
Abductive Concept Learning 1

Abductive Concept Learning

Antonis C. Kakas

Department of Computer Science, University of Cyprus
75 Kallipoleos str., CY-1678 Nicosia, Cyprus

antonis@ucy.ac.cy

Fabrizio Riguzzi

DEIS, Università di Bologna
Viale Risorgimento 2, 40136 Bologna, Italy

friguzzi@deis.unibo.it

Received 21 September 1998

Revised 16 March 1999

Abstract
We investigate how abduction and induction can be integrated into a

common learning framework. In particular, we consider an extension of

Inductive Logic Programming (ILP) for the case in which both the back-

ground and the target theories are abductive logic programs and where

an abductive notion of entailment is used as the basic coverage relation

for learning. This extended learning framework has been called Abduc-

tive Concept Learning (ACL). In this framework, it is possible to learn

with incomplete background information about the training examples by

exploiting the hypothetical reasoning of abduction. We also study how

the ACL framework can be used as a basis for multiple predicate learning.

An algorithm for ACL is developed by suitably extending the top-

down ILP method: the deductive proof procedure of Logic Programming

is replaced by an abductive proof procedure for Abductive Logic Pro-

gramming. This algorithm also incorporates a phase for learning integrity

2 Fabrizio Riguzzi

constraints by suitably employing a system that learns from interpreta-

tions like ICL. The framework of ACL thus integrates the two ILP set-

tings of explanatory (predictive) learning and confirmatory (descriptive)

learning. The above algorithm has been implemented into a system also

called ACL∗1 Several experiments have been performed that show the ef-

fectiveness of the ACL framework in learning from incomplete data and

its appropriate use for multiple predicate learning.

Keywords Machine Learning, Inductive Logic Programming, Abduc-

tive Logic Programming, Non-Monotonic Reasoning.

§1 Introduction and Motivation
The problem of integrating abduction and induction in Machine Learn-

ing systems has recently received renewed attention with several works on this

topic 3, 2, 22, 10, 23, 30). In 22) the notion of Abductive Concept Learning (ACL) was

proposed as a learning framework based on an integration of Inductive Logic

Programming (ILP) 57, 59) and Abductive Logic Programming (ALP) 40).

Abductive Concept Learning is an extension of ILP that allows us to

learn abductive logic programs with abduction playing a central role in the

covering relation of the learning problem. The abductive logic programs learned

in ACL contain both rules for the concept(s) to be learned as well as general

clauses called integrity constraints. These two parts are put together in a non-

trivial way via the abductive reasoning of ALP which is then used as the basic

covering relation for learning.

This paper presents the basic framework of ACL with its main charac-

teristics and demonstrates its suitability for addressing several problems in ILP.

The main motivation for developing ACL is to allow us to learn from incom-

plete information and to later be able to classify new cases that again could be

incompletely specified. ACL provides a principled way to handle incomplete in-

formation in learning based on an underlying theory of abduction for knowledge

representation. Indeed abduction is well-suited for representing problems with

incomplete information (see e.g. 63, 43, 19, 34, 36, 41)) able to formulate a variety of

such problems in Artificial Intelligence and other areas of Computer Science.

The central problem of learning abductive theories in ACL contains sev-

eral useful and interesting subproblems that are of practical relevance. These

∗1 The learning systems developed in this work together with sample experimental data can
be found at the following address: http://www-lia.deis.unibo.it/Software/ACL/

Abductive Concept Learning 3

problems include: (i) concept learning from incomplete background data where

some of the background predicates are incompletely specified and (ii) concept

learning from incomplete background data together with given integrity con-

straints that provide some information on the incompleteness of the data. In

these cases, the treatment of incompleteness through abduction is integrated

within the ILP learning process. This allows the possibility of learning more

compact theories that can alleviate the problem of overfitting due to the incom-

pleteness in the data. A specific subcase of these two problems and important

third subproblem is that of (iii) multiple predicate learning, where each predi-

cate is required to be learned from the incomplete data for the other predicates.

Here the abductive reasoning can be used to suitably connect and integrate the

learning of the different predicates. This can help to overcome some of the non-

locality difficulties of multiple predicate learning, such as order-dependence and

global consistency of the learned theory.

These subproblems of the full ACL task can be captured in a simpler

subproblem of ACL, which we will call ACL1. Within ACL1 we learn only the

rule part of an abductive theory but this in many cases is sufficiently general

to allow us to address interesting problems as those described above. Apart

from its practical relevance, the identification of the ACL1 subproblem is also

useful in breaking the full ACL learning task into two separate but strongly

inter-related phases of ACL1 and ACL2. ACL1 together with its rules also

provides additional input, through abducible assumptions (which are related to

the learned rules), to the second phase of ACL2 for learning integrity constraints

that can (partly) confirm the correctness of these abducible assumptions. In this

way, ACL synthesizes together the two main learning settings of ILP, namely

those of explanatory (predictive) learning 58, 59) and confirmatory (descriptive)

learning 16, 27).

An algorithm for ACL based on this separation into ACL1 and ACL2 is

given. Within ACL1, this algorithm adapts the basic top-down method of ILP

to deal with the incompleteness of information and to take into account the use

of integrity constraints. It incorporates an abductive proof procedure and other

abductive reasoning mechanisms from ALP that are suitably adapted for the

context of learning. In the second phase of ACL2, the algorithm takes as input

the output of ACL1 and calls on the ICL 18) learner to generate appropriate

integrity constraints.

This algorithm has been implemented in a new ILP system also called

4 Fabrizio Riguzzi

ACL and ACL1 for its subsystem. Based on these, a separated system for mul-

tiple predicate learning, called M-ACL, has been developed. Suitably adapted

heuristics have been used that take into account the incompleteness of informa-

tion. Several experiments have been carried out to test the ability of ACL to

learn under incomplete information and to compare it with other systems such

as FOIL, c4.5 and mFOIL that can learn in the face of missing information.

These include experiments with data from the UCI repository and experiments

with data from market research questionnaires where the available data can be

incomplete for several reasons. We also present a number of experiments for

multiple predicate learning with M-ACL and again compare with the MPL sys-

tem of 17). The comparable and in some cases (marginally) better performance

of ACL in these “proof of the principle” experiments demonstrate its ability to

learn with incomplete information and its appropriate use for multiple predicate

learning.

The motivating problem for ACL of learning under incomplete or missing

information (from the background knowledge) in an ILP framework has received

relatively little attention. Some exceptions to this include the recent works of

ICL-Sat 15) which learns from incomplete interpretations and 47) which follows

an approach similar to ours for learning the rules of an abductive theory. There

are also several works, e.g. 24, 53), that deal with the related problem of noise in

the learning data but this is a different problem where the methods used can not

always be applied as effectively to missing information. Another related problem

is that of learning from incomplete or sparse training data particularly in the

context of learning recursive definitions. The systems FORCE2 11), SKILit 39),

CHILLIN 74) and FOIL-I 38) were designed to handle this problem using inten-

sional coverage techniques where the definition learned for the target predicate

is used for evaluating recursive calls.

Most of the machine learning systems that deal with incomplete infor-

mation are attribute-value learners. An ILP system for learning with incom-

plete information is LINUS 54) but again this essentially relies on an attribute

value representation. In general, these systems adopt different methods to first

complete the missing information and then learn from the completed data. In

contrast, in ACL the incomplete information is handled dynamically within the

learning process in a principled way based on an underlying theory of abduction.

In this way it combines in a non-trivial way the methods of abduction for dealing

with incomplete information with methods of ILP learning.

Abductive Concept Learning 5

The work of this paper develops further and completes preliminary work

on the general topic of learning with abduction in 45). It also extends and comple-

ments earlier work in 22, 26, 50, 51). These previous works have addressed specific

aspects of the general problem demonstrating through simple examples the po-

tential of abduction in addressing various interesting problems. The current

work provides a firm theoretical and algorithmic basis for the use of abduction

in learning together with a thorough empirical study on non-trivial experimental

data. It thus confirms and establishes the utility of abduction in ILP.

The rest of this paper is organized as follows. Section 2 presents a short

review of ALP needed for the formulation and description of the main properties

of ACL which are presented in section 3. Section 4 presents the basic algorithm

for ACL and its properties for the single predicate case, while section 5 describes

the application of ACL to multiple predicate learning. Section 6 presents our

experiments with ACL, section 7 discusses related work and section 8 concludes

the paper.

§2 Abductive Logic Programming
In this section we briefly review some of the elements of Abductive Logic

Programming (ALP) needed for the formulation of the learning framework of

Abductive Concept Learning (ACL). For a more detailed presentation of ALP

the reader is referred to the survey 40) (and its recent update 41)) and references

therein.

Abductive Logic Programming is an extension of Logic Programming to

support abductive reasoning with theories (logic programs) that incompletely

describe their problem domain. In ALP this incomplete knowledge is captured

(represented) by an abductive theory T . We will consider abductive theories of

the following form.

Definition 2.1 (Abductive theory)

An abductive theory T in ALP is a triple 〈P,A, I〉, where P is a definite

logic program, A is a set of predicates called abducible predicates (or simply

abducibles), and I is a set of range-restricted clauses called integrity con-

straints.

For simplicity of presentation we will assume that the logic program P of an

abductive theory is a definite Horn program with no negation (negation as fail-

ure) appearing in the body of the rules of P . However, this condition is not

6 Fabrizio Riguzzi

restrictive since negation as failure in a logic program can be treated through

abduction in an associated abductive theory whose program is definite 25).

As a knowledge representation framework, when we represent a problem

in ALP via an abductive theory T , we generally assume that the abducible

predicates in A carry all the incompleteness of the program P in modelling the

external problem domain in the sense that if we (could) complete the abducible

predicates in P then P would completely describe the problem domain.

An abductive theory can support abductive (or hypothetical) reasoning

for several purposes such as diagnosis, planning or default reasoning. The central

notion used for this is that of an abductive explanation for an observation or a

given goal. To formalize this we need the notion of generalized model of an

abductive theory introduced in 43). A generalized model (or generalized stable

model as called in 43)) is a minimal Herbrand model of the program but where

the abducible predicates need not be minimized.

Definition 2.2 (Generalized model)

Let T = 〈P,A, I〉 be an abductive theory and ∆ a set of ground abducible facts

from A. M(∆) is a generalized model of T iff

• M(∆) is the minimal Herbrand model of P ∪ ∆, and

• M(∆) is a model of I, i.e., M(∆) |= I

We say that ∆ is an abductive extension of T .

Here the semantics of integrity constraints is defined by the second condition in

the definition. Their satisfaction requires that they are true statements in the

computed model of the extension of the program with ∆ for this extension to be

allowed. In this case, we say that ∆ is consistent with the constraints. We will

assume that, for any abductive theory, the empty set of abducible assumptions

is consistent.

An abductive theory is thus viewed as representing a collection of dif-

ferent allowed states given by the set of its generalized models.

Definition 2.3 (Abductive explanation)

Let T = 〈P,A, I〉 be an abductive theory and φ any formula∗2 called an obser-

vation (or a query). An abductive explanation for φ in T is any set ∆ of

abducible facts from A such that

∗2 In general, φ can be any formula but in many cases it suffices for φ to be a conjunction
of ground facts.

Abductive Concept Learning 7

• M(∆) is a generalized model of T , and

• M(∆) |= φ.

Based on this we define a credulous form of abductive entailment.

Definition 2.4 (Abductive entailment)

Let T = 〈P,A, I〉 be an abductive theory and φ any formula. Then, φ is ab-

ductively entailed by T , denoted by T |=A φ, iff there exists an abductive

explanation of φ in T . If the explanation is ∆, we also write T |=A φ with ∆.

Note that, although the integrity constraints reduce the number of possible ex-

planations for an observation, it is still possible for several explanations that

satisfy (do not violate) the integrity constraints to exist. To this end, addi-

tional criteria e.g. minimality (with respect to set inclusion) or some measure

of cost of the abducible assumptions can help to discriminate between different

explanations. The following example illustrates the above ideas.

Example 2.1

Consider the following abductive theory 〈P,A, I〉 with P the logic program on

family relations:

father(X,Y)← parent(X,Y),male(X)

mother(X,Y)← parent(X,Y), female(X)

son(X,Y)← parent(Y,X),male(X)

daughter(X,Y)← parent(Y,X), female(X)

child(X,Y)← son(X,Y)

child(X,Y)← daughter(X,Y)

loves(X,Y)← parent(X,Y)

the integrity constraint I = {← male(X), female(X)}, and abducible predicates

A = {parent, male, female}.
Consider now the observation O1 = father(bob, jane) An abductive explana-

tion for O1 is the set ∆1 = {parent(bob, jane),male(bob)}. This is the unique

minimal explanation. Let now O2 = child(john,mary) be another observation.

This has two possible explanations ∆2 = {parent(john, mary),male(john)}
and ∆

′

2 = {parent(john,mary), female(john)}. If we also knew that the fact

male(john) holds then ∆
′

2 would be rejected due to the violation of the integrity

constraint. In fact, these two explanations are incompatible with each other.

We will now introduce the concept of strong abductive explanation and consider

8 Fabrizio Riguzzi

negative as well as positive observations. These extensions are useful for learning

as we will see in the next section. They allow an incremental construction of an

explanation for all the positive training examples that also accounts for the nega-

tive examples as negative observations. A strong abductive explanation contains

extra assumptions, with respect to a minimal explanation, that ensure that any

self-consistent addition of further assumptions to it would not result in the vi-

olation of the integrity constraints. In order to obtain this property of strong

explanations, we need to be able to make explicitly negative abducible assump-

tions. This is obtained by considering, for each abducible predicate abd(X), a

new abducible predicate not abd(X) that is related to abd(X) by the constraint

← abd(X), not abd(X). The addition of abducible predicates expressing falsity

or absence of the positive assumption defines a new abductive semantics, called

three-valued generalized model semantics, where abducible atoms can be true,

false or undefined, differently from generalized models where all the abducible

facts not in the model are considered to be false.

Definition 2.5 (Three-valued Version of a Theory)

Given an abductive theory T = 〈P,A, I〉, the three-valued version of T is the

theory T ∗ = 〈P,A∪A∗, I ∪ I∗〉 where, for each predicate a ∈ A, A∗ contains the

new predicate symbol not a and I∗ contains the denial ← a(~X), not a(~X).

We define the complement l of an abducible literal l as

l =

{
not a(~X) if l = a(~X)

a(~X) if l = not a(~X)

Given the three-valued version T ∗ = 〈P,A ∪A∗, I ∪ I∗〉 of an abductive theory,

a set of ground assumptions ∆∗ with predicates from A ∪ A∗ is called self-

consistent if and only if it does not contain both a literal and its complement,

i.e., iff ∆∗ |= I∗;

Definition 2.6 (Three-valued generalized model)

Let T = 〈P,A, I〉, be an abductive theory with T ∗ = 〈P,A∪A∗, I∪I∗〉 its three-

valued version and ∆∗ a set of ground abducible facts from A∪A∗. M(∆∗) is a

three-valued generalized model of T iff

• ∆∗ is self-consistent;

• M(∆∗) is the minimal Herbrand model of P ∪∆∗;

• M(∆∗) |= I.

Abductive Concept Learning 9

The set ∆∗ is an abductive explanation for a formula φ if and only if M(∆∗)

is a three-valued generalized model and M(∆∗) |= φ.

In a three-valued generalized model M(∆∗) of T , an abducible fact a(c) is as-

sumed true if a(c) ∈ ∆∗, is assumed false if not a(c) ∈ ∆∗ and is undefined

otherwise. From this point onwards, unless otherwise specified, we will con-

sider abductive theories in their three-valued version. Therefore, when we write

T1 = 〈P1, A1, I1〉, we mean the three-valued version of a theory T = 〈P,A, I〉,
with P1 = P , A1 = A∪A∗ and I1 = I ∪ I∗. Also when we refer to a generalized

model we will mean a three-valued generalized model.

We can now define the notion of strong abductive explanation.

Definition 2.7 (Strong abductive explanation)

Let T = 〈P,A, I〉 be an abductive theory, T ∗ = 〈P,A ∪ A∗, I ∪ I∗〉 its three-

valued version and O a ground atomic fact called an observation (or a goal). A

strong abductive explanation for O in T is any set ∆∗ of abducible facts

from A ∪A∗ such that

• ∆∗ is an abductive explanation for O and

• for any ∆
′
⊆ A ∪ A∗, if M(∆

′
) |= I and ∆

′
∪∆∗ is self-consistent, then

M(∆
′
∪∆∗) |= I.

The latter condition can be intuitively expressed in this way: ∆∗ must be such

that any other consistent abductive extension ∆′ that is self-consistent with

∆∗ can be added to ∆∗ without violating the integrity constraints. We say

that M(∆∗) is a strong generalized model for T and that ∆∗ is a strong

abductive extension of T ∗3.

In the case of example 2.1, a strong abductive explanation for O1 = father(bob,

jane) would be ∆∗1 = {parent(bob, jane),male(bob), not female(bob)}. Then

the assumption ∆′ = {female(bob)}, that, when added to ∆1, would violate

the integrity constraints, can not now be self-consistently added to the strong

explanation ∆∗1 ⊇ ∆1.

We now give the definition of a strong abductive explanation for a neg-

ative observation not O. In this case we want an explanation that can not

be extended in order to explain O. Note that the link between this definition

and the general notion of strong abductive explanations described above comes

through the canonical integrity constraint ← not O,O.

∗3 Note that under our previous assumption the empty set is always consistent for any
abductive theory; this means that it has always a strong abductive extension.

10 Fabrizio Riguzzi

Definition 2.8 (Strong abductive explanation of negative observations)

Consider an abductive theory T = 〈P,A, I〉 with T ∗ = 〈P,A∪A∗, I∪I∗〉 its three-

valued version. Let a negative observation (or a goal), denoted by not O, be

given. A strong abductive explanation for not O is any set ∆∗ of abducible

facts from A ∪A∗ such that

• M(∆∗) is a strong generalized model of T with M(∆∗) 6|= O, and

• for any ∆
′
⊂ A∪A∗, if ∆

′
is an abductive explanation of O then ∆

′
∪∆∗

is not self-consistent.

We say that not O is abductively entailed by T and denote this by T |=A not O

with ∆∗.

Hence O 6∈M(∆∗) and more importantly ∆∗ cannot be consistently extended to

derive O. The strong abductive explanation is thus a set of sufficient assumptions

which, when adopted, ensures that O can not be abductively entailed in a way

that would be self-consistent with these assumptions.

In order to illustrate this, consider again example 2.1 and consider the

negative observation not father(jane, john). A strong abductive explanation for

not father(jane, john) is ∆∗1 = {not male(jane)} or ∆∗2 = {not parent(jane,
john)} since father(jane, john) can not be derived by any self-consistent ex-

tension of either of these sets. In contrast, the empty explanation is an ab-

ductive explanation for not father(jane, john) since father(jane, john) 6∈M(∅)
but this explanation is not strong since it can be consistently extended with

∆′ = {parent(jane, john),male(jane)} to derive father(jane, john).

The strongness of an explanation ∆∗ for a negative observation not e

means that it invalidates every possible explanation for e. This is expressed by

the following property, that is a direct consequence of the definition of strong

abductive explanation.

Property 2.1

Let T be an abductive theory and e an atom. Then

T |=A not e with ∆∗ ⇒ ∀∆+ : T |=A e with ∆+, ∃l ∈ ∆∗ : l ∈ ∆+

In other words, a strong abductive explanation ∆∗ for not e contains the com-

plement of (at least) one assumption from every explanation ∆+ of e.

It is easy to see that this property holds for each one of the strong abductive

explanations ∆∗1 = {not parent(jane, john)} or ∆∗2 = {not male(jane)} for

not father(jane, john) in example 2.1 above. Another example that illustrates

Abductive Concept Learning 11

this is as follows.

Example 2.2

Consider the following abductive theory T = 〈P,A, I〉

P = {sibling(X,Y)← brother(X,Y),

sibling(X,Y)← sister(X,Y)}
I = {}
A = {brother, sister}

and the observation O = sibling(bob, jane). The strong abductive explanations

for not O is ∆∗ = {not sister(bob, jane), not brother(bob, jane)}, while the ex-

planations for O are ∆+
1 = {sister(bob, jane)} and ∆+

2 = {brother(bob, jane)}:
∆∗ contains the complement of a literal from both ∆+

1 and ∆+
2 .

The definition of strong abductive explanation can be generalized for a conjunc-

tion of positive and negative observations C = O1 ∧ . . . ∧ Om ∧ not O1 ∧ . . . ∧
not On. A strong abductive explanation for the conjunction is any set ∆∗

of abducible facts from A ∪ A∗ such that ∆∗ is a strong abductive explanation

for every conjunct taken singularly.

The strong abductive explanation for the conjunction of two positive

or negative observations can be obtained by taking the union of the strong

abductive explanations for each observation separately, as stated by the following

proposition (the proof of this is given in appendix 2). This is an important

property for combining together explanations of different positive and negative

training examples in learning.

Proposition 2.1

Let T = 〈P,A, I〉 be an abductive theory in its three-valued version and let ∆1

and ∆2 be two strong abductive explanations of, respectively, G1 and G2, where

G1 and G2 can be either positive or negative goals. If ∆1 ∪∆2 is self-consistent,

then ∆1 ∪∆2 is a strong abductive explanation for G1 ∧G2.

As we will see in the next sections, in the Abductive Concept Learning frame-

work, deductive entailment is replaced by abductive entailment as the coverage

relation. Thus the deductive SLD (and SLDNF) proof procedures of Logic Pro-

gramming are replaced by abductive proof procedures 25, 42, 44, 19, 69) of ALP. Any

abductive procedure satisfying the following notion of abductive derivability is

suitable.

12 Fabrizio Riguzzi

Definition 2.9 (Abductive derivability)

Given an abductive theory T = 〈P,A, I〉 in its three-valued version, a goal G and

an initial strong abductive explanation ∆i, we say that a procedure abductively

derives G from T if it returns a set of assumptions ∆G such that ∆G is a strong

abductive explanation of G and ∆G ∪∆i is consistent, i.e., M(∆G ∪∆i) |= I∗4.

In this case, we write T `∆G

∆i
G.

For our study of Abductive Concept Learning we will employ an abductive proof

procedure based on the one of 44) reported in Appendix 3 The proof procedure in-

terleaves phases of abductive and consistency derivations. Intuitively, an abduc-

tive derivation is the standard Logic Programming derivation suitably extended

in order to consider abducibles. When an abducible atom δ is encountered, it

is added to the current set of assumptions (if it is not already there). The ad-

dition of δ must not result in a violation of the integrity constraints. To this

purpose, a consistency derivation for δ is initiated to check this. Each integrity

constraint is resolved against δ and it is verified that every resulting goal fails. In

the consistency derivation, when a new abducible is encountered in one of these

reduced goals, an abductive derivation for its complement is started in order to

ensure the failure of this abducible. This subsidiary abductive derivation will

often result in additional assumptions in the explanation set.

The version of the procedure which we will use is sound with respect

to the notion of (strong) abductive derivability above for the case in which the

integrity constraints are restricted to be denials with at least one (positive)

abducible appearing explicitly in the body of the denial. This result follows

directly from the soundness of the original procedure in 44) which computes

strong explanations. The more general case of integrity constraints in the form

of range restricted clauses, A1∨. . .∨Ak ← B1∧. . .∧Bm, can be first transformed

into the equivalent denial form ←B1 ∧ . . . ∧Bm ∧ ¬A1 ∧ . . . ∧ ¬Ak before they

are processed by the abductive proof procedure.

The completeness of this type of abductive procedures is in general dif-

ficult to achieve. A main source of incompleteness stems from the fact that the

procedures can not select a non ground abductive goal. One way to address this

is by a suitable restriction on the class of programs in our abductive theories,

analogous to the range-restrictedness 55) of normal logic programs for avoiding

floundering on negative conditions, which ensures that abducible conditions can

∗4 Since the theory is in its three-valued version, this means that ∆G ∪ ∆i is also self-
consistent

Abductive Concept Learning 13

always be grounded before selection. Another source of incompleteness is the

difficulty in capturing the failure of goals that involve positive loops within a

consistency derivation. For example, if a denial integrity constraint contains the

condition p and this is defined in the program by the rule p ← p then such a

constraint is always satisfied within the generalized model semantics. The ab-

ductive procedures will however fall into a loop in the corresponding consistency

derivation when checking the satisfaction of such a constraint. Again to tackle

this form of incompleteness we can restrict the class of programs to be stratified

or acyclic 4).

In practice, the abductive theories learned within the Abductive Con-

cept Learning (ACL) framework will often satisfy these restrictions (this can be

partially achieved by a suitable bias in the learning phase) and hence the abduc-

tive procedure is effectively complete on these theories. Similarly, although the

procedures as defined in 44) will not always guarantee that the first explanation

found is minimal (this depends on the order in which the clauses are tried) the

type of theories learned by ACL are such that the first explanation is indeed

minimal or if not then a minimal explanation can be found on backtracking.

§3 Learning with Abduction
Abductive Concept Learning (ACL) differs from ILP with both the back-

ground knowledge and the learned theory being abductive theories. The lan-

guage of the hypotheses and of the background knowledge is that of abductive

theories of Abductive Logic Programming with the following restrictions∗5.

• The background knowledge T = 〈P,A, I〉 does not contain any target

predicate(s) neither in the program P nor in the integrity constraints

I. The empty set of abducible assumptions is a consistent abductive

extension of T .

• The integrity constraints are range-restricted clauses A1 ∨ . . . ∨ Ak ←
B1 ∧ . . . ∧ Bm, with at least one of B1, . . . , Bm abducible. Also, for

each Aj in the head of the clause, its definition in the program P of

the background theory does not depend on abducibles, namely Aj is not

abducible and recursively none of the conditions in the rules of P for Aj

is abducible.

The language of the examples is simply that of atomic ground facts on the

∗5 These language restrictions are not necessary for the definition of the ACL problem but
rather are needed for the development of the algorithms to solve this problem.

14 Fabrizio Riguzzi

target predicate(s). We note here that the ACL framework does not allow the

acquisition of a new (unknown in the background theory) abducible thus limiting

its scope of learning e.g. for predicate invention. The possibility to lift this

restriction is discussed briefly below in the section on related work.

Definition 3.1 (Abductive Concept Learning)

Given

• a set of positive examples E+,

• a set of negative examples E−,

• an abductive theory T = 〈P,A, I〉 as background theory,

• an hypothesis space T = 〈P, I〉 consisting of a space of possible programs

P and a space of possible constraints I satisfying the language restrictions

given above except that now a possible program can contain the target

predicate(s).

Find

A set of rules P ′ ∈ P and a set of constraints I ′ ∈ I such that the new

abductive theory T ′ = 〈P ∪ P ′, A, I ∪ I ′〉 satisfies the following conditions

• T ′ |=A E+,

• ∀e− ∈ E−, T ′ 6|=A e−.

where E+ stands for the conjunction of all positive examples.

We say that an individual example e is covered by a theory T ′ iff T ′ |=A e.

In effect, we have replaced the deductive entailment in the ILP problem with

abductive entailment to define the ACL learning problem.

The fact that the conjunction of positive examples must be entailed

means that, for every positive example, there must exist an abductive explana-

tion and the explanations for all the positive examples must be consistent with

each other. For negative examples, it is required that no abductive explanation

exists for any of them. Abductive concept learning can be illustrated as follows.

Example 3.1

Suppose we want to learn the concept father. Let the background theory be

T = 〈P,A, ∅〉 where:

P = {parent(john,mary),male(john),

parent(david, steve),

parent(kathy, ellen), female(kathy)}

Abductive Concept Learning 15

A = {male, female}.
Let the training examples be:

E+ = {father(john,mary), father(david, steve)}
E− = {father(kathy, ellen), father(john, steve)}

In this case, a possible hypotheses T ′ = 〈P ∪ P ′, A, I ′〉 learned by ACL would

consist of

P ′ = {father(X,Y)← parent(X,Y),male(X).}
I ′ = {←male(X), female(X).}

This hypothesis satisfies the definition of ACL because:

1. T ′ |=A father(john,mary), father(david, steve)

with ∆ = {male(david)},
2. T ′ 6|=A father(kathy, ellen),

as the only possible explanation for this goal, namely {male(kathy)}
is made inconsistent by the learned integrity constraint in I ′.

3. T ′ 6|=A father(john, steve),

as this has no possible abductive explanations.

Hence, despite the fact that the background theory is incomplete (in its ab-

ducible predicates), ACL can find an appropriate solution to the learning prob-

lem by suitably extending the background theory with abducible assumptions.

Note that the learned theory without the integrity constraint would not satisfy

the definition of ACL, because there would exist an abductive explanation for

the negative example father(kathy, ellen), namely ∆− = {male(kathy)}. This

explanation is prohibited in the complete theory by the learned constraint to-

gether with the fact female(kathy). Note that if the predicate parent is also

incompletely specified and hence also declared as abducible, then this hypoth-

esis T ′ would not constitute a valid ACL solution to the learning problem as

the negative example father(john, steve) will have the abductive explanation

{parent(john, steve)}. Extra integrity constraints will be needed in I ′ to render

this assumption inconsistent.

It is important to note that the treatment of positive and negative examples in

ACL is asymmetric with respect to the existence of abductive explanations. For

positive examples, it is sufficient that there exists one explanation for the con-

junction of all positive examples that is consistent with the constraints, whereas,

for each negative example, all possible explanations must be made inconsistent

by the constraints.

16 Fabrizio Riguzzi

We note here that an alternative definition of ACL could require the

weaker condition that each negative example can not be abductively entailed by

(P ∪ P ′) ∪∆ where ∆ are the assumptions required to explain all the positive

examples. This will be used below as a subproblem of ACL that is useful for the

development of an algorithm to solve the full ACL problem. An even weaker

condition would be that (P ∪ P ′) ∪ ∆ does not deductively entail any of the

negative examples. But this requirement is in general too weak as any rule that

contains an abducible condition in the body would easily fail to deductively

conclude its head because of the incompleteness of the abducible. Instead, we

want to be sure that the theory can not be completed so that the negative

examples can be derived.

In order to achieve this requirement for the negative examples, we re-

quire the existence of a strong abductive explanation for (the complement of)

each negative examples. Adding these strong explanations to the background

theory then ensures that no negative example can be abductively explained. In

the example above, the negative example father(kathy, ellen) can be uncov-

ered by adding the strong abductive explanation ∆∗ = {not male(kathy)} for

not father(kathy, ellen) to the theory. This is sufficient to ensure that this neg-

ative example can no longer be abductively entailed even in the absence of any

integrity constraints in I ′. Moreover, these strong abductive explanations can

suggest what new integrity constraints can be learned in I ′ so that the negative

examples can not be covered.

This observation suggests a natural way in which the full ACL problem

can be split into two subproblems: (1) learning the rules together with appropri-

ate strong explanations and (2) learning integrity constraints. We will see that

the solutions of the two subproblems can be combined to obtain a solution for

the original problem.

The first subproblem, called ACL1, has the following definition.

Definition 3.2 (ACL1)

Given

• a set of positive examples E+,

• a set of negative examples E−,

• an abductive theory T = 〈P,A, I〉 as background theory,

• a hypothesis space of possible programs P.

Abductive Concept Learning 17

Find

A set of rules P ′ ∈ P such that the new abductive theory TACL1 =

〈P ∪ P ′, A, I〉 satisfies the following conditions

• TACL1 |=A E+ with ∆+,

• TACL1 |=A not E− with ∆−,

• ∆+ ∪∆− is self-consistent.

where not E− stands for the conjunction of the complement of every negative

example.

We say that a theory T ACL1-covers an individual positive example

e+ iff T |=A e+ and that T does not ACL1-cover e+ iff T 6|=A e+.

If T |=A e+ with ∆ = ∅, then we say that e+ is ACL1-covered without

abduction, otherwise we say that it is ACL1-covered with abduction.

For negative examples, we say that a theory T ACL1-uncovers an

individual negative example e− iff T |=A not e− and that T does not ACL1-

uncover e− iff T 6|=A not e−.

If T |=A not e− with ∆ = ∅, then we say that e− is ACL1-uncovered

without abduction, otherwise we say that it is ACL1-uncovered with ab-

duction.

In effect, in ACL1 we require the existence of a strong abductive explanation for

the negation of each negative example from the learned theory extended with

∆+. This is weaker than the condition required by the full ACL problem which is

that no negative example has an abductive explanation from the learned theory

TACL1 i.e. that every negative example is false in all the abductive extensions

of the TACL1. However, the existence of a strong abductive explanation means

that it is possible to satisfy this stronger requirement.

Indeed, the information generated by ACL1 through the strong abduc-

tive explanations for negative examples can be used to provide a solution of the

full ACL problem through a second learning phase. From the output of ACL1,

i.e. its set of rules and the sets of assumptions ∆+ and ∆− for covering posi-

tive examples and uncovering negative ones, a solution to ACL can be found by

learning constraints that are consistent with ∆+ and inconsistent with the com-

plement of every abducible in ∆−. In fact, the strong abductive explanation ∆−

will contain, for every negative example e−, a strong abductive explanation ∆e−

for not e−. This explanation, according to property 2.1, contains assumptions

that would invalidate directly any possible abductive explanation of e−. Hence

by making all the complements of assumptions in ∆− inconsistent we make all

18 Fabrizio Riguzzi

possible explanations of every e− inconsistent.

Thus the definition of the second subproblem, called ACL2, can be given

as follows.

Definition 3.3 (ACL2)

Given

• a solution of ACL1

– TACL1 = 〈P ∪ P ′, A, I〉,
– ∆+,

– ∆−,

• a hypothesis space of possible constraints I satisfying the same require-

ments as in ACL.

Find

A set of constraints I ′ ∈ I such that the new abductive theory T ′ =

〈P ∪ P ′, A, I ∪ I ′〉 satisfies the following condition

• MP∪P ′(∆
+) |= I ′,

• ∀l ∈ ∆−, MP∪P ′({l}) 6|= I ′.

Note that the third condition of ACL1 requiring ∆+ ∪∆− to be self-consistent

helps to avoid the case of posing an empty ACL2 problem. If this cannot be

satisfied, i.e. ∆+ ∪ ∆− is not self-consistent, then the corresponding ACL2

problem cannot have any solutions.

The theory T ′ = 〈P ∪P ′, A, I ∪ I ′〉, obtained by combining the solutions

of the two subproblems, gives a solution to the full ACL problem.

Theorem 3.1

Let TACL1 = 〈P ∪P ′, A, I〉, ∆+ and ∆− be the solution of ACL1 given training

sets E+ and E−, background theory T = 〈P,A, I〉 and space of possible programs

P. Moreover, let T ′ = 〈P ∪ P ′, A, I ∪ I ′〉 be the solution to ACL2 given the

previous solution of ACL1 and hypothesis space I. Then T ′ is a solution to the

ACL problem that has E+ and E− as training sets, T as background theory and

P and I as spaces of possible programs and constraints.

The proof of this theorem is reported in Appendix 1. Once decomposed into

its two subproblems, it becomes clear that ACL combines the two ILP settings

of explanatory (predictive) learning and confirmatory (descriptive) learning. In

fact, ACL1 can be seen as a problem of learning from entailment, while ACL2

Abductive Concept Learning 19

as a problem of learning from interpretations.

The algorithm we present in the next section solves the ACL prob-

lem by first solving ACL1 and then ACL2. In example 3.1, the solution of

ACL1 consists of the rule father(X,Y)← parent(X,Y), male(X), together

with ∆+ = {male(david), not female(david)} and ∆− = {not male(kathy)}.
Given this intermediate solution, we can now apply a second phase where in-

tegrity constraints are learned from the background knowledge and the expla-

nations obtained in the first phase. We want to make male(kathy) inconsistent

while keeping ∆+ consistent: ←male(X), female(X) is a constraint that sat-

isfies these conditions.

We note that in many cases, ACL1 can be useful on its own merit,

e.g. when we have sufficient information in the integrity constraints of the back-

ground theory or for problems where indeed this weaker requirement on negative

examples is sufficient. We will see examples of such cases in the following sections

5 and 6.

3.1 Monotonicity and Generality
Abductive Logic Programs are inherently non-monotonic. Given two

abductive theories T1 = 〈P1, A, I1〉 and T2 = 〈P2, A, I2〉 that each entail a goal,

their union T = 〈P1 ∪ P2, A, I1 ∪ I2〉 does not necessarily entail this goal. Non-

monotonicity poses problems in learning as algorithms based on the covering

approach can not be used. In general, we can not learn a theory by iteratively

adding a clause to a partial hypothesis because the addition of a clause can

reduce the number of positive examples covered by the hypothesis since this

addition can render some of the abductive assumptions inconsistent.

By splitting the ACL problem into the two phases of ACL1 and ACL2,

we can recover a form of restricted monotonicity. In the first phase of ACL1

where the integrity constraints remain fixed we have two cases to consider: (i)

monotonicity under the addition of a new clause in the program P of the current

hypothesis and (ii) monotonicity under the addition of new abductive assump-

tions as we move from one training example to another. The second case can

be dealt with by employing a suitable abductive proof procedure for ALP based

on strong abductive explanations, as discussed in the previous section, carrying

the explanation of the previous examples when testing the abductive coverage

(or uncoverage if the example is negative) of the next example. The first case

is in general more difficult but in the particular case of interest since the new

20 Fabrizio Riguzzi

(learned) clauses can only affect the extension of the target(s) predicates, we can

satisfy this monotonicity requirement by restricting (as we have) the language

of the integrity constraints and the program of the background theory to be

independent of the target predicate(s).

In the second phase of ACL2, where the program of the abductive hy-

pothesis is fixed and we vary the integrity constraints, monotonicity in ensured

by the specific definition of the ACL2 problem that we have adopted where by

construction the new learned integrity constraints must be consistent with the

abductive assumptions ∆+ required for the coverage of the positive examples.

Hence these examples will continue to be abductively entailed by the theory

after the addition of the new integrity constraints generated by ACL2.

The non-monotonic nature of the hypothesis space of abductive theories

introduces another difficulty in the task of solving the ACL problem. It makes

it difficult to have a generality∗6 structure on this space that can be useful in

the search for solutions to our learning problem. In general, there is no natural

generality structure on the full space of abductive theories but again the sepa-

ration of the problem into its two phases of ACL1 and ACL2 allows us to define

generality relations separately on the rule part P and integrity constraints I of

the abductive theories. These separate generality relations can be defined via

classical deductive entailment in the same way as in ILP. For the rule part we

can use the same generality relation as in ILP, namely that: P1 is more general

that P2 iff P1 |= P2.

For the integrity constraints we can define their generality relation as

follows.

Definition 3.4

Given two sets on integrity constraints I1 and I2, I1 is more general than I2 iff

I2 |= I1.

The generality of integrity constraints is defined in this dual way as their role in

the abductive entailment (and hence in the coverage relation) is to restrict the

possibility of making abductive assumptions by requiring that these assumptions

define (through the program) a model of the constraints (see definition 2.2).

In this way, the generality of integrity constraints increases as the number of

abductive explanations that they allow increases.

∗6 As usual, a theory T2 is more general that another theory T1 iff Covers(T1) ⊂ Covers(T2)
where Covers(T) denotes the set of all examples that are covered by the theory T .

Abductive Concept Learning 21

The use of these usual generality relations on the separate parts of an

abductive theory means, as we shall see in the next section, that we can adapt

standard ILP techniques, e.g. generalization and specialization operators based

on θ-subsumption 61, 62), in developing algorithms for the separate phases of

ACL1 and ACL2.

§4 An Algorithm for ACL
The ACL problem can be solved by the following algorithm, also called

ACL. The algorithm is composed of two steps, one for each of the subproblems

of the full ACL problem.

Algorithm ACL:

1. Learn rules (ACL1): find a set of rules P ′ and two sets of assumptions

∆+ and ∆− such that

• 〈P ∪ P ′, A, I〉 `∆+

∅ E+,

• 〈P ∪ P ′, A, I〉 `∆−

∆+ not E−

where `∆′

∆ denotes an abductive derivability relation satisfying defini-

tion 2.9.

2. Learn constraints (ACL2): find a set of integrity constraints I ′ such

that

• M(∆+) |= I ′,

• ∀l ∈ ∆−, M({l}) 6|= I ′

where M(∆+) and M({l}) denote the minimal Herbrand model of P ∪
P ′ ∪∆+ and P ∪ P ′ ∪ {l}.

ACL1 is solved by an algorithm also called ACL1 that will be presented in sec-

tion 4.1. Note that this algorithm uses strong abductive explanations for the

positive examples E+ (as well as the negative examples) thus exploiting the

property of proposition 2.1 for combining incrementally separate explanations

and in particular for ensuring that the union ∆+∪∆− of the computed assump-

tions is consistent with the learned theory. ACL2 can be solved by employing

a framework that performs discriminant learning from interpretations, such as

ICL 18). We will explain in more detail how ICL can be applied in section 4.2.

4.1 An Algorithm for ACL1
The algorithm for ACL1 is based on the generic top-down ILP algorithm

22 Fabrizio Riguzzi

procedure ACL1(

inputs : E+, E− : training sets,

T = 〈P,A, I〉 : background abductive theory,

outputs : H : learned theory, ∆+,∆− : abduced literals)

H := ∅
∆+ := ∅
∆− := ∅
repeat

Specialize(T,H,E+, E−,∆+,∆−;Rule,E+
Rule,∆

+
Rule,∆

−
Rule)

E+ := E+ \ E+
Rule

H := H ∪ {Rule}
∆+ := ∆+ ∪∆+

Rule

∆− := ∆− ∪∆−Rule

until E+ = ∅ (sufficiency stopping criterion)

output H,∆

Fig. 1 ACL, the covering loop

(see e.g. 52)) and extends the algorithm in 26). In this section, we consider only

a single predicate learning task. We will discuss in section 5 the problem of

learning multiple predicates. The top level covering and specialization loops of

the algorithm are shown in Fig. 1 and Fig. 2 respectively.

The generic top-down algorithm has been extended in several ways to

take into account the abductive coverage relation of ACL1. New clauses are

generated by beam search, initialized to a clause with an empty body for the

target predicate, using a specially defined heuristic evaluation function. This is

adapted from the usual accuracy function to allow for the possibility of missing

information on some of the background predicates.

The evaluation of a clause is done by starting an abductive derivation for

each positive example and for the complement of each negative example. The

derivation is performed using a procedure based on the abductive procedure

outlined in appendix 3. For each example e a call AbductiveDerivation(e, 〈P ∪
H ∪ {Rule}, A, I〉,∆in; ∆e) returns a strong abductive explanation ∆e for the

goal e (which is either of the form e+ or not e−) starting from an initial set of

Abductive Concept Learning 23

procedure Specialize(

inputs : T : background theory,

H : current hypothesis, E+, E− : training sets,

∆+,∆− : current set of abduced literals

outputs : Best : rule, E+
Best : examples covered by Best,

∆+
Best,∆

−
Best : literals abduced when testing Best)

Beam := { 〈p(X)← true., V alue〉, where p is a target predicate,

V alue is the value of the heuristic function for the rule}
Select and remove the best rule Best from Beam

repeat

BestRefinements := set of refinements of Best allowed

by the language bias

for all Rule ∈ BestRefinements do

V alue := Evaluate(Rule, T,H,E+, E−,∆+,∆−)

if Rule covers at least one pos. ex. then

add 〈Rule, V alue〉 to Beam

endfor

Remove rules in Beam exceeding the beam size

Select and remove the best rule Best from Beam

until Best ACL1-uncovers every e− ∈ E− (necessity stopping criterion)

Test the coverage of Best obtaining:

E+
Best the set of positive examples covered by Best

∆+
Best and ∆−Best the sets of literals abduced during

the derivation of e+ and not e− (e+ ∈ E+
Best, e

− ∈ E−)

output Best, E+
Best,∆

+
Best,∆

−
Best

Fig. 2 ACL, the specialization loop

24 Fabrizio Riguzzi

assumptions ∆in, i.e. 〈P ∪H ∪ {Rule}, A, I〉 `∆e

∆in
e. ∆in consists of the set of

assumptions abduced for earlier examples thus ensuring that the assumptions

made during the derivation of the current example are consistent with the ones

made before. Note that ∆e contains all the assumptions needed to explain e,

even those that are already contained in ∆in. This is needed for the evaluation

of the heuristic value of the clause as well as for the second phase (ACL2) of

the ACL algorithm, where we learn the constraints, as the learned constraints

must make inconsistent all the assumptions in the explanations ∆not e− of any

negative example e−. The procedure Evaluate is shown in Fig. 3. When using

abduction for the coverage of a set of examples, two types of cost must be taken

into account: the first cost is given by the number of examples in the set that are

covered (or uncovered) using abduction with respect to those covered without

abduction, i.e. are deductively covered (or uncovered), while the second cost is

the cost of each assumption in the explanations for individual examples. These

costs are taken into account by the heuristics, which weight examples differently

depending on whether they are covered with abduction or without abduction,

with a relative weight depending on some estimate of the probability of the

assumptions.

The heuristic function is thus calculated based on the number of covered

positive (and uncovered negative examples), distinguishing between examples

covered (uncovered) with or without abduction. Note that the use of strong

explanations affects this distinction of non coverage of negative examples as

strong explanations would include negative abducibles for examples that can

not be uncovered by the failure of a non-abducible condition in the body of

the clause. For a clause (or rule) c the heuristic function takes the form of an

expected classification accuracy 52):

A(c) = p(⊕|c)

where p(⊕|c) is the probability that an example covered by clause c is positive. In

defining the probability we need to give different strength to positive examples

covered (negative examples uncovered) with assumptions (i.e. T `∆
∆in

e with

∆ 6= ∅, where e is either e+ or not e−) or without assumptions (i.e. ∆ = ∅).
The heuristic function used is

A(c) =
n⊕ + k⊕ × n⊕A

n⊕ + n	 + k⊕ × n⊕A + k	 × n	A

where, for any given clause c, n⊕, n⊕A, n
	, n	A are defined as in procedure Evaluate

Abductive Concept Learning 25

function Evaluate(

inputs : Rule: rule, T = 〈P,A, I〉 : background theory,

H : current hypothesis, E+, E− : training sets,

∆+,∆− : current sets of abduced literals)

returns the value of the heuristic function for Rule

n⊕ := 0, number of pos. ex. ACL1-covered by Rule without abduction

n⊕A := 0, number of pos. ex. ACL1-covered by Rule with abduction

n	 := 0, number of neg. ex. not ACL1-uncovered by Rule

n	A := 0, number of neg. ex. ACL1-uncovered by Rule with abduction

∆in := ∆+ ∪∆−

for each e+ ∈ E+ do

if AbductiveDerivation(e+, 〈P ∪H ∪ {Rule}, A, I〉,∆in; ∆e+)

succeeds then

if ∆e+ = ∅ then

increment n⊕

else

increment n⊕A
endif

∆in := ∆in ∪∆e+

endif

endfor

for each e− ∈ E− do

if AbductiveDerivation(not e−, 〈P ∪H ∪ {Rule}, A, I〉,∆in; ∆e−)

succeeds then

if ∆e− 6= ∅ then

increment n	A
endif

∆in := ∆in ∪∆e−

else

increment n	

endif

endfor

return Heuristic(n⊕, n⊕A, n
	, n	A)

Fig. 3 ACL, evaluation of a clause

26 Fabrizio Riguzzi

according to the abductive coverage of positive and negative examples by c.

The coefficients k⊕ and k	 are introduced in order to take into account

the degree of confidence in the assumptions made, respectively, for positive and

negative examples. They are an estimate of the fraction of assumptions made

that are correct. For example, consider a clause c of the form:

p(X)←Body(X)

where Body(X) is a conjunction of literals not containing an abducible. Suppose

we want to evaluate the refinement c′ obtained by adding to c the abducible

literal abd(X). Clause c covers n⊕(c) positive examples without abduction: out

of these, c′ will cover n⊕(c′) positive examples without abduction (for which a

fact of the form abd(~t) is in the background program), n⊕A(c′) with abduction (a

fact of the form abd(~t) is abduced) and it will not cover n⊕(c)−n⊕(c′)−n⊕A(c′)

examples (abd(~t) could not be abduced because of constraints).

As an example, consider the following training set

E+ = {p(a), p(b), p(c), p(d), p(e), p(f)}
Suppose that Body(X) is true for X equal to all the constants a, b, c, d, e, f ,

therefore n⊕(c) = 6. Moreover, suppose the background knowledge contains

the facts abd(a) and abd(b) and the constraint ← abd(X), q(X) together with

the facts q(e) and q(f). Therefore, p(a) and p(b) will be covered by c′ without

abduction (n⊕(c′) = 2), p(c) and p(d) will be covered with abduction (n⊕A(c′) =

2) and p(e) and p(f) will not be covered because the assumptions abd(e) and

abd(f) are inconsistent with the integrity constraint ← abd(X), q(X).

k⊕(c′) expresses an estimate of the fraction of the abd(~t) assumptions

that are correct in the sense that, if the knowledge were complete, abd(~t) would

be known to be true. This percentage is estimated by assuming that the ratio

of true facts over the total number of facts for the unknown atoms is the same

for the known atoms. Therefore k⊕(c′) is given by the following formula

k⊕(c′) =
of true atoms

of known atoms
=

n⊕(c′)

n⊕(c)− n⊕A(c′)

The true atoms are the facts (in the background program) of the form abd(~t)

that corresponds to examples covered by c′, therefore their number is n⊕(c′).

The false atoms are the ones for which the constraints inhibited the assumption

of a fact of the form abd(~t). The unknown atoms are the ones for which it

was possible to make an assumption of the form abd(~t), hence their number is

n⊕A(c′). The number of known atoms is given by the total number of atoms in

Abductive Concept Learning 27

the sample universe (i.e. of the examples covered by c) minus the number of

unknown atoms. In the example above, the number of true atoms for abd(X) is 2

(abd(a) and abd(b)) and the number of unknown atoms is 2 (abd(c) and abd(d)),

so the number of known atoms is 6-2=4 and k⊕(c′) has the value 2/4=0.5.

In the case in which no constraints are available, n⊕(c′)+n⊕A(c′) = n⊕(c)

and k⊕(c′) is always 1. In this case, we use following more conservative estimate

k⊕(c′) =
n⊕(c′)

n⊕(c)

with a lower bound, set by default to 0.1, so that k⊕(c′) can not drop below

this threshold. This estimate turned out often to be more realistic also when

constraints are available, due to the fact that much more positive information

(represented by facts of the programs) is usually available rather than nega-

tive information (represented by constraints). Therefore, this more conservative

estimate was used in most of the experiments.

Finally, we must consider the case in which some abducibles were already

present in Body(X). We will assume that all the examples covered by c′ with

abduction are covered with abduction as well by c. k⊕(c′) must then express the

probability that both the current assumptions and those made before are true

at the same time. Therefore:

k⊕(c′) = k⊕(c)× n⊕(c′)

n⊕(c)

The formula for k	(c′) can be derived with a similar reasoning:

k	(c′) = k	(c)× n	(c′)

n	(c)

As mentioned above, these heuristics act as a method for assigning a cost on

the abductive assumptions required for the appropriate coverage of the positive

and negative examples. This has two effects. First by assigning a cost factor

(k⊕ or k) to coverage which is not deductive but needs some assumptions it

gives preference to learned definitions that would not need abduction if this is

indeed possible. Secondly, if this is not possible, then the varying cost of the

abducible assumptions (depending on their relative frequency in the background

theory) gives a preference amongst the different possible abductive explanations

(and hence coverage) of the examples. In this way the heuristics help to select

simple definitions for the concepts avoiding possibilities which require a large

number of unlikely abductive assumptions. Finally, we note that it is possible to

28 Fabrizio Riguzzi

use, together with the above heuristics, other cost functions on the abducibles,

possibly specific to the particular learning problem at hand, without any essential

change to the ACL algorithm described above.

4.2 Learning Integrity Constraints
The second subproblem ACL2 of learning integrity constraints can be

seen as a problem of learning from interpretations where we have to discrimi-

nate between allowed interpretations (explanations for positive examples) and

forbidden interpretations (explanations for negative examples). The framework

of ICL 18) solves exactly this problem and we can therefore use it to solve ACL2.

We recall here the definition of the ICL problem.

Definition 4.1 (ICL Problem)

Given

• a definite clause background theory B,

• a set of positive interpretations P ,

• a set of negative interpretations N .

Find a clausal theory H such that

• for all p ∈ P , M(B ∪ p) is a true interpretation of H, i.e. M(B ∪ p) |= H

(Completeness);

• for all n ∈ N , M(B∪n) is a false interpretation of H, i.e. M(B∪n) 6|= H

(Consistency);

In our case, we have to learn integrity constraints on abducibles by using the

information contained in the sets ∆+ and ∆− generated from ACL1. ICL can

be used to solve the ACL2 problem with the following inputs:

• the program P ∪ P ′ as the background knowledge B,

• one positive interpretation p = ∆+;

• one negative interpretation ni = {li} for each li ∈ ∆−.

Learned constraints will be true in the model M(∆+) and will be false in each

model M({li}). Therefore, when the integrity constraints are added to the final

abductive theory, they will not allow any of the abductive assumptions li with

li ∈ ∆−. This in turn means (see theorem 3.1) that negative examples cannot

be abductively entailed as required for the full ACL problem.

We mention here that another possibility of integrating the two sub-

problems of ACL1 and ACL2 is to record in ACL1 all possible explanations ∆e−

Abductive Concept Learning 29

for each negative example e− in its positive form and to give to ICL each one

of these explanations ∆e− as negative interpretations. In this way, we do not

decide a priori in ACL1 how (i.e. on which assumption) each of the explana-

tions for negative examples must be made inconsistent later by the constraints

produced by ACL2. This decision is taken a-posteriori by ACL2 itself when it

produces the constraints. Hence ICL has the freedom to make ∆e− inconsis-

tent on any of the abducibles in it. Learning constraints is now easier because

ICL can choose which abducible to make inconsistent in each explanation ∆e− .

However, this alternative way of splitting the ACL problem is only appropriate

when assumptions for positive examples cannot contradict those for negative

examples. Otherwise, such an inconsistency will not be detected until the end

of the second phase requiring the (costly) return to the first phase.

4.3 Properties of the Algorithm
In this section, we show the soundness of the ACL algorithm given in

the previous section and discuss its (lack of) completeness.

Let us first define formally the properties of soundness and completeness

of an inductive algorithm for the problem of ACL. Given an algorithm, A, for

ACL we shall write A(〈P, I〉, E+, E−, T) = T ′ to indicate that, given the hy-

pothesis space 〈P, I〉, the positive and negative examples E+ and E−, and the

background knowledge T , the algorithm outputs a program T ′. With respect to

the ACL problem definition of section 3, soundness and completeness are defined

as follows.

Definition 4.2 (Soundness)

An algorithm A is sound if whenever A(〈P, I〉, E+, E−, 〈P,A, I〉) = T ′, then

T ′ = 〈P ∪ P ′, A, I ∪ I ′〉 satisfies the conditions of definition 3.1, i.e. P ′ ∈ P,

I ′ ∈ I and

• T ′ |=A E+,

• ∀e− ∈ E−, T ′ 6|=A e−.

Definition 4.3 (Completeness)

An algorithm A is complete if whenever there is a T ′ such that T ′ = 〈P ∪
P ′, A, I ∪ I ′〉 satisfies the conditions of definition 3.1, i.e. P ′ ∈ P, I ′ ∈ I and

• T ′ |=A E+,

• ∀e− ∈ E−, T ′ 6|=A e−.

then A(〈P, I〉, E+, E−, 〈P,A, I〉) = T ′.

30 Fabrizio Riguzzi

The algorithm for ACL presented above in this section 4 in terms of the ACL1

and ACL2 algorithms is sound but not complete.

Theorem 4.1 (Soundness)

The algorithm ACL is sound.

The proof of this theorem is given in appendix 2. The ACL algorithm is incom-

plete because the search space of ACL1 is not completely explored. In particular,

there are two choice points which are not considered in order to reduce the com-

putational complexity of the algorithm. The first choice point is related to the

greedy search in the space of possible programs as in most ILP systems. When

no new clause can be added by the specialization loop, no backtracking is per-

formed on previous clauses added. This can prevent the system from finding

a solution when it is learning a recursive predicate because of the interaction

among clauses: an overgeneral clause may make inconsistent a correct clause

still to be learned that calls it.

The second choice point concerns the different abductive explanations

that may be available for each example: the choice of an explanation for an

example can affect the coverage of future examples. The algorithm does not

perform backtracking on example explanations, it just selects one according to

the order of the learned clauses which in turn depends on the heuristics that is

used and then commits to it.

Finally, we comment that with respect to the generality relations defined

in section 3.1 for the separate parts of the hypothesis space, the solution found

by the ACL algorithm combines a most general program with a most specific

set of integrity constraints. Finding most specific integrity constraints means

that these will restrict as much as possible the number of abductive extensions

that are allowed by the learned theory. This is desirable since initially, with

no constraints, any set of assumptions is allowed: with the learned constraints

we want to maximize the information gained from them by maximizing the

collection of assumption sets that they exclude.

§5 ACL for Multiple Predicate Learning
ACL finds a natural application in the problem of Multiple Predicate

Learning (MPL) in ILP. In MPL we have a learning situation which is similar

to the problem of learning with incompleteness in the background data, since

each predicate to be learned forms part of the background theory for the other

Abductive Concept Learning 31

predicates and the available definitions for the target predicates are incomplete

during learning. Multiple predicate learning is a task that poses a number of

problems to most ILP systems. These problems and difficulties have been ex-

posed in 17). In this section we will discuss these problems and show how they

can be addressed within the ACL framework.

In multiple predicate learning it is necessary to distinguish between two

types of consistency of a learned clause: local and global consistency of a new

clause with respect to the theory learned so far (current hypothesis). The follow-

ing definitions extend those given in 17) by relating the consistency of a clause

to the current partial hypothesis. Intuitively, a clause is locally consistent if it

does not cover any negative example for its head predicate when it is added to a

consistent partial hypothesis. On the other hand, a clause is globally consistent

if the theory obtained by adding it to the current partial hypothesis no negative

example for any target predicate is covered when this is added to the hypothesis.

Definition 5.1 (Local consistency)

Let H be a consistent hypothesis and c a clause for the predicate pi. Then c is

locally consistent with respect to H if and only if covers(B,H∪{c}, E−pi
) =

∅, where E−pi
are the given negative examples on pi.

Definition 5.2 (Global consistency)

Let H be a consistent hypothesis and c a clause for any target predicate. Then

c is globally consistent with respect to H if and only if covers(B,H ∪
{c}, E−) = ∅, where E− is the set of negative examples on all target predicates.

By repeating several times a single predicate learning task, we repeatedly add lo-

cally consistent clauses to the current partial hypothesis. However, when learn-

ing multiple predicates, adding a locally consistent clause to a consistent hy-

pothesis can produce a globally inconsistent hypothesis as it is shown in the

next example adapted from 17).

Example 5.1

Suppose we want to learn the definitions of ancestor and father from the knowl-

edge base:

B = {parent(a, b), parent(d, b), parent(b, c),male(a), female(b)}
and the training sets:

E+ = {ancestor(a, b), ancestor(d, c), father(a, b)}
E− = {ancestor(b, a), ancestor(a, d), father(b, c), father(a, c)}

32 Fabrizio Riguzzi

Suppose that the system has first generated the rules:

ancestor(X,Y)← parent(X,Y).

father(X,Y)← ancestor(X,Y),male(X).

The second rule is incorrect but the system has no means of discovering it at

this stage, since it is locally and globally consistent with respect to the partial

definition for ancestor.

Then the system learns the recursive rule for ancestor:

ancestor(X,Y)← parent(X,Z), ancestor(Z, Y).

This clause is locally consistent with respect to the current hypothesis because

none of the negative examples for ancestor will be covered, but is globally in-

consistent because the negative example father(a, c) will be covered.

The system MPL of 17) uses intentional coverage and addresses the problem

of maintaining the global consistency of the current hypothesis by re-testing

the negative examples for all predicates after the addition of a clause and by

performing backtracking on clause addition to the theory.

Another problem that can arise in multiple predicate learning concerns

the case when scarce training examples, particularly negative examples, are avail-

able for a subsidiary predicate. In this case, a system could learn an overgeneral

definition for the subsidiary predicate and this may prevent the system from

finding a consistent definition for other predicates.

Example 5.2

Suppose we want to learn grandfather and father. Let the background theory

be:

P = {parent(john,mary),male(john),

parent(david, steve),male(david),male(steve),

parent(steve, jim),male(jim),

parent(mary, ellen), female(mary), female(ellen)

parent(ellen, sue), female(sue)}
and let the training data for both concepts be:

E+ = {grandfather(john, ellen), grandfather(david, jim),

father(john,mary)}
E− = {grandfather(mary, sue), grandfather(mary, john),

father(john, ellen), father(david, jim), father(jim, david)}
A system that learns first the rule for father, may learn the overgeneral rule

father(X,Y)← parent(X,Y)

Abductive Concept Learning 33

since it is consistent with the negative examples for father. Then, it would not

be able to accept the correct rule for grandfather, since

grandfather(X,Y)← father(X,Z), parent(Z, Y).

would cover as well the negative example grandfather(mary, sue).

On the other hand, if the system learns first the above correct rule for grandfather

it again needs to recognize that this implies additional negative examples for

father in order to avoid the same overgeneral rule for father.

5.1 M-ACL: a Multiple Predicate Learning framework
The basic idea of performing multiple predicate learning through ACL

is to set the target predicates to be learned as abducible predicates and use

the abductive information that ACL1 generates on these to link the learning

of the different predicates. This information can be used in two inter-related

ways. Firstly, it acts as extra training examples for the target predicates. After

the generation of each clause by ACL1, the associated assumptions ∆+ and ∆−

about other target predicates are added to the training set according to their

sign. In effect, training information for one predicate is transformed into training

information for other predicates. At the same time, this abductive information

generated by ACL1 is used to give us an extra mechanism for ensuring global

consistency in the hypothesis in a way similar to abductive truth maintenance

systems 44, 32). The MPL algorithm and system is obtained from ACL1 by en-

compassing this in a process that uses the abductive information, produced by

ACL1, to detect and restore consistency.

The M-ACL algorithm is therefore based on a dynamic set of training

examples E for the target predicates that contains the given training examples

together with those generated through abduction. It rests on the important

observation that, for definite logic programs, we can verify the global consis-

tency property of a clause (definition 5.2) by testing only the negative training

examples for its head predicate in the abductively extended training set of

examples.

The M-ACL algorithm shown in Fig. 4 extends that of ACL1 in several

ways. An extension of the ACL1 Specialize procedure is used, denoted by

SpecializeM . This uses extensional coverage and tries to generate a new clause

r that is correct with respect to the current extended set of training examples

Ec. If this is possible, then the generated clause, r, will cover a set of positive

examples E+
r and no negative example (E−r = ∅) with the assumptions ∆r.

34 Fabrizio Riguzzi

procedure M-ACL(

inputs : E+, E− : training sets,

P : background theory,

outputs : H : learned theory, EA : abduced examples)

H := ∅
∆ := ∅
Ec := E+ ∪ not E−

repeat

SpecializeM (P,H,Ec,∆; r, E+
r , E

−
r ,∆r)

Ec := Ec \ E+
r

H := H ∪ {r}
Test(H, ∆−r ; ∆−f)

while ∆−f is non-empty:

Choose(∆−f ; Ab)

Refine(H,Ab,∆, Ec; H,Ec,∆)

∆−f := ∆−f \ {Ab}
endwhile

If E−r 6= ∅ then

RetractClauses(H,∆, E−r , Ec;H,∆, Ec)

Update(Ec,∆r;Ec)

∆ := ∆ ∪∆r

until E+
c = ∅ (covering loop)

EA := Ec \ (E+ ∪ E−)

output H,EA

Fig. 4 The M-ACL algorithm

Abductive Concept Learning 35

If no rule consistent with the current set of negative examples can be found,

then SpecializeM looks for a clause that is consistent only with the original

set of examples but covers the subset E−r of negative examples generated by

abduction. If no such clause can be found, then SpecializeM fails and M-ACL

also fails.

We then check if the generated clause, that was found extensionally

consistent, is also intensionally consistent. To this purpose, the set of negative

assumptions ∆−r ⊆ ∆r generated by SpecializeM is tested against the current

hypothesis: the assumptions are considered as negative examples that must

not be covered. If some of these assumptions are violated (∆−f denotes this

set of violated assumptions), we try to remove these violations by iteratively

choosing some assumption(s) Ab from ∆−f and refining the current hypothesis.

The refinement consists in specializing (or retracting and re-learning) the existing

rules that currently define the target predicate of the assumption(s) Ab and are

causing the violation with Ab.

If E−r is not empty, then the clause is locally but not globally consistent

and we backtrack on the clauses that generated the covered examples. These

rules are deleted from the current hypothesis, positive examples covered by them

are re-added to the training set and assumptions and examples generated by

them are removed from ∆ and from the training set. In order to support the

backtracking required at this step, the abductive procedure employed by ACL1

is extended to record, for every assumption, the clause responsible for generating

it.

These two tests on ∆−r and E−r , when they are successful (i.e. when

both ∆−f and E−r are empty), ensure that the next candidate hypothesis, i.e.

H ∪{r}, is globally (intensionally) consistent. We point out that the generation

in M-ACL of the candidate clauses by SpecializeM (using extensional coverage)

allows the interleaving of learning clauses for different target predicates. M-

ACL does not require a given order in which to learn the target predicates: the

specialization loop in SpecializeM is initialized with an empty body clause for

each target predicate and the same heuristic function is used in order to select

the next clause to refine and therefore the next predicate to learn.

Let us now examine how this algorithm and the M-ACL system that

is based on it, behaves in the cases of examples 5.1 and 5.2. In example 5.1,

suppose the system has generated in the current hypothesis the clauses

ancestor(X,Y)← parent(X,Y).

36 Fabrizio Riguzzi

father(X,Y)← ancestor(X,Y),male(X).

M-ACL will produce, together with the above clause for father, the assumption

{not ancestor(a, c)} due to the negative example father(a, c). These assump-

tions then become additional negative examples for ancestor. Their test does

not produce a violation and so at this point the system tries to find a clause

covering the remaining positive examples for ancestor. The correct solution

ancestor(X,Y)← parent(X,Z), ancestor(Z, Y).

is not globally consistent, since it covers the new negative example ancestor(a, c)

generated from the rule for father. However, this clause is locally consistent,

since it does not cover any of the negative examples in the original training set

of ancestor. It is therefore added to the current hypothesis and the system

backtracks to the clause that has generated this violating assumption, namely

to the clause for father. This clause, together with the assumptions that it

has generated, are retracted and the examples for father are re-added to the

training set for this concept to be learned again. At this point, the system is

able to learn the correct rule for father

father(X,Y)← parent(X,Y),male(X).

This example shows one way in which the M-ACL system uses the dynamically

generated abductive information on the target predicates to have a focussed

mechanism of detection and repair of global inconsistencies allowing us to re-

cover from an incorrect rule. In example 5.2, M-ACL learns first the rule for

grandfather because more information is available about it and the heuristic

function prefers it to any of the rules for father. When M-ACL generates the

rule

grandfather(X,Y)← parent(Z, Y), father(X,Z)

it uses the examples for father as background knowledge making also assump-

tions about it when this is needed. The above rule will be learned by M-ACL by

making the assumptions {not father(mary, ellen), father(david, steve)} that

become additional training examples for father. From this new training set,

the system is then able to generate the correct rule for father. Note that,

without the new negative example father(mary, ellen), it would have been

impossible to generate the correct rule for father and the overgeneral rule

father(X,Y)← parent(X,Y) would have been learned. Thus M-ACL avoids

(in this case) the problem of overgeneralization.

M-ACL does not overgeneralize even if the system first generates the

overgeneral rule for father. In this case, extensional coverage still allows SpecializeM

Abductive Concept Learning 37

to generate the correct rule for grandfather and to generate the same negative

assumption on father as above. At this stage the M-ACL system will recognize

that we have a violation on the assumption Ab={not father(mary, ellen)} and

the Refine procedure will lead the system to specialize (or re-learn) the rule

for father thus producing at the end the same correct and complete hypoth-

esis as above. Hence, independently of the order of learning, the same extra

assumptions are generated and used to produce the same final result.

Summarizing, we point out that in effect the M-ACL system uses a hy-

brid of extensional and intensional coverage: extensional coverage in the genera-

tion of candidate clauses using examples of other target predicates as background

facts together with an intensional test of the theory on the generated negative

assumptions. Its test for global consistency is performed only on a “narrow”

subset of the negative examples, testing only the negative abduced examples

for the head predicate of the clause under test. In contrast, the system MPL
17) checks the negative examples for all target predicate after the addition of

a clause. In this way M-ACL performs a smaller number of tests with respect

to MPL. In section 6.2 some experiments on learning multiple predicates with

M-ACL are described and the results obtained are compared with MPL: how-

ever, since the available implementation of MPL is only prototypical and uses a

semi-automated covering step, no efficiency comparison was possible.

§6 Experiments
Two series of experiments have been performed in order to show the

ability of ACL to (1) learn from incomplete background knowledge and (2) to

perform multiple predicate learning. These experiments have been carried out

with an implementation of the ACL systems in Prolog. Their main purpose is

to show that the theoretical framework of ACL can be realized into a practical

system and to confirm that the framework can indeed address problems of learn-

ing under incomplete information. Comparisons with other existing systems are

carried out more on the level of accuracy of the learned theory rather than com-

putational efficiency (the implementation of ACL is a first implementation with

little if any code optimization). These experiments are thus “proof of the prin-

ciple” experiments to test the basic principles of abductive concept learning and

to demonstrate its appropriateness for these types of problems.

38 Fabrizio Riguzzi

6.1 Learning from Incomplete Background Knowledge
The main purpose of these experiments was to test how well ACL could

learn under incomplete information and to investigate its behaviour under dif-

ferent forms and degrees of incompleteness. The following three datasets are

presented here: (1) a database of family relations with varying degree of in-

completeness, (2) (real-life) market research questionnaires which is incomplete

due to unanswered questions or “don’t care” answers and (3) the congressional

voting records database from the UCI repository 7).

In these experiments, the results of ACL have been compared with those

of FOIL 64), mFOIL 24) and when the data can be represented in attributed-value

form with c4.5 66). As might be expected, the results of ACL were better in ev-

ery experiment, with respect to accuracy and compactness of the learned theory,

than those of FOIL which does not contain any special facility for missing infor-

mation. For this reason the specific details of the FOIL results are not presented

below showing only comparisons with mFOIL and c4.5 where appropriate∗7.

The mFOIL and c4.5 systems have special techniques for handling im-

perfect data that can be either noisy or incomplete. The approach of mFOIL

for dealing with incomplete data consists in relaxing the completeness require-

ment for the sufficiency stopping criterion: mFOIL stops adding a clause to the

theory when too few positive examples remain for a clause to be significant or

when no significant clause can be found with expected accuracy greater than

the default. The significance test is based on the likelihood ratio statistic 46): a

clause is deemed significant if its likelihood ratio is higher than a certain signifi-

cance threshold. The default value for the significance threshold is 6.64. Unless

otherwise specified, mFOIL was run in all the experiments with the parameters

set in the following way: the heuristic function is the m-estimate with m=2,

the beam size is 5, no negation as failure literals are allowed in the language

bias, the minimum number of examples that each rule must cover is 1 and the

significance threshold is 6.64.

To deal with incomplete information c4.5 adopts a probabilistic approach

as follows. When c4.5 chooses a test on an attribute A and splits the (current)

training examples T into subsets Tj according to the outcome of this test, if the

attribute A is known for a training example e with value Oi then e is added

into the corresponding set of training examples Ti indicating a probability 1.

∗7 The ACL system was also compared with the recent system of ICL-Sat 15) for learning
from partial interpretations with favourable results.

Abductive Concept Learning 39

Otherwise, if A is unknown for a case e, then e is associated with each subset Ti

with a weight representing the probability of the case belonging to that subset

estimated by the (weighted) relative frequency of an example having a particular

value for A amongst all examples for which A is known.

The major part of these experiments has concentrated on investigating

the behaviour of the ACL1 subsystem of ACL. This was done to facilitate an

equal comparison with existing systems that learn only rules (or only constraints

but again used as classification rules). In most cases though full abductive

theories have also been learned that include integrity constraints which support

the abductive rules generated by ACL1 thus solving the full ACL problem.

[1] Learning Family Relations

In this experiment the problem of learning family predicates is consid-

ered, e.g. that of learning the concept of father, from a database of family

relations 6) containing facts about several other predicates such as parent, son,

daughter, grandfather, male and female etc. We performed several experiments

with different degree of incompleteness of the background knowledge and com-

pared the results of ACL1 with those of mFOIL.

The complete background knowledge contains, amongst its 740 facts, 72

facts about parent, 31 facts about male and 24 facts about female. The training

set contains 36 positive examples of father taken from the family database and

200 negative examples of father that were generated randomly. Experiments

were performed from datasets containing 100%, 90%, 80%, 70%, 60%, 50% and

40% of the facts. The incomplete datasets were generated by randomly taking

out facts from the background knowledge. The experiments were performed

using 5-fold cross validation: the examples were divided into 5 blocks and, for

each level of incompleteness, 5 experiments were performed using 4 blocks as the

training set and leaving the other one for testing.

The experiments with ACL1 were performed first by considering a back-

ground knowledge with no constraints∗8 and then by adding the following in-

tegrity constraints:

←male(X), female(X).

← son(X,Y), female(X).

← daughter(X,Y),male(X).

∗8 For this a version of ACL1 was used specific for the case where the integrity constraints
have a simple form.

40 Fabrizio Riguzzi

Table 1 Performance on the family data

Data Accuracy Run Times (seconds)

ACL1 mFOIL ACL1+IC ACL1 mFOIL ACL1+IC

100% 1 1 1 38 62 60

90% 1 0.992 1 42 877 62

80% 0.996 0.984 0.996 305 926 9831

70% 1 0.975 1 251 676 11434

60% 1 0.984 1 158 555 1134

50% 0.972 0.984 1 201 1091 1063

40% 0.976 0.951 0.988 171 1329 745

ACL1 learned theories that are simpler, i.e. contain less rules with shorter bod-

ies, than those learned by mFOIL. Table 1 shows the accuracies and run times of

the experiment to learn the concept father for the theories generated by ACL1,

mFOIL and ACL1 plus integrity constraints for all levels of incompleteness. The

values shown are the average values over the 5 folds.

ACL1 was able to learn theories that are more accurate than mFOIL for

all levels of incompleteness apart from 50 %, with run times that are significantly

lower than mFOIL ones. When constraints are added to the theory, the accuracy

of ACL1 improves further for incompleteness 50 % and 40 % but with runtimes

that are significantly higher. The slower performance of ACL is due to the com-

putational overhead of finding and maintaining a consistent set of assumptions

under which the coverage of positive examples and non-coverage of the negative

examples is ensured. This is an additional output that other ILP systems do

not provide which is useful for the further learning of constraints in teh second

phase of ACL. The cost of consistency checking can potentially be very high and

therefore the experimenter should try to control this by minimizing the number

and complexity of the constraints used.

Moreover, for these experiments, we have applied the ICL system 18) to

solve also the ACL2 problem of learning integrity constraints from the associated

assumptions generated in the first phase by ACL1 and thus solving the full ACL

problem. In some cases, this generated the constraints that we usually expect

from this domain such as

←male(X), female(X), or

← parent(X,Y), parent(Y,X)

Abductive Concept Learning 41

In other cases, instead, the generated constraints are more specific, such as

parent(X,Y)←male(X), son(Y,X).

parent(X,Y);mother(X,Y)← son(Y,X).

This is due to the fact that the purpose of the generated constraints in ACL2

is just to support the assumptions of the ACL1 part, without considering other

data from the background theory, and therefore ICL selects any set of constraints

that is sufficient to achieve this specific task.

[2] Marketing Research Data

ACL has been used on several sets of real world data from market re-

search questionnaires aiming to understand the possible success or failure of

selling a new product. In this subsection we report on one such experiment.

This case concerns a market research on a new soft drink brand. The

research was conducted by asking 100 people to taste the drink and to fill a

questionnaire regarding the characteristics of the drink and their personal tastes.

The concept we want to learn is buy(X) that expresses whether the person would

buy the drink or not. Out of the 100 people interviewed, 52 answered that they

would buy the product, 32 would not and 16 don’t know. Therefore we have 52

positive examples and 32 negative ones.

There are 24 background predicates representing the answers to the ques-

tionnaire. Some questions require an answer chosen among a number of values:

for example, the question about the aroma of the drink can be answered with

“low”, “right” or “high”. These values have been represented using the pred-

icates lowaroma(X), rightaroma(X) and higharoma(X). Instead, questions

requiring a yes-no answer have been represented using a single predicate: for

example, whether the person likes natural things is encoded with the predicate

likenatural(X).

Some questions are unanswered or have don’t care answers and these

have been treated as incomplete information in the background. Out of 24

background predicates, 8 are incomplete with degree of incompleteness from

37% (i.e. 37 people out of 100 have not answered or have answered don’t care)

up to 89%. The incomplete background predicates have been considered as

abducibles and integrity constraints have been introduced in order to avoid the

abduction of two different answers for the same question. For example, for the

question of “overall flavour” we have the following constraint on the abducible

predicates that record answers to this question:

42 Fabrizio Riguzzi

Table 2 Performance on the drinks questionnaire data

Accuracy Run Times (seconds)

ACL1 c4.5 mFOIL ACL1 c4.5 mFOIL

0.8525 0.812 0.78 6.77 1.92 11.13

← goodflavouroverall(X), poorflavouroverall(X).

ACL1, mFOIL, c4.5 (and FOIL) were run on this data. The performance of

ACL1, mFOIL and c4.5 were compared by means of a 5-fold cross validation.

The average results for accuracy and runtimes are shown in table 2. ACL1 has

found theories that are, on average, more accurate than c4.5 and mFOIL with

run times higher than c4.5 but lower than mFOIL. In general, the dominant

rules found by ACL1 (and the other systems) were judged to be meaningful by

the experts.

The second phase of ACL was also run on this data to find constraints

which support the abductive rules and assumptions of ACL1. For example, one

of the constraints found was

← goodflavouroverall(X), higharoma(X)

which (partially) complements the available knowledge on goodflavouroverall(X).

On average, the constraints found where again judged to be significant by ex-

perts.

[3] Congressional Voting Records

This dataset was taken from the UCI repository of machine learning

databases 7). The dataset includes votes for each of the U.S. House of Repre-

sentatives Congressmen on 16 issues. The aim is to classify a Congressman as

a democrat or a republican according to the way he voted on these 16 issues.

There are nine different types of votes: voted for, paired for, and announced

for (these three simplified to yea), voted against, paired against, and announced

against (these three simplified to nay), voted present, voted present to avoid

conflict of interest, and did not vote or otherwise make a position known (these

three simplified to an unknown disposition).

There are 435 examples in this dataset (267 democrats, 168 republicans)

and 16 attributes, one for each voted issue. 14 out of 16 attributes have unknown

values, for a number of cases that varies from a minimum of 7 to a maximum

of 48. The experiments were performed using 10-fold cross validation and the

Abductive Concept Learning 43

Table 3 Performance on the congressional voting data

Accuracy Run Times (seconds)

ACL1 c4.5 mFOIL ACL1 c4.5 mFOIL

0.931 0.964 0.942 306 4 76

results of ACL1 were compared with those of c4.5 and mFOIL. The average

accuracies and run times are shown in table 3.

The accuracy of ACL1 is comparable to c4.5 and mFOIl with the one

of c4.5 marginally better. The computational efficiency of ACL1 was inferior to

both c4.5 and mFOIL but this is to be expected as the ACL1 system used is a

first simple implementation with no code optimization. As in the previous ex-

periments its main overhead stems from the extra computation that it performs

in order to find necessary assumptions under which the negative examples can

not be covered and the consistency checking for these assumptions.

6.2 Multiple Predicate Learning
In this section we present some experiments that have been performed

with the M-ACL system: (1) learning a definite clause grammar for simple sen-

tences, (2) learning the definitions of the mutually recursive predicates even and

odd and (3) learning multiple family relations. As with the previous experiments

their main aim is to demonstrate the basic principles of ACL in its application

to multiple predicate learning and to show that M-ACL exhibits desirable prop-

erties for this type of learning e.g. that it is independent of the order of the

predicates, it maintains global consistency, it can backtrack from a wrong clause

and it can avoid overgeneralization.

The same experiments were also tried using the MPL system of 17) in

order to compare the learned theories. However, the available implementation of

MPL is only prototypical with its covering step semi-automated. It also differs

from the theoretical algorithm since it adopts a hill-climbing search instead of

beam search. Due to these limitations of the prototype it was difficult to perform

any significant comparison either in terms of the quality of the theory learned

or the runtimes of the two systems. In fact, the hill-climbing search of the MPL

system prevented it from finding solutions for the grammar data and family

relations data, while on the even and odd data MPL was not able to learn the

correct theory due to its specific intensional test of examples.

44 Fabrizio Riguzzi

[1] Grammar

The data for this experiment is taken from 15). The aim is to learn the

following definite clause grammar for parsing very simple English sentences:

(1) sent(A,B)← np(A,C), vp(C,B).

(2) np(A,B)← det(A,C), noun(C,B).

(3) vp(A,B)← verb(A,B).

(4) vp(A,B)← verb(A,C), np(C,B).

In 15) Claudien-Sat is used to solve this task starting from different input inter-

pretations.

The first interpretation corresponds to a complete syntactic analysis of

the sentence “the dog eats the cat”. Therefore the data set contains all the

positive and negative facts mentioning the following lists: [the,dog,eats,the,cat],

[dog,eats,the,cat], [eats,the,cat], [the,cat], [cat] and []. Another interpretation

contains some ungrammatical sentences and corresponds to several attempts to

analyze “the cat the cat”. It includes all positive and negative facts mention-

ing the following lists: [the,cat,the,cat], [cat,the,cat], [cat,cat], [the,cat], [cat],

[cat,the] and []. Similarly, another interpretation contains all positive and nega-

tive facts mentioning the lists [the,cat,eats], [cat,eats], [cat,sings], [the,cat,sings],

[dog,cat], [sings], [eats],[the] and [].

M-ACL has learned the above rules in the following order: (2), (3), (1),

(4). Note that the definition for sent was learned at a point where the definition

for vp was not complete. This was possible because the system used the examples

for vp to complete its definition, by exploiting the hybrid form of coverage. In

this case the training set was such that no assumption has been necessary for

covering the positive examples for sent, while some negative assumptions about

np were necessary in order to avoid the coverage of negative examples for sent.

[2] Mutually Recursive Predicates

The task consists in learning the mutually recursive definition for the

predicates even(X) and odd(X)

(1) even(X)← zero(X).

(2) odd(X)← succ(X,Y), even(Y).

(3) even(X)← succ(X,Y), odd(Y).

The background knowledge contains the fact zero(0) and the definition of the

predicate succ(X,Y) whose meaning is “X is the successor of Y ”. The training

set is obtained from a complete training set containing facts for all the numbers

Abductive Concept Learning 45

from 0 to 9 by removing some of these. For example, we may remove the posi-

tive examples odd(1), odd(5), odd(7), even(2), even(6) and the negative examples

even(3), even(7), even(9), odd(6), odd(8). The training set is therefore given by:

E+ = {odd(3), odd(9), even(0), even(4), even(8)}
E− = {even(1), even(5), odd(0), odd(2), odd(4)} M-ACL generated the following

output:

/* Execution time 0.440000 seconds. Generated rules */

rule(even(A),[zero(A)],c2)

GC: yes, LC: yes

Covered positive examples: [even(0)]

Covered positive abduced examples: []

Covered negative abduced examples: []

Abduced literals: []

rule(even(A),[succ(A,B),odd(B)],c13)

GC: yes, LC: yes

Covered positive examples: [even(8),even(4)]

Covered positive abduced examples: []

Covered negative abduced examples: []

Abduced literals: [[odd(7),c13]]

rule(odd(A),[succ(A,B),even(B)],c21)

GC: yes, LC: yes

Covered positive examples: [odd(9),odd(3)]

Covered positive abduced examples: [odd(7)]

Covered negative abduced examples: []

Abduced literals: [[not(even(3)),c21]]

Every rule learned is represented in the form rule(Head,Body,Identifier)

where Identifier is a constant that identifies the rule. The attributes GC and

LC that appear after each rule express whether the rule is, respectively, globally

or locally consistent.

M-ACL has learned clause (3) by exploiting the examples for odd as

background knowledge and by abducing the missing example odd(7). This ex-

ample is then added to the training set and is covered by clause (2). For clause

(3), no negative assumption was necessary for not covering the two negative

examples even(1) and even(5) because odd(0) and odd(4) are in the negative

training set. Instead, for clause (2), the negative assumption not even(3) was

necessary to uncover the negative example odd(4). This experiment shows the

ability to learn mutually recursive predicates, exploiting both extensional cover-

age and abduction.

46 Fabrizio Riguzzi

MPL was not able to find a solution in this case due to the intensional

coverage test it adopts. MPL first learns clause (1) and then it is not able to

learn any of the recursive clauses because, by using intensional coverage, clause

(2) would cover only the example odd(1) which is not in the training set, while

clause (3) does not cover any example.

[3] Multiple Family Relations

Several experiments to learn multiple family relations were carried out.

In one such experiment the task is to learn the predicates brother and sibling

from a background theory about parent, male and female. The bias allowed the

body of the rules for brother to be any subset of

{parent(X,Y), parent(Y,X), sibling(X,Y), sibling(Y,X),

male(X),male(Y), female(X), female(Y)}

while the body of the rules for sibling can be any subset of

{parent(X,Y), parent(Y,X), parent(X,Z),

parent(Z,X), parent(Z, Y), parent(Y, Z),

male(X),male(Y),male(Z), female(X), female(Y), female(Z)}

Therefore, the rules we are looking for are

brother(X,Y)← sibling(X,Y),male(X).

sibling(X,Y)← parent(Z,X), parent(Z, Y).

The family database considered for these experiments, taken from 17), contains

16 facts about brother, 38 about sibling, 22 about parent, 9 about male and 10

about female. The background knowledge was obtained from this database by

considering all the facts about male and female and only 50 % of the facts about

parent (selected randomly). The training set contains all the facts about brother

and 50 % of the facts about sibling (also selected randomly). Negative examples

were generated by making the Closed World Assumption and taking a random

sample of the false atoms: 36 negative examples for sibling and 37 for brother.

For this problem the abducible predicates are the target predicates brother and

sibling plus the background predicate parent.

From this data, M-ACL has constructed first the rule

brother(X,Y)← sibling(Y,X),male(X).

It has exploited both the positive examples of sibling to cover positive examples

Abductive Concept Learning 47

of brother and negative examples of sibling to avoid covering negative examples

for brother. This rule was constructed first because the heuristics preferred it to

the rules for sibling, as more information was available for the predicate sibling

rather than for parent. When learning this rule, ACL1 has made a number of

assumptions on sibling: it has abduced 3 positive facts (that become positive

examples for sibling) and 33 negative facts (that become negative examples for

sibling). Then, M-ACL constructs the rule for sibling

sibling(X,Y)← parent(Z,X), parent(Z, Y).

using this new training set and making assumptions on parent.

This experiment shows again how M-ACL is able to learn multiple pred-

icates exploiting the information available and generating new data for one pred-

icate while learning another.

§7 Related Work
The work of this paper builds on earlier proposals in 22) and 26, 50, 51)

for learning simpler forms of abductive theories. In 22) the basic definition of

Abductive Concept Learning was introduced and various relations among in-

duction and abduction were investigated. Its study of ACL was primarily at

the abstract level indicating, through simple examples, the properties that such

learning would have with no algorithmic study of the problem. In the current

paper, after modifying slightly the definition, the problem of ACL is studied in

detail at the theoretical, algorithmic and empirical level establishing firmly its

theoretical and practical properties.

The previous works in 26, 50, 51) have studied specific aspects of the general

problem of learning with abduction and ACL. Again this was done more at

a descriptive level on examples studying simple algorithms for such learning

and demonstrating the potential of abduction in addressing some interesting

problems in learning. Specifically, in 26) an algorithm was presented that is able

to learn theories with exceptions by introducing new abducibles into rules.

In 51) and 50), the problem of ACL is studied but this study is restricted

only to the first part of the problem, namely to ACL1. As above, the learning

algorithm used is simple (with a depth first search), appropriate only for toy

examples of the problem. Moreover, again the emphasis of this work was put on

the application to learning recursive predicates and on the problem of learning

exceptions by concentrating on the specific case of abduction for negation as

failure. The current work has more emphasis on the application to the prob-

48 Fabrizio Riguzzi

lems of learning from incomplete background information and multiple predicate

learning.

In general, the work in the present paper extends and complements these

previous works in several ways by providing a firmer theoretical framework for

abduction in learning, a method for learning constraints in the second phase

of ACL2, an effective algorithm based on a beam search with an appropriate

heuristic function, a practical system for ACL and a thorough empirical study

on non-trivial experimental data. In this way the current work establishes firmly

the utility of abduction in learning advocated by the previous work.

The use of abduction in learning, either in an implicit or explicit form,

has recently been examined by several works 1, 2, 3, 10, 13, 56, 37, 47, 68). The ab-

ductive assumptions generated during learning are then used in different ways

depending on the kind of learning task the system is performing. In many cases

abduction is used as a useful mechanism that can support some of the activities

of the learning system. For example, in theory revision, abduction is used as one

of the basic revision operators for the overall learning process 2, 13, 56, 68, 67). For

each individual positive example that is not entailed by the theory, abduction

is applied to determine the set of assumptions that would allow it to be proved.

These assumptions are then used to suggest where the current theory should be

revised. In 13, 2) the assumptions are either added as facts to the theory or new

clauses are learned for covering them. Theory revision thus uses induction over

abduced examples in order to achieve its task. In addition, some of these sys-

tems use abductive assumptions for revising overspecific rules by removing from

them the literal(s) that generated the assumption 56). This type of integration of

abduction and induction has been studied in a principled way in 3) where an in-

tegrated framework that combines Abductive and Inductive Logic Programming

is proposed. The generation of abduced examples in theory revision (refinement)

is similar to one of the uses of abduction in ACL where abductive assumptions

are generated and used as extra training information either for learning integrity

constraints or for learning other predicates in the M-ACL framework for multiple

predicate learning. However, in ACL abduction plays an additional and more

central role in the definition of the basic learning covering relation.

Abduction is used as well when performing predicate invention 72, 31, 70, 49):

if no literal in the language bias can be found that can make a clause consis-

tent, a literal for a new predicate is generated and added to the clause. Then,

examples for the new predicate are generated by means of abduction from the

Abductive Concept Learning 49

positive and negative examples for the target predicate. Recently, this type of

invention of new abducibles has been studied in 35) when learning non-monotonic

logic programs. The ACL framework as defined in section 3 of this paper does

not allow for the use of new (unknown to the background theory) abducible

predicates. This though can be extended to accommodate this possibility. The

extension of the theoretical framework is straightforward simply by the intro-

duction in the language of such abducible predicates. In practice though the

extension of the ACL algorithm and system in order to accommodate abducible

invention is more complicated needing to take into account semantical and prac-

tical considerations relating to the incompleteness of the learning data. A first

attempt would extend the ACL algorithm so that if no literal in the bias can

make the current clause consistent (thus reflecting the incompleteness in the

available data), a literal for a new abducible predicate may be added to the

clause and the abductive proof procedure used to generate training examples for

the new abducible predicate. We can also use similar methods as in M-ACL to

exploit this new predicate when learning other predicates thus evaluating the

utility of this form of predicate invention in repeated learning as proposed in the

recent work of 48). Further investigation of this problem of abducible invention

is required.

Abduction is used also as a suitable mechanism for extending Explana-

tion Based Learning 10, 60) in cases where the given domain theory is incomplete

in the description of some of its predicates. These predicates are then treated as

abducible and proofs can be completed by abduction before they are generalized.

The work of 71) proposes an approach where abduction is used as the

basic covering relation for learning in a different way with respect to us. Abduc-

tion is carried out on the concept to be learned rather than on the (incomplete)

background predicates. A system, called Lab, is presented that uses a sim-

ple, propositional form of abduction in the context of a particular application

of learning theories for a diagnostic reasoning model. In this reasoning model,

theories are composed of rules of the form symptom ⇐ disorder and the task

of abduction is to find a (minimum) set of disorders that explains all the symp-

toms. Lab is given as input a set of training cases each consisting of a set of

symptoms together with their correct diagnosis (set of disorders) and it produces

a theory such that the correct diagnosis for each training example is a (mini-

mum) abductive explanation. In Lab, therefore, the explanations themselves

are considered as the output of the target theory (the target predicates are the

50 Fabrizio Riguzzi

abducible disorder predicates) requiring that the learned theory respects the

input-output couples given in the training cases.

Recently, the deeper relationship between abduction and induction has

been the topic of study of two workshops 28, 29) where various (preliminary)

works on the integration of abduction in learning have been proposed 1, 68, 47).

Of these, 47) is the closest to our work: it presents a top-down learning algorithm

that employs an abductive proof procedure for testing the coverage of examples.

They consider a cost for each explanation by assigning a cost to every abducible

literal. The minimum cost for explaining examples is then taken into account in

a FOIL-like clause evaluation function. As ACL, the system can be applied to

learn from incomplete background data.

Several other proposals for learning with incomplete information exist.

In attributed-based or propositional learning one common way to handle incom-

plete information (i.e. missing attribute values) is to replace each example with

a missing value with several examples, one for each of the possible values of the

attribute, and to associate to each example a fractional weight, representing the

conditional (with respect to the class of the example) probability of that partic-

ular value. The conditional probability of the different values is estimated with

the relative frequency from the set of instances. This is the approach followed

by ASSISTANT 8), CN2 9) and C4.5 66). Various approaches to the handling of

incomplete information are empirically compared in 65).

An early ILP system that is able to deal with missing information is that

of LINUS 54). This learns first order theories by first translating an ILP problem

into an attribute-value representation and by then employing an attribute-value

algorithm that handles incomplete information. In this way, it is able to deal

both with missing arguments and missing facts in the background knowledge.

The drawbacks of this approach are the large number of attributes that may be

necessary and the restriction of the language of target programs to determinate

Datalog clauses.

The systems FORCE2 11), SKILit 39), CHILLIN 74) and FOIL-I 38) were

designed to learn recursive predicates from incomplete information in the train-

ing set but not in the background knowledge. In 73) the authors propose several

frameworks for learning from partial interpretations. A particular framework

that can learn form incomplete information is that of learning from satisfiabil-

ity 15). This framework is more general than ACL as both the examples and

the hypotheses can be clausal theories. On the other hand, theories learned by

Abductive Concept Learning 51

this framework correspond only to the integrity constraints part of an abductive

theory with no (or a trivial default) rule part.

A problem that is related to learning from incomplete data is that of

learning from noisy or in general imperfect data 24, 53). This problem is handled

by relaxing the requirements of consistency and completeness in the necessity

and sufficiency stopping criteria and by adopting special heuristic functions for

guiding the search. In general, these systems see incompleteness as a special case

of noise and hence it may be that methods for handling noise are too coarse for

incompleteness. Indeed, when we know in which predicates the incompleteness

lies, then we would expect that we can use more specialised techniques, like the

ACL framework, to get better results than the more general methods for noise.

This is confirmed by some of the experiments presented in section 6 of this paper.

As we have seen, ACL can use integrity constraints as part of its back-

ground knowledge. Learning from integrity constraints was first examined in 13)

and 12). Recently, the system Progol 58) is able to learn from integrity constraints.

However, in these cases, integrity constraints are used to impose conditions on

the target predicates that need to be respected by the learned clauses. In ACL,

instead, constraints impose conditions on background rather than target predi-

cates and are used to restrict the assumptions of background facts rather than

for specializing the clauses.

On the other hand, ACL also learns new integrity constraints as part

of its final learned theory. Hence ACL involves a combination of explanatory

(predictive) and confirmatory (descriptive) induction. Although several ILP

systems (e.g. 58, 18, 14)) can produce theories that combine rules and integrity

constraints, all of these use a single form of induction to generate both parts of

the theory. In our work, abduction helps to integrate in a single framework the

different ILP learning methods based on predictive and descriptive induction.

From this point of view ACL falls within the framework of integration of these

two ILP settings proposed in 20). Finally, we point out that, as abductive theories

are non-monotonic in nature, ACL can provide us with a method for learning

non-monotonic theories. It can thus be used to address similar learning problems

as those tackled in the work of 33, 5, 21).

§8 Conclusions
We have studied the new learning framework of Abductive Concept

Learning (ACL) setting up its theoretical foundations and developing a first

52 Fabrizio Riguzzi

system for it. This framework integrates abduction and induction extending the

Inductive Logic Programming paradigm in order to learn abductive theories:

both the background and target theories are abductive theories and deductive

entailment as the coverage relation in ILP is replaced by an abductive entailment

in the learning problem of ACL. The main application of ACL is learning from

incomplete information.

The ACL problem can be decomposed into two subproblems, ACL1 and

ACL2, the first consisting of learning the rule part of the abductive theory and

the second consisting of learning the constraint part. ACL1 is an explanatory

(predictive) learning problem, while ACL2 is a confirmatory (descriptive) learn-

ing problem. Based on this decomposition, a system for learning in this new

framework has been developed that solves the ACL problem by first solving

ACL1 and then ACL2. These separate problems are solved using and adapting

algorithms and techniques from the existing ILP frameworks for explanatory

concept learning from examples and descriptive learning from interpretations.

In this way, ACL represents a non-trivial and useful integration of these two

main ILP settings.

The ACL framework allows us also to tackle effectively the problem of

multiple predicate learning, where each predicate is required to be learned from

the incomplete data for the other predicates. By employing abduction we are

able to link the learning of the different predicates and ensure the coherence

among the definitions learned for them. A separated system for multiple predi-

cate learning, called M-ACL, has been developed by suitably modifying the ACL

system.

Several experiments were performed with data from various sources to

test ACL1 (and ACL) on problems of learning from incomplete information in

comparison with other systems such as FOIL, mFOIL and, when appropriate,

with c4.5. The performance of ACL1 in terms of accuracy and compactness of the

learned theory was superior to FOIL, which does not have any special facility for

missing information, and comparable (in many cases marginally better) to those

of mFOIL and c4.5. ACL1 also compared favourable with the ICL-Sat system

adapted from ICL for learning with partial interpretations. Other experiments

were also done that confirmed the ability of M-ACL to learn multiple predicates.

The computational efficiency of ACL1 was inferior to that of c4.5 and FOIL. This

is due partly to the initial non-optimized implementation of ACL1 but mainly to

the fact that ACL1 computes the additional output of supporting assumptions

Abductive Concept Learning 53

for the learned rules that are useful for the further learning of constraints in the

second phase of ACL. These “proof of the principle” experiments demonstrate

the ability of ACL to learn with incomplete information and its appropriate use

for multiple predicate learning.

There are several directions for further work. One such direction is the

more efficient development of the ACL system where the checking of integrity

constraints is controlled. Another possibility is the study of predicate invention

within the ACL framework through the natural use of new (unknown) abducible

predicates. At a deeper level another important direction of future work concerns

the separation of the full ACL problem to its two subproblems. The development

of the ACL algorithm and system in this paper was heavily based on the separa-

tion of the full ACL problem into the ACL1 and ACL2 subproblems, adapting

traditional ILP techniques to solve these. Further work is needed to examine

other ways of synthesizing these subproblems and more importantly to develop

algorithms that would search directly the full space of abductive theories. This

involves the definition of generality orderings for this space and the development

of suitable refinement operators that would allow the simultaneous learning of

both parts (rules and constraints) of an abductive theory.

Acknowledgment We would like to thank the members of the ILP 2

project and the participants of the ECAI’96 and IJCAI’97 workshops on Abduc-

tion and Induction for many useful discussions. We also thank Evelina Lamma,

Paola Mello and Luis Moniz Pereira for their comments on a preliminary version

of this paper. This work has been partially supported by the European Union,

ESPRIT project ILP 2 and the Department of Planning of the Government of

Cyprus.

References

1) A. Abe. The relation between abductive hypotheses and inductive hypotheses.

In Flach and Kakas 30).

2) H. Adé and M. Denecker. RUTH: An ILP theory revision system. In Proceedings
of the 8th International Symposium on Methodologies for Intelligent Systems,
1994.

3) H. Adé and M. Denecker. AILP: Abductive inductive logic programming. In
Proceedings of the 14th International Joint Conference on Artificial Intelligence,
1995.

4) K.R. Apt and M. Bezem. Acyclic programs. In Proceedings of the 7th Interna-

54 Fabrizio Riguzzi

tional Conference on Logic Programming, pages 579–597, Jerusalem, 1990.

5) M. Bain and S. Muggleton. Non-monotonic learning. In J.E. Hayes-Michie and
E. Tyugu, editors, Machine Intelligence, volume 12. Oxford University Press,
1991.

6) H. Blockeel and L. De Raedt. Inductive database design. In Proceedings of the
10th International Symposium on Methodologies for Intelligent Systems, volume
1079 of Lecture Notes in Artificial Intelligence, pages 376–385. Springer-Verlag,
1996.

7) E. Keogh C. Blake and C.J. Merz. UCI repository of machine learning
databases, 1998.

8) B. Cestnik, I. Knononenko, and I. Bratko. ASSISTANT 86: A knowledge
elicitation tool for sophisticated users. In I. Bratko and N. Lavrač, editors,
Progress in Machine Learning, pages 31–45. Sigma Press, Wilmslow, UK, 1987.

9) P. Clark and R. Boswell. The CN2 induction algorithm. Machine Learning,
3(4):261–283, 1989.

10) W. W. Cohen. Abductive explanation-based learning: A solution to the multiple
inconsistent explanation problem. Machine Learning, 8:167–219, 1992.

11) William W. Cohen. Pac-learning a restricted class of recursive logic programs.
In Proceedings of the 11th National Conference on Artificial Intelligence, pages
86–92, Washington, D.C., 1993.

12) L. De Raedt. Interactive Theory Revision: An Inductive Logic Programming
Approach. Academic Press, 1992.

13) L. De Raedt and M. Bruynooghe. Belief updating from integrity constraints
and queries. Artificial Intelligence, 53:291–307, 1992.

14) L. De Raedt and M. Bruynooghe. A theory of clausal discovery. In Proceedings
of the 13th International Joint Conference on Artificial Intelligence, 1993.

15) L. De Raedt and L. Dehaspe. Learning from satisfiability. Technical report,
Katholieke Universiteit Leuven, 1996.

16) L. De Raedt and S. Džeroski. First order jk-clausal theories are PAC-learnable.
Artificial Intelligence, 70:375–392, 1994.

17) L. De Raedt, N. Lavrač, and S. Džeroski. Multiple predicate learning. In
S. Muggleton, editor, Proceedings of the 3rd International Workshop on Induc-
tive Logic Programming, pages 221–240. J. Stefan Institute, 1993.

18) L. De Raedt and W. Van Lear. Inductive constraint logic. In Proceedings of
the 5th International Workshop on Algorithmic Learning Theory, 1995.

19) M. Denecker and D. De Schreye. SLDNFA: an abductive procedure for normal
abductive programs. In K. R. Apt, editor, Proceedings of the International Joint
Conference and Symposium on Logic Programming, pages 686–700, 1992.

20) Y. Dimopoulos, S. Džeroski, and A. C. Kakas. Integrating explanatory and
descriptive learning in ILP. In Proceedings of the 15th International Joint Con-
ference on Artificial Intelligence, 1997.

21) Y. Dimopoulos and A. C. Kakas. Learning non-monotonic logic programs:
Learning exceptions. In Proceedings of the 8th European Conference on Machine
Learning, 1995.

Abductive Concept Learning 55

22) Y. Dimopoulos and A. C. Kakas. Abduction and inductive learning. In Ad-
vances in Inductive Logic Programming. IOS Press, 1996.

23) B. Duval. Abduction for Explanation Based Learning. In Proceedings of the
European Working Session on Learning, number 482 in LNCS, pages 348–360,
1991.

24) S. Džeroski and I. Bratko. Handling noise in inductive logic programming. In
S. Muggleton, editor, Proceedings of the 2nd International Workshop on Induc-
tive Logic Programming, Report ICOT TM-1182, 1992.

25) K. Eshghi and R. A. Kowalski. Abduction compared with Negation by Failure.
In Proceedings of the 6th International Conference on Logic Programming, 1989.

26) F. Esposito, E. Lamma, D. Malerba, P. Mello, M. Milano, F. Riguzzi, and

G. Semeraro. Learning abductive logic programs. In Flach and Kakas 28).
Available on-line at http://www.cs.bris.ac.uk/~flach/ECAI96/.

27) P. A. Flach. Conjectures: An Inquiry Concerning the Logic of Induction. PhD
thesis, Katholieke Universiteit Brabant, 1995.

28) P. A. Flach and A. C. Kakas, editors. Proceedings of the ECAI’96 Work-
shop on Abductive and Inductive Reasoning, 1996. Available on-line at
http://www.cs.bris.ac.uk/~flach/ECAI96/.

29) P. A. Flach and A. C. Kakas, editors. Proceedings of the IJCAI’97 Work-
shop on Abductive and Inductive Reasoning, 1997. Available on-line at
http://www.cs.bris.ac.uk/~flach/IJCAI97/.

30) P. A. Flach and A. C. Kakas, editors. Abductive and Inductive Reasoning. Pure
and Applied Logic. Kluwer, 1998.

31) P. Flener. Inductive logic program synthesis with Dialogs. In S. Muggleton,
editor, Inductive Logic Programming: Selected Papers from the 6th International
Workshop, pages 175–198. Springer-Verlag, 1997.

32) L. Giordano and A. Martelli. Generalized stable model semantics, truth mainte-
nance and conflict resolution. In Proceedings of the 7th International Conference
on Logic Programming, pages 427–411, Jerusalem, 1990. MIT Press.

33) N. Helft. Induction as nonmonotonic inference. In Proceedings of the 1st Inter-
national Conference on Principles of Knowledge Representation and Reasoning,
pages 149–156. Morgan Kaufmann, 1989.

34) K. Inoue. Hypothetical reasoning in logic programs. Journal of Logic Program-
ming, 18:191–227, 1994.

35) K. Inoue and H. Haneda. Learning abductive and nonmonotonic logic pro-
gramsg. In P. A. Flach and A. C. Kakas, editors, Abductive and Inductive
Reasoning, Pure and Applied Logic. Kluwer, 1999.

36) K. Inoue and C. Sakama. On the equivalence between disjunctive and abductive
logic programs. In In proceedings of ICLP94, pages 489–503, 1994.

37) K. Inoue and C. Sakama. Abductive framework for nonmonotonic theory
change. In Proceedings of the 14th International Joint Conference on Artifi-
cial Intelligence, pages 204–210, 1995.

56 Fabrizio Riguzzi

38) N. Inuzuka, M. Kamo, N. Ishii, H. Seki, and H. Itoh. Top-down induction of
logic programs from incomplete samples. In S. Muggleton, editor, Proceedings
of the 6th International Workshop on Inductive Logic Programming, pages 119–
136. Stockholm University, Royal Institute of Technology, 1996.

39) A. Jorge and P. Brazdil. Architecture for iterative learning of recursive defini-
tions. In L. De Raedt, editor, Advances in Inductive Logic Programming, pages
206–218. IOS Press, 1996.

40) A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive logic programming.
Journal of Logic and Computation, 2:719–770, 1993.

41) A. C. Kakas, R. A. Kowalski, and F. Toni. The role of abduction in logic
programming. In D. Gabbay, C. Hogger, and J. Robinson, editors, Handbook of
Logic in AI and Logic Programming, volume 5, pages 233–306. Oxford University
Press, 1997.

42) A. C. Kakas and P. Mancarella. Database updates through abduction. In
R. Sacks-Davis D. McLeod and H. Schek, editors, Proceedings of the 16th Inter-
national Conference on Very Large Databases, VLDB-90, pages 650–661. Mor-
gan Kaufmann, 1990.

43) A. C. Kakas and P. Mancarella. Generalized stable models: a semantics for
abduction. In Proceedings of the 9th European Conference on Artificial Intelli-
gence, 1990.

44) A. C. Kakas and P. Mancarella. On the relation between truth maintenance
and abduction. In Proceedings of the 2nd Pacific Rim International Conference
on Artificial Intelligence, 1990.

45) A. C. Kakas and F. Riguzzi. Learning with abduction. In Proceedings of the
7th International Workshop on ILP, 1997.

46) J. Kalbfleish. Probability and Statistical Inference, volume II. Springer, New
York, 1979.

47) T. Kanai and S. Kunifuji. Extending inductive generalization with abduction.

In Flach and Kakas 30).

48) K. Khan, S. Muggleton, and R. Parson. Repeat learning using predicate in-
vention. In Proceedings of the 8th International Workshop on Inductive Logic
Programming, 1998.

49) B. Kijsirikul, M. Numao, and M. Shimura. Discrimination-based constructive
induction of logic programs. In Proceedings of the 10th National Conference on
Artificial Intelligence. Morgan Kaufmann, 1992.

50) E. Lamma, P. Mello, M. Milano, and F. Riguzzi. Integrating induction and
abduction in logic programming. In P. P. Wang, editor, Proceedings of the Third
Joint Conference on Information Sciences, volume 2, pages 203–206, 1997.

51) E. Lamma, P. Mello, M. Milano, and F. Riguzzi. Integrating induction and
abduction in logic programming. To appear on Information Sciences, 1998.

52) N. Lavrač and S. Džeroski. Inductive Logic Programming: Techniques and
Applications. Ellis Horwood, 1994.

53) N. Lavrač, S. Džeroski, and I. Bratko. Handling imperfect data in inductive
logic programming. In L. De Raedt, editor, Advances in Inductive Logic Pro-
gramming, pages 48–64. IOS Press, 1996.

Abductive Concept Learning 57

54) N. Lavrač, S. Džeroski, and M. Grobelnik. Learning nonrecursive definitions
of relations with LINUS. In Y. Kodratoff, editor, Proceedings of the 5th Eu-
ropean Working Session on Learning, volume 482 of Lecture Notes in Artificial
Intelligence, pages 265–281. Springer-Verlag, 1991.

55) J. Lloyd. Foundations of Logic Programming. Springer Verlag, Berlin, second
edition, 1987.

56) R. Mooney. Integrating abduction and induction in machine learning. In Flach

and Kakas 30).

57) S. Muggleton. Inductive logic programming. New Generation Computing,
8(4):295–317, 1991.

58) S. Muggleton. Inverse entailment and Progol. New Generation Computing,
Special issue on Inductive Logic Programming, 13(3-4):245–286, 1995.

59) S. Muggleton and L. De Raedt. Inductive logic programming: Theory and
methods. Journal of Logic Programming, 19/20:629–679, 1994.

60) P. O’Rourke. Abduction and explanation-based learning: Case studies in diverse
domains. Computational Intelligence, 10:295–330, 1994.

61) G.D. Plotkin. A note on inductive generalization. In Machine Intelligence,
volume 5, pages 153–163. Edinburgh University Press, 1970.

62) G.D. Plotkin. A further note on inductive generalization. In Machine Intelli-
gence, volume 6, pages 101–124. Edinburgh University Press, 1971.

63) D. Poole, R. G. Goebel, and Aleliunas. Theorist: a logical reasoning system for
default and diagnosis. In Cercone and McCalla, editors, The Knowledge Fron-
teer: Essays in the Representation of Knowledge, Lecture Notes in Computer
Science, pages 331–352. Springer-Verlag, 1987.

64) J. R. Quinlan. Learning logical definitions from relations. Machine Learning,
5:239–266, 1990.

65) J. R. Quinlan. Unknown attribute values in induction. In Proceedings of the
Sixth International Machine Learning Workshop, pages 164–168, San Mateo,
CA, 1991. Morgan Kaufmann.

66) J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA, 1993.

67) B.L. Richards and R.J. Mooney. Refinement of first-order Horn-clause domain
theories. Machine Learning, 19(2):95–131, 1995.

68) C. Sakama. Computing induction through abduction. In Flach and Kakas 30).

69) K. Satoh and N. Iwayama. A query evaluation method for abductive logic
programming. In In proceedings of the 1992 Joint International Conference
and Symposium on Logic Programming, pages 671–685, 1992.

70) I. Stahl. Predicate invention in inductive logic programming. In L. De Raedt,
editor, Advances in Inductive Logic Programming, pages 34–47. IOS Press, 1996.

71) C. Thompson and R. Mooney. Inductive learning for abductive diagnosis. In
Proceedings of the 12th National Conference on Artificial Intelligence, 1994.

58 Fabrizio Riguzzi

72) R. Wirth and P. O’Rorke. Constraints on predicate invention. In L. Birn-
baum and G. Collins, editors, Proceedings of the 8th International Workshop on
Machine Learning, pages 457–461. Morgan Kaufmann, 1991.

73) S. Wrobel and S. Džeroski. The ILP description learning problem: Towards
a genearl model-leve definition of data mining in ILP. In Proceedings of the
Fachgruppentreffen Maschinelles Lernen, 1995.

74) J.M. Zelle, R.J. Mooney, and J.B. Konvisser. Combining top-down and bottom-
up techniques in inductive logic programming. In W.W. Cohen and H. Hirsh,
editors, Proceedings of the 11th International Conference on Machine Learning,
pages 343–351. Morgan Kaufmann, 1994.

§1 Proof of Theorem 3.1 on Equivalence of ACL
with ACL1 and ACL2

Theorem 1.18

Let TACL1 = 〈P ∪P ′, A, I〉, ∆+ and ∆− be the solution of ACL1 given training

sets E+ and E−, background theory T = 〈P,A, I〉 and space of possible programs

P. Moreover, let T ′ = 〈P ∪ P ′, A, I ∪ I ′〉 be the solution to ACL2 given the

previous solution of ACL1 and hypothesis space I. Then T ′ is a solution to the

ACL problem that has E+ and E− as training sets, T as background theory and

P and I as spaces of possible programs and constraints.

Proof We first prove that T ′ |=A E+ and then that ∀e− ∈ E−, T ′ 6|=A e−.

Proof of T ′ |=A E+: from ACL1 we have that MP∪P ′(∆
+) |= E+. From ACL1

and ACL2 we have, respectively, that MP∪P ′(∆
+) |= I and MP∪P ′(∆

+) |= I ′,

therefore MP∪P ′(∆
+) |= I ∪ I ′. This, together with MP∪P ′(∆

+) |= E+, proves

that ∆+ is an abductive explanation for E+ in T ′.

Proof of ∀e− ∈ E−, T ′ 6|=A e−: from ACL1 we have that TACL1 |=A not E− with ∆−.

From the definition of strong abductive explanation of a conjunction of goals

(definition 2.8) ∆− is also a strong abductive explanation for not e− for every

e− ∈ E−. Therefore, from property 2.1 in section 2 we have

∀∆e− : TACL1 |=A e− with ∆e− , ∃l ∈ ∆e− : l ∈ ∆−

Since the integrity constraints in T ′ are a superset of those in TACL1 and the

rule part is the same, the set of explanations for e− in T ′ is a subset of those for

e− in TACL1.

The constraints I ′ generated by ACL2 make inconsistent each of the

complements in ∆− and hence, for every such ∆e− , there exists an l ∈ ∆e−

such that {l} is inconsistent with I ′. From the restricted form of the integrity

Abductive Concept Learning 59

constraints in I ′, any superset of {l}, in particular ∆e− , cannot satisfy the

integrity constraints. Therefore, any ∆e− is not a consistent extension of T ′ and

hence T ′ 6|=A e− as required.

§2 Proof of Theorem 4.1 on Soundness of ACL
Let us first give the proof of proposition 2.1 that will be needed for

proving theorem 4.1.

Proposition 2.1

Let T = 〈P,A, I〉 be an abductive theory in its three-valued version and let ∆1

and ∆2 be two strong abductive explanations of, respectively, G1 and G2, where

G1 and G2 can be either positive or negative goals. If ∆1 ∪∆2 is self-consistent,

then ∆1 ∪∆2 is a strong abductive explanation for G1 ∧G2.

Proof We first consider the case where G1 and G2 are two positive goals.

We need to verify the two conditions of definition 2.7.

Let us first prove that M(∆1 ∪∆2) is a generalized model. Consider ∆2

as a self-consistent extension of ∆1. Since ∆1 is a strong abductive explanation,

any self-consistent extension ∆′ of ∆1 for which M(∆′) |= I, is such that M(∆1∪
∆′) |= I. Taking ∆′ = ∆2, since ∆2 is an abductive explanation, M(∆2) |= I

holds and so M(∆1 ∪∆2) |= I. Therefore M(∆1 ∪∆2) is a generalized model.

Since P ∪ ∆1 ∪ ∆2 is a definite logic program, M(∆1 ∪ ∆2) ⊇ M(∆1) and

M(∆1 ∪∆2) ⊇M(∆2) therefore M(∆1 ∪∆2) |= G1 and M(∆1 ∪∆2) |= G2, so

∆1 ∪∆2 is an abductive explanation for both G1 and G2.

To show that ∆1 ∪ ∆2 satisfies the second condition of definition 2.7

consider a set ∆′ such that ∆′ ∪∆1 ∪∆2 is self-consistent and M(∆′) |= I. We

need to prove that M(∆′∪∆1∪∆2) |= I. Consider the set ∆′′ = ∆′∪∆2. Since

∆1 is strong and ∆′′∪∆1 is self-consistent, if M(∆′′) |= I then M(∆1∪∆′′) |= I

would follow. But M(∆′′) |= I is true since ∆2 is strong, ∆′∪∆2 is self-consistent

and M(∆′) |= I. Therefore the second condition of definition 2.7is proved.

Consider now the case where we have two negative goals G1 = not O1

and G2 = not O2. In order for ∆1∪∆2 to be a strong abductive explanation for

G1 and G2, we need to show that the conditions of definition 2.8 are satisfied.

The fact that M(∆1 ∪ ∆2) is a strong generalized model can be proved in the

same way as for positive goals. To show that M(∆1 ∪∆2) 6|= O1 (and similarly

M(∆1∪∆2) 6|= O2) we note that ∆1 is a strong abductive explanation for not O1

and hence if ∆2 were an abductive explanation for O1, then ∆1 ∪∆2 would not

60 Fabrizio Riguzzi

be self-consistent which contradicts the hypothesis of the statement. Next we

show the second condition of definition 2.8, i.e., that for every ∆′ that is an

abductive explanation for O1 (or O2), then (∆1 ∪∆2)∪∆′ is not self-consistent.

This follows directly from the fact that if ∆′ is an explanation for O1 (O2),

since ∆1 (∆2) is strong, then ∆′ ∪∆1 (∆′ ∪∆2) is not self-consistent and hence

∆1 ∪ ∆2 ∪ ∆′ is not self-consistent. The other case where one of the goals is

positive and the other is negative can be shown similarly.

Theorem 2.22 (Soundness)

The ACL algorithm is sound.

Proof ACL finds a solution T ′ of ACL by solving the ACL1 and ACL2 sub-

problems in sequence. Theorem 3.1 states that the combination of the solutions

of ACL1 and ACL2 gives a solution for ACL. Therefore, to prove the soundness

of ACL, it is sufficient to prove that the solutions found by the algorithms for

ACL1 and ACL2 satisfy their respective subproblem definitions.

For the second phase of ACL2, this is guaranteed by the correctness

of the ICL 18) algorithm or of any other sound method used for discriminating

between positive and negative interpretations. It remains therefore to prove that

the procedure ACL1 is sound with respect to the ACL1 definition, i.e. that, given

the background theory T = 〈P,A, I〉 and training sets E+ and E−, the program

TACL1 = 〈P ∪ P ′, A, I〉 and the sets ∆+ and ∆− that are generated by the

algorithm are such that

TACL1 |=A E+ with ∆+ (1)

TACL1 |=A not E− with ∆− (2)

∆+ ∪∆− is self-consistent (3)

ACL1 learns the program TACL1 by iteratively adding a new clause to the cur-

rent hypothesis, initially empty. Each clause is tested by trying an abductive

derivation for each positive and for each (negated) negative example.

Suppose that clauses are learned in the following order: c1, . . . , cl. Let

H1, . . . ,Hl be the successive partial hypotheses, with H0 = ∅ and Hk = Hk−1 ∪
{ck}, and let Tk = 〈P ∪ Hk, A, I〉. Let also E+

k = {e+
k,1, . . . , e

+
k,nk
} be the set

of positive examples whose conjunction is covered by clause ck and let E+ =

{e+
1 , . . . , e

+
n }, E− = {e−1 , . . . , e−m} be the complete sets of positive and negative

examples.

Abductive Concept Learning 61

For each clause ck, we define two sets of abductive assumptions ∆in
k and

∆out
k . ∆in

k is the initial set of assumptions under which the testing of examples

with this clause starts. ∆out
k is the final set of assumptions produced in the

derivations of all the examples in E+
k and in E−. The input sets ∆in

k are defined

recursively via ∆in
k = ∆in

k−1 ∪∆out
k−1 for k = 2, . . . , l, with ∆in

1 = ∅. The output

sets ∆out
k are given by ∆out

k = ∆+
k ∪∆−k with

∆+
k =

⋃
i=1,...,nk

∆e+
k,i

∆−k =
⋃

j=1,...,m

∆k,not e−
j

where ∆e+
k,i

is the explanation for example e+
k,i and ∆k,not e−

J
is the explanation

for not e−j in the theory Tk = 〈P ∪Hk, A, I〉.
We will show that each abductive explanation ∆e+

k,i
and ∆k,not e−

J
is

a strong abductive explanation in the theory Tk. These explanations are con-

structed successively with the explanation for each example forming part of the

input for the next example. Therefore, if the input sets ∆in
k are strong, then

also the individual explanations are strong, by the correctness (with respect to

definition 2.9) of the abductive derivation used by the algorithm and the prop-

erty of proposition 2.1 that the union of strong explanations is strong. Note also

that the successive test of the examples by the abductive derivation in the al-

gorithm ensures that these individual explanations are self-consistent with each

other required for the application of proposition 2.1.

Hence we need to show that ∆in
k are strong abductive extensions in Tk,

for k = 1, . . . , l. We do this by induction on k. For k = 1, ∆in
1 = ∅ which is a

strong abductive extension because, by the assumptions on the hypothesis spaces

of the integrity constraints and programs, it always satisfies any set of constraints

and it trivially satisfies the strong property in definition 2.7. Suppose that ∆in
k

is strong in Tk, we have to prove that ∆in
k+1 is strong in Tk+1. We first prove

that ∆in
k+1 is strong in Tk. ∆in

k+1 = ∆in
k ∪∆out

k is the union of strong abductive

extensions of Tk: ∆in
k is strong by the inductive hypothesis and ∆out

k is strong

because is the union of strong explanations computed successively by the correct

abductive derivations of the algorithm starting from the strong extension ∆in
k .

Also the derivations ensures that all these explanations are self-consistent with

each other. Therefore, by proposition 2.1, ∆in
k+1 is a strong abductive extension

62 Fabrizio Riguzzi

of Tk.

We still need to show that ∆in
k+1 is a strong extension of Tk+1. This can

be done by directly verifying the conditions in the definition 2.7 of strong abduc-

tive extension. Since the integrity constraints I and the background program P

do not contain any target predicate, their satisfaction is independent from the

addition of any clause for the target predicates. Therefore, as ∆in
k+1 satisfies I

in Tk, it does so in Tk+1 as well. We also need to show that, for any set ∆′ such

that ∆in
k+1 ∪∆′ is self-consistent and ∆′ satisfies I in Tk+1, ∆in

k+1 ∪∆′ must also

do so in Tk+1. From the independence of I and P from the target predicates,

∆′ satisfies I in Tk+1 implies that ∆′ satisfies I in Tk. Since ∆in
k+1 is strong in

Tk, then ∆in
k+1 ∪∆′ satisfies I in Tk. Again, the independence of I and P from

the target predicates gives that ∆in
k+1 ∪∆′ satisfies I in Tk+1.

We can now show the ACL1 conditions with

∆+ =
⋃

k=1,...,l

⋃
i=1,...,nk

∆e+
k,i

∆− =
⋃

k=1,...,l j=1,...,m

∆k,not e−
j

which, by construction, are the final sets returned by the ACL1 algorithm. We

first show that all the explanations for the individual examples are strong ab-

ductive explanations in the final theory Tl = TACL1 from the fact that they are

strong in their respective theories Tk. This follows in the same way as we have

shown above that ∆in
k+1 is strong in Tk+1 from the fact that it is strong in Tk.

We also know that all these individual explanations are self-consistent

with each other. This follows directly from their successive construction in the

algorithm satisfying the abductive derivability of definition 2.9. Hence ∆+∪∆−

is self-consistent and the third condition (3) of ACL1 is satisfied. Moreover,

by proposition 2.1, the union ∆+ is then also a strong abductive explanation

of E+
1 , . . . , E

+
l in TACL1. From the sufficiency stopping criterion we have that

E+
1 ∪ . . . ∪ E

+
l = E+, therefore ∆+ is a strong abductive explanation of E+ in

TACL1 and condition 1 is satisfied. Similarly, by proposition 2.1, the union ∆−

is a strong abductive explanation of E− in TACL1 and condition 2 is satisfied.

§3 Abductive Proof Procedure

Abductive Concept Learning 63

In the following we recall the abductive proof procedure for ALP, taken

from 44), used as a basis for the abductive coverage procedure in the ACL1

algorithm.

This ALP procedure is applied to abductive theories T = 〈P,A, I〉 in

their positive form. Thus the abducibles A contain predicates (a ∈ A) for

positive assumptions and predicates (not a ∈ A) for negative assumptions.

The integrity constraints in I are restricted to have a denial form, ¬(B1 ∧
. . . ∧ Bm ∧ ¬A1 ∧ . . . ∧ ¬Ak) (written here in logic programming style as goals

← (B1, . . . , Bm,¬A1, . . . ,¬Ak), with at least one abducible with no definition in

P appearing in B1, . . . , Bm. Integrity constraints in the range-restricted clausal

form, A1 ∨ . . . ∨ Ak ← B1 ∧ . . . ∧ Bm, are first transformed into the equivalent

denial above before they are used by the abductive procedure.

This procedure also assumes that the program P of T contains no defi-

nitions for the abducible predicates ie. no rule (or fact) in P has in its head an

abducible predicate. When the program contains such definitions the abductive

theory T = 〈P,A, I〉 can be first transformed so that no such definitions exist.

For each abducible predicate p that contains a partial definition in P we add

a new abducible δp to the set of abducibles A, we remove p from A and we

add the rule p(~X)← δp(~X) to the program P . In this way, if p(~c) can not be

derived using the partial definition for p, it can be derived by abducing δp(~c)

thus effectively abducing p.

The procedure is composed of two phases: abductive derivation and

consistency derivation.

Abductive derivation
An abductive derivation from (G1 ∆1) to (Gn ∆n) in 〈P,A, I〉 via a safe selection rule
R, of a literal from a goal, is a sequence

(G1 ∆1), (G2 ∆2), . . . , (Gn ∆n)

such that each Gi has the form ← L1, . . . , Lk, R(Gi) = Lj and (Gi+1 ∆i+1) is obtained
according to one of the following rules:

(1) If Lj is not abducible, then Gi+1 = C and ∆i+1 = ∆i where C is the resolvent
of some clause in P with Gi on the selected literal Lj ;

(2) If Lj is abducible and Lj ∈ ∆i, then Gi+1 = ← L1, . . . , Lj−1, Lj+1, . . . , Lk and
∆i+1 = ∆i;

(3) If Lj is a ground abducible, Lj 6∈ ∆i and Lj 6∈ ∆i and there exists a consistency

derivation from ({Lj} ∆i∪{Lj}) to ({} ∆′) then Gi+1 = ← L1, . . . , Lj−1, Lj+1,

. . . , Lk and ∆i+1 = ∆′.
Steps (1) and (2) are SLD-resolution steps with the rules of P and abductive as-
sumptions already computed, respectively. In step (3) a new abductive assumption is
required and it is added to the current set of assumptions provided it is consistent.

64 Fabrizio Riguzzi

Consistency derivation
A consistency derivation for an abducible α from (α, ∆1) to (Fn ∆n) in 〈P,A, I〉 is a
sequence

(α ∆1), (F1 ∆1), (F2 ∆2), . . . , (Fn ∆n)

where :
(i) F1 is the union of all goals of the form ← L1, . . . , Ln obtained by resolving the

abducible α with the denials in I with no such goal been empty;

(ii) for each i > 1, let Fi have the form {← L1, . . . , Lk} ∪ F ′i , then for some j =
1, . . . , k Lj is selected and (Fi+1 ∆i+1) is obtained according to one of the
following rules:

(C1) If Lj is not abducible, then Fi+1 = C′∪F ′i where C′ is the set of all resolvents

of clauses in P with ← L1, . . . , Lk on the literal Lj and the empty goal [] 6∈ C′,
and ∆i+1 = ∆i;

(C2) If Lj is abducible, Lj ∈ ∆i and k > 1, then

Fi+1 = {← L1, . . . , Lj−1, Lj+1, . . . , Lk} ∪ F ′i
and ∆i+1 = ∆i;

(C3) If Lj is abducible, Lj ∈ ∆i then Fi+1 = F ′i and ∆i+1 = ∆i;

(C4) If Lj is a ground abducible, Lj 6∈ ∆i and Lj 6∈ ∆i, and there exists an

abductive derivation from (← Lj ∆i) to ([] ∆′) then Fi+1 = F ′i and ∆i+1 =

∆′;
(C5) If Lj is equal to ¬A with A a ground atom and there exists an abductive

derivation from (←A ∆i) to ([] ∆′) then Fi+1 = F ′i and ∆i+1 = ∆′.
In case (C1) the current branch splits into as many branches as the number of resolvents
of ← L1, . . . , Lk with the clauses in P on Lj . If the empty clause is one of such
resolvents the whole consistency check fails. In case (C2) the goal under consideration
is made simpler if literal Lj belongs to the current set of assumptions ∆i. If the goal
contains only one literal then the derivation fails. In case (C3) the current branch is
already consistent under the assumptions in ∆i, and this branch is dropped from the
consistency checking. In case (C4) the current branch of the consistency search space

can be dropped provided ← Lj is abductively provable. In case (C5), like (C4) the
current branch fails and can be dropped provided that we can show that the atom A
holds.

Given an initial goal (query) G and initial set of assumptions ∆in, possibly
empty, the procedure succeeds, and returns the set of abducibles ∆out iff there exists
an abductive derivation from (G ∆in) to ([] ∆out). In this case, we also say that the
abductive derivation succeeds.

