
A System for Learning Abductive LogicProgramsEvelina Lamma, Michela Milano, Fabrizio RiguzziDEIS, Universit�a di Bologna, Viale Risorgimento 2I-40136 Bologna, Italy,Tel. +39 51 6443033, Fax. +39 51 6443073felamma,mmilano,friguzzig@deis.unibo.itPaola MelloDip. di Ingegneria, Universit�a di Ferrara,Via Saragat 1, 41100 Ferrara, Italypmello@ing.unife.itAbstractWe present the system LAP for learning abductive logic programsfrom examples and from a background abductive theory. A new typeof induction problem has been de�ned as an extension of the InductiveLogic Programming framework. In the new problem de�nition, boththe background and the target theories are abductive logic programsand the coverage of examples is replaced by abductive coverage.LAP is based on a top-down learning algorithm that has beensuitably extended in order to solve the new induction problem. Inparticular, the testing of example coverage is performed by using theabductive proof procedure de�ned by Kakas and Mancarella [9]. As-sumptions can be made in order to cover positive examples and ruleout negative ones and these assumptions can be used as new train-ing data. LAP can be applied for learning in presence of incompleteknowledge and for learning exceptions to classi�cation rules.Keywords: Abduction, Learning. 1

1 IntroductionInductive Logic Programming (ILP) [3] is a research area covering the inter-section of Machine Learning and Logic Programming. Its aim is to devisesystems that are able to learn logic programs from examples and from a back-ground knowledge. Recently, in this research area, a number of works havebecome to appear on the problem of learning non-monotonic logic programs[2, 6, 4, 13].A particular attention has been given to the problem of learning abduc-tive logic programs [8, 11, 12, 10] and, more generally, to the relation existingbetween abduction and induction and how they can integrate and comple-ment each other [5, 7, 1]. We consider an approach to the integration ofthe two in which abduction helps induction by allowing to make assumptionabout unknown facts. In [8, 11] we de�ned a new learning problem similar tothe Abductive Concept Learning framework [7]. In this new framework wegenerate an abductive logic program from an abductive background knowl-edge and from a set of positive and negative examples of the concepts tobe learned. The resulting theory must abductively entail all the positiveexamples and the default negation of the negative ones.Learning abductive logic programs is useful for a number of reasons. Wecan learn theories for domains where abduction is an e�ective problem solvingstrategy, e.g. diagnostic problems. We can learn exceptions to classi�cationrules exploiting negation by default. Moreover, we can learn in domainsin which there is incompleteness of the available information, either in thebackground knowledge or in the training set. This is a very frequent case inpractice, because very often the data available is incomplete and/or noisy.We present the system LAP that solves the new learning problem. Thesystem is based on the theoretical work developed in [8, 11]. It is an ex-tension of a basic top-down algorithm adopted in ILP [3]. The extendedalgorithm takes into account abducibles and integrity constraints, and relieson the proof procedure de�ned in [9] for abductive logic programs. The keyidea is that the abductive proof procedure is used for the coverage processof positive and negative examples in substitution of the deductive proof pro-cedure of logic programming. Moreover, the abduced literals can be used asnew training data for learning de�nitions for the abducible predicates.The paper is organized as follows: in section 2 we recall the main con-cepts of Abductive Logic Programming (ALP), ILP, and the de�nition of2

the abductive learning framework. In section 3 we present the algorithm forlearning abductive rules. In section 4 we describe the application of the sys-tem to the problem of learning exceptions to rules. In section 5 we concludeand present the directions for future works.2 Abductive and Inductive Logic Program-ming2.1 Abductive Logic ProgrammingAn abductive logic program is a triple hP;A; ICi where:� P is a normal logic program;� A is a set of abducible predicates� IC is a set of integrity constraints in the form of denials, i.e.: A1; : : : ; Am; not Am+1; : : : ; not Am+n:Negation as Failure is replaced, in ALP, by Negation by Default and is ob-tained in this way: for each predicate symbol p, a new predicate symbol not pis added to the set A and the integrity constraint p(~X); not p(~X) is addedto IC, where ~X is a tuple of variables.Given an abductive program AT = hP;A; ICi and a formula G, thegoal of abduction is to �nd a (possibly minimal) set of ground atoms �(abductive explanation) of predicates in A which together with P entails G,i.e. P [� j= G. It is also required that the program P [� is consistent withrespect to IC, i.e. P [� j= IC. When there exist an abductive explanationfor G in AT , we say that AT abductively entails G and we write AT j=A G.In [9] a proof procedure for abductive logic programs has been de�ned.This procedure starts from a goal and results in a set of consistent hypoth-esis (abduced literals) that together with the program allow to derive thegoal. We have extended this proof procedure in order to allow for abduciblepredicates to have a partial de�nition. Some rules may be available for themand we can make assumptions about missing facts.3

2.2 Inductive Logic ProgrammingThe ILP problem can be de�ned as [3]:Given:a set P of possible programsa set E+ of positive examplesa set E� of negative examplesa consistent logic program B such thatB 6` e+ for at least one e+ 2 E+.Find:a logic program P 2 P such that8e+ 2 E+, B [P j= e+ (completeness)8e� 2 E�, B [P 6j= e� (consistency).Let us introduce some terminology. The sets E+ and E� are called trainingsets. The program P that we want to learn is the target program and thepredicates which are de�ned in it are target predicates. The program B iscalled background knowledge and contains the de�nitions of the predicatesthat are already known. We say that the program P covers an example eif P [B j= e. Therefore the conditions that the program P must satisfy inorder to be a solution to the ILP problem can be expressed as \P must coverall positive examples and must not cover any negative examples". The setP is called the hypothesis space. The importance of this set lies in the factthat it de�nes the search space of the ILP system. In order to be able toe�ectively learn a program, this space must be restricted as much as possible.If the space is too big, the search could result infeasible.The language bias (or simply bias in this paper) is a description of thehypothesis space. Many formalisms have been introduced in order to describethis space [3], we will consider only a very simple bias in the form of a set ofliterals which are allowed in the body of the clauses for the target predicates.2.3 The New Learning FrameworkWe consider a new de�nition of the learning problem similar to AbductiveConcept Learning (ACL) [7]. In this extended learning problem both thebackground and target theory are abductive theories and the notion of de-ductive coverage is replaced by abductive coverage.4

Givena set P of possible abductive programsa set of positive examples E+,a set of negative examples E�,an abductive theory AT = hT;A; ICi as background theory.FindA new abductive theory AT 0 = hT 0; A; ICi 2 P where T 0 � T such thatAT 0 j=A E+; not E�, where not E� = fnot e�je� 2 E�g.Given an example e, we say that AT 0 abductively entails e when AT 0 j=Ae. By requiring that the conjunction of the positive and the negation ofnegative examples is abductively entailed by the �nal theory, we ensure thatthe abductive explanations for di�erent examples are consistent with eachother.The abductive program that is learned can contain new rules (eventuallycontaining abducibles in the body) but not new abducible predicates andnew integrity constraints.3 An algorithm for Learning Abductive LogicProgramsWe present the system LAP that is able to learn abductive logic programs.The algorithm is obtained from the basic top-down ILP algorithm [3], bysubstituting the usual notion of coverage of examples with the notion ofabductive coverage.The basic top-down inductive algorithm [3] learns programs by generatingclauses one after the other and generates clauses by means of specialization.As the basic inductive algorithm, LAP is constituted by two nested loops:the covering loop (�gure 1) and the specialization loop (�gure 2). At eachiteration of the covering loop, a new clause is generated such that it coversat least one positive example and no negative ones. The positive examplescovered by the rule are removed from the training set and a new iteration ofthe covering loop is started. The algorithm ends when the positive trainingset becomes empty. The new clause is generated in the specialization loop:we start with a clause with an empty body, and we add a literal to the bodyuntil the clause does not cover any negative examples while still covering at5

procedure LAP(inputs : E+; E� : training sets,AT = hT;A; ICi : background abductive theory,outputs : H : learned theory, � : abduced literals)H := ;� := ;while E+ 6= ; do (covering loop)GenerateRule(input: AT;H;E+; E�;�; output: Rule; E+Rule;�Rule)Move to E+ all the positive literals of target predicates in �RuleMove to E� all the atoms corresponding tonegative literals of target predicates in �RuleE+ := E+ � E+RuleH := H [fRuleg� := � [�Ruleendwhileoutput H Figure 1: The covering loopprocedure GenerateRule(inputs : AT;E+; E�; H;�outputs : Rule : rule,E+Rule : positive examples covered by Rule,�Rule : abduced literalsSelect a predicate to be learned pLet Rule = p(X) true:repeat (specialization loop)select a literal L from the language biasadd L to the body of RuleTestCoverage(in: Rule; AT;H;E+; E�;�,out: E+Rule; E�Rule;�Rule)if E+Rule = ;backtrack to a di�erent choice for Luntil E�Rule = ;output Rule; E+Rule;�RuleFigure 2: The specialization loop6

procedure TestCoverage(inputs : Rule; AT;H;E+; E�;�outputs: E+Rule; E�Rule: examples covered by Rule�0 : new set of abduced literalsE+Rule = E�Rule = ;�in = �for each e+ 2 E+ doif AbductiveDerivation(e+ ; hT [H [fRuleg; A; ICi;�in;�out)succeeds then Add e+ to E+Rule; �in = �outendforfor each e� 2 E� doif AbductiveDerivation(not e�; hT [H [fRuleg; A; ICi;�in;�out)succeeds then �in = �outelse Add e� to E�Ruleendfor�Rule = �out ��output E+Rule; E�Rule;�RuleFigure 3: Coverage testing
7

least one positive. The basic top-down algorithm is extended in the followingrespects.First, in order to determine the positive examples E+Rule covered by thegenerated rule Rule (procedure TestCoverage in �gure 3), an abductivederivation is started for each positive example. This derivation results ina (possibly empty) set of abduced literals. We give as input to the abductiveprocedure also the set of literals abduced in the derivation of the previouslycovered examples. In this way, we ensure that the assumptions made duringthe derivation of the current example are consistent with the assumptionspreviously raised for covering other examples.Second, in order to check that no negative example is covered (E�Rule = ;in �gure 2) by the generated rule Rule, an abductive derivation is startedfor the default negation of each negative example (not e�). Also in thiscase, each derivation does not start with an empty set of abducibles, but itstarts from the set of abducibles previously assumed. The set of abduciblesis initialized to the empty set at the beginning of the computation and isgradually extended as it is passed on from derivation to derivation. This isdone throughout the whole learning process.Third, after the generation of each clause, the abduced literals of targetpredicates are added to the training set, so that they become new trainingexamples. For each positive abduced literal of the form abd(~c), the newpositive example abd(~c) is added to E+ set, while for each negative literalsof the form not abd(~c) the negative example abd(~c) is added to E�.In order to be able to learn exceptions to rules, we have to include anumber of predicates of the form not abnormi in the bias for the targetpredicates. In this way, when the current partial rule in the specializationloop still covers some negative examples and no other literal can be addedthat would make it consistent, the rule is specialized by adding the literalnot abnormi(~X) to its body. The negative examples previously covered areruled out by abducing for them facts of the form abnormi(e�), while thepositive examples will be covered by abducing the facts not abnormi(e+).These facts will then be added to the training set and will allow to learnrules for abnormi(X), thus resulting in a de�nition for the exceptions to thecurrent rule.In order to learn a de�nition for the exceptions, the predicates abnormihave to be considered as target predicates, and we have to de�ne a bias for8

them. Since we may have exceptions to exceptions, we may also include one1predicate of the form not abnormj(~X) in the bias for abnormi. Finally, foreach couple of abducible predicates abnormi; not abnormi we have to add tothe background knowledge the constraint abnormi(~X); not abnormi(~X):It is worth mentioning that the treatment of exceptions by means of theaddition of a non-abnormality literal to each rule is similar to the approachfor declarative debugging followed in [14]. In order to debug a logic program,they �rst transform it by adding a di�erent default literal to each rule. Theseliterals are then used as assumptions for the correctness of the rule, to bepossibly revised in the face of a wrong solution. The debugging algorithmidenti�es the assumptions that lead to the wrong solution, thus identifyingthe incorrect rules.4 ExampleIn this section, we show the behaviour of the system in the case of learningexceptions to classi�cation rules. The example is taken from [6].Let us consider the following background abductive theoryB = hP;A; ICiand training sets E+ and E�:P = fbird(X) penguin(X):penguin(X) superpenguin(X):bird(a): bird(b): penguin(c): penguin(d):superpenguin(e): superpenguin(f):gA = fabnorm1; abnorm2; not abnorm1; not abnorm2gIC =f abnorm1(X); not abnorm1(X): abnorm2(X); not abnorm2(X):g flies(X); not flies(X):gE+ = fflies(a); flies(b); flies(e); flies(f)gE� = fflies(c); flies(d)gMoreover, let the bias be2:1More than one if we have di�erent exceptions to di�erent rules.2For the sake of simplicity we avoid mentioning the abnormality predicates in the bias.9

flies(X) � where � � fsuperpenguin(X); penguin(X); bird(X);not abnorm1(X); not abnorm2(X)gabnorm1(X) � and abnorm2(X) � where� � fsuperpenguin(X); penguin(X); bird(X)gThe algorithm �rst generates the following rule (R1):flies(X) superpenguin(X):which covers flies(e) and flies(f) that are removed from E+. Then, in thespecialization loop, the rule flies(X) bird(X): (R2) is generated whichcovers all the remaining positive examples, but also the negative ones. In fact,the abductive derivations for not flies(c) and not flies(d) fail. Therefore,the rule must be further specialized by adding a new literal. The abducibleliteral not abnorm1 is added to the body of R2 obtaining R3:flies(X) bird(X); not abnorm1(X):Now, the abductive derivations for not flies(c) and not flies(d) succeedabducing fabnorm1(c); abnorm1(d)g while the derivations of the positive ex-amples flies(a) and flies(b) succeed abducingfnot abnorm1(a); not abnorm1(b)g.At this point, the system adds the abduced literals to the training set andtries to generalize them, by generating a rule for abnorm1. The positiveabduced literals for abnorm1 form the set E+, while the negative abducedliterals form the set E�. The resulting induced rule is (R4):abnorm1(X) penguin(X):No positive examples are now left in the training set therefore the algorithmends by producing the following abductive rules:flies(X) superpenguin(X): flies(X) bird(X); not abnorm1(X):abnorm1(X) penguin(X):A result similar to ours is obtained in [6], but exploiting \classical" negationand priority relations between rules rather than abduction. By integratinginduction and abduction, we can achieve greater generality with respect to[6].5 Conclusions and Future WorkWe have presented the system LAP for learning abductive logic programs.We consider an extended ILP problem in which both the background and tar-get theory are abductive theories and coverage by deduction is replaced with10

coverage by abduction. The target theory can contain new rules containingabducible predicates.LAP is obtained from the basic top-down algorithm of ILP by substi-tuting the coverage of examples using deduction with the coverage using anabductive proof procedure. LAP has been implemented in Sicstus Prolog3#3 and is able to learn abductive rules and rules with exceptions.In the future, we will extend the system in order to be able to learnfull abductive logic programs, comprehending also new integrity constraints.The integration of the algorithm with other systems for learning constraints,proposed in [10], seems very promising in this respect.References[1] H. Ad�e and M. Denecker. AILP: Abductive inductive logic programming. InProceedings of the 14th International Joint Conference on Arti�cial Intelli-gence, 1995.[2] M. Bain and S. Muggleton. Non-Monotonic Learning, chapter 7. AcademicPress, 1992.[3] F. Bergadano and D. Gunetti. Inductive Logic Programming. MIT press,1996.[4] F. Bergadano and D. Gunetti. Learning Logic Programs with Negation asFailure. In Advances in Inductive Logic Programming. IOS Press, 1996.[5] M. Denecker, L. De Raedt, P. Flach, and A. Kakas, editors. Proceedings ofECAI96 Workshop on Abductive and Inductive Reasoning. Catholic Univer-sity of Leuven, 1996.[6] Y. Dimopoulos and A. Kakas. Learning Non-monotonic Logic Programs:Learning Exceptions. In Proceedings of the 8th European Conference on Ma-chine Learning, 1995.[7] Y. Dimopoulos and A. Kakas. Abduction and learning. In Advances in In-ductive Logic Programming. IOS Press, 1996.[8] F. Esposito, E. Lamma, D. Malerba, P. Mello, M. Milano, F. Riguzzi, andG. Semeraro. Learning abductive logic programs. In Denecker et al. [5].11

[9] A.C. Kakas and P. Mancarella. On the relation between truth maintenanceand abduction. In Proceedings of the 2nd Paci�c Rim International Confer-ence on Arti�cial Intelligence, 1990.[10] A.C. Kakas and F. Riguzzi. Learning with abduction. In Proceedings of the7th International Workshop on Inductive Logic Programming, 1997.[11] E. Lamma, P. Mello, M. Milano, and F. Riguzzi. Integrating Induction andAbduction in Logic Programming. In P. P. Wang, editor, Prooceedings of theThird Joint Conference on Information Sciences, volume 2, pages 203{206,1997.[12] E. Lamma, P. Mello, M. Milano, and F. Riguzzi. Introducing Abduction into(Extensional) Inductive Logic Programming Systems. In Proceedings of the5th Congress of the Italian Association for Arti�cial Intelligence, 1997.[13] L. Martin and C. Vrain. A three-valued framework for the induction of generallogic programs. In Advances in Inductive Logic Programming. IOS Press,1996.[14] L. M. Pereira, C. V. Viegas, and J. J. Alferes. Diagnosis and debugging ascontradiction removal. In L. M. Pereira and A. Nerode, editors, Proceedings ofthe 2nd International Workshop on Logic Programming and Non-monotonicReasoning, pages 316{330. MIT Press, 1993.
12

