A Hybrid Extensional/Intensional System for
Learning Multiple Predicate Learning and
Normal Logic Programs

E. Lamma', P. Mello?, M. Milano', F.Riguzzi'

! DEIS, Universita di Bologna
Viale Risorgimento 2, 40136 Bologna, Italy
{elamma,mmilano,friguzzi}@deis.unibo.it
Tel.+39 51 6443033, Fax. +39 51 6443073
2 Dipartimento di Ingegneria, Universita di Ferrara
Via Saragat 1, 41100 Ferrara, Italy
prello@ing.unife.it

Abstract. We present an approach for solving some of the problems
of Inductive Logic Programming systems when learning multiple predi-
cates and normal logic programs. The approach extends the algorithm
for learning abductive logic programs proposed in [7] and refined in [10]
by introducing a hybrid form of coverage in which both the examples
and the theory learned so far are used in the derivation of examples.
We show that with hybrid coverage and abduction we are able to solve
the problem of global inconsistency of intensional systems when learning
multiple predicates and of non-monotonic coverage of positive example
when learning normal logic programs.

1 Introduction

Most logic programs contain the definition of several predicates using negative
literals in clause bodies. However, most Inductive Logic Programming (ILP)
systems have been designed for learning definite clause definitions for a single
predicate. Learning multiple predicates and learning logic programs with nega-
tion (normal logic prgorams) are two difficult tasks that create problem to most
ILP systems.

If we synthesize multiple predicates programs by applying single predicate
learners, we find two problems [17]. The first is that adding a clause to a partial
hypothesis can make previous clauses inconsistent. The second is that a very
expensive backtracking on clause addition to the theory must be performed.

When learning normal logic programs, instead, the addition of a clause to a
partial hypothesis can reduce the set of positive example covered by the hypoth-
esis, thus making impossible to use the covering approach to learning.

In order to overcome these problems, most top-down systems (e.g. ICN [14],
MULTICN [13], FOIL [16], FOCL [15], MIS [18] with the lazy strategy) use ex-
tenstonal coverage: the coverage verification of examples is performed by using
only the current clause, the background knowledge and the training set, but not

previously learned clauses. In this way, clauses are learned independently from
each other. We will distinguish between eztensional and intensional systems de-
pending on whether they use extensional coverage or not. However, extensional
coverage introduces other problems because the learning algorithm can be un-
sound: the learned theory can be both inconsistent and incomplete.

We propose a learning algorithm that use abduction and a hybrid extensional-
intensional coverage in order to overcome the problems of intensional system
when learning multiple predicate and normal logic programs while avoiding the
pitfalls of extensional systems.

The algorithm we propose is obtained by modifying that presented in [7]
for learning abductive logic programs. The problem of learning abductive logic
programs is emerging as a promising research direction in the field of ILP. A
number of works [7, 10, 12, 11] have started to appear on the subject, and, more
generally, on the relation existing between abduction and induction and how
they can integrate and complement each other [5, 6, 1].

In our system, abduction plays a double role. First, it is used in order to
remember relevant assumptions that are done when learning a clause and that
constrain successive clauses.

Second, abduction is used in order to introduce extensionality: the training
set 1s considered as a set of abduced literals that is taken as input by the ab-
ductive proof procedure used for deriving examples. The abduced literals are
considered as additional facts that are true in the theory. By adopting a hybrid
coverage, we reduce the need of backtracking on clause addition.

The paper is organized as follows: in section 2 we present the various problems
of intensional, when learning multiple predicates and normal logic programs. In
section 3 we discuss the problem of extensional systems. Section 4 desribes the
approach for the integration of abuction and induction. Section 5 presents the
abductive inductive algorithm modified in order to introduce extensionality. In
section 6 we show, by means of examples, that the proposed algorithm success-
fully solves the above mentioned problems. In section 7 we discuss related works
and in section 8 we conclude and present the directions for future work.

2 Intensional Systems

Let us first recall the definition of ILP problem [2] and the basic top-down
algorithm that is shared by most intensional ILP systems.

D#dimition1 ILP Problem.
a set P of possible programs
a set Bt of positive examples
a set £~ of negative examples
a consistent logic program B (background knowledge)
Find:
a logic program P € P such that
Vet € EY, BUP et (P coverse™)
Ve~ € E=, BUP £ e (P does not cover e™).

With a great deal of approximation, top-down ILP systems share a common
basic algorithm [2]:
T:=0
while E* £ 0 do (Covering loop)

Generate one clause ¢

Remove from Et the et covered by C

Add C to T

Generate one clause C (specializing loop):
Select a predicate p that must be learned
Set clause C to be p(X) « .
while C covers some negative example do
Select a literal L from the language bias
Add L to the body of C
Test coverage of C'
if C does not cover any positive example
then backtrack to different choices for L
return C

(or fail if backtracking exhausts all choices for L)

The algorithm above iteratively adds a clause to the current partial theory.
It generates a clause by searching depth-first in the space of possible clauses.
However, backtracking on clause addition is required, because otherwise the
system 1s not garanteed to be complete, 1.e. to find a solution if it exists. In
fact, we may add to the theory a certain number of clauses and then find out
that no other clause is available in the language bias for covering the remaining
positive examples, while with a different choice of previous clauses we could
have had a solution. This problem arises both when learning single recursive
predicates, because clauses depend on each other, and when learning multiple
predicates, both in the case of definite or normal logic programs. However, when
learning multiple predicates the problem is more evident because the dependency
relations between different clauses are more frequent and complex.

2.1 Learning Multiple Predicates

When learning multiple predicates, we have to distinguish between two types
of consistency of a clause: relative local and relative global consistency of a new
clause with respect to the theory learned so far (hypothesis). These definitions are
based on the absolute definition of local and global consistency of a clause given in
[17]. We will first give some terminology and define the function covers(B, H, E)
[17], then we will recall the definition of local and global consistency as given in
[17] and finally we will give the definitions of relative local and relative global
consistency.

Let the training set be £ = ET U E~ where E7T is the set of positive example
and £~ is the set of negative example. We assume that E contains examples
for m target predicates pi,...,p, and we partition £+ and E~ in EZ‘,'; and F,
according to these predicates. The hypothesis H is a set of clauses for all the
target predicates.

Definition2 covers(B, H, F). Given the background theory B, the hypothesis
H and the example set F, covers(B,H,E)={e€ E|BUH e}

Definition 3 Global consistency. Clause ¢ is globally consistent if and only if

covers(B,{c}, E~) = 0.

Definition4 Local consistency. Clause ¢ for the predicate p; is locally con-
sistent if and only if covers(B, {c},) = 0.

Definition5 Relative global consistency. Given a consistent hypothesis H |
clause ¢ is globally consistent with respect to H if and only if covers(B, H U

{c},E7) = 0.

Definition 6 Relative local consistency. Given a consistent hypothesis H,
clause ¢ for the predicate p; is locally consistent with respect to H if and only if
covers(B, H U{c}, B,)= 0.

The basic top-down algorithm has been designed for learning single predicates:
it generates a theory by iteratively adding a relatively locally consistent clause to
the current partial theory. However, when learning multiple predicates, adding
a relatively locally consistent clause to a consistent hypothesis can produce an
inconsistent hypothesis as it is shown in the next example inspired to [17].

Ezrample 1. We want to learn the definitions of ancestor and father from the
knowledge base

B = {parent(a,b), parent(b, c), male(a), female(b)}
and the training set

E* = {ancestor(a,b), ancestor(b, c), ancestor(a, c), father(a,b)}

E~ = {ancestor(b,b), ancestor(b, a), ancestor(c,b), father(b, c), father(a,c)}
Suppose that the system has first generated the rules:

ancestor(X,Y) < parent(X,Y).

father(X,Y) + ancestor(X,Y), male(X).
Clearly the second rule is incorrect but the system has no mean of discovering
it now, since it is locally and globally consistent with respect to the partial
definition for ancestor.
Then the system learns the recursive rule for ancestor:

ancestor(X,Y) < parent(X, Z), ancestor(Z,Y).
This clause is locally consistent with respect to the current hypothesis because
none of the negative examples for ancestor will be covered, but it is not globally
consistent because the negative example father(a,c) will be covered.

Therefore, in intensional systems, it is not enough to check the local con-
sistency of a clause, but the global consistency must be checked, as it is done
in the system MPL [17]. This is equivalent to test the coverage of the negative
examples for all target predicates, that has a high computational cost.

2.2 Learning Normal Logic Programs

When learning normal logic programs, apart from the problem of backtracking
on clause addition and global inconsistency, another problems can arise in inten-
sional systems. Adding a clause to a partial hypothesis can reduce the coverage
of that hypothesis, as it is shown in the next example. This is the dual problem
of global inconsistency for definite logic programs. The covering approach of the
top down algorithm is not appropriate since we can not anymore discard covered
examples.

Ezample 2. Suppose we want to learn the definition of member and intersection
from a background knowledge of definitions for null(X), head(X,Y), tail(X,Y)
and assign(X,Y’) and from the training set:

E* = {intersection([],[1, 2], []), intersection([2, 3,4],[2, 3], [2, 3],

member(1,[1]), member(3,[2,3]), ...}

E~ = {intersection([3],[2, 3], (2, 3]), intersection([4, 3,5],[4, 6], [4, 6]),

intersection([], [3, 4], [2]), intersection([3],]],[4, 5]),

member(1,[]), member(2,[1,3])}
Suppose the system has first generated the rules:

member(X,Y) + head(X,Y).

intersection(X,Y, Z) + null(X), null(7).

intersection(X,Y, 7) < head(X, X H), not member(XH,Y), assign(Y, 7).
The last rule is clearly incorrect but is consistent with respect to the cur-
rent hypothesis and the negative examples. It covers the only positive example
intersection([2,3,4],[3,2],[3,2]) and therefore could be generated by an inten-
sional system.
Then the system generates the recursive clause for member:

member(X,Y) + tail (Y, YT), member(X,YT)
that of course is locally consistent. When adding this last clause to the the-
ory, however, the positive example intersection([2,3,4],[3,2],[3,2]) is no more
covered by the theory.

3 Extensional Systems

Many top-down ILP systems use extensional coverage in order to solve the above
mentioned problems of intensionality.

Definition 7 Extensional coverage. Given the background theory B and the
example e belonging to the example set E, The clause ¢ = [« [1,l5...1,
extensionally covers e iff [unifies with e with substitution @ and [[;]¢ € M(B)U
Etfori=1...n.

Extensional coverage makes the evaluation of a clause independent from pre-
vious ones. Therefore we do not need anymore to backtrack on caluse addition
and to search the space of possible programs, it is sufficient to iteratively search
the smaller space of possible clauses.

Extensional coverage solves the problem of globally inconsistency when learn-
ing multiple predicates. In fact, by using extensional coverage, in example 1 the
second rule would not be generated because all the positive examples for ancestor
would be used in the testing of negative examples for father.

Extensional coverage solves also the problem of coverage reduction when
learning normal logic programs. In fact in example 2 the incorrect clause for
intersection would not be generated, since it would cover the negative example
intersection([3],[2, 3], [2, 3]) because the positive example member(3,[2,3]) is
used in the derivation.

However, extensional coverage poses a number of other problems. They are
due to the fact that the learned theory is tested differently from the way in
which 1t is effectively used. In particular, for definite logic programs, we can
have the following cases [17]: (i) extensional consistency, intensional inconsis-
tency; (ii) intensional completeness, extensional incompleteness; (iii) extensional
completeness, intensional incompleteness. For normal logic programs we can this
problems (but for dual causes) plus a new one: extensional inconsistency, inten-
sional consistency. Let us illustrate each of these cases with an example, as it is

done in [17].

Ezxample 3 Extensional consistency, intensional inconsistency. Consider the prob-
lem of learning the concept father and male_ancestor from a background knowl-
edge containing facts about parent, male and female. The training set is spec-
ified as follows: for father, E contains as negative examples only the facts of
the form father(a,b) for which parent(a,b) is not in the background knowledge;
for male_ancestor, it contains a sufficient number of positive and negative ex-
amples. In this case, the following hypothesis is extensionally consistent but not
intensionally consistent:

father(X,Y) + parent(X,Y).

male_ancestor(X,Y) « father(X,Y).

male_ancestor(X,Y) « male_ancestor(X, Z), parent(Z,Y).
because negative examples of male_ancestor(a, b) with female(a) and parent(a, b)
in the background will be covered.

We have the case of intensional completeness, extensional incompleteness
when a hypothesis intensionally covers all the positive examples but not exten-
sionally because some example needed for covering other examples is missing
from the training set.

Ezxample | Intensional completeness, extensional incompleteness. Consider the back-
ground knowledge and training set:
B = {parent(john, steve), parent(bill, john), parent(john, mike), parent(mike, sue)}
E* = {ancestor(john, steve), ancestor(bill, steve), ancestor(john, sue)}
The theory:
ancestor(X,Y) < parent(X,Y).
ancestor(X,Y) < ancestor(X, Z), parent(Z,Y).

is intensionally complete but extensionally incomplete because it does not cover
the example ancestor(john, sue) since the positive example ancestor(john, mike)
1S missing.

The case of extensional completeness, intensional incompleteness occurs when
we learn a program with an infinite recursive chain.

Ezrample 5 Extensional completeness, intensional incompleteness. Given the train-
ing set:

E*T = {even(0), odd(1)}
and the background predicate suce(X,Y) that expresses that Y is the successor
of X, the program:

even(X) « succ(X,Y),odd(Y).

odd(X) + suce(Y, X), even(Y').
1s extensionally complete but intensionally incomplete, because the intenesional
derivation of even(0) would leed to a loop.

When learning normal logic programs, extensional systems suffer also from
the problem of extensional inconsistency, intensional consistency.

Ezrample 6 Extensional inconsistency, intensional consistency. Suppose you are
given the training set
Et = {intersection([3],[2,4],1)), - - -}
E~ = {intersection([4,3],[2,4],1), .- .}
where ET does not contain the example member(4,[2,4]). The program
member(X,Y) + head(X,Y).
member(X,Y) + tail (Y, YT), member(X,YT)
intersection(X,Y, Z) + null(X), null(7).
intersection(X,Y, 7) + head(X, X H),tail(X, XT), member(X H,Y), intersection(XT,Y, W), cons(XH, W, Z
intersection(X,Y, 7) < head(X, X H),tail(X, XT), not member(X H,Y), intersection(XT,Y, 7).
is intensionally consistent but extensionally inconsistent because the negative ex-
ample intersection([4, 3], [2, 4], []) is extensionally covered, since member(4, [2,4])
is not in ET.

Our system does not suffer from the problem of extensional systems apart
from the problem of extensional completeness, intensional incompleteness. A
solution to this problem has been proposed in [13] with the system MULT_ICN.
That solution can be easily integrated in our system and is subject for future
work.

4 Integrating Abductive and Inductive Logic
Programming

In this section, we recall the approach for the integration of abduction and
induction that was proposed in [7, 12]. First, we summarize the main concepts
of Abductive Logic Programming (ALP) and then we show how the learning
problem of ILP must be modified in order to integrate abduction.

4.1 Abductive Logic Programming
We first give the definition of Abductive Logic Program.

Definition8 Abductive Logic Program. An abductive logic program is a triple
(P, A, IC) where

— P is a normal logic program,

— A is a set of abducible predicates,

— IC is a set of integrity constraints in the form of denials, i.e.:
— A1, An,not Amga, .o not Apgn.

Abducible predicates are used to model incompleteness: these are predicates
for which a definition may be missing or for which the definition may be in-
complete. This are the predicates about which we can make assumptions is
order to explain the current goal. More formally, given an abductive program
AT = (P, A,IC) and a formula G, the goal of abduction is to find a (possi-
bly minimal) set of ground atoms A (abductive explanation) for predicates in A
which together with P entails G, i.e. PUA | G. It is also required that the
program P U A is consistent with respect to IC, i.e. PUA = IC. We say that
AT abductively entails e (AT =4 e) when there exists an abductive explanation
for e from AT. We adopt the three-valued semantics for ALP defined in [4] in
which an atom can be true, false or unknown. In particular, the semantics M 4p
of a program AT is defined in terms of three sets:

- MXT, the set of ground atoms true for AT
— M7, the set of ground atoms false for AT,

_ U

ar = MXT U M7 p, the set of ground atoms unknown for AT

The semantics M ap is the set of ground literals true for AT and is given by
Mar = M Unot_M7, where not_M7, = {not_ala € M7, }. In this way we
can model domains where the knowledge is not complete.

Negation as Failure is replaced, in ALP, by Negation by Default and is ob-
tained, through abduction, in this way: for each predicate symbol p, a new
predicate symbol not_p is added to the set A and the integrity constraint ¢+
p(X), not_p(X) is added to IC, where X is a tuple of variables. We define the
opposite | of a literal | as

7o { not_p(X) if | = p(X)
p(X) if | = not_p(X)

Operationally, we rely on the proof procedure defined by Kakas and Man-
carella [9]. This procedure starts from a goal and a set of abduced literals A;,
and results in a set of consistent assumptions A,y (abduced literals) such that
Aoyt C Ay and Agyy together with the program allow to derive the goal. We
write

AT F4ow G

The correctness of this proof procedure with respect to the abductive semantics
defined in [4] is established by soundness and completeness theorems in [4]. We

have extended this proof procedure in order to allow for abducible predicates
to have a partial definition. Some rules may be available for them, and we can
make assumptions about missing facts.

The proof procedure consists of two parts: an abductive and a consistency
phase (see Appendix for the detailed algorithm). Basically, the abductive phase
differs from a standard Prolog derivation when the literal to be reduced is ab-
ducible. First checks to see if the abducible literal has already been assumed (i.e.,
it is in the A set), in this case the literal is reduced or the derivation fails if the
opposite of the literal is in the A. If it has not yet been abduced, the procedure
tries to abduce it and checks that it is consistent with the integrity constraints
and with the current A by adding the it to A and by starting a consistency
derivation.

The first step of the consistency derivation consist in finding all the integrity
constraints (denials for simplicity) in which the literal is contained. In order to
abduce the literal, all these constraints must be satisfied. A denial fails only if
all its conjuncts are true, therefore at least one conjunct must be false. Since one
wants to assume the literal true, the algorithm removes it from the constraints
and checks that all the remaining goals fail. The goals are reduced literal by
literal: if a literal is abducible, first 1t is checked if the literal itself is already in
A (in that case the literal is dropped) or if its opposite is already in A (in that
case the constraint is satisfied and is no more considered). If the literal is not in
A, an abductive derivation for its opposite is started, so that if it succeeds the
constraint is satisfied.

In order to illustrate the behaviour of the abductive proof procedure, let us
consider a classic example inspired to [?].

Ezxample 7. Suppose to have the following abductive theory:

P = {shoes_are_wet + grass_is_wet.

grass_ts_wet « sprinkler _was_on.

grass_ts_wet + rained_last_night.

electrical _black out.}

A = {rained_last_night, sprinkler_was_on.}

IC = {+ electrical black out, sprinkler_was_on.}
The observation shoes_are_wet can be only explained by the set of assumptions
{rained_last_night}. Let us see in some detail how the abductive proof procedure
works. An abductive phase is started for the goal < shoes_are_wet with A = ().
Then the goal is unfolded with the first rule giving the resolvent:

+ sprinkler_was_on.
Since there are no rules for predicate sprinkler _was_on and this predicate is ab-
ducible, a consistency derivation is started for it with A = {sprinkler_was_on}.
First all the constraints containing the literal are considered (respectively,
sprinkler was_on, not_sprinkler was_on® and «+ electrical _black out, sprinkler was_on.)
and then the goal is unfolded with the constraint giving < not_sprinkler_was_on

This constraint was added when transforming Negation as Failure literals in Negation
as Default literals.

and < electrical_black_out. Now, both these goals must fail for the consistency
to succeed. The first goal clearly fails since the opposite of the literal is in
A, but the second goal succeeds. Therefore the consistency fails and in bac-
tracking the initial goal shoes_are_wet is unfolded with the second rule, giving
+ rained_last_night. This time the consistency derivation for rained_last_night
succeeds and therefore the outer abductive derivation succeeds as well with
A = {rained_last_night}.

Let us now see how default negation goals are treated. The goal:

— not_grass_ts_wet
succeeds with the abduction of A = {not_rained_last_night, not_sprinkler _was_on}.
In fact, the abductive derivation for < not_grass_is_wet immediately starts a
consistency for not_grass_is_wet (since all default literals are abducible) with
A = {not_grass_is_wet}. Unfolding it with the only relevant constraint gives
— grass_ts_wet that is solved in all possible ways giving the goals:

+ sprinkler_was_on.

+ rained_last_night.
that must all fail. Since they both contain abducible literals, an abductive deriva-
tion is started first for < not_sprinkler_was_on. and then for « not_rained_last_night..
Both of them succeed abducing:

A = {not_rained_last_night, not_sprinkler_was_on}

4.2 New Learning Problem

We consider a new definition of the ILP learning problem similar to Abductive
Concept Learning (ACL) [6]. In this extended learning problem both the back-
ground and target theory are abductive theories and the notion of deductive
entaillment is replaced by abductive entailment.

Given
a set P of possible abductive programs
a set of positive examples Et,
a set of negative examples £~
an abductive theory AT = (T, A, IC) as background theory.
Find
A new abductive theory AT = (T", A, IC) € P with T’ D T', such that
let E = ET U{note|ec EF}
Ve€ B, AT'bg<e
U AcUT" | IC (consistency of the assumptions w.r.t. IC')
YeeFE

When AT |_®Ae e we say that AT abductively covers e under hypotheses A,.
The abductive program that is learned can contain new rules (possibly with
abducibles in the body) but not new abducible predicates and new integrity
constraints.
In order to introduce extensional coverage in this framework, we require all
target predicates to be abducible and we change the condition that the learned
program must satisfy in this way:

Ve € B, AT gty €

U A.UT EIC
YeeFE
Differently from def. 7 for extensional coverage, here also negative examples

are used because of the three-valued semantics of abduction [4]. The literal [is
proved true if [€ F/ and 1s proved false if [€ F.

5 The hybrid algorithm

In this section, we present an intensional algorithm that is able to learn abductive
logic programs [11] and we show how it can be extended, by exploiting abduction,
to incorporate extensional coverage. The algorithm is reported in figures 1, 2,
3 and is obtained from the basic top-down ILP algorithm [2] (see also section
[11]), by substituting the usual notion of coverage of examples with the notion
of abductive coverage.

procedure LAP(
inputs : ET, £~ : training sets,
AT = (T, A, IC) : background abductive theory,
outputs : H : learned theory, A : abduced literals)

H:=0
A:=0
while Et = do (covering loop)
GenerateRule(input: AT, H, EY, E~, A; output: Rule, El‘;ule, ARute)
Move to E7T all the positive literals of target predicates in Agqyie
Move to E™ all the atoms corresponding to
negative literals of target predicates in Agy.
EY =FEY - B},
H := H U{Rule}
A= AU ARguie
endwhile
output H

Fig. 1. The covering loop

The basic top-down algorithm is extended in the following respects in order
to learn abductive logic programs. First, in order to test the coverage of the
generated rule, (procedure TestCoverage in figure 3) an abductive derivation
is started for each positive example and the default negation (not_e™) of each
negative (e). Each derivation starts from the set of literals abduced in the
derivations of the previously covered examples. In this way, we ensure that the
assumptions made during the derivation of the current example (positive or
negative) are consistent with the assumptions previously raised for deriving other
examples.

procedure GenerateRule(
inputs : AT, EY, E~ H, A
outputs : Rule : rule,
El‘;ule : positive examples covered by Rule,
ARute @ abduced literals)

Select a predicate p to be learned
Let Rule = p(X) + true.
repeat (specialization loop)
select a literal L from the language bias
add L to the body of Rule
TestCoverage(input: Rule, AT, H, Et E— A,
output: Ef En.., Arute)
iteth, =0
backtrack to a different choice for L
until £7, =0
output Rule, E%, ., ARute

Fig. 2. The specialization loop

Second, after the generation of each clause, the abduced literals of target
predicates are added to the training set, so that they become new training ex-
amples (figure 1).

In order to introduce extensional coverage in the algorithm, each abductive
derivation of an example does not starts only with the set of literals already
abduced but also with the training set itself (see also figure 3). In particular, the
input abducibles are augmented with all the positive examples and the default
negation of each negative. In order to avoid the trivial derivation of et based on
et itself, eT is taken out from the input abducibles. The same is done for not_e~
when trying to derive not_e™. The modifications to the procedure TestCoverage
are shown in figure 3 as framed formulae.

We now show an example of the behaviour of the algorithm in the case of
learning the predicate member. Let the background knowledge and training set
be:

B = {components([H|T], H,T) <}

E*T = {member(2,[2]), member(2,[1,2, 3]), member(3,[1,2,3])}

E~ = {member(2,[]), member(2,[3]), member(1,[2,3])}

Suppose the system first generates the clause
member(A, B) « components(B,C, D), member(A, D)
Then the clause is tested. The abductive derivation < member(2,[2]) fails be-
cause member(2,[]) can not be derived nor abduced, since it is a negative exam-
ple. In the abductive derivation of member(2,[1,2,3]), first the system unfolds
two times the clause and tries to abduce member(2,[3]). Since it is a nega-
tive example, the derivation fails and, in backtracking, it succeeds with the
abduction of member(2,[2,3]). Finally, the positive example member(3,[1, 2, 3])
is covered with the abduction of member(3,[3]). Then negative examples are

procedure TestCoverage(
inputs : Rule : rule, AT = (T, A, IC) : background abductive theory,
H : current hypothesis, £+, £~ : training sets,
A : current set of abduced literals
outputs: El‘;ule, EL ... positive and negative
examples covered by Rule
ARuie : new set of abduced literals

El‘;ule = El;ule = ®7 Aln = A7 ‘ E= E+ U {nOt—e | e c E_} ‘
for each et € ET do

if AbdDelr(e"'7 (T'u H U{Rule}, A, IC), Aip|UE'\ {e+} Aout)

succeeds then add et to El‘;ule; Ain = Acut
for each e € £~ do

if AbdDer(not_e~, (T'U H U {Rule}, A, IC), A, Aot
succeeds then A;, = A,
else add e™ to £, ;.
Apute = Aour \ A
output Et Fr.., Arute

Fig. 3. Hybrid coverage testing

tested: < not_member(2,[]), < not_member(2,[3]) and < not_member(1,[2, 3])
all succeeds. In the last case, not_member(1,[3]) is abduced. Therefore the rule
is consistent and is added to the hypothesis. Covered positive examples are re-
moved and assumptions about target predicates are added to the training set,
that becomes:

E*T = {member(2,[2]), member(2,[2, 3]), member (3, [3]) }

E~ = {member(2,[]), member(2,[3]), member(1,[2, 3]), member(1,[3])}
Then the system generates the clause

member(A, B) + components(B, A, D)
that covers all the remaining positive examples and the negation of the negative
ones without abducing anything. The clause 1s added to the hypothesis and the
algorithm terminates.

6 Properties of the Algorithm

In this section, we illustrate by means of examples the way in which the algo-
rithm satisfies the above mentioned properties. We will first show that the hybrid
system does not suffer from the problem of extensional consistency, intensional
inconsistency and intensional completeness, extensional incompleteness of ex-
tensional system. Then we will demonstrate that the system does not generate
globally inconsistent hypothesis and does reduce the coverage of the current
hypothesis.

Let us consider first definite logic programs. For them, we do not have the
problem of extensional consistency, intensional inconsistency, as shown in exam-
ple 3, because each negative example is tested also against the current hypothesis.

We do not have neither the problem of intensional completeness, extensional
incompleteness, as shown in example 5. If a positive example 1s not covered
because a needed literal for a target predicate is missing in training set, the
intensional definition for the target predicate will be used instead.

As regards normal logic programs, with similar reasoning it is possible to
show that a hybrid system do not suffer from the same problems, apart from the
problem of extensional completeness, intensional incompleteness due to loops
through recursion.

6.1 Learning Multiple Predicates

Let us now turn to the problem of global inconsistency. There are mainly two
cases in which we can incur in this problem. The first is the one shown in example
1, in which the rule at fault is in the hypothesis before the addition of the newly
generated rule, while the second case is the one in which the rule at fault is the
new one.

The first case is dealt with by using a hybrid system. In example 1 the
rule about father would not be generated using a hybrid system because it
would have used as well the examples to complete the definition for ancestor,
thus discovering that the rule for father would cover some negative example.
Therefore, with a hybrid system the situation in example 1 would never occur.

However, another situation may occour, in which we have a “correct” partial
hypothesis (in the sense that it is part of the final solution) that is made globally
inconsistent by a newly added rule. In this case, we prevent the system from
learning a globally inconsistent hypothesis by using abduction. Let us illustrate
the point by considering a more general case. Suppose the system has learned
the following clauses in the order in which they are listed:

q(X) + Body(X).

p(X) ¢ Body»(X), ¢(X).

q(X) « Bodys(X).

Suppose that the second clause is consistent since it rules out all the negative
examples e, for p because for them q(ezj) is always false, either because 1t is in
E~ or because it is not derivable. When we add the third clause, this can cover
as well some of the atoms q(e;), because they may not be in £ .

We avoid this problem in the following way. When we test the clause:

p(X) ¢ Body»(X), ¢(X).
against a negative example p(e,), we start an abductive derivation for not_p(e,).
If g(e,) is not derivable, the derivation succeeds with the abduction of not_g(e,)
that is added in the A set. After the clause is added to the theory, all the abduced
literals regarding target predicates are moved to the training set: thus q(e;) will
be added to E~. In this way the system will not be able to generate a clause
q(X) < Bodys(X). that covers ¢(e,) and makes the previous clauses globally
inconsistent.

Therefore, in our system both abduction and hybrid coverage play an im-
portant role in the solution of the problem of global inconsistency. Thanks to
hybrid coverage we avoid the generation of “incorrect” clause based on a partial
definition of a subpredicate, that should later be retracted, thus avoiding the use
of an expensive backtracking. Besides being used to implement hybrid coverage,
abduction prevents also from learning apparently “correct” clauses that would
otherwise be very difficult to identify, later on, as the source of inconsistency.

6.2 Learning Normal Logic Programs

Let us now turn to the problem of coverage reduction. This problem as well can
appear in two cases: the first is the one shown in example 2, in which the rule at
fault is already in the hypothesis while the second is the one in which the rule
at fault is the new one.

The first case is dealt with by using a hybrid system. In example 2 the first
rule about intersection would not be generated using a hybrid system because
it would have used as well the examples to complete the definition for it.

As regards the second case, consider an example in which the system has
learned the following clauses in the order in which they are listed:

q(X) + Body, (X).

p(X) + Body2(X),not ¢(X).

q(X) + Bodys(X).

After the addition of the third clause, some of the positive examples covered by
the second may not be covered anymore. A similar problem can arise also in
single predicate learning, in the case of negative recursive clauses:

p(X) « Body: (X).

p(X) + Body2(X,Y),not p(Y).

p(X) « Bodys(X).

The problem arise because the set of positive examples is gradually reduced and
covered positive examples are no longer tested. This is the dual problem of the
one seen before for definite programs (see section 6.1). The learning process is
again non-monotonic but this time with respect to coverage instead of consis-
tency. Therefore, we can not take out the positive examples from E+ when they
are covered by a clause, but after the addition of each clause all the previously
covered et must be checked again.

When testing the positive example p(e;'), the system records assumptions
about negative literals not p(e}) being true (or p(ef) being false) by storing
them in the A set. These assumption will then be moved to the training set so
that clauses generated afterwards will not cover the example p(e;').

The system avoids the problem of global inconsistency also for normal logic
program because (positive or negative) assumptions made during the testing of
positive examples are recorded and added to the training set.

Per la negazione, provare ad imparare hamilton (vedi tracynot).

7 Related Work

This work was inspired by [10] where the algorithm for learning abductive logic
programs was introduced and its main properties studied. We improved on that
work by adding the hybrid coverage to the system, that has the important prop-
erty of avoiding backtracking and thus rendering practically feasible the learning
of multiple predicates and normal logic programs.

On the problem of learning multiple predicates a notable work is [17] where
the authors thoroughly analyze the problem and the solutions proposed both
by intensional and extensional systems. Moreover, they present the clear and
extensive analisys of the various problems of extensional systems that we have
recalled in section 3. In order to overcome the problem of global incompleteness,
they propose the system MPL that takes a different approach with respect to
ours. Being an intensional system, it can not avoid the case described in example
1 as we do. Also in the other case of global inconsistency, it solves the problem by
retracting one of the globally inconsistent clauses previously learned. However,
if the clause at fault is the last one, MPL would retract the wrong clause and
would not be able to learn the desired theory because retracted clauses cannot
be added again to the hypothesis.

Our system still suffers from the problem of extensional completeness, inten-
sional incompleteness. This problem has been deeply studied, both for definite
and normal logic program, in [14]. The authors propose the system ICN in which
they solve the problem by keeping explicit track of the recursive dependency
among clauses. An interesting direction for future work would be to incorporate
their solution into our system.

Hybrid coverage is used as well in the system FOIL-T [8]. However, FOIL-
I’s authors especially concentrate on learning recursive predicates from a sparse
training set and they do not investigate the properties of such a system with
respect to multiple predicate learning and learning normal logic programs.

The approach we adopted to avoid the problem of coverage restriction when
learning normal logic program is similar to the one followed in TRACY"°" [3].
When learning definite logic programs, TRACY finds a hypothesis by considering
the trace of the derivation of the first positive example against the set of all
possible clauses. Then the clauses involved in the derivation of the example are
tested against all the other examples, positive and negative. They will be part of
the solution if they do not cover any negative example. This approach is based
on the fact that definite logic programs are monotonic and therefore having all
the clauses together does not constitute a problem because the irrelevant clauses
will not interfere with the relevant ones. When learning normal logic programs,
instead, irrelevant clauses may constitute a problem to relevant ones, because
Negation As Failure (NAF) literals may fail because of an irrelevant clause.
Therefore it is not possible to consider a trace as a possible solution. In order to
overcome this problem, TRACY"* modifies the proof procedure of the example
so that each time a NAF literal is encountered, it is removed from the resolvent
and its positive version is added to the training set: it is added to E~ if the
example under test was positive or to £7T if the example was negative. In the

case in which one of the negative examples is covered by the trace, TRACY"?
performs a backtracking on the trace for the original positive examples. This is
very similar to our approach, the only difference is the technique that is used for
implementing it: by using abduction, we use a general technique that allows us
to learn also multiple predicate and learning from incomplete information.

Since we gradually add negative examples, our approach may seem similar
to the one adopted in incremental systems such as MIS [18]. However, while in
incremental systems a consistency check must be done after the addition of each
e~ to the training set, we do not have to do this because we add an e~ only
after having tested that it is not covered by any clause.

8 Conclusions and Future Work

We have shown how abduction can be used in order to introduce extensionality
in intensional systems. In particular, we have taken the intensional system for
learning abductive logic programs proposed in [10] and we have extended it in
order to include extensional coverage. In this way, we get a hybrid system that
overcomes two problems of intensional systems: the problem of global inconsis-
tency when learning multiple predicates and the problem of coverage reduction
when learning normal logic programs. Moreover, we do not incur in the problems
of completeness and consistency of extensional systems, apart from the one of
extensional completeness, intensional incompleteness. This problem is relevant
only when learning (mutually) recursive predicates, that was not our main aim.
Subject for future work will be to integrate into our systems the techniques
proposed in [14] for learning recursive predicates.

Acknowledgment

The authors would like to thank the anonymous referees and the participant
to the workshop for their useful comments and suggestions. Fabrizio Riguzzi
would like to thank Tony Kakas for having invited him to spend a period at the
University of Cyprus and for the many helpful discussions has together.

References

1. H. Adé and M. Denecker. AILP: Abductive inductive logic programming. In Pro-
ceedings of the 14th International Joint Conference on Artificial Intelligence, 1995.

2. F. Bergadano and D. Gunetti. Inductive Logic Programming. MIT press, 1996.

3. F. Bergadano and D. Gunetti. Learning Logic Programs with Negation as Failure.
In Advances in Inductive Logic Programming. 1OS Press, 1996.

4. A. Brogi, E. Lamma, P. Mancarella, and P. Mello. A unifying view for logic pro-
gramming with non-monotonic reasoning. To appear on the Journal of Theoretical
Computer Science.

5. M. Denecker, L. De Raedt, P. Flach, and A. Kakas, editors. Proceedings of FCAI96
Workshop on Abductive and Inductive Reasoning. Catholic University of Leuven,
1996.

6. Y. Dimopoulos and A. Kakas. Abduction and learning. In Advances in Inductive
Logic Programming. 10S Press, 1996.

7. F. Esposito, E. Lamma, D. Malerba, P.Mello, M. Milano, F. Riguzzi, and
G. Semeraro. Learning abductive logic programs. In Denecker et al. [5].

8. N. Inuzuka, M. Kamo, N. Ishii, H. Seki, and H. Itoh. Top-down induction of logic
programs from incomplete samples. In S. Muggleton, editor, Proceedings of the 6th
International Workshop on Inductive Logic Programming, pages 119-136. Stock-
holm University, Royal Institute of Technology, 1996.

9. A.C. Kakas, R.A. Kowalski, and F. Toni. The role of abduction in logic program-
ming. In D. et al. Gabbay, editor, Handbook of Logic in Al and Logic Programming.
1997. to appear.

10. A.C. Kakas and P. Mancarella. On the relation between truth maintenance and
abduction. In Proceedings of the 2nd Pacific Rim International Conference on
Artificial Intelligence, 1990.

11. A.C. Kakas and F. Riguzzi. Learning with abduction. Technical Report TR-96-15,
University of Cyprus, Computer Science Department, 1996.

12. A.C. Kakas and F. Riguzzi. Learning with abduction. In Proceedings of the 7th
International Workshop on Inductive Logic Programming, 1997.

13. E. Lamma, P. Mello, M. Milano, and F. Riguzzi. Integrating Induction and Ab-
duction in Logic Programming. In P. P. Wang, editor, Prooceedings of the Third
Joint Conference on Information Sciences, volume 2, pages 203-206, 1997.

14. L. Martin and C. Vrain. MULT_ICN: An empirical multiple predicate learner. In
L. De Raedt, editor, Proceedings of the 5th International Workshop on Inductive
Logic Programming, pages 129-144. Department of Computer Science, Katholieke
Universiteit Leuven, 1995.

15. L. Martin and C. Vrain. A three-valued framework for the induction of general
program. In L. De Raedt, editor, Proceedings of the 5th International Workshop
on Inductive Logic Programming, pages 109-128. Department of Computer Science,
Katholieke Universiteit Leuven, 1995.

16. M.J. Pazzani and D. Kibler. The utility of knowledge in inductive learning. Ma-
chine Learning, 9(1):57-94, 1992.

17. J. R. Quinlan and R.M. Cameron-Jones. Induction of Logic Programs: FOIL and
Related Systems. New Generation Computing, 13:287-312, 1995.

18. L. De Raedt, N. Lavrac, and S. Dzeroski. Multiple predicate learning. In Proceed-
ings of the 8rd International Workshop on Inductive Logic Programming, 1993.

19. E. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

Appendix

In the following we recall the abductive and consistency derivation used by our algo-
rithm, which are taken from [9].

Abductive derivation
An abductive derivation from (G; A1) to (G Ay) in (P, Ab, IC) via a selection rule

R is a sequence

(G1 A1), (G2 As), ... (Gn An)

such that each G; has the form « Li,..., Lx, R(G;) = L; and (Gi41 Ai41) is obtained

according to one of the following rules:

(1) If it exist a resolvent C of some clause in P with G; on the selected literal L;, then
G,‘+1 = (C and A,‘+1 = Ai;

(2) If L; is abducible or default and L; € A; then Giy1 =« Li,...,Lj_1, Lj41,..., Lk
and A4 = Ay

(3) If L; is abducible or default, L; ¢ A; and T, € A; and there exists a consistency
derivationfrom ({L;} A;U{L;}) to ({} A") then Giy1 =« L1,...,Lj—1, Ljz1,..., Lk
and A,‘+1 = A/.

Steps (1) is SLD-resolution. Step (2) consider the case in which the literal has already
been abduced. In step (3) a new abductive or default hypotheses is required and it is
added to the current set of hypotheses provided it is consistent.

Consistency derivation
A consistency derivation for an abducible or default literal a from (a, A;) to (F, Ay)

in (P, Ab, IC) is a sequence
(a Al),(Fl Al),(FQ AQ),...,(Fn An)

where :

(i) Iy is the union of all goals of the form < Li,..., L, obtained by resolving the
abducible or default « with the denials in /C' with no such goal been empty, +;
(i) for each i > 1, F; has the form {+ Li,...,Lx} U F! and for some j = 1,...,k
(F,‘+1 A,‘.H) is obtained according to one of the following rules:
(Cl) If the set C’ of all resolvents of clauses in P with « Li1,..., Lx on the literal
L; is not empty and +¢ C’', then Fiy = C'UF and A1 = Ay
(C2) If L; is abducible or default, L; € A; and k > 1, then
Fl‘+1 = {F Ll,...,L]_l,LJ+1,...,Lk} UFl‘/
and A;4 = Ay
(C3) If L; is abducible or default, L_] € A; then Fipq = F/ and A1 = Ay
(C4) If L; is abducible or default, L; ¢ A; and L; € A;, and there exists an
abductive derivation from (+ L_] A;) to (+ A') then Fipq1 = F and Ajqy =
Al
In case (C1) the current branch splits into as many branches as the number of resolvents
of < Li,...,Lr with the clauses in P on L;. If the empty clause is one of such
resolvents the whole consistency check fails. In case (C2) the goal under consideration
is made simpler if literal L; belongs to the current set of hypotheses A;. If & =1 the
consistency derivation fails. In case (C3) the current branch is already consistent under
the assumptions in A;, and this branch is dropped from the consistency checking In
case (C4) the current branch of the consistency search space can be dropped provided
« L, is abductively provable.

Given a query L (atomic, for the sake of simplicity), the procedure succeeds, and
returns the set of abducibles A if there exists an abductive derivation from (+ L {})
to (« A). With abuse of terminology, in this case, we also say that the abductive
derivation succeeds.

This article was processed using the ITEX macro package with LLNCS style

