Abductive Concept Learning

A.C. Kakas and F. Riguzzi
January 31, 1997

Abstract

We investigate how abduction and induction can be integrated in order
to obtain a more powerful learning framework. In particular, we discuss
the possible applications of the Abductive Concept Learning framework,
an extension of the Inductive Logic Programming learning paradigm to
the case in which both the background and the target theory are abduc-
tive logic programs. In this framework, we can learn in the presence of
incomplete information in the background knowledge and/or in the train-
ing set by exploiting the hypothetical reasoning of abduction. We first
state the requirements for a system that performs ACL, and then illus-
trate how such a system could be used to solve some of the problems of
extensional and intensional ILP systems. Abductive logic programs are
a powerful means of representing concepts: we investigate the different
uses of integrity constraints in the target theory. Finally, we present an
algorithm for ACL, which performs a depth-first search in the space of
clause orderings and a best-first search in the space of clause refinements,
together with an appropriate heuristic function.

1 Introduction

In this paper we investigate how abduction and induction can be integrated in
order to obtain a more powerful learning framework. In particular, we discuss
how the Inductive Logic Programming (ILP) learning paradigm [12, 2] can be
extended in order to learn abductive logic programs instead of definite or normal
logic programs.

The extended inductive problem resulting from this integration was intro-
duced in [6] and was called Abductive Concept Learning.

Definition 1.1 Abductive Concept Learning (ACL)
Given

o a set of positive examples ET,

e a set of negative examples E—,

o an abductive theory AT = (T, A, IC) as background theory.

Find
A new abductive theory AT = (T", A, IC") such that

o for cach et € Bt, AT =4 e,
o forecache™ € B, AT fpe™.

Therefore, ACL differs from ILP because both the background knowledge
and the learned program are abductive logic programs. As a consequence, the
notion of entailment of ILP must be substituted with the notion of abductive
entailment (F=4). ACL is a new learning paradigm that contains ILP as a special
case.

In the following, we will consider a modified version of this definition of ACL,
in which the last condition is substituted by

o for cache™ € E=, AT' =4 not e™.

We will call the first definition ACL1, while the latter ACL2. When mentioning
simply ACL we will be referring to ACL2. In section 2 we will discuss the
differences between the two definitions.

ACL can be used when the background theory is available in the form of an
abductive logic program. This is usually the case when the background knowl-
edge is incomplete, because we are lacking some information on the domain. In
this case, a system for ACL can be used to learn despite the incompleteness.
Some of the background predicates will be considered as abducible: these are
predicates for which we suspect or we know that they have an incomplete de-
finition. During the learning process, we can make assumptions, by means of
abduction, about these predicates, provided that these assumptions are consis-
tent with the available partial definition given in terms of rules and integrity
constraints. These assumptions are made in order to provide support for the
theory that we are learning.

We will show that ACL is able to deal also with a different type of incom-
pleteness: sparseness of the training set. In this case the target predicates are
considered abducible and, during the learning process, a system for ACL tries
to complete the training data by using abduction. In this case, the assumptions
have to be consistent with the training data and with the partial definition
available for the target predicate.

The aim of the learning process is to produce a complete definition of the
target predicates despite the incompleteness of the available information. If this
is not possible, we could consider them as abducible (or incomplete) in the final
theory and try to restrict the assumptions that can be made on them by learning
integrity constraints. For abducible predicates in the background knowledge, we
would also like to find stricter boundaries by inferring integrity constraints.

Let us illustrate these ideas by means of an example.

Example 1.2 Suppose we want to learn the concept father. Let the background
theory be:

T = {parent(john, mary), male(john),

parent(david, steve),

parent(katy, ellen), female(katy)}

A = {male, female}
and let the training data be:

Et = {father(john, mary), father(david, steve)}

E~ = {father(katy,ellen)}
In this case, we would like an ACL system to learn the rule

father(X,Y) « parent(X,Y), male(X).
making the assumptions A = {male(david), not male(katy)}. By considering
the background knowledge together with these assumptions, we could infer the
wintegrity constraint:

— male(X), female(X).

The next example shows that ACL can be particularly useful for perform-
ing multiple predicate learning, because assumptions made while learning one
concept can be used as training data for learning another concept.

Example 1.3 Suppose we want to learn the concepts grandfather and father.
Let the background theory be:

T = {parent(john, mary), father(john, mary), male(john),

parent(mary, ellen), female(mary),

parent(ellen, sue),

parent(david, steve),

parent(steve, jim)}

A = {father,male, fernale}
and let the training data be:

Et = {grandfather(john, ellen), grandfather(david, jim)}

E~ = {grandfather(mary, sue)}
An ACL system should learn the rule:

grandfather(X,Y) « father(X, 7)), parent(Z,Y).
abducing Ay = { father(david, steve), not father(mary,ellen)}. Now we learn
a definition for father using T'U Ay :

father(X,Y) < parent(X,Y), male(X)
abducing Ay = {male(david), not male(mary)}. Moreover, as in example 1.2,
we can wnfer an integrity constraint from T U Ay U Ay

— male(X), female(X).

In the previous examples, we have seen that integrity constraints are gen-
erated for predicates of the background knowledge. However, when the target
predicate 1s abducible as well and we have made assumptions about it in the
learning phase, we may want to generate constraints on it, as it 1s shown in the
next example.

Example 1.4 Let the background theory be

T ={r(a),q(b,a),q(c,d),s(e)}

A={p}
and the training data be

E* = {p(a),p(b),p(c)}

B~ = {p(e)}
In this case, the rules

p(X) « r(X).

P(X) «q(X,Y),p(Y).
could be learned, abducing A = {p(d)}. At this point we could stop the learning
process because we have a complete and consistent program w.r.t. to the training
data. But the learned program doe not gives a complete definition of the concept
p, because we have made an assumption about it which is not covered by any
rule. Therefore p will remain abducible as well in the learned theory, allowing
for new assumptions on p. However, we could make the assumption p(e), which
1s false because it i1s a negative example for p. Therefore we have to generate
integrity constraints on p, in order to avoid the assumption of false hypothesis.
In this case, the integrity constraint

— p(X), s(X).
could be generated, which prohibits the assumption of p(e)

Let us now summarize the tasks that an algorithm for ACL has to perform,
starting from the simpler one and going to the more complex.

(1) Make assumptions about abducible literals from the background knowl-
edge in order to cover positive examples and rule out negative ones.

(2) Make assumptions on target literals again in order to cover positive and
rule out negative examples. In this way we enlarge the training set and
therefore new learning steps may be required.

(3) Infer integrity constraints on the assumptions made on abducible predi-
cates from the background knowledge, therefore reducing the incomplete-
ness of their definition.

(4) Infer integrity constraints on target predicates. For this case we have to
distinguish two different uses of constraints:

(1) in the case which the rules inferred are correct (they do not derive
false facts), integrity constraints can be used to limit the assumptions
about the facts that cannot be proved using the rules;

(i) in the case in which the rules inferred are not correct, we can use in-
tegrity constraints to specialize them in order to avoid the derivation
of false facts. In this case, everything that has been derived using
the rules must be verified against integrity constraints.

In examples 1.2 and 1.3 the system performs tasks (1) and (3), while in
example 1.4 tasks (2) and (4)(i) are performed.

Up to now, two algorithms for ACL have been defined. The one proposed
in [8] extends an intensional top-down ILP system [2] with abduction, while the
one proposed in [11] extends FOIL [15], an extensional top-down system [2],
with abduction. Both of them perform only task (1) above. In this paper we
present an algorithm which is able to perform all four tasks.

In section 2 we illustrate the differences between the two definitions of ACL.
The problems of extensional systems are discussed in section 3 and it is shown
how tasks (1) and (2) can be used to solve some of them. In section 4 we discuss
how the same tasks can help intensional systems to overcome some problems
when learning multiple predicates and normal logic programs. The relation
between rules and integrity constraints in case (4) is discussed in section b,
while in section 6 we concentrate on case (ii). An algorithm that performs all
four tasks above is presented in section 7. The heuristics for this algorithm are
discussed in 8. In section 9, we show how this algorithm can be extended in
order to comply with ACL1. Finally, in section 10, we conclude summarizing
the main points analyzed in the paper and discussing future works.

2 Differences between the two definitions of ACL

ACL1 requires that the negative examples can not be abductively derived from
the learned theory. This means that there must be no way of making assump-
tions that allow to derive the negative examples. In ACL2 instead, we test each
negative example e~ by trying to abductively derive not e™. In order to derive
not e~ , we can make assumptions to support the goal. Therefore this condition
1s weaker than the previous one and it allows us to exploit abduction not only
to cover positive examples more easily but also to rule out negative examples.
Let us illustrate this difference by means of an example.

Example 2.1 Consider example 1.2 and suppose that the integrity constraint

— male(X), female(X).
is in the background knowledge. Suppose also that the fact female(katy) is not
wn the background knowledge. We want to test the negative example
father(katy, ellen) according to ACL1. The test fails, because it is possible
to derive father(katy,ellen) by assuming male(katy), since the integrity con-
straint 1s not wviolated by this assumption. If we test the example according to
ACL2, the test succeeds because we can derive not father(katy,ellen) by abduc-
ing not male(katy).

If we consider the same learning problem but with female(katy) in the
background knowledge, now the derivation of father(katy,ellen) fails, and the
negative example is not covered also according to ACL1. The derwation of
not father(katy,ellen) on its turn, succeeds without the abduction of anything.

If the abductive derivation of a negative example fails, then its negation can
be derived without making any assumption. Therefore

(AT Wa e7) = (AT |Ea not e7)

The opposite implication 1s not true, as it has been shown in the example.

3 ACL for extensional systems

Extensional coverage [2] has been used instead of intensional coverage in or-
der to partially solve the problems of multiple predicate learning. However,
extensionality has introduced other problems, summarized in [16], due to the
fact that, during learning, theories are tested in an extensional way, while after
learning they are used intensionally, and the behaviour can be different. These
problems arise only when we are trying to learn recursive predicates or when
we are trying to learn multiple predicates. The possible cases of discrepancies
can be summarized as follows:

e Extensional consistency, intensional inconsistency.
e Extensional completeness, intensional incompleteness.

e Intensional completeness, extensional incompleteness.

Let us examine each of them in more detail.

3.1 Extensional consistency, intensional inconsistency

This problem can arise in two cases. To illustrate the first one, suppose we are
trying to learn a theory for the concepts p and ¢ and we have learned the rule

A certain negative example p(e™) is not covered if ¢(e™) is a negative example
for q. However, many extensional system, such as FOIL [15], instead of checking
that ¢(e™) is among the negative examples for ¢, just check that it is not among
the positive. This is done because the set of negative examples, if specified, is
probably not going to be complete and therefore we cannot expect it to contain
all the negative examples. Instead, the set of positive example is considered
to be, even if not complete, more representative of the concept because the
number of positive examples in the universe is generally much smaller than that
of negative ones. Therefore a closed-world assumption is made, assuming that
all the non-positive atoms are negative. Negative examples are used only for
testing the rules, not for extensional derivation. This can lead to intensional
inconsistency, because when the definition of ¢ is learned, ¢(e™) may not be

among the negative examples and therefore we can derive a rule that covers
it. This problem can be overcome by remembering the assumption made about
q(e7), as it is done in the algorithm in [11], so that when we learn the rules for
q, ¢(e7) is in the training set.
The second case in which this problem can arise is when the rule for ¢ is
learned first
(X))« ...

The rule 1s tested against the examples of the training set and we are sure that
this rule covers the positive examples and does not cover the negative ones.
However, the training set is rarely equal to the entire universe, therefore some
atoms can be undefined and some of these atoms can be as well covered by the
generated rule. This can cause problems when we learn a rule for p

p(X) « ...q(X)

because some of the undefined atoms ¢(z®) intensionally covered by the rule
for ¢, can result in the coverage of the negative example p(z®) for p. There are
two possible solutions to this problem:

e when the rule for ¢ is generated, all the undefined atoms are tested to
determine if they are extensionally covered or not by the rule. If they are,
they are added to the extensional definition of ¢. This is the approach
followed in [11] and it is possible only when the Herbrand universe is
finite, which is an usual assumption for extensional systems. However,
even if the universe is finite, it can be very large, therefore this approach
can be computationally expensive.

e Instead of testing all undefined atoms, we could test the rule for p and
when an atom is neither positive nor negative for ¢, we can assume it
true in order to cover positive examples for p or false in order to rule
out negative ones. The assumptions made are recorded and the definition
for ¢ is tested against them. If it is incomplete and/or inconsistent, it is
revised accordingly. Otherwise, we can use the partial definition of ¢ when
testing the rule for p if there is no matching positive or negative example
in the extensional definition of ¢, thus leading to an hybrid extensional-
intensional system whose properties must be further investigated.

3.2 [Extensional completeness, intensional incompleteness

This case happens when we learn a recursive program without a base clause.
For example:

even(X) « suce(X,Y), odd(Y).

odd(X) + suce(X,Y), even(Y').
In this case, the problem can not be solved using abduction. A solution to this
problem has been proposed in [13].

3.3 Intensional completeness, extensional incompleteness

This is the most obvious problem of extensionality, and the one that i1s best
solved using ACL. Sometimes an intensionally complete hypothesis can not be
learned because it is not extensionally complete, since some of the examples
for ¢ needed to cover the positive examples for p may not be available in the
training set. Abduction can be used to assume all the needed examples for ¢
that are not known.

However, even if sometimes assumptions are the only way to overcome this
problem, when other informations are available (such as a definition for ¢), they
must be exploited as much as possible before resorting to abduction. We will
show this in the next example adapted from example 4 in [16].

Example 3.1 Suppose you have to learn the concepts father and
male_ancestor from the training set

Et = {father(luc, soetkin), father(bart, stijn),

father(willem, lieve),

male_ancestor(lue, soetkin), male_ancestor(bart, stijn),

male_ancestor(rene, willem), male_ancestor(rene, lieve) }

E~ = {father(lieve, soetkin), male_ancestor(esther, lieve),

male_ancestor(katleen, stijn)}
and from the background knowledge

BK = {parent(luc, soetkin), parent(bart, stijn),

parent(rene, willem), parent(willem, lieve),

male(luc), male(bart), male(rene), male(willem),

parent(lieve, soetkin), parent(esther, lieve), parent(katleen, stijn),

female(lieve), female(esther), female(katleen)}
In this case, the following hypothesis is intensionally complete and consistent
but 1t 1s extenstonally incomplete because it does not cover
male_ancestor(rene, willem)

father(X,Y) « male(X), parent(X,Y).

male_ancestor(X,Y) « father(X,Y)

male_ancestor(X,Y) « male_ancestor(X, Z), parent(Z,Y).
Suppose the definition of father was learned first. In order to cover
male_ancestor(rene, willem), father(rene, willem) could be assumed but it
could as well be derived using the definition learned for father. Using the de-
finition learned so far is to be preferred to abduction when possible, because it
leads to more certain results.

The notion of extensionality should therefore be changed: when no defini-
tion is available for a predicate, use its training set for derivation, but when a
definition has been learned, use that instead or in addition to the training set.
What we get is the same hybrid system combining extensional and intensional
coverage seen 1n section 3.1.

In the next example we show what kind of problem can be encountered when
using assumptions to covers examples.

Example 3.2 Consider the same background knowledge and E~ of the previous
example and the training set

Et = {father(luc, soetkin), father(willem, lieve)

male_ancestor(lue, soetkin), male_ancestor(bart, stijn),

male_ancestor(rene, lieve)}

In this case, the previous hypothesis is intensionally complete and consistent but
is extensionally incomplete because it does not cover male_ancestor(bart, stijn)
and male_ancestor(rene, lieve)

The first two clauses could be learned as well by an extensional ACL system.
When trying to cover male_ancestor(bart, stijn), the system could, correctly,
abduce father(bart,stijin) but it could do the same for
male_ancestor(rene, lieve) obtaining father(rene,lieve), which is not true in
the intended interpretation, and the last rule would not be generated.

In order to discriminate between assumptions, we need some more informa-
tion. This can be constituted by integrity constraints on the concept father, for
example

parent(X,Y) « father(X,Y)
or

— father(X,Y),parent(X, 7), parent(Z,Y)
which, respectively, state that “a father must be a parent” and “X can not be
Y’s father if it i1s Z’s father and 7 is Y’s father”. This kind of constraints can
be given wn the background knowledge or can be extracted as reqularities from
the data, however with the problems that will be shown in example 6.4.

4 ACL for intensional systems

Extensional coverage has been introduced in order to solve the problems of
intensional systems when used for Multiple Predicate Learning (MPL). These
problems have been thoroughly analyzed in [16] and are summarized below.
Most intensional systems have been designed for single predicate learning.
When we want to learn multiple predicates, the most straightforward way to
solve the problem is to repeat the single predicate learning task for each target
predicate. At each step, a decision has to be made on which predicate to learn
next. The order in which predicates are learned is very important because for
some orders we may not be able to find a solution even if one exists or we may
find a very complex solution. Therefore, backtracking has to be considered on
the predicate learning order. This problem is worsened by the fact that the
restriction on the language imposed by the bias may further restrict the set of
orders that lead to a solution. Moreover, in order to learn mutually recursive
predicates, we have to interleave the generation of a clause for one predicate and

for the other, we can not learn the complete definition of a predicate after the
other. Therefore, we must noy only consider all the orderings of single predicate
learning tasks, but also all the orderings of single clause learning tasks.

This leads to a second problem: the addition of a consistent clause to a
theory can make previous clauses inconsistent. The learning process is non-
monotonic with respect to consistency. For example, suppose you learn the
following clauses in the order in which they are listed:

¢(X) + Bodyi (X).

P(X) ¢ Bodys(X), ¢(X).

q(X) Bodys(X).

Suppose that the second clause is consistent since it rules out all the negative
examples e, for p because for them q(ezj) is always false. When we add the
third clause, this can cover as well some of the atoms q(e;), because they may
not be in B .

Therefore, 1n intensional systems, after the addition of a clause to the current
partial hypothesis, the negative examples for all the predicates must be tested
(global consistency), as in fact is done in the systems MPL [16] and TRACY
[1]. This is clearly very expensive, and it is avoided by resorting to extensional
derivation. This problem dos not arise in the case of Single Predicate Learn-
ing (SPL) because global and local consistency coincide, since all the negative
examples are always tested in order to check consistency.

Among this two problems, the latter can be solved using abduction. When
we test the clause

p(X) ¢ Bodys(X), ¢(X).
against a negative example p(e;) and the definition of ¢ is not complete (some
e(}" are still in E1), besides ensuring that q(e,) is not derivable, we should
assume that q(e;) 1s false and add 1t to E, so that when a new clause for ¢ 1s
learned these examples are not covered.

This can, however, lead to the impossibility of finding a solution even if it
exists because the assumptions can constrain too much ¢. Therefore, backtrack-
ing on clause addition is still needed, besides backtracking on literals, and the
assumptions made must be retracted. The cost of clause backtracking can be
reduced using heuristics, both for the addition of literals and for the selection
of the predicate in the head of the clause to learn. See [16] for an example of
such heuristics.

Moreover, abduction can help considerably to learn more effectively in mul-
tiple predicate learning problems. In fact, in this case a possible incompleteness
in the training set for a predicate can prevent the system to learn a correct defin-
ition for other predicates as well. By making assumptions about a subpredicate
when the atom to be assumed cannot be derived by any rule, we can supply the
incompleteness of the subpredicate definition. Then, the assumptions made can
be used to learn new rules for the subpredicate, thus completing its definition.
In other cases, the definition of the subpredicate may be incorrect because 1t 1s
overgeneral, as will be illustrated in example 6.3.

10

4.1 ACL for learning normal logic programs

Normal logic programs are programs that can contain negated atoms in the body
of the rules. When learning normal logic programs, apart from the previous two
problems, another problem can arise: adding a clause to a partial hypothesis
can reduce the coverage of that hypothesis. In fact, normal programs are non-
monotonic, adding a clause to them may reduce the set of derivable facts. For
example:

¢(X) + Bodyi (X).

p(X) + Bodya(X), not ¢(X).

q(X) ¢ Bodys(X).

After the addition of the third clause, some of the positive examples covered by
the second may not be covered anymore. A similar problem can arise also in
SPL, in the case of negative recursive clauses:

p(X) Body (X).

p(X) + Bodya(X,Y), not p(Y).

p(X) + Bodys(X).

The problem arise because the set of positive examples is gradually reduced and
covered positive examples are not anymore tested. This is the dual problem
of the one seen before for definite programs. The learning process i1s again
non-monotonic but, this time, with respect to coverage instead of consistency.
Therefore, we can not take out the positive examples from £t when they are
covered by a clause, but after the addition of each clause all the previously
covered et must be checked again.

An alternative solution to this problem is to use abduction to record as-
sumptions about negative literals not p(e) being true (or p(e) being false), so
that clauses generated afterwards will not cover the example p(e).

Therefore, to solve the problems of learning both definite and normal pro-
grams, we record negative assumptions about target predicates and add them to
the set £~ for successive learning phases. This avoids the checking of the whole
training set, £ and F~, after the addition of a new clause. In this approach,
the set of negative examples is gradually expanded to include the negative as-
sumptions made. This is similar to the approach followed in TRACY"% [3].
Since we gradually add negative examples, this approach may seem similar to
the one adopted in incremental systems such as MIS [18]. However, while in
these systems a consistency check must be done after the addition of each e,
we do not have to do this because we add an e~ only after having tested that
it 1s not covered by any clause.

5 Rules and integrity constraints

In this section, we examine in more detail the roles of rules and integrity con-
straints in learning. A target predicate may be defined by a set of rules with

11

that predicate in the head plus a set of integrity constraints with that predicate
in the body.

The rules express sufficient condition for the target concept. This means that
if an unseen example satisfies all the conditions in the body of a rule, we can
classify i1t as an instance of the concept. If it does not satisfy all the conditions,
we can consider it a negative instance of the concept. This corresponds to
adopting a two-valued semantics.

Integrity constraints on target predicates, instead, represent necessary con-
ditions that the unseen examples have to satisfy in order not to be classified
as negative instances of the concept. In this way, an example is classified as
negative if it does neither satisfy any sufficient condition nor all the necessary
conditions. If an example does not satisfy any of the sufficient conditions but
satisfies all the necessary ones, we cannot classify it either as positive or nega-
tive, but we have to consider it as unknown and we can make assumptions about
it. This corresponds to adopting a three-valued semantics for the concepts, as
observed by Flach [9].

A three valued semantics is necessary in order to learn in the presence of in-
complete information, since we cannot consider everything that is not known to
be false. In this case, we have to learn both the positive concept, represented by
sufficient conditions, and the negative one, represented by necessary conditions,
in order to distinguish between what is certainly true, what is certainly false
and what is unknown. Therefore, rules and integrity constraints complement
each other in the representation of the learned concept.

Example 5.1 Consider the abductive theory:

T = {flies(X) « bird(X), normal_bird(X).}

A = {flies}.

IC = { « flies(X), penguin(X).}
The rule in T can be used to conclude that tweety flies if we know that it s a
bird and 1s a normal_bird. If we know that freddie is a penguin, we can conclude
that it does not flies. If we don’t know anything about billy, we can assume that
it flies because this is consistent with the integrity constraints.

A different way in which rules and integrity constraints can complement each
other is to use integrity constraints to specialize the rules. In the next section
this case will be considered in detail.

6 Integrity constraints used to specialize rules

In top-down learners, rules are specialized by adding a literal to the body. Alter-
natively, integrity constraints can be used in order to specialize the rule. In this
case, each fact derived by the rules must be checked against integrity constraints
and, if 1t violates one or more constraints, it is rejected. Therefore, this use of
constraints differs from the previous one in which they were used only to check

12

the assumptions made when no rule was applicable. Let us see an example of
this use.

Example 6.1 Suppose the learning system has generated the rule:

flies(X) « bird(X)
This rule 1s not correct because it can derwe that penguins fly. We can specialize
it by adding the constraint

+ flies(X), penguin(X).

In the following, we will first examine the relationships between these two
specialization operators, and then we will discuss what is the possible use of
integrity constraints for specialization.

6.1 Equivalence of integrity constraints and addition of
literals as specializing operators

Integrity constraints offer a way of specializing rules which is alternative to
adding a literal to the body. We will show informally, by means of examples,
that everything that can be expressed using integrity constraints in this way,
can be expressed as well by adding literals to the rules. Let us start from the
simplest case, in which we have a rule

c(X) + Body(X).

where ¢ is the concept to be learned and Body(X) is a conjunction of literals,

and the constraint
— ¢(X), p(X).

Informally, this theory expresses that “c(X) is true if Body(X) is true but we
cannot have ¢(X) and p(X) true at the same time”. The same theory can be
expressed by the rule

¢(X) « Body(X), not p(X).

where we have used Negation As Failure (NAF) because the integrity constraints
can be interpreted as meta-level statements about the provability of literals. For
example, the previous constraint can be interpreted as

— demo(T, e(X)), demo(T, p(X)
A more complex case is the one in which we have the constraint
§(X) € e(X), p(X).
This can be rewritten as

— (X)), p(X),not g(X).

13

which, informally, can be interpreted as “it is never the case that ¢(X), p(X)
and not ¢(X) are true at the same time”. Therefore, in order for ¢(X) to be
true, p(X) must be false or ¢(X) must be true. This can be expressed as well
in terms of rules

¢(X) « Body(X), not p(X).

e(X) « Body(X), ¢(X).

The last case we consider is the one in which some of the predicates in the
integrity constraint are used to instantiate new variables not present in the
concept atom

(X)), p(X,Y),q(X,)Y)

In this case, we could not produce the previous two rules because we would
loose the relationship between X and Y. Therefore we have to keep the literals
in both rules

e(X) « Body(X),p(X,Y),not ¢(X,Y).

e(X) « Body(X),not p(X,Y),q¢(X,Y).

These two rules do not cover the case in which both p(X,Y") and ¢(X,Y) are
false, therefore we must add another rule

¢(X) « Body(X),not p(X,Y),not ¢(X,Y).
Alternatively, instead of the previous three rules, we could add the single rule
e(X) « Body(X),not (p(X,Y),q(X,Y)).

Therefore, specialization by integrity constraints is not more expressive than
specialization by addition of a literal.

6.2 Uses of integrity constraints as a specializing operator

We have seen that integrity constraints and the addition of literals are two
alternative specialization operators. We want to investigate now when the use
of integrity constraints is more appropriate.

In some cases, a correct rule can not be learned because of lack of training
data, while it is possible to learn an integrity constraint, as it is illustrated in
the next example.

Example 6.2 Suppose the learning system has generated the abductive theory:
T = {father(X,Y) < parent(X,Y).}
IC = { « father(X,Y), female(X).}
The first rule is not correct, because it can conclude that X s a father even when
X is female. The integrity constraint is therefore used to avoid the derivation
of female fathers. not female(X) was not added to the rule because it was not
useful to discriminate negative from positive examples, supposing we did not

14

have negative examples of female fathers. But analyzing the reqularities in the
data, it was possible to wnfer that it was never the case that a female was a

father.

In this case, the addition of a literal was not considered because of the way
in which the rules are learned. We are supposing to use a top-down algorithm
which learns the most general definition that is able to discriminate positive
from negative examples. But in this way we may have overgeneralization, as
shown in the previous example. A bottom-up learner would generate the most
specific rule that covers all the positive examples and rules out the negative,
but the opposite problem can arise: the generated rules could not generalize
enough to cover unseen examples of the same concept. Moreover, in this case
the most specific rule father(X,Y) < parent(X,Y),not female(X). contains
a NAF literal, and bottom-up systems able to learn normal logic programs do
not exist yet. Integrity constraints can therefore help to restrict the generality
of the rules inferred by a top-down learner.

Moreover, we can see the integrity constraints as a means to generate nega-
tive informations which were not directly available. In the previous example, the
constraints express that all female fathers are negative examples for the concept
father, while in the training data we did not have any negative examples. In the
following example we show how this negative informations can be fundamental
for successive learning phases.

Example 6.3 Consider a multiple predicate learning task in which you have to
learn the concepts father and grandfather starting from a background theory
which contains the definitions for parent, male and female. Suppose also that
the training set for father has the properties of example 6.2 and therefore we
learn the same rule for father

father(X,Y) < parent(X,Y).
Then we learn the definition for grandfather, obtaining

grandfather(X,Y) « father(X, 7)), parent(Z,Y).
which 1s correct on the training set because all the positive example for
grandfather are covered and none of the negative examples. The resulting the-
ory, however, is clearly not correct on unseen cases, in order to make it correct,
we have to add the constraint

— father(X,Y), female(X).

One objection can be made regarding example 6.2: a correct rule could not be
learned because the available data was not sufficient. In this case the generation
of integrity constraints resulted in the correct definition of the concept, but
maybe in other cases it could find regularities in the data that are irrelevant to
the concept that we are trying to learn.

Example 6.4 Suppose you have the same learning problem of erxample 6.2
where now you know a person steve that is not a father and that is poor

15

(poor(steve)). If you do not know anything about fathers being poor or not,

you could assume that they are not poor and observe the reqularity in the data
— father(X,Y), poor(X).

which expresses that there are no poor fathers. This ts derived in the same way

as it was the constraint on female, but it restricts too much the concept father

This example shows that we must be very careful when extracting regu-
larities from data because sometimes incidental regularities could be found.
We need therefore a way to distinguish between incidental from relevant reg-
ularities, which must come from other information than the training data,
such as the user bias. In example 6.2, we could generate only the constraint
« father(X,Y'), female(X) because the user somehow knows that the concept
father has something to do with sex but not with welfare of people.

This problem is part of a wider issue regarding the minimum amount of
data which is necessary for learning a theory. With ACL we are trying to
lower this limit by making assumptions, but the available data must guide these
assumptions. If the data are insufficient, we can make the wrong assumptions
and do not learn a correct definition for the target concepts. In this paper we
assume that the amount of information available is sufficient for learning the
intended theory using ACL. Determining what is exactly this amount is an open
problem that is subject for future works.

In the following, we assume that integrity constraints are not used to special-
1ze rules but only to restrict the possible assumptions when no rule is applicable.

7 Algorithm

In order to develop an algorithm able to perform ACL in its full form, we can
start from the intensional algorithm presented in [8] in which the usual notion
of coverage of examples is substituted with the notion of abductive coverage.
It is able to make assumptions during the learning phase and to generate rules
that contain abducibles.

We want to develop an intensional system because we have shown that the
problems of intensionality can be solved with abduction. Therefore we consider
the algorithm in [8] and we extend it in order to perform MPL, using ideas from
[16], and to learn general integrity constraints of the form

Al,...,Am%Bl,...,Bn

where A; and B; are atoms. The algorithm considered is also able to learn
integrity constraints, but only of the limited form of denials between a predicate
and 1ts default literal

—a(X),not_a(X)

General integrity constraints can be learned by ICL [17]. ICL starts from a
definite program as background knowledge, from a set of positive and a set of

16

procedure PACL(
inputs : £t E~ : training sets,
AT = (T, A, IC) : background abductive theory,
outputs : I : learned theory, A : abduced literals)

H:=0
A=10
while £t £ 0 do
GenerateRule(input: AT, H, ET E~, A; output: Rule)
if GenerateRule fails, then
do backtracking on the previous rule added
Let Egule be the set of positive examples covered by Rule
Let Agyie be the set of literals abduced during
the derivation of et and not e~ using Rule
Add to E7T all the positive literals of target predicates in Agye
Add to E~ all the atoms corresponding to negative literals
of target predicates in Agyie
E+ = E+ - Egule
H = HU{Rule}
A= AUARue
endwhile
output H, A

Figure 1: PACL, the covering loop

negative interpretations and finds a clausal theory H such that all the positive
interpretions (together with the background knowledge) are models of H and
all the negative ones are not models. We combine ICL with an extension of the
previous algorithm in order to perform ACL in its full form.

In section 7.1 we will discuss how to extend the algorithm in [8] in order to
perform MPL using best first search. We will call it PACL (Partial Abductive
Concept Learning). In section 7.2 we will show how to use ICL in our framework,
and in section 7.3 we describe how to integrate the two in order to obtain ACL,
an algorithm that performs full ACL.

7.1 Partial ACL

This algorithm is an extension of the algorithm presented in [8] which in turn
is based on the generic top-down algorithm presented in [12]. As the generic
top-down algorithm, PACL is composed of two loops: the covering loop (figure
1) and the specialization loop (figure 2).

The covering loop starts with an empty hypothesis and, at each iteration,

17

procedure GenerateRule(
inputs : AT : background theory, H : current hypothesis,
Et,E~ : training sets, A : current set of abduced literals
outputs : Rule : rule)

StartRules := { p(X) + true. where p is a target predicate for which
there are still some et in BT }
Agenda = ()
for all Rule € StartRules do
add (Rule,Evaluate(Rule, AT, EY, E~ A),) to Agenda
Select and remove Best rule from Agenda
While Best covers some e~ do
BestRe finements := set of refinements of Best allowed
by the language bias
for all Rule € BestRefinements do
Value := Evaluate(Rule, AT, E*, E~ A)
if Rule covers at least one pos. ex. then
add (Rule, Value) to Agenda
endfor
Select and remove Best rule from Agenda
endwhile
let Best be (Rule, Value)
output Rule

Figure 2: PACL, the specialization loop

18

function Evaluate(
inputs : Rule: rule /AT : background theory,
ET,E~ : training sets, A : current set of abduced literals)
returns the value of the heuristic function for Rule

n% = 0, number of pos. ex. covered without abducing anything
nf = 0, number of pos. ex. covered abducing something
n® = |E~|, number of neg. ex. covered (not e~ has failed)

ng = 0, number of neg. ex. uncovered abducing something

A=A
for each et € ET do
if AbductiveDerivation(et,(T'U H U {Rule}, A, IC), Ajn, Aput)
succeeds then
if no new assumptions have been made then
increment n®
else
increment nf
endif
endif
Ain = Aout
endfor
for each e~ € E~ do
if AbductiveDerivation(not e~ , (T'U H U {Rule}, A, IC), Ajn, Aout)
succeeds then
decrement n®
if new assumptions have been made then
increment ng

endif
endif
Ain = Aout
endfor
return Heuristic(n®, n%, n®, n9)

Figure 3: PACL, evaluation of the heuristic function

19

a new clause is added to the hypothesis. Each clause is generated in the spe-
cialization loop (contained in the function GenerateRule). The new clause will
cover some positive examples and none of the negative, after the addition the
covered positive examples are removed from the set of positive examples £+ and
the literals abduced during the derivation of positive and negative examples are
added to the current set of abducibles A. Moreover, each assumption made
about target predicates is added either to £ or to £~, depending on the sign
of the literal. The loop ends when all the positive examples are covered.

The space of possible clause orderings is searched depth-first: in the case
in which no clause could be generated by GenerateRule, then backtracking is
done on the clause added at the previous step. The clause is retracted and the
procedure GenerateRule is requested to produce another clause.

Let us consider the specialization loop. The clauses are generated by per-
forming a best-first search in the space of the possible refinements. At the
beginning, the set of current clauses (called Agenda) contains one clause with
an empty body for each target literal whose definition has not yet been com-
pleted (some positive examples for it are still in Et). For each clause in the
set the value of the heuristic function is computed (figure 3). This is done by
trying to derive each positive example and the negation of each negative one.

At each iteration of the specialization loop, the clause with the maximum
value for the heuristic function is selected and removed from the Agenda. All its
refinements, allowed by the language bias, are generated. For each refinement,
the value of the heuristic function is calculated and the refinement, together
with the value of the heuristic, 1s added to the Agenda if it covers at least
one positive example. The loop terminates when a clause 1s found that does
not cover any negative examples. That clause is then returned as output. In
the case in which such a clause could not be found, the procedure fails. This
happens when the Agenda becomes empty, because no refinement covers at least
one positive example.

Let us now consider the way in which the heuristic function is evaluated.
For each positive example et and for each negative example e~, an abductive
derivation is started for et and not e~ respectively, using the procedure defined
in [10]. This procedure takes as input the goal to be derived, the abductive
theory and, if it succeeds, produces as output the set of literals abduced during
the derivation. We consider as well as input the set of literals already abduced.
This does not require any major modification of the procedure. In this way, we
ensure that the assumptions made during the derivation of the current example
are consistent with the ones made before. Thus, we can test each positive and
negative example separately and be sure that the clause will derive 61|_ A Aet A
not e] A...Anot e, . The set of abduced literals is passed on from derivation to
derivation and gradually extended. This is done as well across different clauses,
in order to maintain the consistency among assumptions.

The positive and negative examples covered are counted, distinguishing be-
tween examples covered (uncovered) with or without abduction, and these num-

20

bers are used to calculate the heuristic function, which will be discussed in
section 8.

However, it must be noted that an example could be successfully derived
with different sets of assumptions. Suppose you have two possible sets, one
compatible with some examples while the other not compatible. If we assume
the second set, we are not going to derive anymore these examples. This is a
choice point of the algorithm and backtracking should be used in the case of
failure of the generation of a clause in order to find other set of abducible that
could possibly allow the coverage of more examples. However, we decided not
to consider this choice point in order to reduce the computational cost of the
algorithm.

The strategy for generating the clause to add to the partial theory is similar
to one used in the system MPL because the predicate in the head of the clause
is not decided a priori, before starting the specialization, but is selected in order
to produce the most promising clause. However our strategy differs from MPL
because they keep a set of the best bodies found so far while we keep the set of
the best complete clauses found so far. They evaluate one body by selecting the
maximum value of the heuristic function for the clauses generated by adding all
the possible heads to the body. We think that in most cases each body in the
set will have a good performance for just one head and therefore it is useless to
test it with all the other heads.

Let us examine the properties of soundness and completeness the algorithm.
The use of literals abduced so far in the derivation of the examples, ensures
that we will not generate clauses that make previous clauses inconsistent or
that reduce their coverage. Therefore the algorithm is sound for the problem of
ACL and, as a consequence, 1t is sound also for learning normal logic programs
in the case of multiple target predicates. As regards completeness, depth-first
search in the space of clause orderings and best-first search in the space of clause
refinements ensure a complete search of the space in the worst case. However, as
observed before, we do not perform backtracking on the choice of the abduced
literal set. Therefore the algorithm is not complete for the problem of ACL. If
backtracking on that choice point is added, then the algorithm becomes complete
for ACL and therefore also for learning normal logic programs with multiple
target predictes.

The space of clause refinements can be represented as a tree, in which the
root is the empty clause and each child of the root is a clause with the target
predicate in the head and an empty body. The complete search space can
therefore be represented by a tree in which each node is also a tree. In order to
be able to do backtracking on the clauses added, we need to store the boundary
nodes of the inner tree for each iteration of the covering loop (i.e., for each node
of the outer tree). This means storing the Agenda of the specialization loop. In
this way, when backtracking is required, the previous Agenda is restored and
the procedure GenerateRule selects from it another clause which does not cover
negative examples, maybe after having done some specialization steps. Since

21

the search strategy of the outer tree is depth first, only the current path along
the tree must be stored and therefore we need to store one set of clauses for each
level of the tree. This may be too expensive from a storage point of view and
we could use beam-search instead of best-first, thus putting a constraint on the
size of the Agenda. However, this restrict further the property of completeness
of the algorithm.

A number of optimizations are possible. One regards the search space: each
time a new clause is added, the search in the space of refinements starts from
the root of the tree and goes down until it finds a clause which is consistent, i.e.
does not cover any negative examples. When we are looking for the next clause,
we do not need to start from the root because we already know that all the
clauses up to the point reached before were inconsistent at the previous step, and
therefore will be inconsistent as well now, since F~ and A have been, possibly,
enlarged. Therefore, we could start from the set of clauses obtained at the
previous step. Clearly, the value of the heuristic function must be recalculated
for each clause in the set because the sets £, £~ and A may have changed.
This optimization saves a considerable amount of search time and does not
require additional storage space because the set of clauses of the previous step
must be kept anyway in order to be able to perform backtracking on the outer
tree.

Another optimization regards the evaluation of the heuristic function for each
refinement of a clause. This evaluation requires to try an abductive derivation
for each member of Et and £~. As a result, we identify the subsets Egef C Bt
and Ep_, C £~ that contain positive and negative examples still covered by
the refinement. At the successive specialization step for this clause, we do not
need to test all the elements of £t and £~ because the ones which were not
covered before will not be covered as well by a refinement (since we are starting
from the same set of abduced literals). Therefore, we can test only the subsets
Egef and Egers thus gradually reducing the number of tests as the clause is
specialized. This requires storing, together with the refinement and its value,
also the subsets Egef and Eéef, together with the set Ap.; of literals abduced
during previous tests, so that the new tests will be consistent with them.

7.2 Learning integrity constraints

In order to learn the integrity constraints we use the system ICL [17]. The
learning problem that is solved by ICL can be stated as follows.

¢ Given

— B, a definite clause background theory;

— P, aset of interpretations such that for all p € P, M(BUp) is a true
interpretation of the unknown target theory;

22

— N, a set of interpretations such that for all n € N, M(BUn) is a
false interpretation of the unknown target theory.

e Find a clausal theory H such that

— forall p e P, M(BUp) is a true interpretation of H (Completeness);
— foralln € P, M(BUn) is a false interpretation of H (Consistency);

In our case, we would like to learn integrity constraints on abducibles by using
the information contained in the set A of assumption made during the learning
phase. A is a set of positive and negative literals, we can obtain from it two
sets: A1, which contains all the positive literals, and A~, which contains the
atoms corresponding to negative literals in A. In the following, £ indicates
the set of negative examples of abducible predicates. We can apply ICL to our
case in this way:

e the background knowledge B is the program 7",
e the set P contains only one positive interpretation p = A™T;

o the set N contains a negative interpretation for each element of A~ U £

The training sets are included in the interpretations if the target predicates are
also abducible, and therefore we would like to learn integrity constraints on
them. The learning bias for ICL is set in order to learn clauses of the form

head + body, abducible_predicate

The learned clauses will be true in M (7" U A*) and will be false in each model
M(T U{6~}) where 6= € A~ U E}. Therefore, when the integrity constraints
will be added to the final abductive theory, they will not allow any assumption
belonging to A~ U E7, that is precisely what we want.

In our case, T" is a normal program, while in the problem statement of ICL
the background knowledge is considered to be a definite program. However, even
if the authors did not mention it in [17], ICL can be used without modifications
also for learning from normal background knowledge.

7.3 Full ACL

A system for performing full ACL can be obtained by running in sequence PACL
and ICL:

e Input: (T, A, IC), ET E~
e Run PACL obtaining H, A

e Run ICL, obtaining IC’, with input:

23

- B=T
— P:{A"'}
— N={{6"}such that 6 € B, UA™}

e Output: (TUH, A, ICUIC")

8 Heuristics

Various heuristics have been proposed in ILP for the evaluation of the quality of
a clause, see [12] for an overview. All of them express the intuitive notion that
a clause is better than another if it covers more positive and less negative ex-
amples. The most widely used heuristics can be divided into two main famailies,
one based on expected classification accuracy and the other based on informativ-
ity. Both of them are based on the probability p(®|c) that an example covered
by a clause ¢ is positive. However, this probability is not known and therefore
must be estimated. After having presented the various heuristics as functions
of p(d|c), we will discuss how to estimate p(@|ec). Then we will show how the
heuristics presented can be adapted to the ACL framework.

8.1 Heuristic functions

The expected classification accuracy of a clause ¢ is defined exactely as the
probability that an example covered by ¢ is positive

A(e) = p(&le)

The informativity of a clause ¢ is defined as the amount of information necessary
to specify that an example covered by the clause is positive

I(¢) = —log, p(Dle)

In this case, as opposed to the previous one, the quality of the clause is higher if
informativity is lower. A more intuitive meaning of informativity will be given
in section 8.2, when the probability estimates will be discussed.

From these two basic heuristics, others can be derived. Given the current
clause ¢ = T+ @ and a refinement ¢/ = T« @', the accuracy gain AG(c,c)
and information gain IG(c', ¢) can be defined as follows

AG(¢) = A(e) = Ale) = p(8]c) — p(lo)

1G(d ¢) = I(c) = I(c') = log, p(®]c) — log, p(]c)

The accuracy gain is the increase in classification accuracy, while the information
gain is the decrease in information necessary to specify that an example covered
by the clause is positive, achieved by specializing clause ¢ to ¢’. In this way we

24

can compare different specializations of a clause and select the one which gives
the biggest gain.

However, these heuristics can prefer very specific rules with an high gain
to more general rules whith a lower gain. For example, two rules could be
obtained from the specialization of the same rule, one which covers 2 positive
examples and no negative ones, the other which covers 100 positive examples
and 1 negative. The gain heuristics would prefer the first rule, even if the second
is probably more interesting because it is more general. Therefore, the value
of the gain heuristics is adjusted by means of a weight factor which should
take into account the generality of the rule. This factor can be given by the
fraction of positive examples which is covered before and after the specialization

@
step %(%)l. What we get is weighted accuracy gain WAG(c', ¢) and weighted
information gain WIG(d, ¢)

WAG(d ¢) = Zz((i)) x (p(®]¢") = p(®le))

WIG(d c) = M x (log, p(&]c’) — log, p(P]c))

= e (o) g2 P gD

By introducing a weight, we aim at finding a balance between the gain and
the number of positive examples covered by a clause. An heuristic similar to
WIG(d, e) is used in FOIL [15].

It has been shown that the respective heuristics based on accuracy and
informativity give similar results with respect to the accuracy of the generated
clauses [5]. Instead, the model used to estimate probability has a stronger
influence on the performances of the heuristic, specially when the training data
are noisy.

8.2 Probability estimates

All the heuristic functions previously described are based on the probability
p(B|e) that an example covered by clause ¢ is positive. Clearly, this probability
can not be known with certainty, because it is given by the behaviour of the
clause on all the examples, while we have only a small sample constituted by
the training set. Therefore, we must estimate p(éb|c) using only the examples
in the current training set F.,, and, in particular, the numers:

e n%(c) = number of positive examples covered by ¢

e n(c) = total number of examples covered by ¢

Three different estimates have been proposed in the literature: relative fre-
quency, Laplace estimate and m-estimate, in order from the most accurate to

25

the least. The simplest of them is the relative frequency of positive examples
with respect to the total number of examples

n?(c)
n(c)

By using this probability estimate in the informativity heuristic, we obtain

p(Ble) =

() = logy n(¢) — logy n® (¢)

This formulae can be used to give a more intuitive meaning of the informativity
heuristic. Suppose we have n(c) examples and we are testing them. Suppose
that we want to transmit a message expressing the fact that the example tested
1s positive. The informativity of the clause is the number of bits necesary to
encode this message and 1t is given by the number of bits necessary to specify
which example was tested, log, n(c), minus the number of bits necessary to
specify which of the positive examples was covered, log, n?(c), because we are
not interested in “which” positive example was but only that it was a positive
example.

This probability estimate is the simplest and the most diffused. However,
the reliability of this estimate decreases as the size of the training set decreases:
in the extreme case of only one positive example in Fgyr, the estimate of p(®|c)
i1s 1. This 1s clearly an estimate too optimistic even in the absence of noise. To
avoid this problem, the Laplace law of succession was used [14]: if in the sample
of n trials there were s successes, the probability of the next trial being successful

1s Zj’_é, assuming a uniform initial distribution of successes and failures. The
Laplace estimate is therefore given by
nP(c) +1
Pl =2

This estimate 1s more reliable when dealing with a small number of samples.

For example, in the case in which both n®(c) and n(c) are 0, the probability is
1
2
assumptions that positive and negative examples have the same probability.
However, this assumption is rarely true in practice. Therefore the m-estimate
[4] was introduced that takes into account as well the prior probabilities of the

classes

which reflects the fact that an empty training set can not alter our a priori

n®(c) + m x po ()
n(c) +m
where the prior probability p,(®) can be estimated by the relative frequency

p(le) =

of positive examples in the initial training set #. The value of m expresses

our confidence in the representativeness of the training set. The actual value
of m should be set subjectively according to the amount of noise in the exam-
ples (larger m for more noise). As m grows towards infinity, the m-estimate
approaches the prior probability of the positive class.

26

The m-estimate provides a stronger theoretical ground to heuristc functions
and allows to build clauses that are more accurate on unseen examples. More-
over, the other two probability estimates can be obtained as special cases of the
m-estimate by appropriately setting the two parameter m and p,(®):

n®(c)

o relative frequency p(®|e) = ") for m = 0, and
e Laplace estimate p(P|c) = nn@((cc)z:_zl for m = 2 and p,(®) = %

In [12] the authors report the results of experiments conducted in order to com-
pare the performances of AG,;, AGrap, AGm=2, WAG, ¢, G, ¢, IGLap, [Grm=2,
WIG, s, obtained by combining the accuracy gain and information gain with
the different probability estimates and weighted gains with relative frequency.
The results of the experiments showed that W AG and W IG have performance
similar to unweighted AG and I'G using the m-estimate. Therefore the authors
conclude by making the hypothesis that weighted heuristics perform better than
unweighted ones, the best being WIG and W AG using the m- estimate.

8.3 A heuristic for ACL

We have seen that informativity and accuracy have similar performances. There-
fore we have chosen accuracy for its simplicity. The gain heuristics give an esti-
mate of the quality improvement obtained by specializing a a clause. In our case
we are more interested in selecting the clause which has the best performance
on the training set, not the one which has had the best improvement. Therefore
we use simple accuracy as the heuristic function.

As regards the function used to estimate probability, we use m-estimate
because i1t has been shown to have better performances. We now illustrate how
to apply this probability estimate in the abductive framework. For the sake
of simplicity, in the following discussion we will use relative frequency. The
modifications to this estimate can then be extended to the m-estimate without
difficulties.

In ACL a new clause ¢ is tested against the examples of the training set by
starting an abductive derivation for each positive example and for the negation
of each negative one. Some positive examples will be covered without abducing
any literals, while other examples will be covered by making some assumptions.
Similarly, some negative examples will be ruled out abducing some facts, while
others without abducing anything. As a consequence, in this case we have four
figures to consider

e n%(c) = number of positive examples covered by ¢ without abduction of
any literal

e n9(c) = number of negative examples covered by ¢ (not e~ has failed)

27

. njﬁbd(c) = number of positive examples covered by ¢ with the abduction
of some literals

. ngbd(c) = number of negative examples uncovered by ¢ (not e~ has suc-
ceded) with the abduction of some literals

The examples covered by making some assumptions are not covered with com-
plete certainty, because abduction is a form of hypothetical reasoning. The
assumptions are hypothesis that may turn out to be wrong, the integrity con-
straints ensure that we do not make an assumption when it is certainly false,
but if no constraint is violated the hypothesis may still be false, because we may
not have all the relevant integrity constraints. Therefore, we should give less
importance to examples covered or ruled out by abducing some literals. In other
words, if two clauses cover the same amount of positive and negative examples
but one of them covers the positive examples by making assumptions, than we
should prefer the other. In the case in which they both cover some examples
with abduction and some other without abduction, then a balance should be
found. The heuristic function we propose is

— n® +kx nfy
n® + 00 + 0y, + (1= k) x nfyy

where we have omitted for brevity the argument ¢ from the figures. The coef-
ficient &k, with 0 < &k < 1, expresses the confidence we have in the assumptions
that can be derived from the background abductive theory. In the numerator,
positive examples covered with the abduction of some literals have been given
a smaller weight, expressed by k, with respect to the ones covered without ab-
duction. It may seem natural to add the same weight to nﬁbd as well in the
denominator. This has not been done because of the following observation.
Consider two rules for which ngbd and n® are both 0. If we have the k fac-
tor also at the denominator, the value of the heuristic function will be 1 for
both of the rules regardless of the fraction of positive examples that are covered

with abduction %, while we would prefer the rule that covers more positive
examples without abduction.

The negative examples ruled out by using abduction are taken into account
with the addendum (1—£) x ngbd in the denominator. The reason for this can be
explained as follows. Consider a rule which would cover n’® negative examples if
abduction were not available, but using abduction we can rule out ngbd negative
examples. Therefore the covered negative examples are n® = n’® — ngbd. If we
apply the accuracy heuristic of standard ILP to the second rule we get

n®

n® + 1S —nf,

Subtracting ngbd in the denominator influences too strongly the heuristic func-
tion because a negative example ruled with abduction is considered equivalent

28

to a negative example ruled out without abduction. Therefore we multiply ngbd
by & in order to reduce its influence, obtaining

n®

B n® + ' —k x n9,,

We know that n'® = n® + ngbd, therefore we have

A = n?

n® 4 no —|—n§bd —kx ngbd
n@

n@—l—nG—i—(l—k)xngbd

9 Extension of the algorithm to ACL1

The algorithm we have defined complies with the definition of ACL2, in which
it is required that the negation of each negative example is abductively entailed
by the learned theory. We want now to adapt the algorithm to comply with
the definition of ACLI1, in which it is required that the learned theory must
not abductively entail each negative example. The condition of ACL1 is more
stringent than that of ACL2, because in ACL2 we can make assumptions in order
to rule out a negative example, while in ACL1 not only we can not make any
assumption to rule the example out, but 1t is required also that no assumption
can be made in order to cover it.

Therefore, the algorithm must be changed so that, instead of testing the
success of the abductive derivation of not e, 1t tests the failure of the abduc-
tive derivation of e~. The heuristic function must be changed accordingly: in
this case we do not to distinguish between negative examples ruled out with
abduction or without abduction, therefore the heuristic can be simplified in

_ nF kX,
n® +n® +nfy,

The condition on negative examples of ACL1 can be too stringent in some cases,
thus we may look for an hybrid solution: if a negative example is still covered
according to ACL1, we may try to rule it out using abduction as specified in
ACL2. However, a negative example not covered according to ACL1 and one not
covered according to ACL2 can not be considered equivalent in the evaluation
of the clause, because the latter fact is less certain than the first. The set of
negative examples is partitioned into three classes:

1. examples not covered by the clause (+ e~ failed)

2. examples ruled out with abduction (<~ e~ and < not e~ both succeeded®)

Lwith different sets of assumptions.

29

3. examples covered by the clause (< e~ succeeded and < not e~ failed)

If we indicate the cardinality of the last two classes with the names ngbd and
n®, we can use the same heuristic function seen in section 8.3. However, in this
case the classes are different from those considered before

1. examples not covered by the clause (< not e~ succeeded with A =)
2. examples ruled out with abduction (¢ not e~ succeeded with A # §})
3. examples covered by the clause (< not e has failed)

Since the two partitions are different, the value of & would have to be differ-
ent in the two cases in order to reflect the different confidence we have in the
uncoverage of negative examples.

10 Conclusions

In this paper we have investigated how abduction and induction can be inte-
grated in order to obtain a more powerful learning framework in the context of
ILP. We have adopted the Abductive Concept Learning framework defined in
[6] which extends the ILP learning paradigm to the case in which both the back-
ground and the target theory are abductive logic programs. In this framework,
we have shown how we can learn in the presence of incomplete information in the
background knowledge and/or in the training set by exploiting the hypothetical
reasoning of abduction.

After having stated the requirements for an algorithm that performs ACL, we
illustrated the benefits of applying such an algorithm to extensional and inten-
sional ILP systems. As regards extensional systems, the problems of extensional
consistency, intesional inconsistency and intensional completeness, extensional
incompleteness can be solved by using abduction and recording the assump-
tions made. As regards intensional systems, abduction can be used to avoid the
checking of the global consistency of the current hypothesis after the addition of
each clause, in the case of multiple predicate learning. Moreover, when learning
normal logic programs, abduction can be used in order to avoid the rechecking
of positive examples previously covered after the addition of a clause.

Abductive logic programs are a powerful means of knowledge representation.
They allow the use of integrity constraints in order to represent concepts. We
have investigated two different uses of integrity constraints, the first consist in
having correct rules and using constraints only to check assumptions when no
rule is applicable; while the second consist in having overgeneral rules which
are specialized by using the constraints. We have shown some of the problems
connected with the latter use and therefore we have adopted the former.

Finally, we have proposed an algorithm for ACL, which performs a depth-
first search in the space of clause orderings and a best-first search in the space of

30

clause refinements, together with an appropriate heuristic function. This algo-
rithm is sound but it is not complete because it does not consider backtracking
on abductive explanations of examples. If backtracking is added for this choice
point, the algorithm will also be complete. However, we think that adding this
backtracking point would be computationally too expensive in practice.

In the future, the algorithm that has been presented will be implemented and
a number of experiments will be performed in order to evaluate the advantages
of the ACL system with respect to conventional ILP systems such as FOIL [15]
or m-FOIL [7]. In order to show the performances of ACL on incomplete data,
we will consider a complete dataset and we will take gradually information out,
then comparing the degradation of performances of ACL with those of FOIL or
m-FOIL. Moreover, we will consider the application of ACL to a domain where
the background knowledge is inherently abductive and therefore conventional
ILP systems can not be applied. The domain 1s event-calculus and the learning
problem consist in finding rules which describe the effect of actions given a sparse
training set containing facts about actions and properties holding at different
time instants.

According to the results of these experiments, the parameters in the design
of the algorithm will be tuned in order to get the best ratio of quality of learned
program to learning time. For example, if backtracking on clause orderings
proves to be too expensive, a greedy search will be performed instead. At the
same time, if the best-first search strategy proves to be too expensive in terms
of time or space, we could resort to beam-search, thus putting a limit on the
size of the agenda, and eventually to hill-climbing, by setting to 1 that size.
Moreover, the parameters k and m in the heuristic function have to be set and
different experiments will be performed in order to evaluate the effect of these
parameters on the learning process.

Further work 1s required also on theoretical aspects. The different uses of in-
tegrity constraints, as specializng operator or as condition only on assumptions,
must be further investigated. By combining the learning of rules with that of
integrity constraints, ACL integrates the two learning paradigm of explanatory
and confirmatory induction [9]. The relation between these two paradigms in
the context of ACL must be better understood, in order to have a clearer idea
of the capabilities and the limits of the framework. Another interesting research
direction is to deepen the study of learning in a three-valued setting. In partic-
ular, in such a setting we should learn as well the definition of the negation of
concepts. Rules, being sufficient conditions, can express positive concepts, while
integrity constraints, being necessary conditions, can express negative concepts,
in the sense that if a constraint is violated by the assumption of a fact, that
fact 1s certainly false. In this case, when an unseen example has to be classified,
first we may try to classify it with certainty as a positive or negative instance
of a concept and, only if it 1s not possible, we can make an hypothesis about it.

31

References

(1]

9]
[10]
[11]
[12]
[13]

[14]

[15]
[16]
[17]

[18]

F. Bergadano and D. Gunetti. Learning Clauses by Tracing Derivations. In
Proceedings 4th Int. Workshop on Inductive Logic Programming, 1994.

F. Bergadano and D. Gunetti. Inductive Logic Programming. MIT press, 1996.

F. Bergadano and D. Gunetti. Learning Logic Programs with Negation as Failure.
In Advances in Inductive Logic Programming. 10S Press, 1996.

B. Cestnik. Estimating probabilities: A crucial task in machine learning. In
Proceedings of the Ninth Furopean Conference on Artificial Intelligence, pages
147-149, London, 1990. Pitman.

B. Cestnik. FEstimating probabilities in machine learning. PhD thesis, Faculty of
FElectrical Engineering and Computer Science, University of Ljubljana, Ljubljana,
Slovenia, 1991. In Slovenian.

Y. Dimopoulos and A. Kakas. Abduction and Learning. In Advances in Inductive
Logic Programming. 10S Press, 1996.

S. Dzeroski and 1. Bratko. Handling noise in inductive logic programming. In
S. Muggleton, editor, Proceedings of the 2nd International Workshop on Inductive
Logic Programming, Report ICOT TM-1182, 1992.

F. Esposito, E. Lamma, D. Malerba, P. Mello, M.Milano, F. Riguzzi, and G. Se-
meraro. Learning Abductive Logic Programs. In Proceedings of the ECAI96
Workshop on Abductive and Inductive Reasoning, 1996.

P. Flach. An inquiry concerning the logic of induction. PhD thesis, Tilburg
University, 1995.

A.C. Kakas and P. Mancarella. On the relation between Truth Maintenance and
Abduction. In Proceedings of PRICAT90, 1990.

E. Lamma, P. Mello, M. Milano, and F. Riguzzi. Introducing Abduction into
(Extensional) Inductive Logic Programming Systems. submitted.

N. Lavra¢ and S. Dzeroski. Inductive Logic Programming: Techniques and Appli-
cations. Ellis Horwood, 1994.

L. Martin and C. Vrain. A three-valued framework for the induction of general
logic programs. In Advances in Inductive Logic Programming. 1OS Press, 1996.

T. Niblett and I. Bratko. Learning decision rules in noisy domains. In M. Bramer,
editor, Research and Development in Fzpert Systems 111, pages 24-25. Cambridge
University Press, 1986.

J. R. Quinlan and R.M. Cameron-Jones. Induction of Logic Programs: FOIL and
Related Systems. New Generation Computing, 13:287-312, 1995.

L. De Raedt, N. Lavra¢, and S. Dzeroski. Multiple Predicate Learning. In Proceed-
ings of the 3rd International Workshop on Inductive Logic Programming, 1993.

L. De Raedt and W. Van Lear. Inductive Constraint Logic. In Proceedings of the
5th International Workshop on Algorithmic Learning Theory, 1995.

E. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

32

