A System for Learning Abductive Logic
Programs

Evelina Lamma, Michela Milano, Fabrizio Riguzzi
DEIS, Universita di Bologna, Viale Risorgimento 2
[-40136 Bologna, Italy,

Tel. +39 51 6443033, Fax. 439 51 6443073

{elamma ,mmilano,friguzzi}@deis.unibo.it

Paola Mello
Dip. di Ingegneria, Universita di Ferrara,
Via Saragat 1, 41100 Ferrara, Italy
pmello@ing.unife.it

Abstract

We present the system LAP for learning abductive logic programs
from examples and from a background abductive theory. A new type
of induction problem has been defined as an extension of the Inductive
Logic Programming framework. In the new problem definition, both
the background and the target theories are abductive logic programs
and the coverage of examples is replaced by abductive coverage.

LAP is based on a top-down learning algorithm that has been
suitably extended in order to solve the new induction problem. In
particular, the testing of example coverage is performed by using the
abductive proof procedure defined by Kakas and Mancarella [9]. As-
sumptions can be made in order to cover positive examples and rule
out negative ones and these assumptions can be used as new train-
ing data. LAP can be applied for learning in presence of incomplete
knowledge and for learning exceptions to classification rules.

Keywords: Abduction, Learning.

1 Introduction

Inductive Logic Programming (ILP) [3] is a research area covering the inter-
section of Machine Learning and Logic Programming. Its aim is to devise
systems that are able to learn logic programs from examples and from a back-
ground knowledge. Recently, in this research area, a number of works have
become to appear on the problem of learning non-monotonic logic programs
(2, 6,4, 13].

A particular attention has been given to the problem of learning abduc-
tive logic programs [8, 11, 12, 10] and, more generally, to the relation existing
between abduction and induction and how they can integrate and comple-
ment each other [5, 7, 1]. We consider an approach to the integration of
the two in which abduction helps induction by allowing to make assumption
about unknown facts. In [8, 11] we defined a new learning problem similar to
the Abductive Concept Learning framework [7]. In this new framework we
generate an abductive logic program from an abductive background knowl-
edge and from a set of positive and negative examples of the concepts to
be learned. The resulting theory must abductively entail all the positive
examples and the default negation of the negative ones.

Learning abductive logic programs is useful for a number of reasons. We
can learn theories for domains where abduction is an effective problem solving
strategy, e.g. diagnostic problems. We can learn exceptions to classification
rules exploiting negation by default. Moreover, we can learn in domains
in which there is incompleteness of the available information, either in the
background knowledge or in the training set. This is a very frequent case in
practice, because very often the data available is incomplete and/or noisy.

We present the system LAP that solves the new learning problem. The
system is based on the theoretical work developed in [8, 11]. It is an ex-
tension of a basic top-down algorithm adopted in ILP [3]. The extended
algorithm takes into account abducibles and integrity constraints, and relies
on the proof procedure defined in [9] for abductive logic programs. The key
idea is that the abductive proof procedure is used for the coverage process
of positive and negative examples in substitution of the deductive proof pro-
cedure of logic programming. Moreover, the abduced literals can be used as
new training data for learning definitions for the abducible predicates.

The paper is organized as follows: in section 2 we recall the main con-
cepts of Abductive Logic Programming (ALP), ILP, and the definition of

the abductive learning framework. In section 3 we present the algorithm for
learning abductive rules. In section 4 we describe the application of the sys-
tem to the problem of learning exceptions to rules. In section 5 we conclude
and present the directions for future works.

2 Abductive and Inductive Logic Program-
ming

2.1 Abductive Logic Programming

An abductive logic program is a triple (P, A, IC') where:

e P is a normal logic program;
o Ais a set of abducible predicates

o /(' is a set of integrity constraints in the form of denials, i.e.:

— Ay, A ot Aygg, .o not A

Negation as Failure is replaced, in ALP, by Negation by Default and is ob-
tained in this way: for each predicate symbol p, a new predicate symbol not_p
is added to the set A and the integrity constraint « p()?), not_p()?) is added
to IC, where Xisa tuple of variables.

Given an abductive program AT = (P, A,IC) and a formula G, the
goal of abduction is to find a (possibly minimal) set of ground atoms A
(abductive explanation) of predicates in A which together with P entails G,
i.e. PUA = G. It is also required that the program P UA is consistent with
respect to [C, i.e. PUA | IC. When there exist an abductive explanation
for G in AT, we say that AT abductively entails G and we write AT =4 G.

In [9] a proof procedure for abductive logic programs has been defined.
This procedure starts from a goal and results in a set of consistent hypoth-
esis (abduced literals) that together with the program allow to derive the
goal. We have extended this proof procedure in order to allow for abducible
predicates to have a partial definition. Some rules may be available for them
and we can make assumptions about missing facts.

2.2 Inductive Logic Programming

The ILP problem can be defined as [3]:

Given:
a set P of possible programs
a set ET of positive examples
a set £~ of negative examples
a consistent logic program B such that
B/ et for at least one et € E7.
Find:
a logic program P € P such that
Vet € EY, BUP |= et (completeness)
Ve~ € E=, BUP £ e (consistency).

Let us introduce some terminology. The sets Et and E~ are called training
sets. The program P that we want to learn is the target program and the
predicates which are defined in it are target predicates. The program B is
called background knowledge and contains the definitions of the predicates
that are already known. We say that the program P covers an example e
if PU B = e. Therefore the conditions that the program P must satisfy in
order to be a solution to the ILP problem can be expressed as “P must cover
all positive examples and must not cover any negative examples”. The set
P is called the hypothesis space. The importance of this set lies in the fact
that it defines the search space of the ILP system. In order to be able to
effectively learn a program, this space must be restricted as much as possible.
If the space is too big, the search could result infeasible.

The language bias (or simply bias in this paper) is a description of the
hypothesis space. Many formalisms have been introduced in order to describe
this space [3], we will consider only a very simple bias in the form of a set of
literals which are allowed in the body of the clauses for the target predicates.

2.3 The New Learning Framework

We consider a new definition of the learning problem similar to Abductive
Concept Learning (ACL) [7]. In this extended learning problem both the
background and target theory are abductive theories and the notion of de-
ductive coverage is replaced by abductive coverage.

Given
a set P of possible abductive programs
a set of positive examples ET,
a set of negative examples £,
an abductive theory AT = (T, A, IC') as background theory.
Find
A new abductive theory AT" = (T", A, IC) € P where T" O T such that
AT =4 Et not E~, where not_E~ = {not_e"|e” € E~}.

Given an example e, we say that AT’ abductively entails ¢ when AT’ =4
e. By requiring that the conjunction of the positive and the negation of
negative examples is abductively entailed by the final theory, we ensure that
the abductive explanations for different examples are consistent with each
other.

The abductive program that is learned can contain new rules (eventually
containing abducibles in the body) but not new abducible predicates and
new integrity constraints.

3 An algorithm for Learning Abductive Logic
Programs

We present the system LAP that is able to learn abductive logic programs.
The algorithm is obtained from the basic top-down ILP algorithm [3], by
substituting the usual notion of coverage of examples with the notion of
abductive coverage.

The basic top-down inductive algorithm [3] learns programs by generating
clauses one after the other and generates clauses by means of specialization.
As the basic inductive algorithm, LAP is constituted by two nested loops:
the covering loop (figure 1) and the specialization loop (figure 2). At each
iteration of the covering loop, a new clause is generated such that it covers
at least one positive example and no negative ones. The positive examples
covered by the rule are removed from the training set and a new iteration of
the covering loop is started. The algorithm ends when the positive training
set becomes empty. The new clause is generated in the specialization loop:
we start with a clause with an empty body, and we add a literal to the body
until the clause does not cover any negative examples while still covering at

procedure LAP(
inputs : £, £~ : training sets,
AT = (T, A, IC) : background abductive theory,
outputs : H : learned theory, A : abduced literals)

H:=0
A:=0
while Ft # () do (covering loop)
GenerateRule(input: AT, H, ET, =, A; output: Rule, B}, , ARuie)
Move to ET all the positive literals of target predicates in ARy
Move to E~ all the atoms corresponding to
negative literals of target predicates in Apye
E+ = E+ - El—l%—ule
H = HU{Rule}
A= AUARu
endwhile
output H

Figure 1: The covering loop

procedure GenerateRule(
inputs : AT, Et, =, H A
outputs : Rule : rule,
El—l%—ule : positive examples covered by Rule,
Apule : abduced literals

Select a predicate to be learned p
Let Rule = p(X) « true.
repeat (specialization loop)
select a literal L from the language bias
add L to the body of Rule
TestCoverage(in: Rule, AT, H, E*, E~ A,
out: El—l%—ul@ E]sul@ ARUZ@)
if 24, =0
backtrack to a different choice for L
until £, =10
output Rule, El—l%_ulev ARule

Figure 2: The specialization loop

procedure TestCoverage(
inputs : Rule, AT,H,Et,E— A
outputs: El—l%_ulev Eg .. examples covered by Rule
A’ : new set of abduced literals

El—l%—ule = E]sule = @
A=A
for each et € ET do
if AbductiveDerivation(et, (T'U H U {Rule}, A, I1C), Njny Agut)
succeeds then Add et to El—l%—ule; N = Aout
endfor
for each e € F~ do
if AbductiveDerivation(not_e™, (T'U H U {Rule}, A, ICY, Njp, Aour)
succeeds then A;, = A s
else Add e~ to Iy, ;.
endfor
ARule - Aout - A
output EEule’ E]Sule’ ARule

Figure 3: Coverage testing

least one positive. The basic top-down algorithm is extended in the following
respects.

First, in order to determine the positive examples Ef ;. covered by the
generated rule Rule (procedure TestCoverage in figure 3), an abductive
derivation is started for each positive example. This derivation results in
a (possibly empty) set of abduced literals. We give as input to the abductive
procedure also the set of literals abduced in the derivation of the previously
covered examples. In this way, we ensure that the assumptions made during
the derivation of the current example are consistent with the assumptions
previously raised for covering other examples.

Second, in order to check that no negative example is covered (Fg,,. = 0
in figure 2) by the generated rule Rule, an abductive derivation is started
for the default negation of each negative example (+— not_e™). Also in this
case, each derivation does not start with an empty set of abducibles, but it
starts from the set of abducibles previously assumed. The set of abducibles
is initialized to the empty set at the beginning of the computation and is
gradually extended as it is passed on from derivation to derivation. This is
done throughout the whole learning process.

Third, after the generation of each clause, the abduced literals of target
predicates are added to the training set, so that they become new training
examples. For each positive abduced literal of the form abd(¢), the new
positive example abd(c) is added to E7T set, while for each negative literals
of the form not_abd(c) the negative example abd(é) is added to F~.

In order to be able to learn exceptions to rules, we have to include a
number of predicates of the form not_abnorm; in the bias for the target
predicates. In this way, when the current partial rule in the specialization
loop still covers some negative examples and no other literal can be added
that would make it consistent, the rule is specialized by adding the literal
not_abnormi()?) to its body. The negative examples previously covered are
ruled out by abducing for them facts of the form abnorm;(e™), while the
positive examples will be covered by abducing the facts not_abnorm;(et).
These facts will then be added to the training set and will allow to learn
rules for abnorm;(X), thus resulting in a definition for the exceptions to the
current rule.

In order to learn a definition for the exceptions, the predicates abnorm;
have to be considered as target predicates, and we have to define a bias for

them. Since we may have exceptions to exceptions, we may also include one'

predicate of the form not_abnormj()?) in the bias for abnorm;. Finally, for
each couple of abducible predicates abnorm;, not _abnorm; we have to add to
the background knowledge the constraint

— abnormi()?), not_abnormi()?).

It is worth mentioning that the treatment of exceptions by means of the
addition of a non-abnormality literal to each rule is similar to the approach
for declarative debugging followed in [14]. In order to debug a logic program,
they first transform it by adding a different default literal to each rule. These
literals are then used as assumptions for the correctness of the rule, to be
possibly revised in the face of a wrong solution. The debugging algorithm
identifies the assumptions that lead to the wrong solution, thus identifying
the incorrect rules.

4 Example

In this section, we show the behaviour of the system in the case of learning
exceptions to classification rules. The example is taken from [6].

Let us consider the following background abductive theory B = (P, A, [C)
and training sets Kt and F~:

P = {bird(X) <+ penguin(X).
penguin(X) < superpenguin(X).
bird(a). bird(b). penguin(c). penguin(d).
superpenguin(e). superpenguin(f).}
A = {abnormy, abnorms, not_abnormy, not_abnorms}
I1C ={« abnorm(X), not_abnorm,(X).
— abnormy(X), not_abnormsq(X).}
— flies(X),not_flies(X).}

Et = {flies(a), flies(b), flies(e), flies(f)}
E= ={flies(c), flies(d)}

Moreover, let the bias be?:

!'More than one if we have different exceptions to different rules.
2For the sake of simplicity we avoid mentioning the abnormality predicates in the bias.

flies(X) « a where a C {superpenguin(X), penguin(X), bird(X),
not_abnormy(X), not_abnorms(X)}
abnormy(X) « (and abnormy(X) < [where
B C {superpenguin(X), penguin(X), bird(X)}

The algorithm first generates the following rule (Ry):

flies(X) < superpenguin(X).
which covers flies(e) and flies(f) that are removed from E*. Then, in the
specialization loop, the rule flies(X) < bird(X). (Ry) is generated which
covers all the remaining positive examples, but also the negative ones. In fact,
the abductive derivations for not_flies(c) and not_flies(d) fail. Therefore,
the rule must be further specialized by adding a new literal. The abducible
literal not_abnorm; is added to the body of R, obtaining Rj:

flies(X) < bird(X), not_abnormy(X).
Now, the abductive derivations for not_flies(c) and not_flies(d) succeed
abducing {abnormi(c),abnormi(d)} while the derivations of the positive ex-
amples flies(a) and flies(b) succeed abducing

{not_abnormi(a),not_abnormi(b)}.
At this point, the system adds the abduced literals to the training set and
tries to generalize them, by generating a rule for abnorm;. The positive
abduced literals for abnorm, form the set ET, while the negative abduced
literals form the set £~. The resulting induced rule is (R4):

abnormy(X) < penguin(X).
No positive examples are now left in the training set therefore the algorithm
ends by producing the following abductive rules:

flies(X) < superpenguin(X). flies(X) < bird(X),not_abnorm(X).

abnormy(X) < penguin(X).
A result similar to ours is obtained in [6], but exploiting “classical” negation
and priority relations between rules rather than abduction. By integrating
induction and abduction, we can achieve greater generality with respect to

[6].
5 Conclusions and Future Work

We have presented the system LAP for learning abductive logic programs.
We consider an extended ILP problem in which both the background and tar-
get theory are abductive theories and coverage by deduction is replaced with

10

coverage by abduction. The target theory can contain new rules containing
abducible predicates.

LAP is obtained from the basic top-down algorithm of ILP by substi-
tuting the coverage of examples using deduction with the coverage using an
abductive proof procedure. LAP has been implemented in Sicstus Prolog
373 and is able to learn abductive rules and rules with exceptions.

In the future, we will extend the system in order to be able to learn
full abductive logic programs, comprehending also new integrity constraints.
The integration of the algorithm with other systems for learning constraints,
proposed in [10], seems very promising in this respect.

References

[1] H. Adé and M. Denecker. AILP: Abductive inductive logic programming. In
Proceedings of the 14th International Joint Conference on Artificial Intelli-
gence, 1995.

[2] M. Bain and S. Muggleton. Non-Monotonic Learning, chapter 7. Academic
Press, 1992.

[3] F. Bergadano and D. Gunetti. Inductive Logic Programming. MIT press,
1996.

[4] F. Bergadano and D. Gunetti. Learning Logic Programs with Negation as
Failure. In Advances in Inductive Logic Programming. 10S Press, 1996.

[65] M. Denecker, L. De Raedt, P. Flach, and A. Kakas, editors. Proceedings of
ECAI96 Workshop on Abductive and Inductive Reasoning. Catholic Univer-
sity of Leuven, 1996.

[6] Y. Dimopoulos and A. Kakas. Learning Non-monotonic Logic Programs:
Learning Exceptions. In Proceedings of the 8th European Conference on Ma-
chine Learning, 1995.

[7] Y. Dimopoulos and A. Kakas. Abduction and learning. In Advances in In-
ductive Logic Programming. 10S Press, 1996.

[8] F. Esposito, E. Lamma, D. Malerba, P. Mello, M. Milano, F. Riguzzi, and
G. Semeraro. Learning abductive logic programs. In Denecker et al. [5].

11

[9]

[10]

[11]

[12]

[13]

[14]

A.C. Kakas and P. Mancarella. On the relation between truth maintenance
and abduction. In Proceedings of the 2nd Pacific Rim International Confer-
ence on Artificial Intelligence, 1990.

A.C. Kakas and F. Riguzzi. Learning with abduction. In Proceedings of the
7th International Workshop on Inductive Logic Programming, 1997.

E. Lamma, P. Mello, M. Milano, and F. Riguzzi. Integrating Induction and
Abduction in Logic Programming. In P. P. Wang, editor, Prooceedings of the
Third Joint Conference on Information Sciences, volume 2, pages 203-206,
1997.

E. Lamma, P. Mello, M. Milano, and F. Riguzzi. Introducing Abduction into
(Extensional) Inductive Logic Programming Systems. In Proceedings of the
5th Congress of the Italian Association for Artificial Intelligence, 1997.

L. Martin and C. Vrain. A three-valued framework for the induction of general

logic programs. In Advances in Inductive Logic Programming. 10S Press,
1996.

L. M. Pereira, C. V. Viegas, and J. J. Alferes. Diagnosis and debugging as
contradiction removal. In L. M. Pereira and A. Nerode, editors, Proceedings of

the 2nd International Workshop on Logic Programming and Non-monotonic
Reasoning, pages 316-330. MIT Press, 1993.

12

