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Abstract. We propose an approach for the integration of abduction

and induction in Logic Programming. In particular, we show how it is
possible to learn an abductive logic program starting from an abductive

background knowledge and a set of examples. By integrating Inductive

Logic Programming with Abductive Logic Programming we can learn
in presence of incomplete knowledge. Incomplete knowledge is handled

by designating some pieces of information as abducibles, that is, possible

hypotheses which can be assumed, provided that they are consistent with
the current knowledge base. We then specialize the framework for FOIL,

an ILP system adopting extensional coverage. In particular, we propose

an extension of the FOIL algorithm that is able to learn from incomplete
data.

Content Areas: Machine Learning, Nonmonotonic reasoning

1 Introduction

Both abduction and induction have been recognized as powerful mechanisms

for hypothetical reasoning in the presence of incomplete knowledge [8, 12, 13].

Abduction is generally understood as reasoning from e�ects to causes or expla-

nations, and captures also other important issues such as reasoning in presence of

incomplete information and reasoning with defaults and beliefs (see for instance

[14]). Incomplete knowledge is handled by designating some pieces of informa-

tion as abducibles, that is possible hypotheses which can be assumed, provided

that they are consistent with the current knowledge base.

Integrating induction and abduction makes it possible to learn in the presence

of incomplete information on the background or target relations. This is the case

when there are unde�ned ground atoms for the relations possibly constrained by

integrity constraints.

The main contributions of the paper are the following:



{ to present a unifying framework for the integration of Inductive Logic Pro-

gramming (ILP, for short [3]) and Abductive Logic Programming (ALP, for

short in the following [8]). In particular, we present a general approach where

it is possible to learn an abductive logic program starting from an abductive

background knowledge.

{ to specialize the framework for an extensional ILP system, FOIL [15]. In

particular, we present an Extentional Abductive Proof Procedure for checking

the coverage of positive and negative examples.

The following simpli�ed example shows how we would like to learn a program

for performing fault diagnosis from a set of (incomplete) bicycle faults.

Example 1

Let us consider the case of a background knowledge containing the following

clauses, where the last one represents a constraint:
flat tyre(bike1) :

tyre holds air(bike3) :

tyre holds air(bike4) :

 flat tyre(X); tyre holds air(X):

and let the set of abducible predicates be fflat tyre; broken spokesg. We would

like to learn relation wobbly wheel, when the training set is constituted by:

E+ = fwobbly wheel(bike1); wobbly wheel(bike2);

wobbly wheel(bike4)g

E� = fwobbly wheel(bike3)g

By integrating abduction and induction, we would like to produce the clauses:
wobbly wheel(X)  flat tyre(X):

wobbly wheel(X)  broken spokes(X):
by assuming the following set of hypotheses:

fflat tyre(bike2); broken spokes(bike4);

not flat tyre(bike3); not broken spokes(bike3)g.

A standard ILP system would be able to learn the clauses above only when

the user also speci�es the abduced hypotheses in the background knowledge.

Nonetheless, in many cases one cannot de�ne a complete background knowledge,

namely all the information about predicates flat tyre and broken spokes, but

only gives some hints about them (e.g., their relationships with other predicates

through constraints).

In the paper, we �rst extend a basic top-down ILP algorithm with abduction

in order to obtain the behavior informally explained through the example above.

We then specialize this framework for FOIL, an ILP system adopting the notion

of extensional coverage.

2 Integrating Induction and Abduction

In the following,we use the basic concepts and terminology of logic programming.

We limit the language to have no function symbol in order to have a �nite

Herbrand Universe.



2.1 Abductive Logic Programming

We recall now the de�nition of abductive logic program.

An abductive logic program is a triple hP;A; ICi where:

{ P is a normal logic program, i.e., a set of clauses of the form

A0  A1; : : : ; Am; not Am+1; : : : ; not Am+n

where m;n � 0 and each Ai (i = 0; : : : ;m+ n) is an atom;

{ A is a set of abducible predicates;

{ IC is a set of integrity constraints (denials, for simplicity) of the form

 A1; : : : ; Am; not Am+1; : : : ; not Am+n

Abduction can be used to extend standard SLD-resolution in order to gen-

erate conditional answers for a given goal. Such answers are (possibly minimal)

sets of consistent abducibles.

Negation as Failure is replaced, in ALP, by Negation by Default [6] and is

obtained in this way: for each predicate symbol p, a new predicate symbol not p

is added to the set A and the integrity constraint  p(X); not p(X) is added to

IC, where X is a tuple of variables.

In the following, we adopt the three-valued semantics for abductive logic

programs de�ned in [4]. Thus, we use a three-valued logic in which an atom can

be true, false or unknown.

Operationally, we rely on the proof procedure de�ned by Kakas and Man-

carella [9]. The proof procedure uses the notion of abductive and consistency

derivation. Intuitively, an abductive derivation is the usual LP derivation suit-

ably extended in order to consider abducibles. As soon as an abducible atom

� is encountered, it is added to the current set of hypotheses, and it must be

proved that any integrity constraint containing � fails via a consistency deriva-

tion. During this latter procedure, when an abducible is encountered, in order

to prove its failure, an abductive derivation for its complement is attempted.

2.2 Inductive Logic Programming with Abduction

The ILP problem can be de�ned as [3]:

Given:

a set P of possible programs

a set E+ of positive examples

a set E� of negative examples

a consistent logic program B backgroung knowledge

Find:

a logic program P 2 P such that

8e+ 2 E+, B [ P j= e+ (P covers e+)

8e� 2 E�, B [ P 6j= e� (P does not cover e�).

In order to integrate abduction and induction, we consider a modi�ed ver-

sion of the ILP problem where both the background knowledge and the learned



program are abductive logic program. Moreover, coverage of examples through

entailment is replaced by coverage through abductive entailment:

8e+ 2 E+, B [ P j=A e+ (P covers e+)

8e� 2 E�, B [ P j=A not e� (P does not cover e�).

where B [ P j=A e+ means that there exist at least one abductive explanation

for e+ in B [ P .

The training sets, E+ and E�, de�ne possibly partial information for the

learning process, and both positive and negative examples can be enlarged by

the addition of some positive or negative abducible atoms provided that they

are consistent with the background knowledge, and integrity constraints in par-

ticular.

The basic top-down inductive algorithm [3] learns programs by generating

clauses one after the other, and generates clauses by means of specialization.

Let T denote the set of induced clauses, initially empty, and E+ and E� be the

training sets (positive and negative examples, respectively). The basic inductive

algorithm is sketched in �gure 1.

while some positive examples in E+

are not covered by a clause in T do

Generate one clause C
Remove from E+ positive examples covered by C

Add C to T

Genarate one Clause C:

Select a predicate P that must be learned

Set clause C to be p(X) :

while C covers some negative example do

Select a literal L from the language bias

Add L to the antecedent of C
if C does not cover any positive example

then backtrack to di�erent choices for L
return C (or fail if backtracking

exhausts all choices for L)

Fig. 1. Basic ILP algorithm

This basic inductive algorithm is extended with abduction into the following

respects:

{ First, the generated clauses can contain abducible predicates in their body,

in analogy with the frameowrk in [5, 7].

{ Second, in order to determine the positive examples covered by the generated

clause C, and to be removed, an abductive derivation is started for each of

them. As well, in order to check that no negative example is covered by the

generated clause C, an abductive derivation is started for the complement



of each negative example. In both cases, this is achieved by exploiting the

abductive proof procedure de�ned in [9] or by extending it with the notion

of extensional coverage, as presented in section 4, for the extensional ILP

systems. During the abductive procedure, some abducibles can be assumed

true or false. Note that literals abduced during the abductive derivation have

to be recorded to avoid inconsistent future assumptions.

This behavior is specialized in section 4 for the FOIL system.

3 Overview of FOIL

FOIL [15] is an extensional ILP system. In FOIL, both target and background

relations are described extensionally by sets of tuples of constants: the set of

positive (respectively negative) tuples for a relation contains the tuples that

belong (do not belong) to the relation. In the following we will refer to such

tuples as � and 	 respectively. The learned de�nition is a logic program that

covers all the � tuples and none of the 	 tuples of the target relation(s). In

order to test if a tuple is covered, FOIL uses the notion of extensional coverage

[11]:

De�nition 1: Let P be the program de�ning the target predicate, let E+ be

the set of positive examples of the target predicate, letM
BK

be the model of the

background knowledge, and let e = p(t) be an example. P extensionally covers

the tuple t (and the example e) if there exists a ground instance of a clause of

P, l  l1; : : : ; ln such that l = e and for all i, li 2 (E+ [M
BK

).

3.1 The learning algorithm of FOIL

FOIL uses a top-down learning algorithm. It di�ers from the basic ILP top-down

algorithm shown in �gure 1 only in the way the clause is specialized (procedure

"Generate one clause", �gure 2)

Clause specialization is guided by the bindings of the variables in the partial

clause that make the body true. If the clause contains k variables, a binding is

a k-tuple of constants that speci�es the values of all variables in order. Each

possible binding is labeled � or 	 depending on whether the tuple of values for

the variables in the clause head belongs or does not belong to the target relation.

4 Extending FOIL with Abduction

Each relation is described by a set of � tuples and a set of 	 tuples. We assume

all the tuples not speci�ed by the user as � or 	 to be unknown (� in the

following). We would like FOIL to make assumptions about � tuples in order

to cover positive examples or exclude negative ones. By using abduction, we

ensure that the assumptions made are consistent. The � tuples for each relation

determine the set of abducible ground atoms. We need to give as input to FOIL

as well a set of integrity constraints.



Generate one clause C:

Select a predicate P that must be learned

Set clause C to be p(X) :

T1 = training set tuples labeled with � or 	
i = 1

While (Ti contains one or more tuples labeled 	)
/* Add a literal */

Select a literal Li+1 (using heuristics)

Add it to the current partial clause
Ti+1 = ;
For each binding b 2 Ti

(1) Find all the tuples t of Li+1 matching b

on instantiated variables of Li+1

For each t, add to Ti+1 b

extended with t

i = i+ 1

Fig. 2. FOIL: clause specialization algorithm

In addition, we have to modify the notion of extensional coverage for coping

with abductive logic programs.

De�nition 2: Let BK be an abductive theory for the background knowledge,

P be the abductive program de�ning the target predicate. Let E+ be the set

of positive examples of the target predicate, and e = p(t) be an example. P

extensionally covers the tuple t (and the example e) if there exists a model

M
BK

under the three valued abductive semantics, a ground instance of a clause

of P, l  l1; : : : ; ln and a set � of abducibles atoms, consistent with IC [M
BK

,

such that l = e and for all i, li 2 (E+ [� [M
BK

).

When FOIL adds a new literal to a clause, it tests if the tuples covered by the

previous clause are covered as well by the new clause. If, for a certain tuple,

the new literal is unknown and the corresponding predicate is abducible, we try

to abduce it. We use an abductive derivation modi�ed to deal with extensional

coverage. If the abductive derivation succeeds, the literal can be assumed true

and has to be recorded because future abductive derivations should not derive

anything that is inconsistent with them. Therefore, the corresponding tuples are

added to the set of � or 	 tuples for the relations.

More in detail, FOIL algorithmmust be modi�ed in point (1) (in �gure 2). At

that point, the set of bindings Ti is tested. For each binding b in Ti, if it matches

with one or more � (resp. 	 if Li+1 is negative) tuples of Li+1, the original

tuple for the target relation is covered and b is extended and added to Ti+1. If

b matches with a 	 (resp. � if Li+1 is negative), it is discarded. Otherwise (b

does not match neither with a � nor with a 	 tuple), b matches with at least

an � tuple. Therefore, if b belongs to positive examples, we try to cover it by

means of abduction. In particular, we pick up one of the matching � tuples u

of Li+1 and assume it true (resp. false if Li+1 is negative), provided that this



is consistent with integrity constraints and with other abduced literals. This is

done by starting an extensional abductive derivation for Li+1. If it succeeds, Li+1
can safely be assumed true and this is done by adding u to the set of � tuples of

Li+1 (or to the 	 if the literal is negative). Moreover, b is extended with values

for (eventual) new variables in u and added to Ti+1.

If b belongs to negative examples, we have to do the opposite: u has to be

assumed false if Li+1 is positive (true if Li+1 is negative). Therefore, an abductive

derivation is started for Li+1
3

If Li+1 is a target predicate, we may have already learned a de�nition for it.

In this case we need to check the rules learned against the new tuples eventually

added to the extensional de�nition of Li+1 and, possibly, revise the theory. If a

learned rule extensionally covers one of the new negative tuples, the rule must

be further specialized. We must run the specialization algorithm for each of

the learned rules, each time starting with a training set containing only the

new positive and negative tuples. The positive tuples that are covered, are not

included in the initial training set for the successive rules, while the negative

tuples are kept for all the rules.

If some of the new positive tuples are not covered by any rule, then new rules

must be learned to cover these tuples.

The algorithm for extensional abductive derivation is a modi�cation of the

one for standard abductive derivation de�ned by Kakas and Mancarella [9]. Let

L be a ground literal to be derived, with L = R(t) or L = not R(t). We say that

L is true if t is among the � tuples of R (	 if L is negative). We say that L is

false if the opposite is true. We say that it is unknown if t is neither among �

nor 	 tuples of R.

Extensional abductive derivation

L can be derived if:

(A1) L is true,

(A2) if L is unknown, t is temporarily added to the � tuples of R (	 if L is neg-

ative) and an extensional consistency derivation from L to fg is attempted.

The derivation fails in the case in which L is false.

Extensional consistency derivation

An extensional consistency derivation from a literal L to Fn is a sequence

L;F1; F2; : : : ; Fn where:

(Ci) F1 is the union of all goals of the form  L1; : : : ; Lk obtained by resolving

L with the denials in IC, with no such goal being empty, .

(Cii) for each i > 1, Fi has the form f L1; : : : ; Lkg[F
0

i
and for some j = 1 : : :k,

Fi+1 is obtained according to one of the following rules:

3

Li+1 =

�
not p(X) ifLi+1 = p(X)
p(X) ifLi+1 = not p(X)



(C1) if Lj is true, then Fi+1 = f L1; : : : ; Lj�1; Lj+1; : : : ; Lkg [ F 0

i
(the

denial is removed because it is veri�ed);

(C2) if Lj is false, Fi+1 = F 0

i
(the literal is removed);

(C3) if Lj is unknown, an extensional abductive derivation is started for Lj .

If it succeeds, Fi+1 = F 0

i
.

The extensional consistency derivation fails if at least one Fi contains an empty

goal  , and succeeds if Fn = fg. In the case it fails, t has to be removed from

the set of � (resp. 	) tuples.

Let us consider the example presented in the introduction. The set of �

tuples for the relation flat tyre is fhbike2i; hbike3i; hbike4ig, and for the relation

broken spokes is fhbike1i; hbike2i; hbike3i; hbike4ig. The �rst generated clause is:

wobbly wheel(X)  flat tyre(X)

This clause covers wobbly wheel(bike1) because flat tyre(bike1) is speci�ed in

the background knowledge. In order to cover wobbly wheel(bike2), the system

considers flat tyre(bike2). Since it is unknown, an abductive derivation is started.

The tuple hbike2i is added to the set of � tuples for flat tyre and a consistency

derivation is started (step (A2)). The literal is resolved with

 flat tyre(X); tyre holds air(X):

giving the goal  tyre holds air(bike2) (step (Ci)). An abductive derivation

for not tyre holds air(bike2) is started (step (C3)). This derivation succeeds

abducing not tyre holds air(bike2).

The example wobbly wheel(bike4), however, cannot be covered: in fact, we

cannot assume flat tyre(bike4) since it is inconsistent with the integrity con-

straint and tyre holds air(bike4). The negative example wobbly wheel(bike3) is

ruled out by starting an extensional abductive derivation for not flat tyre(bike3).

The derivation succeeds and not flat tyre(bike3) is assumed true. Tuples cor-

responding to abduced literals are added to � and 	 tuples. In order to cover

wobbly wheel(bike4), the system generates the clause:

wobbly wheel(X)  broken spokes(X)

which covers the example by abducing broken spokes(bike4). Similarly to the

previous case, the negative example is ruled out by assuming

not broken spokes(bike3).

5 Related Work

The relationship between abduction and learning has been studied recently by

several authors. In general, the question of how abduction and induction could

be integrated and how they would cooperate, complement and a�ect each other

is emerging as an important problem.

In [7] we have proposed an approach for the integration of induction and

abduction in intensional ILP systems. We also suggested a way to learn a limited

form of integrity constraints, namely binary constraints between a predicate

and its negation. Moreover, the algorithm proposed there may introduce new

abducible predicates in order to deal with exceptions to rules.



In [10] the issues of how the inductive process can be improved by exploiting

abduction are discussed. Abduction can help induction not only for learning

from incomplete data but also for overcoming some of the limitations of existing

extensional and intensional ILP systems when learning multiple predicates and

logic programs with negation. The authors propose an intensional algorithm for

learning abductive logic program and suggest a way in which it can be integrated

with existing learning systems in order to learn integrity constraints in their

general form.

As concerns the integration of abduction and induction, a notable work is

that by Dimopoulos and Kakas [5]. In this paper, the authors suggest a method-

ology for the integration of abduction in learning, where abduction is used �rst

to explain the training data of a learning problem in order to generate suit-

able or relevant background data on which to base the inductive generalization.

The main di�erence with our approach is that they use abduction and induc-

tion separately one after the other. Abduction plays a preparatory role for the

inductive process since it abductively completes the training set starting from

observations regarding examples. Our approach, instead, intertwines abduction

and induction during the learning process so that unknown literals are abduced

in order to cover positive examples and rule out negative ones.

In [2], the authors propose an algorithm for learning normal logic programs

obtained by the substitution of abduction with induction in an abductive proof

procedure, namely SLDNFA. In our framework, the two techniques are mixed in

order to learn not only normal but also abductive logic programs.

Another related work is reported in [1], where the authors present a system,

called RUTH, for theory revision based on ILP. RUTH is able to cope with

de�nite, functor-free clauses, and integrates intensional database updating with

incremental concept-learning. Apart from adding and deleting clauses and facts,

in [1] the authors also employ an abductive operator which allows RUTH to

introduce missing factual knowledge into the knowledge base. As [1], we do not

rely on any oracle, but rather on abductive proof procedure for determining the

proof of an atom. Furthermore, both RUTH and our framework can treat as

abducibles some of the program predicates. Di�erently from [1], we avoid clause

retraction.

6 Conclusions and Future Work

In this paper, we propose a framework where abduction and induction are com-

bined, thus solving the problems of learning in presence of incomplete knowledge.

In the devised framework, the user can partially specify background and target

predicates. We rely on a three-valued logic in which an atom can be true, false

or unknown. Unspeci�ed information are considered unknown and possibly ab-

duced (as true or false) during the learning process in order to cover positive

examples and rule out negative ones. In this way, not only we enlarge the content

of the background knowledge, but also improve the learning process.



We propose an extension of FOIL, an extensional top-down ILP system, by

means of an abductive proof procedure. We have shown, by means of examples,

that the extended system can cope with missing knowledge.

A number of issues are subject for future work. First, we have to further

investigate new heuristics for the selection of abductive literals. Unknown tuples

should be given a smaller weight with respect to de�ned ones. Second, we will

extend FOIL in order to learn also integrity constraints, as proposed, for instance,

in [10].
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