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Abstract

We propose an algorithm for learning abductive logic programs from examples.

We consider the Abductive Concept Learning framework, an extension of the Induc-

tive Logic Programming framework in which both the background and the target

theories are abductive logic programs and the coverage of examples is replaced by

abductive coverage. The two main bene�ts of this integration are the increased

expressive power of the background and target theories and the possibility of learn-

ing in presence of incomplete knowledge. We show that the algorithm is able to

learn abductive rules and we present an application of the algorithm to a learning

problem in which the background knowledge is incomplete.

Keywords: Abductive Logic Programming. Inductive Logic Programming

1 Introduction

Inductive Logic Programming (ILP) [4] is a research area covering the intersection of

Machine Learning and Logic Programming. Its aim is to devise systems that are able

to learn logic programs from examples and a background knowledge. Recently, this

research area has gained a wider attention as more and more systems are being devised

that e�ectively perform the learning task [15]. As the target of real world applications is

becoming nearer, new problems have started to arise, in particular regarding the quality

of the data that is typically available. Most of the times the set of training examples

and the background knowledge will not be known with certainty because the available

data can be a�ected by noise and/or be incomplete. In this paper we concentrate on

the case in which the background knowledge is incomplete. Up to now, very few systems

have been developed that are able to learn also in the presence of incomplete knowledge

[17, 15, 9].

In order to overcome the lack of information, we integrate induction with the hy-

pothetical reasoning of abduction [16]. Abduction is generally understood as reasoning

from e�ects to causes or explanations. Given a theory T and a formula G, the goal of

abduction is to �nd a set of atoms � (explanation) that, together with T , entails G and

that is consistent with a set of integrity constraints IC. The atoms in � are abduced:

they are assumed true in order to prove the goal. In the integrated learning framework,



when a fact that is necessary for deriving a positive example is missing, we assume it,

provided that is consistent with integrity constraints. In this way, we are able to cover

the example even if the background knowledge is incomplete.

We consider the Abductive Concept Learning (ACL) framework, proposed by Di-

mopoulos and Kakas [6], that is an extension of the ILP framework in which both

the background knowledge B and the target program P are abductive logic programs.

The target program can contain new rules and new integrity constraints. In this ex-

tended framework, the coverage of examples is not done through deductive entailment

but through abductive entailment. We propose an algorithm that is able to learn an ab-

ductive logic program containing only new rules. It is an extension of a basic top-down

algorithm adopted in ILP [4]. The extended algorithm takes into account abducibles

and integrity constraints, and is intertwined with the proof procedure de�ned in [11] for

abductive logic programs. The key idea is that the abductive proof procedure is used for

the coverage process of positive and negative examples in substitution of the deductive

proof procedure of logic programming.

The paper is organized as follows: in section 2 we recall the main concepts of ALP,

ILP and the de�nition of the abductive learning framework. In section 3 we present the

algorithm for learning abductive rules. We then show in section 4 an example of the

application of the algorithm. Related works are presented in section 5. In section 6 we

conclude and present the directions for future works.

2 Abductive and Inductive Logic Programming

2.1 Abductive Logic Programming

In the context of abduction, missing information is represented by (user-de�ned) ab-

ducible predicates, possibly constrained by integrity constraints. An abductive logic pro-

gram [10] is a triple hP;A; ICi where:

� P is a normal logic program;

� A is a set of abducible predicates

� IC is a set of integrity constraints in the form of denials, i.e.:

 A1; : : : ; Am
; not Am+1; : : : ; not Am+n:

Negation as failure is replaced, in ALP, by negation by default and is obtained in this

way: for each predicate symbol p, a new predicate symbol not p is added to the set A
and the integrity constraint  p( ~X); not p( ~X) is added to IC, where ~X is a tuple of

variables.

Given an abductive program hP;A; ICi and a formula G, the goal of abduction is to

�nd a (possibly minimal) set of ground atoms � (abductive explanation) of predicates in

A which together with P entails G, i.e. P [� j= G. It is also required that the program

P [� is consistent with respect to IC, i.e. P [� j= IC.

In [11] a proof procedure for abductive logic programs has been de�ned. This pro-

cedure starts from a goal and results in a set of consistent hypothesis (abduced literals)

that together with the program allow to derive the goal. We have extended this proof

procedure in order to allow for abducible predicates to have a partial de�nition. Some

rules may be available for them and we can make assumptions about missing facts.



2.2 Inductive Logic Programming

The ILP problem can be de�ned as [4]:

Given:

a set P of possible programs

a set E+
of positive examples

a set E�

of negative examples

a consistent logic program B such that

B 6` e+ for at least one e+ 2 E+
.

Find:

a logic program P 2 P such that

8e+ 2 E+
, B [ P ` e+ (completeness)

8e� 2 E�

, B [ P 6` e� (consistency).

Let us introduce some terminology. The sets E+
and E�

are called training sets. The

program P that we want to learn is the target program and the predicates which are de�ned

in it are target predicates. The program B is called background knowledge and contains

the de�nitions of the predicates that are already known. We say that the program P

covers an example e if P [ B ` e. Therefore the conditions that the program P must

satisfy in order to be a solution to the ILP problem can be expressed as \P must cover

all positive examples and must not cover any negative examples". The set P is called

the hypothesis space. The importance of this set lies in the fact that it de�nes the search

space of the ILP system. In order to be able to e�ectively learn a program, this space

must be restricted as much as possible. If the space is too big, the search could result

infeasible.

The language bias (or simply bias in this paper) is a description of the hypothesis

space. Many formalisms have been introduced in order to describe this space [4], we will

consider only a very simple bias in the form of a set of literals which are allowed in the

body of the clauses for the target predicates.

2.3 Abductive Concept Learning

In [6] the authors de�ne a new learning problem called Abductive Concept Learning

that consists in learning an abductive logic program starting from a set of positive and

negative examples and an abductive background theory.

Given

a set P of possible abductive programs

a set of positive examples E+
,

a set of negative examples E�

,

an abductive theory AT = hT;A; ICi as background theory.

Find

A new abductive theory AT 0

= hT 0; A; IC 0i 2 P such that

8e+ 2 E+
, AT 0 `

A
e+,

8e� 2 E�

, AT 0 6`A e�.

where AT 0 `A e means that e is abductively provable from AT 0

, i.e., there exist an

abductive explanation for e from AT 0

. We say that AT 0 abductively covers e.

The abductive program that is learned can contain new rules (eventually containing

abducibles in the body) and new integrity constraints, but not new abducible predicates.

This is di�erent from the framework in [8] where also new abducibles can be introduced.



3 An algorithm for Learning Abductive Rules

We present an algorithm that is able to learn abductive rules. The algorithm is obtained

from the basic top-down ILP algorithm [4], by substituting the usual notion of coverage

of examples with the notion of abductive coverage.

The learned rules can contain abducible literals in their bodies and positive examples

are tested by starting an abductive derivation for each of them ( e+), while negative

examples are tested by starting an abductive derivation for the negation of each of them

( not e�). We will employ the abductive proof procedure de�ned in [11], with a few

modi�cations for allowing abducibles to have partial de�nitions in the program (i.e. rules

for the abducibles).

Testing the negation of each negative example is di�erent from testing that AT 6`A e�.

Even if AT `A not e�, it may still be possible that there exist an abductive explanation

for e� in AT . For this reason, after the rules have been learned, the assumptions made

in the derivation of negative examples are added to the theory, in the form of facts for

positive literals and of integrity constraints for negative ones. In this way, we ensure that

for each e�, AT 0 6`A e�. We decided to add to the target theory also the abducibles used

to cover positive examples, even if they are not necessary to preserve correctness. In this

way, we not only learn a general theory, but we also complete the background theory.

We have increased the ways in which a positive example can be covered and a negative

example ruled out. A positive example can be covered without abducing anything, thus

expressing the fact that the example is surely positive, or it can be covered by making

some assumptions, thus expressing the fact that we do not have complete con�dence

in its coverage, but that it is consistent with our current representation of the domain.

Similarly, a negative example can be ruled out with certainty, when its negation is derived

without abducing anything, or it can be ruled out under certain assumptions. The

learning power of the algorithm is therefore greater than that of an ILP system because

it is able to learn even when the knowledge about the domain is not completely speci�ed,

as it is often the case for real learning problems, by making hypothesis about the unknown

parts of the domain, provided that these are consistent with known integrity constraints.

The basic top-down inductive algorithm [4] learns programs by generating clauses

one after the other and generates clauses by means of specialization. The basic induc-

tive algorithm is constituted by two nested loops: the covering loop (�gure 1) and the

specialization loop (�gure 2). At each iteration of the covering loop a new clause is

generated such that it covers at least one positive example and no negative one. The

positive examples covered by the rule are removed from the training set. The algorithm

ends when the training set becomes empty. A clause is generated in the specialization

loop: we start with a clause with an empty body, and we add a literal to the body until

the clause does not cover any negative example while still covering at least one positive.

The basic top-down algorithm is extended in the following respects.

First, in order to determine the positive examples E+

Rule
covered by the generated

rule Rule (procedure TestCoverage in �gure 3), an abductive derivation is started for

each positive example. This derivation results in a (possibly empty) set of consistent

hypotheses (abduced literals). We give as input to the abductive procedure also the set

of literals abduced in the derivation of the previously covered examples. In this way,

we ensure that the assumptions made during the derivation of the current example are

consistent with the assumptions previously raised for covering other examples.

Second, in order to check that no negative example is covered by the generated rule



procedure LearnAbdRules(

inputs : E+; E�

: training sets,

AT = hT;A; ICi : background abductive theory,

outputs : H : learned theory, � : abduced literals)

H := ;
� := ;
while E+ 6= ; do

GenerateRule(input: AT;H;E+; E�;�; output: Rule;E+

Rule
;�0

)

E+
:= E+ � E+

Rule

H := H [ fRuleg
� := �

0

endwhile

Add � to the hypothesis H:

positive literals p(X) as facts p(X):

negative literals not p(X) as constraints  p(X):

output H

Figure 1: The covering loop

procedure GenerateRule(

inputs : AT : background abductive theory, H : current hypothesis,

E+; E�

: training sets, � : current set of abduced literals

outputs : Rule : rule, E+

Rule
: positive examples covered by Rule,

�
0

: new set of abduced literals

Select a predicate to be learned p

Let Rule = p(X) true:

TestCoverage(input: Rule;AT;H;E+; E�;�,

output: E+

Rule
; E�

Rule
;�0

)

While E�

Rule
6= ; do

Select a literal L from the language bias

Add L to the body of Rule

TestCoverage(input: Rule;AT;H;E+; E�;�,

output: E+

Rule
; E�

Rule
;�0

)

if E+

Rule
= ;

backtrack to a di�erent choice for L

endwhile

output Rule;E+

Rule
;�0

Figure 2: The specialization loop



procedure TestCoverage(

inputs : Rule : rule, AT : background abductive theory,

H : current hypothesis, E+; E�

: training sets,

� : current set of abduced literals

outputs: E+

Rule
; E�

Rule
: positive and negative

examples covered by Rule

�
0

: new set of abduced literals

E+

Rule
= E�

Rule
= ;

�in = �

for each e+ 2 E+ do

if AbductiveDerivation(e+; hT [H [ fRuleg; A; ICi;�
in
;�

out
)

succeeds then

Add e+ to E+

Rule

�
in
= �

out

endif

endfor

for each e� 2 E� do

if AbductiveDerivation(not e�; hT [H [ fRuleg; A; ICi;�in;�out)

succeeds then �in = �out

else

Add e� to E�

Rule

endif

endfor

�
0

= �

output E+

Rule
; E�

Rule
;�0

Figure 3: Coverage testing



Rule, an abductive derivation is started for the negation of each negative example (�gure

3). Also in this case, each derivation does not start with an empty set of abducibles but

it starts from the set of abducibles previously assumed. Therefore the set of abducibles

is passed on from derivation to derivation and gradually extended. This is done across

di�erent clauses as well.

Third, at the end of the learning phase, the abduced literals are added to the learned

theory, so that no incompatible assumptions can be made when the theory is e�ectively

used. The positive literals are added as facts, while the negative literals not p(X) are

added as integrity constraints of the form  p(X).

The algorithm has been implemented in Prolog using Sicstus Prolog 3#3. The pro-

gram is composed of �ve main predicates. induce is the predicate that starts the induc-

tion process. It initializes the training sets and calls covering loop that implements the

covering loop by tail recursion. At each iteration, it generates a new clause, by calling

the predicate generate cl, and updates the training set. generate cl selects a predi-

cate to be learned, reads the bias and starts the specialization loop, then returns a new

consistent clause. specialize implements the specialization loop by tail recursion. It

checks the coverage of the current clause, if it still covers some negative examples, it calls

select literal to add that select the new literal to add from the bias. If the rule does

not cover any positive examples, specialize fails and backtracking is performed on the

choice of the literal previously selected by select literal to add.

4 Example

In this section, we show a simple example of the application of the algorithm. Let us

consider the case of an abductive background theory B = hP;A; ICi and training set:

P = fparent(john;mary);male(john);

parent(david; steve);

parent(kathy; ellen); female(katy)g
A = fmale; femaleg
IC = f male(X); female(X)g
E+

= ffather(john;mary); father(david; steve)g
E�

= ffather(katy; ellen); father(john; steve)g

Moreover, let the bias be

father(X;Y ) � where � � fparent(X;Y ); parent(Y;X);

male(X);male(Y ); female(X); female(Y )g

In this case, the algorithm learns the rule

father(X;Y ) parent(X;Y );male(X):

making the assumptions � = fmale(david); not female(david); not male(katy)g.
Let us describe now in detail the behaviour of the algorithm. At the �rst iteration of

the specialization loop, the algorithm generates the rule

father(X;Y ) :

which covers all the positive examples but also covers all the negative ones. Therefore

another iteration is started and the literal parent(X;Y ) is added to the rule



father(X;Y ) parent(X;Y ):

This clause also covers all the positive examples but also the negative example

father(katy; ellen).

Note that up to this point no abducible literal has been added to the rule, therefore no

abduction has been made and the set � is still empty. Now, an abducible literal is added

to the rule, male(X), obtaining

father(X;Y ) parent(X;Y );male(X):

At this point the coverage of examples is tested. father(john;mary) is covered without

abducing anything because we have the fact male(john) in the background. The other

positive example, father(david; steve), is covered with the abduction of male(david),

not female(david) and the � set becomes fmale(david); not female(david)g. Then the

covered negative example is tested by starting an abductive derivation for

 not father(katy; ellen).

This derivation succeeds abducing not male(katy) which is consistent with the fact

female(katy) and the constraint  male(X); female(X). Now, no negative example

is covered, therefore the specialization loop ends. The positive examples covered by the

rules are removed from the training set which becomes empty. Therefore also the cov-

ering loop terminates and the algorithm ends by adding the literals in � to the target

program. male(david) is added as a fact, while not male(katy) and not female(david)

are added as the integrity constraints  male(katy) and  female(david).

5 Related Work

We start by mentioning our previous works in the �eld and then we describe related

works by other authors.

In [8] we show how, by integrating induction with abduction, we can learn exceptions

to rules, learn from integrity constraints and learn binary constraints. Di�erently from

the present paper, the algorithm in [8] can introduce new abducibles in order to cope

with exceptions. Moreover, it does not add the abduced literals to the target programs,

thus not fully supporting ACL.

In [14] we have proposed an algorithm for learning abductive rules obtained modifying

the extensional ILP system FOIL [17]. Extensional systems di�er from intensional ones

(as the one presented in this paper) because they employ a di�erent notion of coverage,

namely extensional coverage. When testing a rule with extensional coverage, the literals

in the body of the rule are proved true either if they are derived in the background knowl-

edge or if they belong to the training set. The partial theory learned so far is not used

for the derivation of examples because the training set is used for the de�nition of the

target predicates: this has the advantage of allowing the system to learn clauses indepen-

dently from each other, avoiding the need of considering di�erent orders in learning the

clauses and the need for backtracking on clause addition. However, it has a number of

disadvantages [19]. In [14] we show how the integration of abduction and induction can

solve some of the problems of extensional systems when dealing with recursive predicates

and programs with negation.

As concern the integration of abduction and induction, a notable work is that by

Dimopoulos and Kakas [6]. In this paper, the authors suggest two approaches for the



integration of abduction in learning. In the �rst, abduction is used in a preliminary

stage to explain the training data of a learning problem in order to generate suitable

or relevant background data on which to base the successive inductive generalization

process. The second approach is ACL, that we have adopted in this paper. The main

advantage of the integration in [6] is, as in our framework, that it allows to possibly learn

rules in presence of missing information, and later classify new examples that may be

incompletely described. Di�erently from us, the framework in [6] allows the generation

of integrity constraints for specializing a rule, while we allow only the addition of a literal

to the body of the clause. Adding integrity constraints for specializing the rules means

that each atom derived by using the rules must be checked against the constraints, which

can be computationally very expensive.

In [13] an algorithm for learning abductive theories with general integrity constraints

is proposed. The algorithm learns the theory in two steps: �rst the rules are learned, using

an algorithm called PACL which is similar to LearnAbdRules, and then the constraints

are learned, using the system ICL [20]. However, the approach for learning integrity

constraints is still in an early stage of development and must be further investigated.

In [2] a parametric framework is proposed that can be instantiated to both abduction

and induction. This framework is used in order to transform a proof procedure for abduc-

tion, namely SLDNFA, in a proof procedure for induction, called SLDNFAI. Informally,

SLDNFA is extended in order to be able to abduce not only ground facts but also rules.

However, the authors obtain a learning framework which is equivalent to the ILP one,

while we obtain a more powerful framework where we can learn in presence of incom-

plete knowledge because abduction helps the induction process by making assumptions

on missing data.

Another related work is reported in [1], where the authors present a system, called

RUTH, for theory revision based on ILP. RUTH is able to cope with de�nite, functor-free

clauses, and integrates intensional database updating with incremental concept-learning.

Apart from adding and deleting clauses and facts, in [1] the authors also employ an ab-

ductive operator which allows RUTH to introduce missing factual knowledge into the

knowledge base. Added (and possibly violated) integrity constraints correspond to posi-

tive (uncovered) and negative (covered) examples. In order to handle (uncovered) positive

examples, theory revision recovers from the arisen inconsistency by either (i) adding an

example as a fact in the database, or (ii) building a maximally general clause that cov-

ers the example, or (iii) abducing one or more new facts. In order to handle (covered)

negative examples, theory revision recovers from the arisen inconsistency by deleting one

of the clauses that contribute to the SLDNF proof of the example. Both RUTH and our

framework can treat as abducibles some of the program predicates. Di�erently from [1],

we avoid clause retraction, and rather prefer to specialize the clauses in order to rule out

negative examples. In this respect, we do not fully support theory revision.

6 Conclusions and Future Work

We have presented an algorithm for performing Abductive Concept Learning. In this

extended framework, the ILP problem is modi�ed by considering both the background

and target theories as abductive theories and by replacing the notion of coverage with

that of abductive coverage. The algorithm is able to learn abductive theories containing

new rules. It is obtained from the basic top-down algorithm of ILP by substituting

the coverage of examples using resolution with the coverage using an abductive proof



procedure.

We have implemented in Prolog the algorithm proposed and, in the future, we will test

the algorithm on real domains in which the incompleteness of the data causes problem

to usual ILP systems. As regards the theoretical aspects, we will further investigate the

problem of extending the algorithm for learning full abductive theories, comprehending

also integrity constraints. The integration of the algorithmwith other systems for learning

constraints, proposed in [13], seems very promising and more work is needed to reach the

objective of a system for learning full abductive theories.
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