
Learning Multiple Predicates

Antonis Kakas1, Evelina Lamma2, Fabrizio Riguzzi2

1 Department of Computer Science, University of Cyprus

75 Kallipoleos str., CY-1678 Nicosia, Cyprus

antonis@turing.cs.ucy.ac.cy
2 DEIS, Universit�a di Bologna,

Viale Risorgimento 2, I-40136 Bologna, Italy,

felamma,friguzzig@deis.unibo.it

Abstract. We present an approach for solving some of the problems of

top-down Inductive Logic Programming systems when learning multiple

predicates. The approach is based on an algorithm for learning abduc-

tive logic programs. Abduction is used to generate additional information

that is useful for solving the problem of global inconsistency when learn-

ing multiple predicates.

1 Introduction

Most logic programs contain the de�nition of several predicates. However, most
Inductive Logic Programming (ILP) systems have been designed for learning
de�nitions for a single predicate and they �nd problems when they are employed
for learning multiple predicates.

The simplest approach for learning multiple predicates consists in iteratively
performing a single predicate learning task. However, this approach su�ers from
various problems [5]: it is sensitive to the order in which predicate are learned,
an overgeneral de�nitions for a predicate p can prevent the system from �nding
a de�nition for another predicate q that depend on p and it is not possible to
learn mutually recursive predicates.

In order to learn mutually recursive predicates, the learning of clauses for
di�erent predicates must be interleaved. In this case, however, a top-down cov-
ering algorithm faces the problem that adding a consistent clause to a partial
hypothesis can make previous clauses for other predicates inconsistent [5]. There-
fore, expensive re-testing of examples and backtracking on clause addition to the
theory must be performed.

In order to overcome these problems, many top-down systems (e.g., ICN
[16], MULT ICN [15], FOIL [19], FOCL [17], MIS [20] with the lazy strategy)
use extensional coverage instead of intensional coverage. In intensional coverage,
a clause is evaluated by performing a derivation of each example from a program
composed by the clause, the background knowledge and the clauses previously
learned. In extensional coverage, the atoms in the training set are used as a
de�nition for the target predicates, instead of the clauses previously learned. In
this way, clauses are learned independently from each other. We will distinguish

between extensional and intensional systems depending on the type of coverage
they use. However, extensional coverage introduces other problems because the
learning algorithm can be unsound: the learned theory can be both inconsistent
and incomplete, as shown in [5].

In this paper, we propose the algorithmMPL-A (Multiple Predicate Learning
by Abduction) that is able to learn de�nite clause programs containing the def-
inition of multiple predicates by interleaving the learning of clauses for di�erent
predicates. The algorithm exploits abduction in order to overcome the problems
of intensional systems while partially avoiding the pitfalls of extensional systems.

The algorithm we propose is obtained by modifying those presented in [11,
12] for learning abductive logic programs. The problem of learning abductive
logic programs has recently received some attention. A number of works [14,
11, 12] have started to appear on the subject, and, more generally, on the rela-
tion existing between abduction and induction and how they can integrate and
complement each other [6, 7, 1].

In order to cope with global inconsistency when learning multiple predicates,
in this work we exploit abduction for testing the coverage of negative examples
by generating negative assumptions about target predicates whose de�nition is
currently incomplete. These assumptions ensure that the tested negative exam-
ples will not be covered. They are then added to the training set and clauses
learned afterwards are tested against them. In this way the addition of a new
clause will not make previous clauses inconsistent.

The paper is organized as follows: in section 2 we recall the basics of In-
ductive Logic Programming and we discuss the problems of ILP systems when
learning multiple predicates. Section 3 presents the concepts of Abductive Logic
Programming (ALP) that are needed for the algorithm. Section 4 presents the
learning algorithm and section 5 shows some experiments performed with the
system. In section 6 we discuss related work and in section 7 we conclude and
present the directions for future work.

2 Inductive Logic Programming

Now we recall some basics on ILP. We �rst give a de�nition of the ILP problem
[2]:

Given:

a set P of possible programs
a set E+ of positive examples
a set E� of negative examples
a consistent logic program B such that

B 6` e+ for at least one e+ 2 E
+.

Find:

a logic program P 2 P such that
8e+ 2 E+, B [P ` e+ (completeness)
8e� 2 E�, B [P 6` e� (consistency).

With a great deal of approximation, top-down ILP systems share a common
basic algorithm [2]:

T := ;
while E

+ 6= ; do (Covering loop)
Generate one clause C
Remove from E

+ the e+ covered by C

Add C to T

Generate one clause C (Specialization loop):
Select a predicate p that must be learned

Set clause C to be p(X) :

while C covers some negative example do
Select a literal L from the language bias
Add L to the body of C
Test coverage of C
if C does not cover any positive example

then backtrack to di�erent choices for L
return C

(or fail if backtracking exhausts all choices for L)

In order to learn multiple predicates with a top-down system, two approaches
are possible. We can either iteratively perform a single predicate learning task,
i.e., learn completely the de�nition of a predicate before learning the next one,
or interleaving the learning of clauses for di�erent predicates.

The �rst approach su�ers from the problems that have been highlighted in
[5]. First, the order in which predicates are learned is relevant: for some orders
it may be impossible to �nd a solution and thus, in the worst case, all possible
orders must be considered. Second, an overgeneral de�nitions for a predicate p
can prevent the system from �nding a de�nition for another predicate q that
depend on p. Third, it is not possible to learn mutually recursive predicates by
learning completely one predicate after another.

With the second approach, i.e., by interleaving the learning of clauses for
di�erent predicates, it is possible to learn mutually recursive clauses but another
problem arises: the addition of a clause that is consistent with the negative
examples of its head predicate to a theory (hypothesis) can make it inconsistent.
In this case, we have to distinguish between two types of consistency of a clause:
local and global consistency of a new clause with respect to a hypothesis. These
de�nitions slightly modify those given in [5], that were not referred to the current
hypothesis. We �rst give some terminology and then we give the de�nitions of
local and global consistency.

Let the training set be E = E
+[E� where E+ is the set of positive examples

and E
� is the set of negative examples. We assume that E contains examples

for m target predicates p1; : : : ; pm and we partition E
+ and E

� in E
+
pi

and E
�

pi

according to these predicates. The hypothesis H is a set of clauses for some or
all of the target predicates. Given the background theory B, the hypothesis H

and the example set E, the function covers(B;H;E) gives the set of examples
covered by H , i.e., covers(B;H;E) = fe 2 E j B [H ` eg.

De�nition 1 (Global consistency). Given a consistent hypothesis H, clause

c is globally consistent with respect to H if and only if covers(B;H [fcg; E�) =
;.

De�nition 2 (Local consistency). Given a consistent hypothesis H, clause

c for the predicate pi is locally consistent with respect to H if and only if

covers(B;H [fcg; E�
pi
) = ;.

When learning multiple predicates, adding a locally consistent clause to a con-
sistent hypothesis can produce a globally inconsistent hypothesis as it is shown
in the next example inspired to [5].

Example 1. We want to learn the de�nitions of ancestor and father from the
knowledge base:

B = fparent(a; b); parent(b; c); parent(d; b);male(a); female(b)g
and the training set:

E
+ = fancestor(a; b); ancestor(b; c); ancestor(d; c);

father(a; b)g

E
� = fancestor(b; b); ancestor(d; a); ancestor(c; b); father(b; c); father(a; c)g

Suppose that the system has �rst generated the rules:
ancestor(X;Y) parent(X;Y):

father(X;Y) ancestor(X;Y);male(X):
Clearly the second rule is incorrect but the system has no mean of discovering
it now, since it is locally and globally consistent with respect to the partial
de�nition for ancestor.

Then, the system learns the recursive rule for ancestor:

ancestor(X;Y) parent(X;Z); ancestor(Z; Y):
This clause is locally consistent with respect to the current hypothesis because
none of the negative examples for ancestor are covered, but it is not globally
consistent because in the new theory the negative example father(a; c) is now
covered.

Thus, in intensional systems, it is not enough to check the consistency of a clause
with respect to the negative examples for its head predicate but the consistency
with respect to examples for all target predicates must be checked, as it is done
in the system MPL [5]. Moreover, if a global inconsistency is found, the clauses
causing it must be identi�ed and retracted.

In order to avoid the problem of testing all negative examples and of retract-
ing clauses, many top-down ILP systems use extensional coverage.

De�nition 3 (Extensional coverage). Given the background theory B and

the example e belonging to the training set E, the clause c = l l1; l2 : : : ln

extensionally covers e i� l uni�es with e with substitution � and B [E+ ` [li]�
for i = 1 : : : n.

Extensional coverage makes the evaluation of a clause independent from pre-
viously learned clauses. The system uses the training set but not the current
partial hypothesis in the derivation of examples, so generated clauses are tested
independently from each other. Therefore, extensional coverage avoids the prob-
lem of global inconsistency when learning multiple predicates. We no longer need
to backtrack on clause addition and to search in the space of possible programs,
but it is su�cient to iteratively search in the smaller space of possible clauses.

In fact, by using extensional coverage, if in example 1 the atom ancestor(a; c)
is included in E+, the second rule would not be generated because ancestor(a; c)
would be used in testing the negative examples for father and father(a; c) would
be covered.

However, extensional coverage poses a number of other problems: learned
theories can be both inconsistent and incomplete. This is due to the fact that
the extensional test is not equivalent to the intensional one. In particular, for
de�nite logic programs, a learned theory can be [5]: (i) extensionally consistent
but intensionally inconsistent, (ii) intensionally complete but extensionally in-
complete or (iii) extensionally complete but intensionally incomplete (see [5] for
examples of these cases).

3 Abductive Logic Programming

In this section, we summarize the main concepts of Abductive Logic Program-
ming (ALP) that are needed for describing the algorithm.

We �rst give the de�nition of Abductive Logic Program [9].

De�nition 4 (Abductive Logic Program). An abductive logic program is

a triple hP;A; ICi where

{ P is a normal logic program,

{ A is a set of abducible predicates (or abducibles),
{ IC is a set of integrity constraints in the form of denials, i.e.:

 A1; : : : ; Am; not Am+1; : : : ; not Am+n:

Abducible predicates are used to model incompleteness: these are predicates for
which a de�nition may be missing or for which the de�nition may be incomplete.
These are the predicates about which we can make assumptions in order to
explain the current goal. More formally, given an abductive program AT =
hP;A; ICi and a formula G, the goal of abduction is to �nd a (possibly minimal)
set of ground atoms� (abductive explanation) for predicates in A which together
with P entails G, i.e. P [� j= G. It is also required that the program P [�

is consistent with respect to IC, i.e. P [� j= IC. We say that AT abductively

entails e (AT j=A e) when there exists an abductive explanation for e from AT .
We adopt the three-valued semantics for ALP de�ned in [3] in which an atom
can be true, false or unknown.

Negation as Failure is replaced, in ALP, by Negation by Default and is ob-
tained, through abduction, in this way: for each predicate symbol p, a new
predicate symbol not p is added to the set A and the integrity constraint:

 p(X); not p(X)

is added to IC, where X is a tuple of variables.

Operationally, we rely on the proof procedure de�ned by Kakas and Man-
carella [10]. This procedure starts from a goal and a set of abduced literals �in

and results in a set of consistent assumptions �out (abduced literals) such that
�out � �in and �out, together with the program, allows to derive the goal. In
this case we write:

AT `�out

�in
G

The proof procedure consists of two parts: an abductive and a consistency phase.
Basically, the abductive phase di�ers from a standard Prolog derivation when
the literal to be reduced is abducible. First, it checks to see if the abducible
literal has already been assumed (i.e., it is in the � set) and in this case the
literal is reduced. If the opposite of the literal is in �, the derivations fails. If
the literal has not yet been abduced, the procedure tries to abduce it and checks
whether it is consistent with the integrity constraints and with the current � by
adding it to � and by starting a consistency derivation.

The �rst step of the consistency derivation consists in �nding all the integrity
constraints (denials for simplicity) which contain the literal. The literal can be
assumed provided that all these constraints are satis�ed. A denial is violated only
if all its conjuncts are true, therefore at least one conjunct of each constraint must
be false. Since one wants to assume the literal as true, the algorithm removes it
from the constraints and checks that all the remaining goals fail. The goals are
reduced literal by literal: if a literal is abducible, �rst it is checked if the literal
itself is already in � (in that case the literal is dropped) or if its opposite is in
� (in that case the constraint is satis�ed and is dropped). If the literal is not in
�, an abductive derivation for its opposite is started, so that, if this derivation
succeeds, the constraint is satis�ed.

In the learning algorithm we propose, negative examples will be tested by
starting an abductive derivation for the negation of the example. Let us show
with an example the behaviour of the procedure for the case of negative goals.
Consider the following theory, inspired by [18]:

grass is wet rained last night

grass is wet sprinkler was on

shoes are wet grass is wet

Where the abducible predicates are rained last night; sprinkler was on and
their negation. For the goal not shoes are wet, the procedure returns the ab-
ductive explanation

� = fnot rained last night; not sprinkler was ong.

These assumptions can be interpreted as expressing the fact that rained last night

and sprinkler was onmust be false for shoes are wet to be false. They thus rep-
resent a set of su�cient conditions that ensure that the goal shoes are wet is
not derivable in the theory.

4 The algorithm MPL-A

The algorithm MPL-A (�gures 1, 2, 3) is based on the systems for learning
abductive logic programs that have been presented in [11, 12]. These systems, in
turn, extend the basic top-down ILP algorithm by substituting the Prolog proof
procedure with the abductive proof procedure for the coverage test of examples.
Therefore, a clause is tested by starting an abductive derivation for each positive
example and for the default negation of each negative one. Each example can be
covered or uncovered by making some assumptions. The assumptions made are
collected in a set named �.

In order to learn multiple predicates and maintain the consistency of the
learned hypothesis, the target program is considered as an abductive theory
where the negation of each target predicate is an abducible predicate. Abduc-
tion is used to test the default negation of negative examples, making nega-
tive assumptions ensuring that they are uncovered. These assumptions are then
added to the training set as negative examples, so that new clauses can be tested
against them.

The algorithm is therefore based on a dynamic set of training examples
Ec that contains the original training examples together with those generated
through abduction. It rests on the important observation that, for de�nite logic
programs, we can detect the local or global consistency of a clause by testing
the training examples for its head predicate as follows:

{ a clause is locally consistent if it does not cover any negative example
from the original training set, while

{ a clause is globally consistent if it does not cover any negative example
from the abductively extended training set.

To illustrate this, consider two predicates p and q, where q depends on p. Suppose
that, when testing a rule for q, an assumption not p(tp) for p is generated for
uncovering the negative example q(tq) for q. The assumption not p(tp) is then
turned into the negative example p(tp) for p. Afterwards, if we learn a clause for
p that covers p(tp), then also q(tq) will be covered and the clause for p will be
globally inconsistent.

Therefore, the global consistency of a clause depends only on the coverage of
abduced negative examples. In procedure Evaluate (�gure 3), we test negative
examples with the abductive proof procedure, while positive examples are tested
with the Prolog procedure, since we are interested only in negative assumptions
that prohibit the coverage of some negative examples.

The procedure GenerateRule (specialization loop, �gure 2) performs a beam
search in the space of possible clauses. The beam is initialized with a clause with
an empty body for every target predicate. Then, an heuristic function (procedure
Evaluate) is used in order to select the next clause to re�ne. In this way, the
choice of which predicate to learn next is left to the heuristic function: it will
select the predicate whose clauses in the beam with the higher value for the
function.

procedure MPL-A(

inputs : E+; E� : training sets,

B : background theory,

outputs : H : learned theory, Ec n E : abduced examples)

H := ;
Ec := E+ [not E�

while E+
c
6= ; do (covering loop)

GenerateRule(B;H;Ec; r;E
+
r
; E�

r
; �r)

H := H [frg
Ec := Ec nE

+
r

Ec := Ec [�r

if E�

r
6= ; then

RetractClauses(H;E�

r
; Ec;H;Ec)

endif

endwhile

output H;Ec nE

Fig. 1. Covering loop

The heuristic function is a weighted classi�cation accuracy. The weight is
given by the relative frequency of positive examples covered by the clause over
the total number of positive examples in the training set and is used in order to
take into account the number of positive examples covered by the rule. In fact,
accuracy alone could favour very speci�c and accurate clauses over more general
but less accurate clauses, thus possibly leading to learning theories composed by
many overspeci�c clauses.

The procedure GenerateRule looks for a globally consistent clause that covers
at least one positive example. The procedure also checks the local consistency of
every re�nement and stores the best one found so far. Therefore, if no globally
consistent clause can be found (i.e., the beam becomes empty) but a locally
consistent clause has been found, then the procedure returns it together with
a non-empty set E�

r
of covered abduced negative examples. In both cases, the

clause is added to the theory and the negative assumptions generated when
testing the clause are added to the training set. Then, if the clause is only
locally consistent, backtracking on previous clauses is performed. If no locally
consistent solution exists that covers at least one positive example, the algorithm
fails.

Backtracking (procedure RetractClauses in �gure 1) is performed by retract-
ing the clauses that have generated the negative examples covered by the locally
consistent clause, i.e., those that contained in the body the corresponding ab-
ducible literal, since they are made inconsistent by the addition of the new one.
These clauses are retracted, positive examples covered by them are re-added to
the training set and the negative examples generated by them are removed from
the training set. In order to perform backtracking, the system has to store, for
each assumption, the clause that has generated it. Each retracted clause is then

procedure GenerateRule(

inputs : B : background theory,

H : current hypothesis, Ec : training set,

outputs : Best : rule,

E+

Best
; E�

Best
: positive and negative examples covered by Best,

�Best : assumptions generated by Best

Beam := f hp(X) true:; V aluei j p is a target predicate,

V alue :=
jE
+
p j

jE
+
p j+jE

�

p j

g

LocallyConsClause := nil

repeat

remove the Best rule from Beam

BestRefinements := set of re�nements of Best allowed

by the language bias

for all Rule 2 BestRefinements do

Evaluate(Rule;B;H;Ec;V alue; E
+

Rule
; E�

Rule
; �Rule)

if Rule covers at least one positive example then

add hRule; V aluei to Beam
if Rule is locally consistent and

Rule is better than LocallyConsClause then

LocallyConsClause := Rule

endif

endif

endfor

remove the rules in Beam exceeding the Beamsize

until the Best rule in Beam is globally consistent or the Beam is empty

if no globally consistent clause can be found (Beam is empty) then

if LocallyConsClause is not nil then

Best := LocallyConsClause

else

fail

endif

endif

Evaluate(Best;B;H;Ec;V alue; E
+

Best
; E�

Best
; �Best)

output Best;E+

Best
; E�

Best
; �Best

Fig. 2. Specialization loop

procedure Evaluate(

inputs : Rule: rule, B : background theory,

H : current hypothesis, Ec : training set,

output : V alue : the value of the heuristic function for Rule,

E+

Rule
; E�

Rule
: examples covered by Rule

�Rule : new set of abduced examples)

n+ := covered positive examples (tested with the Prolog proof procedure)

n� := 0, number of negative examples

�Rule := ;
for each e� 2 Ec do

AbductiveDerivation(not e�; hB [H [fRuleg; A; Ii; Ec; ;; �e
�
)

if the derivation succeeds then

�Rule := �Rule [�e
�

else

increment n�

endif

endfor

V alue := n
+

jE
+
c j
� n

+

n
++n�

return V alue;�Rule

Fig. 3. Clause evaluation

added to a list of retracted clauses so that it can not be added anymore to the
theory: in the case in which it is generated again in the specialization loop, it is
immediately discarded. This is done in order to avoid that the system goes into
a loop of continuously generating and retracting the same clause.

Finally, in the abductive proof procedure, we consider examples of other tar-
get predicates as background facts, thus obtaining a hybrid extensional-intensional
system. Being a hybrid system, it does not incur in two of the problems of ex-
tensional systems, namely extensional consistency, intensional inconsistency and
intensional completeness, extensional incompleteness. On the other hand, it can
incur in the third, i.e., extensional completeness, intensional incompleteness. For
example, it can learn two mutually recursive clauses that intensionally lead to a
loop while cover extensionally the examples. Subject for future work is to extend
the system with the techniques proposed in [16] for learning recursive predicates.

By means of the hybrid coverage adopted, the system is less sensitive to the
order of learning the predicates because it can exploit examples for de�ning the
predicates that it has not yet learned. In this way, possible dead-ends of the
search can be detected in advance.

5 Experiments

In this section we present some experiments that have been performed with the
MPL-A system: learning the de�nition of father and ancestor from the data

in example 1, learning the de�nition of father and grandfather and learning a
de�nite clause grammar for simple sentences.

5.1 Father and Ancestor

We now show the behaviour of the system in the case of examples 1.
When the system tests the rule
father(X;Y) ancestor(X;Y);male(X)

it generates the assumptions
fnot ancestor(b; c); not ancestor(a; c)g

that become negative examples for ancestor. When it tries to learn the recursive
clause for ancestor, it will not be able to �nd a clause that is consistent with
not ancestor(a; c), therefore it will generate the locally consistent clause

ancestor(X;Y) parent(X;Z); ancestor(Z; Y)
and it will retract the clause for father that has generated the covered negative
example not ancestor(a; c). At this point, the correct rule for father can be
learned.

5.2 Father and Grandfather

We want to learn the predicates grandfather and father from the background
theory:

P = fparent(john; steve);male(john);male(steve)
parent(steve; ellen); female(ellen)
parent(ellen; sue); female(sue)g

and the training set:
E
+ = fgrandfather(john; ellen); grandfather(steve; sue);

father(john; steve)g
E
� = fgrandfather(mary; sue); father(john; ellen)g

MPL-A learns �rst the rule for grandfather because the heuristic function
prefers it to any of the rules for father. When MPL-A generates the rule

grandfather(X;Y) parent(Z; Y); father(X;Z):
it uses the examples for father as background knowledge making also nega-
tive assumptions about it when this is needed. Given the training examples for
grandfather

E
+

gf
= fgrandfather(john; ellen); grandfather(steve; sue)g

E
�

gf
= fgrandfather(mary; sue)g

M-ACL will produce, together with the above rule, the following assumption:
fnot father(mary; ellen):g

This become an additional training example for father. From this new train-
ing set, the system is then able to generate the correct rule for father. Note
that without the new negative example father(mary; ellen) it would have been
impossible to generate the correct rule for father and the overgeneral rule
father(X;Y) parent(X;Y) would have been learned. Thus MPL-A is able to
avoid (in this case) the problem of overgeneralization.

5.3 Grammar

The data for this experiment is taken from [4]. The aim is to learn the following
de�nite clause grammar for parsing very simple English sentences:

(1) sent(A;B) np(A;C); vp(C;B):

(2) np(A;B) det(A;C); noun(C;B):

(3) vp(A;B) verb(A;B):

(4) vp(A;B) verb(A;C); np(C;B):
In [4] Claudien-Sat is used to solve this task starting from di�erent input inter-
pretations.

The �rst interpretation corresponds to a complete syntactic analysis of the
sentence \the dog eats the cat". Therefore the data set contains all the pos-
itive and negative facts mentioning the following lists: [the,dog,eats,the,cat],
[dog,eats,the,cat], [eats,the,cat], [the,cat], [cat] and []. Another interpretation
contains some ungrammatical sentences and corresponds to several attempts to
analyze "the cat the cat". It includes all positive and negative facts mention-
ing the following lists: [the,cat,the,cat], [cat,the,cat], [cat,cat], [the,cat], [cat],
[cat,the] and []. Similarly, another interpretation contains all positive and nega-
tive facts mentioning the lists [the,cat,eats], [cat,eats], [cat,sings], [the,cat,sings],
[dog,cat], [sings], [eats],[the] and [].

M-ACL has learned the above rules in the following order: (2), (3), (1), (4).
Note that the de�nition for sent was learned at a point where the de�nition for
vp was not complete. This was possible because the system used the examples for
vp to complete its de�nition, by exploiting the hybrid form of coverage. Some
negative assumptions about np were made in order to avoid the coverage of
negative examples.

6 Related Work

This paper is based on the work on learning abductive logic programs in [11,
12]. The systems presented in these papers are modi�ed and extended in order
to apply them to the problem of learning multiple predicates: abduction is used
only for the coverage of test of negative examples, local and global consistency
are distinguished and backtracking on clause addition is performed.

On the problem of learning multiple predicates a notable work is [5] where
the authors thoroughly analyze the problem and the solutions proposed both by
intensional and extensional systems. In order to overcome the problem of global
inconsistency for intensional systems, they propose the system MPL that takes
a di�erent approach with respect to ours. After the addition of each clause, in
order to detect a global inconsistency in the current hypothesis, it retest the
hypothesis against all negative examples. On the contrary, we are able to detect
the global inconsistency by testing only a limited number of negative examples.

Our system still su�ers from the problem of extensional completeness, inten-
sional incompleteness. This problem has been deeply studied, both for de�nite
and normal logic program, in [16]. The authors propose the system ICN in which

they solve the problem by keeping explicit track of the recursive dependency
among clauses. An interesting direction for future work would be to incorporate
their solution into our system.

Hybrid coverage is used as well in the system FOIL-I [8]. There the authors
especially concentrate on learning recursive predicates from a sparse training
set and they do not investigate the properties of such a system with respect to
multiple predicate learning.

Since we gradually add negative examples, our approach may seem similar
to the one adopted in incremental systems such as MIS [20]. However, while in
incremental systems a consistency check must be done after the addition of each
e
� to the training set, we do not need to do this because we add an e

� only
after having tested that it is not covered by any clause.

7 Conclusions and Future Work

We have shown how abduction can be used to overcome the problem of global
inconsistency when learning multiple predicates without incurring in the prob-
lems of extensional systems, apart from the one of extensional completeness,
intensional incompleteness.

This work was inspired by [11{13] where the (intensional) algorithm for learn-
ing abductive logic programs was introduced and its main properties studied. We
improve on that work by adding a mechanism for detecting global inconsistency
and for performing clause backtracking.

In the future, we will investigate the application of similar techniques to the
problem of learning logic programs with negation (normal logic programs). In
this case, the addition of a clause to a hypothesis can reduce the coverage of the
hypothesis, thus making impossible to use a standard covering algorithm. With
abduction we are able to generate additional examples that can be used to avoid
this problem.

References

1. H. Ad�e and M. Denecker. AILP: Abductive inductive logic programming. In

Proceedings of the 14th International Joint Conference on Arti�cial Intelligence,

1995.

2. F. Bergadano and D. Gunetti. Inductive Logic Programming: From Machine Learn-

ing to Software Engineering. The MIT Press, 1995.

3. A. Brogi, E. Lamma, P. Mancarella, and P. Mello. A unifying view for logic

programming with non-monotonic reasoning. Theoretical Computer Science, 184:1{

59, 1997.

4. L. De Raedt and L. Dehaspe. Learning from satis�ability. Technical report,

Katholieke Universiteit Leuven, 1996.

5. L. De Raedt, N. Lavra�c, and S. D�zeroski. Multiple predicate learning. In S. Mug-

gleton, editor, Proceedings of the 3rd International Workshop on Inductive Logic

Programming, pages 221{240. J. Stefan Institute, 1993.

6. M. Denecker, L. De Raedt, P. Flach, and A. Kakas, editors. Proceedings of ECAI96

Workshop on Abductive and Inductive Reasoning. Catholic University of Leuven,

1996.

7. Y. Dimopoulos and A. Kakas. Abduction and inductive learning. In Advances in

Inductive Logic Programming. IOS Press, 1996.

8. N. Inuzuka, M. Kamo, N. Ishii, H. Seki, and H. Itoh. Top-down induction of logic

programs from incomplete samples. In S. Muggleton, editor, Proceedings of the 6th

International Workshop on Inductive Logic Programming, number 1314 in LNAI,

pages 265{284. Springer-Verlag, 1997.

9. A.C. Kakas, R.A. Kowalski, and F. Toni. The role of abduction in logic program-

ming. In D. Gabbay, C. Hogger, and J. Robinson, editors, Handbook of Logic in AI

and Logic Programming, volume 5, pages 233{306. Oxford University Press, 1997.

10. A.C. Kakas and P. Mancarella. On the relation between truth maintenance and

abduction. In Proceedings of the 2nd Paci�c Rim International Conference on

Arti�cial Intelligence, 1990.

11. A.C. Kakas and F. Riguzzi. Learning with abduction. In Proceedings of the 7th

International Workshop on Inductive Logic Programming, 1997.

12. E. Lamma, P. Mello, M. Milano, and F. Riguzzi. Integrating induction and abduc-

tion in logic programming. To appear on Information Sciences.

13. E. Lamma, P. Mello, M. Milano, and F. Riguzzi. Integrating extensional and

intensional ILP systems through abduction. In Proceedings of the 7th International

Workshop on Logic Program Synthesis and Transformation, 1997.

14. E. Lamma, P. Mello, M. Milano, and F. Riguzzi. Integrating Induction and Ab-

duction in Logic Programming. In P. P. Wang, editor, Proceedings of the Third

Joint Conference on Information Sciences, volume 2, pages 203{206, 1997.

15. L. Martin and C. Vrain. MULT ICN: An empirical multiple predicate learner. In

L. De Raedt, editor, Proceedings of the 5th International Workshop on Inductive

Logic Programming, pages 129{144. Department of Computer Science, Katholieke

Universiteit Leuven, 1995.

16. L. Martin and C. Vrain. A three-valued framework for the induction of general

program. In L. De Raedt, editor, Proceedings of the 5th International Workshop on

Inductive Logic Programming, pages 109{128. Department of Computer Science,

Katholieke Universiteit Leuven, 1995.

17. M.J. Pazzani and D. Kibler. The utility of knowledge in inductive learning. Ma-

chine Learning, 9(1):57{94, 1992.

18. J. Pearl. Embracing causality in formal reasoning. In Proceedings of the 6th

National Conference on Arti�cial Intelligence, pages 369{373, Seattle, WA, 1987.

19. J. R. Quinlan and R.M. Cameron-Jones. Induction of Logic Programs: FOIL and

Related Systems. New Generation Computing, 13:287{312, 1995.

20. E. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

