗
P n(I) =

∑

σ∈Sn(I)

∏

R∈P n

σprob(R) =

=

m
∑

i=1

∑

σ∈Si
n(I)

∏

R∈P n

σprob(R) =

=
m

∑

i=1

∑

σ∈Si
n(I)

∏

R∈P n−1

σprob(R)σprob(Rn) =

=

m
∑

i=1

∑

σ∈Si
n(I)

∏

R∈P n−1

σprob(R)pi =

=
m

∑

i=1

pi

∑

σ∈Si
n(I)

∏

R∈P n−1

σprob(R) =

Since there is a one to one correspondence between elements of Si
n(I) and el-

ements of Sn−1(I) and the corresponding selections agree on all the clauses in
Pn−1 then

π∗
P n(I) =

m
∑

i=1

pi

∑

σ∈Sn−1(I)

∏

R∈P n−1

σprob(R) =
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=
∑

σ∈Sn−1(I)

∏

R∈P n−1

σprob(R)

m
∑

i=1

pi =

=
∑

σ∈Sn−1(I)

∏

R∈P n−1

σprob(R)

which, for the hypothesis for n− 1, becomes
∏

R∈P n−1,I|=body(R)

σprob(R)

where σ is any element of Sn−1(I). Since Rn has the body false in I,

π∗
P n(I) =

∏

R∈P n,I|=body(R)

σprob(R) (4)

I now have to prove that every element of Sn(I) agrees with every element of
Sn−1(I) on the clauses with the body true in I, i.e., on the clauses of P 0. Since
I proved that Sn(I) =

⋃n
i=1 S

i
n(I), σ ∈ Sn(I) is such that it exists an i such that

σ ∈ Si
n(I). By the way in which Si

n(I) was constructed, then σ agrees with a
selection of Sn−1(I) on all the clauses of Pn−1. The inductive hypothesis states
that all the selections in Sn−1(I) agree on all clauses of P 0, so all the selections
of Sn(I) agree on the clauses of P 0. So formula 4 holds with σ any element of
Sn(I) and the theorem holds.

The hypothesis of mutual exclusion of the bodies is fundamental for this
theorem to hold. In fact, consider the following example:

P2 = a : a1 ∨ b : b1 ∨ c : c1.

a : a2 ∨ c : c2 ∨ d : d2.

a : a3 ∨ b : b3 ∨ d : d3.

Then π∗
P2

({a, b, c}) = a1c2b3 + b1c2a3 + c1a2b3.

4 Learning LPADs

I consider a learning problem of the following form [29]:
Given:

– a set E of examples that are couples (I, π(I)) where I is an interpretation,
π(I) is its associated probability and

∑

(I,π(I))∈E π(I) = 1,

– a space of possible LPAD S (described by a language bias LB)

Find: an LPAD P ∈ S such that ∀(I, π(I)) ∈ E π∗
P (I) = π(I)

Instead of a set of couples (I, π(I)), the input of the learning problem can be
a multi set E′ of interpretations. From this case I can obtain a learning problem
of the form above by computing a probability for each interpretation in E′.
The probability can be computed by dividing the number of occurrences of the
interpretation by the total number of interpretations in E′.

I now describe LLPAD [29] and then ALLPAD.
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4.1 LLPAD

LLPAD learns ground LPADs in four phases: the first consists in finding all the
definite clauses that satisfy certain constraints, the second consists in finding
all the disjunctive clauses that satisfy certain constraints, the third consists
in annotating the head atoms of disjunctive clauses with probabilities and the
fourth consists in solving a constraint satisfaction problem.

The first and second phases can be cast in the framework proposed by [34]
in which the problem of descriptive ILP is seen as the problem of finding all
the clauses in the language bias that satisfy a number of constraints. Exploiting
the properties of constraints, the search in the space of clauses can be usefully
pruned.

A constraint is monotonic if it is the case that when a clause does not satisfy
it, none of its generalizations (in the θ-subsumption generalization order) satisfies
it. A constraint is anti-monotonic if it is the case that when a clause does not
satisfy it, none of its specializations satisfies it.

The first phase of LLPAD can be formulated in this way: find all the definite
clauses that satisfy the following constraints:

D1 they have their body true in at least one interpretation
D2 they are satisfied in all the interpretations
D3 they are maximally general (there does not exist another clause that is

strictly more general and that satisfies D1 and D2)

LLPAD searches the space of definite clauses by performing a complete depth-
first and top-down search in the space of bodies for each ground atom allowed
by the language bias in the head of clauses, exploiting constraint D3 and D1: as
soon as a body is found such that the clause is satisfied in all interpretations,
the clause is returned and the search along that branch is stopped; as soon as a
body that is true is zero interpretations is found, the search along that branch
is stopped, because constraint D1 is anti-monotonic.

The second phase can be formulated in this way: find all the disjunctive
clauses that satisfy the following constraints:

C1 they have their body true in at least one interpretation
C2 they are satisfied in all the interpretations
C3 their atoms in the head are mutually exclusive over the set of interpreta-

tions where the body is true (i.e. no two head atoms are both true in an
interpretation where the body is true)

C4 they have no head atom true in no interpretation where the body is true

LLPAD searches the space of disjunctive clauses by first searching depth-first
and top-down for bodies true in at least one interpretation and then, for each
such body, searching for a head satisfying the remaining constraints. When a
body is found that is true in zero interpretations, the search along that branch
is stopped (constraint C1 is anti-monotonic).

The system searches the clause space in a complete way and employs only
bottom-up search in the space of heads, exploiting the monotonic constraint
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C2 that requires the clause to be true in all the interpretations for pruning the
search.

Definite clauses are searched separately because if I allow the search in the
space of heads in the second phase to reach single atom heads I would return
also non maximally general definite clauses. In fact, given a body B, an atom
a and a literal b, if a ← B satisfies constraints C1-4 and B, b is true in at least
one interpretation, then both the clauses a← B and a← B, b will be returned,
thus violating constraint D3.

The third phase is performed by using theorem 4: given a ground clause
generated by the second phase, the probabilities of head atoms are given by
the conditional probability of the head atoms given the body according to the
distribution π.

In the fourth phase, LLPAD partitions the found disjunctive clauses in sub-
sets that are solutions of the learning problem. This is done by assigning to each
clause Ci found in the second phase a variable xi that is 0 if the clause is absent
from a solution P and is 1 if the clause is present. The system must ensure that
the couples of clauses that share a literal in the head have mutually exclusive
bodies over the set of interpretations E. This is achieved by testing, for each
couple of clauses, if they share a literal in the head and, if so, if the intersec-
tions of the two sets of interpretations where their body is true is non-empty.
LLPAD asserts the constraint xi +xj ≤ 1 for all such couples of clauses (Ci, Cj).
Finally P must assign the correct probability to each interpretation. For each
interpretation I such that (I, π(I)) ∈ E, the system asserts the constraint:

∏

Ci∈SC(I)

pxi

i = π(I)

where SC(I) is the set of all the found disjunctive clauses whose body is true
in I and pi is the probability of the single head of Ci that is true in I. This
constraint is based on theorem 5.

Definite clauses are not considered in the constraints because they would
contribute only with a factor 1xj that has no effect on the constraint for any
value of xj . Therefore, for each assignment of the other variables, xj can be
either 0 or 1. For this reason, all the found definite clauses are included in every
solution and, therefore, I need only the most general definite clauses.

If I take the logarithm of both members I get the following linear constraint:
∑

Ci∈SC(I)

xi log pi = log π(I) (5)

LLPAD can thus find the solutions of the learning problem by solving the above
linear constraint satisfaction problem.

4.2 ALLPAD

ALLPAD learns ground LPADs in five phases. The first and the third are the
same as those of LLPAD. The second and the fourth modify those of LLPAD
and the fifth one is new.
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Let me first consider the fourth phase: in it ALLPAD does not solve a con-
straint satisfaction problem but it solves an optimization problem. In fact, with
real world problems, a perfect solution of the learning problem may not exist
in the solution space, because the language bias is too restricted or because the
data available is noisy. In these cases the constraint phase returns a failure. In
order to solve this problem, I may enlarge the language bias, but this can lead
to unacceptable run times, or look for an approximate solution. Thus the con-
straint problem is transformed into an optimization problem where the system
tries to satisfy the interpretation constraints as much as possible. i.e., it tries to
minimize the absolute value of the difference between the left and right members
of the interpretation constraints (5).

However the absolute value function is not linear, therefore I have to trans-
form the cost function so that I can use linear programming techniques. To this
purpose, I introduce a “slack variable” named max and two “slack variables” s+I
and s−I for each interpretation I. These variables are real. Then each interpre-
tation constraint of the form of equation (5) is substituted with two constraints
of the form

∑

Ci∈SC(I) xi log pi

log π(I)
− 1 ≤ s+I

1−

∑

Ci∈SC(I) xi log pi

log π(I)
≤ s−I

Moreover they must satisfy the following constraints for every I

s+I ≥ 0 s+I ≤ max s−I ≥ 0 s−I ≤ max

The cost function to be minimized can now be expresses as

0.5×max+ 0.5×

∑

(I,π(I))∈E(s+I + s−I )

|E|

In this way I try to minimize both the maximum error and the average error,
assigning them the same weight.

Since now both the constraints and the cost function are linear, I can use
mixed-integer programming (MIP) techniques. If no perfect solution exist, a non
zero optimum will be found.

However, the optimization problem, as the constraint problem, is NP-hard
and thus solvable only for small instances. To overcome this problem, I exploit
the possibility of setting a time limit offered by many MIP packages: at the
deadline, the best admissible solution found up to that point is returned. An
admissible solution in this case is one that respects all the mutual exclusion
constraints. If no admissible solution has been found, the package returns an
error. In this way, ALLPAD looks for the best solution given the available time.

To make sure that an admissible solution will be found within the time lim-
its, one can reduce the dimension of the problem by reducing the number of
clauses found in the second phase. Thus one may prefer the clauses that apply
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to examples with a high probability, because they will give a large contribution
to the probability of interpretations. For this reason the complete search in the
space of bodies performed by LLAPD is given up for an incomplete search strat-
egy, beam search. The heuristic to be used for ranking bodies is the sum of the
probabilities of the interpretations where the body is true. This heuristic ensures
that the clauses that apply only to a small number of improbable interpretations
are discarded and the dimension of the optimization problem is reduced.

Moreover, in ALLPAD it is possible to set a limit on the number of nodes ex-
plored in the search for bodies, in order to further limit the number of generated
clauses.

As regards the search in the space of heads, the system can employ ei-
ther bottom-up search or top-down search at the user choice. When it searches
bottom-up it exploits the monotonic constraint that requires the clause to be
true in all the interpretations for pruning the search. When it searches top-down
it exploits the anti-monotonic constraint that requires head atoms to be mutu-
ally exclusive. This second possibility was proposed in [34] where the authors
present the system Classic’cl.

ALLPAD can also employ a third modality for finding heads that does not
require search. If the head atoms in a clause templates in the language bias are
mutually exclusive by construction, then a clause can be found in the following
way: the system starts with a head containing all the possible atoms then, if
the clause is satisfied in all interpretations, it removes the head atoms that are
not true in at least one interpretation where the body is true and it returns the
clause. This modality has been employed in the experiments presented in section
7.

ALLPAD uses complete search in the space of heads, because head search
gives at most one clause as output and, with an incomplete search, it may fail in
finding the clause satisfying the constraints, thus discarding a body that applies
to many probable examples.

The algorithm for the second phase in pseudo-code is given in Figure 1. In
it the function SearchHeads performs the search in the space of heads and it
returns either a set containing a single clause satisfying the constraints or the
empty set if no such clause exists.

The language biases and refinement operators used in the first and second
phases are described in the next section.

In the fifth phase, the definite clauses not mutually exclusive with the se-
lected disjunctive clauses are removed. To this purpose, for each definite clause,
ALLPAD looks for the disjunctive clauses that share an atom in the head with
the definite clause and checks if the bodies are both true in one of the input
interpretations. If this is true, the definite clause is removed. In this way in the
output program all clauses sharing an atom in the head have mutually exclusive
bodies.
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Fig. 1. Function SecondPhase

function SecondPhase(
inputs : E : set of couples (I, π(I)),

LB : a language bias expressed as a set of clause templates,
d : dimension of the beam
n : maximum number of explored nodes

returns : C : a set of disjunctive clauses)

C := ∅
for each clause template T in LB

let ρT be the downward refinement operator for
bodies relative to clause template T

Beam := [(true,
∑

(I,π(I))∈E
π(I))]

/* Beam is a list of couples ordered on the second argument */
i := 0
while Beam 6= ∅ and i < n

i := i + 1
remove the first couple (Body, P ) from Beam

if Body is true in at least one interpretation (i.e. P > 0) then
C := C∪SearchHeads(E, Body, LB)
Ref := ρT (Body)
for each body R ∈Ref

let ER be the set of couples (I, π(I)) of E such that
R is true in I

PR :=
∑

(I,π(I))∈ER
π(I)

insert (R, PR) in Beam in descending order of PR

discard the elements of Beam after the d-th
return C
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5 Correctness

In this section I will prove that ALLPAD is correct in the case in which a mini-
mum of 0 is reached in the optimization phase, i.e., if the solution returned by
ALLPAD has a cost of 0, then the solution assign to every input interpretations
the given probability.

ALLPAD is not complete because it performs beam search in the space of
bodies and because it does not find the optimum of the optimization problem.

Theorem 6 (Correctness of ALLPAD). Given a learning problem LP such
that the language bias allows only acyclic programs, if the optimization phase of
ALLPAD finds a solution Q with cost equal to 0, then the solution satisfies the
conditions of LP .

Proof (of theorem 4). We have to prove that, for all (I, π(I)) ∈ E, S(I) 6= ∅. In
this case in fact theorem 5 can be applied.

To this purpose, given an interpretation I such that (I, π(I)) ∈ E, let Qσ be
the normal program obtained by selecting the atom that is true in I from the
rules of the solution whose body is true in I and any atom from the other rules.
We have to prove that WFM(Qσ) = I. Note that, by the fact that the language
bias allows only acyclic programs, then WFM(Qσ) exists and is two valued for
every σ

Let I = {l1, . . . , ln} be a total interpretation where li is a literal for i =
1, . . . , n. Let I+ (I−) be the set of positive (negative) literals of I. I+ is the
corresponding Herbrand interpretation. The probability of I can be expressed
as

π(I) = π(l1 ∧ . . . ∧ ln)

since the formula l1∧ . . .∧ ln is true only in I. Using the chain rule of probability,
I can write

π(I) = π(l1)π(l2|l1)π(l3|l1, l2) . . . π(ln|l1, . . . , ln−1) (6)

given any order of the li. Let us indicate with π(l|LIl) a generic factor of π(I).
Let r be a ranking of the atoms of HB(Q) so that: (1) Q is acyclic with respect
to r and (2) if two clauses of Q have not mutually exclusive bodies they have
different ranking for the atoms in the head. Given that the language bias allows
only acyclic programs and that only clauses with mutually exclusive bodies can
share an atom in the head, such a ranking exists. Let r(l) be the rank of the
atom of the literal l. Consider an order of the lis such that if r(l) < r(m) then l
precedes m and if r(l) = r(m) and l is positive and m negative then l precedes m.
Such ordering is different for every interpretation, what remains constant among
interpretations is the division of literals in layers, i.e., in groups of literals with
the same ranking. Inside each layer, the ordering of the literals is different for
every interpretation. Note that, for every interpretation and every layer, at most
one literal is positive: in fact, if we call l such a literal, there is a single rule R
with l in the head that has the body true in I for the assumption of mutual
exclusion and all the other atoms in the head of l are false.
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Let W (I) be the left member of the interpretation constraint for I and let
A(I) the set of atoms a for which the factor pa is in W (I). We know that,
∀(I, π(I)) ∈ E, A(I) ⊆ I and that W (I) = π(I).

Consider an atom a ∈ A(I). Then pa < 1 and there exist a clause R in Qσ

with the body Ba true in I that has atom a in the head. By the way in which
pa was computed then pa = π(a|Ba).

I now prove that ∀I, a ∈ A(I) π(a|Ba) ≥ π(a|LIa). If ∃I, a π(a|Ba) <

π(a|LIa), consider an I and an a such that π(a|Ba) < π(a|LIa) in I and r(a)
is the lowest. Then there must exist an atom b such that π(b|Ba) > π(b|LIa) (b
is in the head of the clause with body Ba together with a). Since π(b|Ba) > 0,
such an atom exists. We now prove that there must exist an interpretation J in
E where LIa, Ba and b are true and where π(b|Ba) > π(b|LJb).

In fact, if such a J would not exist in E, then π(J) = 0 while W (J) 6= 0,
against the hypothesis that W (I) = π(I), that the π(I) sum up to one and
that

∑

I∈IQ,∃σWFM(Qσ)=I W (I) = 1. This can be shown by observing that,
since Q is acyclic, the model of an instance of it can be built layer by layer:
rule a ∨ b ∨ . . . ← Ba is applicable in LIa and can produce the interpretation
LIa∪{b}. Any model obtained by applying the remaining rules will be a superset
of LIa ∪ {b}.

Thus there exist an interpretation J such that LIa = LJb, b ∈ J and
π(b|Ba) > π(b|LJb). If there is no c such that π(c|Bc) < π(c|LJc) then W (J)
would be greater then π(J). If there is a c with r(c) < r(b) such that π(c|Bc) <
π(c|LJc), then π(c|Bc) < π(c|LIc) since LJc ⊆ LJb = LIa ⊆ I, against the hy-
pothesis that a is the atom with the lowest rank such that π(a|Ba) < π(a|LIa).

If there is a c with r(c) > r(b) such that π(c|Bc) < π(c|LJc) then consider
the one with the lowest rank r(c).

Then, in interpretation J , c is the atom with the smallest rank such that
π(c|Bc) < π(c|LJc). As we did for atom b, we can prove that there exist an
atom d and an interpretation K such that LJc = LKd, d ∈ K and π(d|Bc) >
π(d|LKd) and the reasoning can be applied again. Since the number of atoms
and interpretations is finite, this prove the statement.

Now suppose that there exist an atom a ∈ I such that π(a|LIa) < 1 and for
which there is no clause of Q with a in the head and the body true in I, i.e.
a 6∈ A(I). In this case W (I) > π(I) because no factor would be present in W (I)
for a, π(a|Ba) ≥ π(a|LIa) for all the atoms a ∈ A(I) and all the other factors of
π(I) are smaller or equal to 1.

If π(a|LIa) = 1 then there exist a definite clause with a in the head and the
body true in LIa because the space of definite clause is searched completely.

I will now prove that I is a Fitting model of Qσ. TQσ
(I) = I+ because all

the positive literals a of I have a clause in Qσ that has a in the head and that
has the body true in I and every clause a ← B with B true in I has a in I. It
remains to be proved that NQσ

(I) = ¬I−.

For every l = ¬a in I− there is no clause with the body true in I that has a in
the head, i.e. ∀a← B ∈ Qσ, ¬B ∩ I 6= ∅. Thus a ∈ NQσ

(I) and I− ⊆ ¬NNσ
(I).
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We now have to prove that I− ⊇ ¬NQσ
(I). Given an a ∈ NQσ

(I), ∀a← B ∈ Qσ,
¬B ∩ I 6= ∅, thus B is false in I and a 6∈ I+. Since I ′ is total, then ¬a ∈ I−.

Since Qσ is acyclic, then FM(Qσ) is two valued and FM(Qσ) = WFM(Qσ)
(theorem 3). Since I = FM(Qσ) then I = WFM(Qσ) and S(I) is not empty.

6 Language Biases

In this section I discuss the language biases available in ALLPAD by first present-
ing some preliminary definitions and then by presenting the biases themselves.

A couple (G,R) of a set G and a relation R over G×G is a quasi-ordered set if
R is reflexive and transitive. I will usually denote a relation R of a quasi-ordered
set as ≥. I will write that A > B if A ≥ B but B 6≥ A.

The most common generality relation used in ILP is θ-subsumption. Since it
is reflexive and transitive, if G is a set of clauses, (G,≥θ) is a quasi-ordered set.
Since I consider ground clauses, θ-subsumption is equivalent to ⊆, i.e., C ≥θ D

iff C ⊆ D
Let us now define the concepts of downward and upward refinement operators

for quasi-ordered sets. A downward refinement operator for a quasi ordered set
(G,≥) is a function ρ such that ρ(C) ⊆ {D|C ≥ D} for every C ∈ G.

An upward refinement operator for a quasi ordered set (G,≥) is a function δ
such that δ(C) ⊆ {D|D ≥ C} for every C ∈ G.

A language bias is a specification of the set G, of the relation ≥ and of a
refinement operator. Sometimes I will use the term language bias to indicate
only the specification of the set G.

Let us give also some properties regarding refinement operators. Let (G,≥)
be a quasi-ordered set and let ρ a downward refinement operator for (G,≥) [26]:

– the sets of one-step refinements, n-step refinements, and refinements of some
C ∈ G are respectively:
ρ1(C) = ρ(C)
ρn(C) = {D| there is an E ∈ ρn−1 such that D ∈ ρ(E)}, n ≥ 2
ρ∗(C) = ρ1(C) ∪ ρ2(C) ∪ ρ3(C) . . .

– a ρ-chain from C to D is a sequence C = C0, C1, . . . , Cn = D, such that
Ci ∈ ρ(Ci−1) for every 1 ≤ i ≤ n

– ρ is locally finite iff, for every C ∈ G, ρ(C) is finite and computable
– ρ is complete iff, for every C,D ∈ G such that C > D, there is an E ∈ ρ∗(C)

such that D ≈ E (i.e. D and E are equivalent in the ≥-order)
– ρ is weakly complete iff ρ∗(false) = G [3],
– ρ is proper iff, for every C ∈ G, ρ(C) ⊆ {D|C > D}
– ρ is ideal iff it is locally finite, complete and proper
– ρ is optimal iff ∀D,C1, C2 ∈ G : D ∈ ρ∗(C1)∩ρ

∗(C2)→ C1 ∈ ρ
∗(C2) or C2 ∈

ρ∗(C1) [8], i.e., each clause in G is visited at most once.

Similar definitions can be given for an upward refinement operator δ.
In an optimal refinement operator, there is exactly one ρ-chain from C to D

if C > D. This means that the refinement graph becomes a tree, with false as
root.
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ALLPAD can employ different language biases for the heads and for the
bodies of clauses. This is achieved by having refinement operators that work
only on the head or only on the body of clauses but never on both.

For bodies, I will consider two possible biases, the Dlab language bias and
a language bias inspired to the one of Progol [24] and Aleph [33].

For heads, I will consider two possible language biases: Dlab and a language
biases inspired to the one of Progol and Aleph.

Let us start with the language biases for the bodies. The Dlab [9] language
bias considers a set G that is finite. It is described by a means of a grammar
that contains clause templates that allow to specify membership of literals into
sets. For example, consider the following Dlab clause template:

{0 · · · 2 : [human(john), 1 · · · 2 : [female(john),male(john)]]}

This grammar describes sets of literals that contain between 0 and 2 literals from
the set [human(john), 1 · · · 2 : [female(john),male(john)]]. In its turn, 1 · · · 2 :
[female(john),male(john)] stands for a set of literals containing between 1 and
2 literals from the set [female(john),male(john)].

The Dlab refinement operator for a clause template is defined on the basis
of the observation that a clause in G can be obtained with a sequence of subset
selection operations from sets. Thus, a downward refinement can be obtained by
enlarging one of these subsets. A refinement operator is defined as the set of all
the possible minimal extensions of these subsets.

The Dlab refinement operator can be proper, depending on how the gram-
mar is written. In fact, if I write a grammar where a literal appears more than
once, the literal can be selected for inclusion in a clause when it is already
present. It is locally finite, since the set of minimal extensions is finite.

Moreover, the Dlab refinement operator can be optimal, i.e., it can generate
each clause of G at most once, depending on user choice. If the optimal switch is
set to off, then the refinement operator is complete, otherwise it is only weakly
complete.

Let us now consider the other language bias for bodies. This bias consists in
having declarations similar to those of Progol and Aleph.

The set G is defined by a head bias declaration and by a number of determi-
nation declarations. The head bias declaration is of the form

head bias(key,AllowedAtoms).
where key is an atom unique among all the head bias facts and AllowedAtoms
is a list of atoms that can appear together in the head of a clause. The determi-
nation declarations are of the form

determination(key, b).
meaning that atom b can appear in the clauses where atoms in AllowedAtoms

appears in the head. Let us call Gdet the set of clauses described by these dec-
larations. If more than one head bias declaration is present then different clause
templates are defined.

The refinement operator I consider for this language bias is called ρD. It is
defined in the following way: given a clause C relative to key id, obtain C ′ ∈
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ρD(C) by adding an atom b to the body of C where there exists a declaration
of the form determination(id,b) unless b is already in C.

For example, consider the bias
head bias(id1, [p, q]).
determination(id1, r).
determination(id1, s).
determination(id1, t).

and consider the clause C = p∨q ← t, then ρD(C) is {(p∨q ← t, r), (p∨q ← t, s)}.
Let us now show that ρD is locally finite, proper and complete (i.e. it is ideal)

with respect to the quasi-ordered set (Gdet,⊆) (and therefore also with respect
to the quasi-ordered set (Gdet,≥θ)). However, ρD is not optimal.

The local finiteness of ρD is evident from the fact that the number of deter-
mination statements is finite.

ρD is proper since it does not add a literal if it is already there, therefore
C ⊂ D for every D ∈ ρD(C)

ρD is complete since, for every D such that C ⊂ D, D can be reached by
adding one at a time the atoms from D \ C.

That ρD is not optimal can be seen from the following example: consider the
following language bias

determination(id1, q).
determination(id1, r).

and clause C1

p← q

clause C2

p← r

and clause E
p← q, r

then E ∈ ρD(C1) and E ∈ ρD(C2) but C1 6∈ ρ
∗
D(C2) nor C2 6∈ ρ

∗
D(C1). In other

words, if I start refining from the empty clause, clause E will be visited twice,
once coming from clause C1 and once from clause C2.

ALLPAD employs for the bodies either the language bias Dlab with the non-
optimal operator, or (Gdet,⊆) with ρD. ALLPAD uses a non-optimal operator
because the search is incomplete, so literals discarded early because they did not
lead to good refinements can be considered again later for addition.

For heads, ALLAPD can use either Dlab for top-down search or a bias
inspired to one of Progol and Aleph for bottom-up search. In case of top-down
search, Dlab with an optimal operator is used. In case of a bottom-up search, the
set G is the set of all the heads that are subsets of the set AllowedAtoms defined
in a head bias declaration, i.e., G = 2AllowedAtoms. The generality relation is the
subset relation ⊇ since the heads will be ground as well. The refinement operator
is called δS .

δS takes as input a state instead of a set of atoms and returns a set of states.
A state is a couple (H,L) where H is a head (set of atoms) and L is a set of
atoms that can be still removed from H. L is such that L ⊆ H. Given a state
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(H,L) where L = {A1, A2, . . . , An}, δS((H,L)) contains n states (Hi, Li) for
i = 1, . . . , n where Hi is H \ {Ai} and Li is {Ai+1, Ai+2, . . . , An}.

The bottom-up search in the space of possible heads starts from a state
with both the head and the set of atoms equal to AllowedAtoms. Let us see
an example. Suppose AllowedAtoms = {a, b, c, d}. Then the search starts from
S1 = ({a, b, c, d}, {a, b, c, d}). δS(S1) is
{({b, c, d}, {b, c, d}), ({a, c, d}, {c, d}),
({a, b, d}, {d}), ({a, b, c}, ∅)}

δS(({b, c, d}, {b, c, d})) is
{({c, d}, {c, d}), ({b, d}, {d}), ({b, c}, ∅)}
δS is locally finite, proper, not complete but weakly complete with respect

to the quasi-order (2AllowedAtoms,⊇). Moreover, it is optimal, i.e., every head in
G is visited once.

Lemma 11. δS is optimal.

Proof. Given two heads H1 and H2 such that H1 ⊃ H2, I will show that there
is only one δS-chain from a state S1 = (H1, L1) to S2 = (H2, L2).

In order to be able to go from S1 to S2, L1 must be such that L1 ⊇ H1 \H2.
So let us start from a S1 state with such an L1. Let H1 \H2 be {h1, h2, . . . , hn}.

In order to go from S1 to S2 I must perform n refining steps, at each step I
must remove one atom from H1. Let us consider the first step: suppose I consider
an ordering of the atoms in L1 where h1 is the first atom appearing in L1 from
the set H1 \H2. Removing h1 I obtain the state S′

1 = (H1 \{h1}, L1 \ (J ∪{h1}))
where J is the set of atoms preceding h1 in the ordering of L1 .

All the other states S = (H,L) in δS(S1) are such that from them H2 can
not be reached. In fact, consider the states generated by removing atoms that
appear before h1 in the ordering chosen for L1. These states are such that H2

can not be reached anymore because H is no more a superset of H2. Consider
the states generated by removing atoms that appear after h1 in ordering chosen
for L1. In this case, H still contains h1 but L does not contain anymore h1 so
it cannot be removed anymore from H. Since the ordering considered for L1 is
general, this is true for all the possible orderings.

A similar reasoning can be applied for all the n steps therefore there is only
one δS-chain from S1 to S2.

A similar proof can be used to show that δS is weakly complete.
Optimal operators are used in the search in the space of heads because the

search is complete, therefore every clause is visited at most once.

7 Experiments

ALLPAD was applied to the problem of predicting the tertiary structure of pro-
teins by classifying them into one of the SCOP classes [35]. Each protein is
described by a sequence of secondary structure elements. The sequence is repre-
sented in first order logic as an interpretation where each atom is either of the
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form he(Type,Length,Position) or of the form st(Orientation,Length,Position).
The last argument is an ordinal number indicating the position in the sequence.
The first atom form indicates that the element is an helix and specifies its type
and length. The possible types are h(left,alpha), h(right,alpha), h(left,gamma),
h(right,gamma), h(left,omega), h(right,omega), h(right,pi), h(right,f3to10), 27rib-
bon and ployproline. The second atom form indicates that the element is a strand
and specifies its orientation and length. The possible orientations are null (the
beginning of a strand), plus (a parallel strand of a sheet) or minus (an anti-
parallel strand of a sheet). The length of helices and strands is defined as the
number of amino acids they are composed of and was discretized by diving the
range into three intervals of equal length.

The dataset available [21] (kindly provided by Kristian Kersting) regards the
prediction of domains at the second level of the SCOP hierarchy, namely the level
of folds. In particular, the data regards the alpha beta protein class (a/b) and,
in this class, the five most populated subclasses (i.e. folds) are considered: TIM
beta/alpha-barrel, NAD(P)-binding Rossmann-fold domains, Ribosomal protein
L4, glucosamine 5-phosphate deaminase/isomerase and leucine aminopeptidas.
The folds will be respectively indicated in the following with the names fold1,
fold2, fold23, fold37 and fold55.

The dataset available has 721 examples for class fold1, 360 for fold2, 274 for
fold 23, 441 for fold37 and 290 for fold55. In the dataset, only two helix types
are actually present, namely h(right, alpha) and h(right,f3to10).

ALLAPD can be used for classification as other probabilistic model learners:
a model is learned for each class using only the examples for that class and a
test case is assigned the class whose model gives the highest probability to the
case.

In order to learn an LPAD that describes a class, each interpretation given
as input to the system is annotated with the same probability, given by one over
the total number of interpretations in the training set, since no interpretation
appears more than once.

Proteins are modeled with LPADs as stochastic processes: I want to predict
the structure at position p on the basis of the structures in the k previous
positions. To this purpose, ALLPAD learns programs containing rules having all
the possible structures with position equal to p in the head and a conjunction of
structures in the body with positions belonging to the set S(p, k) = {p− 1, p−
2, . . . , p− k} for a given k. Obviously I can not have two different structures for
the same position t ∈ S(p, k) in the body since in that case the body would be
false in every interpretation. An example of such a rule is:

helix(h(right,alpha),long,7):0.571 ;

helix(h(right,f3to10),short,7):0.429 :-

helix(h(right,alpha),long,5),

strand(null,medium,4).

Therefore I give ALLPAD a language bias expressed using DLAB that contains
a rule template for each position p from 1 to the maximum length of the protein
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sequences in the training set. Each rule template allows each possible structure
in the head at position p and each possible structure in the body for positions
p− 1, p− 2 up to position p− k, if they are larger or equal to 1.

Since the optimization phase finds only an approximate solution, I must use
an approximate procedure for testing the theories learned. When the test case
is a model of an instance of the program, its probability can be computed in
the following way: all the disjunctive rules whose bodies are true in the inter-
pretation are identified and, for each such rule, the single head that is true in
the interpretation is identified. The probability of the interpretation is obtained
by multiplying the probabilities associated to all the head atoms identified in
this way. For each position, there is a single rule whose body is true in the
interpretation because the rules have mutually exclusive bodies.

When the test case is not a model of an instance of the program, the proba-
bility assigned to the case is 0. This happens for example when for one or more
positions there is no rule with the body true in the interpretation. Since rules
may be missing because the solution is approximate, in the approximate testing
procedure I adopt the following approach: if for a position no rule is applica-
ble, the probability for the structure in that position is given by the conditional
probability of the structure given the position and the class. This corresponds
to using a rule with an empty body (i.e. a default rule).

The accuracy of the learned LPADs is compared with the accuracy of a
naive Bayes classifier obtained by applying the approximate testing procedure
so that the conditional probability given the position and the class is used for
all positions.

Two experiments were performed using 10-fold cross validation. In both ex-
periments I used Xpress-Optimizer by Dash Optimization for solving the MIP
problem. This tool allows the user to set a time limit to the optimization. The
time limit has been set to 1 hour for each class in the first experiment and to
100 minutes for each class in the second experiment.

The other important parameters are: the value of k (the number of previ-
ous positions to consider), set to 4; the size of the beam, set to 100, and the
maximum number of bodies to be refined for each clause template, set to 100
in the first experiment and to 125 in the second experiment for all classes and
cross-validation folds apart from two folds for class fold1 and one fold for class
fold37 where it was set to 115 because in 100 minutes no admissible solution was
found for the MIP problem.

All the experiments have been performed on a PC with an Athlon XP 2600+
processor at 2138 Mhz, 1GB of RAM and Windows 2000.

The obtained results are summarized in Table 1. LLPAD has been tested as
well on the dataset but the constraint satisfaction problem lead to an insufficient
memory error in all cases.

A cross-validated paired two-tailed t test has been performed for comparing
the accuracy of ALLPAD with that of naive Bayes. The null hypothesis of equiv-
alence can be rejected with the probability indicated in the Significance column
in Table 1. The last column of the table shows the average number of default
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Table 1. Results of the experiments.

Experiment Av. acc. St. dev. Significance Av. def. rules

Naive Bayes 82.79% 0.03087 - 20.09

First 85.14% 0.01990 98.3% 16.83

Second 85.67% 0.02394 98.6% 16.64

rules used in testing. In the case of naive Bayes, this is the average length of
the sequences. This means that, on average, 3.26 learned rules were used in the
testing phase of the first experiment and 3.45 learned rules were used in the
testing phase of the second experiment. The accuracy improvement between the
first and second experiment, even if it is significant only with probability 65.9%,
shows that the results can be improved by employing more computation time.

As regards the execution times, they were dominated by the optimization
problem: the other phases only took few minutes per fold.

8 Related Works

There has been recently a growing interest in the field of probabilistic logic
programming: a number of works have appeared that combine logic programming
or relational representations with probabilistic reasoning. Among these works, I
cite: Bayesian Logic Programs (BLPs) [17, 18], Probabilistic Relational Models
(PRMs) [14], Independent Choice Logic (ICL) [27], Stochastic Logic Programs
[25, 7], the Meta Interpreter Approach (MIA) [5], Logical Bayesian Networks
(LBNs) [10] and CLP(BN) [31].

In [4] the author compares MIA, CLP(BN), BLPs, LBNs and LPADs on the
problem of representing Mendel’s law of inheritance of pea color. The author
concludes that LPADs are the only ones that are both among the most readable
and among those that are able to express the most stringent constraints on the
joint distribution by using only qualitative information.

In [37] the authors compare LPAD with Bayesian Logic Programs [17, 18].
They show that every BLP can be expressed as an LPAD with a semantics that
matches that of the BLP. Moreover, they also show that a large subset of LPADs
can be translated into BLPs in a way that preserves the semantics of the LPADs.
Such a subset is the set of all finite ground LPADs that are acyclic. Therefore,
the techniques developed in [19] for learning BLPs can be used for learning this
class of LPADs as well and, on the other side, ALLPAD can be used for learning
BLPs, thus representing an alternative approach to those in [19].

Probabilistic Relational Models [14] extend the formalism of Bayesian net-
works in order to model domains that are described by a multi-table relational
database. Each attribute of a table is considered as a random variable and its set
of parents can contain other attributes of the same table or attributes of other
tables connected to the attribute table by foreign key connections. The relation-
ship between PRM and LPADs is not clear. For sure they have a non-empty
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intersection: the PRM that do not contain attributes that depend on aggregate
functions of attributes of other tables can be expressed as LPADs. Moreover,
LPADs are not a subset of PRM since they can express partial knowledge re-
garding the dependence of an attribute from other attributes, in the sense that
with LPADs it is possible to specify only a part of a conditional probability
table. Therefore the learning techniques developed in [14] can not be used in
substitution of the techniques proposed in this paper.

Stochastic Logic Programs (SLPs) [7, 25] are another formalism integrating
logic and probability. In [37] the authors have shown that a SLP can be translated
in LPAD, while whether the opposite is possible is not known yet. Therefore, it
is not clear at the moment whether the techniques used for learning SLPs can
be used for learning LPADs.

PRISM [32] is a logic programming language in which a program is composed
of a set of facts and a set of rules such that no atom in the set of facts appears in
the head of a rule. In a PRISM program, each atom is seen as a random variable
taking value true or false. A probability distribution for the atoms appearing
in the head of rules is inferred from a given probability distribution for the set
of facts. PRISM differs from LPADs because PRISM assigns a probability dis-
tribution to ground facts while LPADs assign a probability distribution to the
literals in the head of rules. PRISM programs resemble programs of ICL, in the
sense that PRISM facts can be seen as ICL abducibles. In [32] the author also
proposes an algorithm for learning the parameters of the probability distribution
of facts from a given probability distribution for the observable atoms (atoms
in the head of rules). However, no algorithm for learning the rules of a PRISM
program has been defined. Inferring the parameters of the distribution is per-
formed in LLPAD analytically by means of theorem 5 rather than by means of
the EM algorithm as in PRISM.

Considering the problem of learning LPADs, a system related to ALLPAD is
Classic’cl [34]. ALLPAD differs from Classic’cl in following respects: it is able
to solve the constraint problem in an approximate way, it learns definite clauses
separately, it can search the space of heads also bottom-up and it adopts beam
search in the space of bodies.

As regards the classification of proteins in SCOP classes, the first work apply-
ing ILP to the problem was [35] where the authors obtain an average accuracy of
78.28% using Progol. However, their the dataseet is very different because they
consider other classes besides the alpha beta class. [21, 16, 20, 15] use a dataset
similar to the one used here. [21] and [20] use logical hidden Markov models and
achieve respectively accuracies of 74% and 76%. [16] uses Fisher kernels for log-
ical sequences and achieves an accuracy of 83.6%. Finally [15] uses conditional
random fields for logical sequences and achieves an accuracy of 92.96%. The re-
sults of ALLPAD compare favourably with all the previous results apart from
the last one, even if the system is not specifically tailored to learning sequences,
as all previous systems are apart from [35].
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9 Conclusion and Future Works

The learning algorithm ALLPAD has been presented. It improves LLPAD by
solving the constraint satisfaction problem in an approximate way so that real
world problems can be solved.

ALLPAD has been tested on the problem of classifying proteins into SCOP
classes and has shown an accuracy significantly superior to a naive Bayes ap-
proach and superior to all previous approaches to the same problem apart from
[15].

In the future, work will be devoted to the definition of a generality relation
among LPAD clauses and of the relative generalization operators, so that the
ground clauses that are returned by ALLPAD can be generalized in a sixth
phase.
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