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Abstract. In this work we propose an approach for the automatic di-
scovery of logic-based models starting from a set of process execution
traces. The approach is based on a modified Inductive Logic Program-
ming algorithm, capable of learning a set of declarative rules.
The advantage of using a declarative description is twofold. First, the
process is represented in an intuitive and easily readable way; second,
a family of proof procedures associated to the chosen language can be
used to support the monitoring and management of processes (confor-
mance testing, properties verification and interoperability checking, in
particular).
The approach consists in first learning integrity constraints expressed as
logical formulas and then translating them into a declarative graphical
language named DecSerFlow.
We demonstrate the viability of the approach by applying it to a real
dataset from a health case process and to an artificial dataset from an
e-commerce protocol.

Topics: Process mining, Process verification and validation, Logic Program-
ming, DecSerFlow, Careflow.

1 Introduction

In recent years, many different proposals have been developed for mining pro-
cess models from execution traces (e.g. [1, 18, 9]). All these approaches aim at
discovering complex and procedural process models, and differ by the common
structural patterns they are able to mine. While recognizing the extreme im-
portance of such approaches, we advocate the necessity of discovering also de-
clarative logic-based knowledge, in the form of process fragments or business
rules/policies, from execution traces.

By following this approach, we do not mine a complete process model, but
rather discover a set of common declarative patterns and constraints. Being



declarative, this information captures what is the high-level process behavior
without expressing how it is procedurally executed, hence giving a concise and
easily interpretable feedback to the business manager. The importance of adop-
ting a declarative approach rather than an imperative one to model service flows
and, more generally, business processes, has been recently pointed out in very
interesting and promising works and proposals, such as ConDec [16] and Dec-
SerFlow [17].

In this work we propose an approach for the automatic discovery of rule-based
declarative models starting from a set of process execution traces, previously
labeled as compliant or not. Learning a process model from both compliant and
non compliant traces is not commonly considered in the literature on process
mining but it is interesting in a variety of cases: for example, a bank may divide
its transactions into fraudulent and normal ones and may desire to learn a model
that is able to discriminate the two. In general, an organization may have two
or more sets of process executions and may want to understand in what sense
they differ.

As the target language, we choose SCIFF [4, 3], a declarative language based
on computational logic and abductive logic programming in particular, which
was originally developed for the specification and verification of global interac-
tion protocols. SCIFF models interaction patterns as forward rules which state
what is expected to be performed when a given condition, expressed in terms of
already performed activities, holds.

An important advantage of adopting a logic programming representation is
that it is possible to exploit the techniques developed in the field of Inductive
Logic Programming (ILP for short) [12] for learning models from examples and
background knowledge; in fact, the system ICL [8] has been adapted to the
problem of learning SCIFF constraints [11].

There are two reasons for using a SCIFF description. First, the process is
represented in an intuitive and easily readable way; second, a family of proof
procedures associated to SCIFF can be used to support the monitoring and
management of processes [2] (conformance testing, properties verification and
interoperability checking in particular).

Moreover, we present an approach for translating the learned SCIFF descrip-
tion into a DecSerFlow/ConDec model. We call the resulting system DecMiner.

We demonstrate the viability of the approach by applying it to a real dataset
from a health care process and to an artificial dataset from an e-commerce
protocol.

The paper is organized as follows. Section 2 briefly introduces the SCIFF
framework. Section 3 is devoted to presenting preliminaries on ILP, on the ICL
algorithm and on how it can be used to learn SCIFF constraints. Section 4
introduces the basic concepts of DecSerFlow and shows how the learned SCIFF
constraints can be interpreted as a DecSerFlow model. Section 5 describes the
experiments performed for validating the approach. Section 6 presents related
works and, finally, Section 7 concludes the paper and presents directions for
future work.



2 An Overview of the SCIFF Framework

The SCIFF framework [4, 3] was originally developed for the specification and
verification of agent interaction protocols within open and heterogeneous socie-
ties. The framework is based on abduction, a reasoning paradigm which allows
to formulate hypotheses (called abducibles) accounting for observations. In most
abductive frameworks, integrity constraints are imposed over possible hypothe-
ses in order to prevent inconsistent explanations. SCIFF considers a set of inte-
racting peers as an open society, formalizing interaction protocols by means of
a set of global rules which constrain the external and observable behaviour of
participants (for this reason, global rules are called Social Integrity Constraints).

To represent that an event ev happened (i.e., an atomic activity has been
executed) at a certain time T , SCIFF uses the symbol H(ev, T ), where ev is a
term and T is a variable. Hence, an execution trace is modeled as a set of happe-
ned events. For example, we could formalize that bob has performed activity a at
time 5 as follows: H(a(bob), 5). Furthermore, SCIFF introduces the concept of
expectation, which plays a key role when defining global interaction protocols,
choreographies, and more in general event-driven process. It is quite natural, in
fact, to think of a process in terms of rules of the form: “if A happened, then
B is expected to happen”. Positive (resp. negative) expectations are denoted by
E(ev, T ) (resp. EN(ev, T )), meaning that ev is expected (resp. not expected) to
happen at time T . To satisfy a positive (resp. negative) expectation an execution
trace must contain (resp. not contain) a matching happened event.

Social Integrity Constraints (ICs for short) are forward rules of the form
body → head, where body can contain literals and happened events, and head

contains a disjunction of conjunctions of expectations and literals.
In this paper, we consider a syntax of ICs that is a subset of the one in [4, 3].

In this simplified syntax, a Social Integrity Constraint, C, is a logical formula of
the form

Body → DisjE1 ∨ . . . ∨DisjEn ∨DisjEN1 ∨ . . . ∨DisjENm (1)

We will use Body(C) to indicate Body and Head(C) to indicate DisjE1 ∨ . . .∨
DisjEn∨DisjEN1 ∨ . . .∨DisjENm. Body is of the form b1∧ . . .∧ bl where the
bi are literals. Some of the literals may be of the form H(ev, T ) meaning that
event ev has happened at time T .

DisjEj is a formula of the form E(ev, T )∧ d1 ∧ . . .∧ dk where ev is an event
and di are literals. All the formulas DisjEj in Head(C) will be called positive
disjuncts.

DisjENj is a formula of the form EN(ev, T ) ∧ d1 ∧ . . . ∧ dk where ev is an
event and di are literals. All the formulas DisjENj in Head(C) will be called
negative disjuncts.

The literals bi and di refer to predicates defined in a SCIFF knowledge base.
Variables in common to Body(C) and Head(C) are universally quantified (∀)
with scope the whole IC. Variables occurring only in DisjEj literals are exi-
stentially quantified (∃) with scope the DisjEj literal itself. Variables occurring



only in DisjENj literals are universally quantified (∀) with scope the DisjENj

literal itself. An example of an IC is

H(a(bob), T ) ∧ T < 10

→E(b(alice), T1) ∧ T < T1 ∨

EN(c(mary), T1) ∧ T < T1 ∧ T1 < T + 10

(2)

The interpretation of an IC is the following: if there exists a substitution of
variables such that the body is true in an interpretation representing a trace, then
one of the disjuncts in the head must be true. A disjunct of the form DisjE

means that we expect event ev to happen with T and its variables satisfying
d1 ∧ . . . ∧ dk. Therefore DisjE is true if there exist a substitution of variables
occurring in DisjE such that ev is present in the trace.

A disjunct of the form DisjEN means that we expect event ev not to happen
with T and its variables satisfying d1 ∧ . . .∧ dk. Therefore DisjEN is true if for
all substitutions of variables occurring in DisjEN and not appearing in Body

either ev does not happen or, if it happens, its properties violate d1 ∧ . . . ∧ dk.
The meaning of the IC (2) is the following: if bob has executed action a at

a time T < 10, then we expect alice to execute action b at some time T1 later
than T (∃T1) or we expect that mary does not execute action c at any time T1
(∀T1) within 9 time units after T .

3 Learning Models

This work starts from the idea that there is a similarity between learning a
SCIFF theory, composed by a set of Social Integrity Constraints, and learning a
clausal theory as described in the learning from interpretation setting of Induc-
tive Logic Programming [12]. In fact, as a SCIFF theory, a clausal theory can
be used to classify a set of atoms (i.e. an interpretation) by returning positive
unless there is at least one clause that is false in the interpretation.

A clause C is a formula in the form b1 ∧ · · · ∧ bn → h1 ∨ · · · ∨hm where bi are
logical literals and hi are logical atoms. A formula is ground if it does not contain
variables. An interpretation is a set of ground atoms. Let us define head(C) =
{h1, . . . , hm} and body(C) = {b1, . . . , bn}. Sometimes we will interpret clause C

as the set of literals {h1, . . . , hm,¬b1, . . . ,¬bn}.
The clause C is true in an interpretation I iff, for all the substitutions θ

grounding C, (I |= body(C)θ)→ (head(C)θ ∩ I 6= ∅). Otherwise, it is false.
Sometimes we may be given a background knowledge B with which we can

enlarge each interpretation I by considering, instead of simply I, the interpreta-
tion given by M(B∪ I) where M stands for a model, such as Clark’s completion
[7]. By using a background knowledge we are able to encode each interpretation
parsimoniously, by storing separately the rules that are not specific to a single
interpretation but are true for every interpretation.

The learning from interpretation setting of ILP is concerned with the follo-
wing problem:
Given:



– a space of possible clausal theories H;

– a set P of positive interpretations;

– a set N of negative interpretations;

– a definite clause background theory B.

Find a clausal theory H ∈ H such that;

– for all p ∈ P , H is true in the interpretation M(B ∪ p);

– for all n ∈ N , H is false in the interpretation M(B ∪ n).

Given a disjunctive clause C (theory H) we say that C (H) covers the inter-
pretation I iff C (H) is true in M(B ∪ I). We say that C (H) rules out an
interpretation I iff C (H) does not cover I.

An algorithm that solves the above problem is ICL [8]. It performs a covering
loop (function Learn, Figure 1) in which negative interpretations are progressi-
vely ruled out and removed from the set N . At each iteration of the loop a new
clause is added to the theory. Each clause rules out some negative interpreta-
tions. The loop ends when N is empty or when no clause is found.

function Learn(P, N, B)
initialize H := ∅
do

C := FindBestClause(P, N, B)
if best clause C 6= ∅ then

add C to H

remove from N all interpretations that are false for C

while C 6= ∅ and N is not empty
return H

function FindBestClause(P, N, B)
initialize Beam := {false← true}
initialize BestClause := ∅
while Beam is not empty do

initialize NewBeam := ∅
for each clause C in Beam do

for each refinement Ref of C do
if Ref is better than BestClause then BestClause := Ref
if Ref is not to be pruned then

add Ref to NewBeam

if size of NewBeam > MaxBeamSize then
remove worst clause from NewBeam

Beam := NewBeam

return BestClause

Fig. 1. ICL learning algorithm



The clause to be added in every iteration of the covering loop is returned by
the procedure FindBestClause (Figure 1). It looks for a clause by using beam
search with p(⊖|C) as a heuristic function, where p(⊖|C) is the probability that
an example interpretation is classified as negative given that it is ruled out by
the clause C. This heuristic is computed as the number of ruled out negative
interpretations over the total number of ruled out interpretations (positive and
negative). Thus we look for clauses that cover as many positive interpretations
as possible and rule out as many negative interpretations as possible. The search
starts from the clause false← true that rules out all the negative interpretations
but also all the positive ones and gradually refines that clause in order to make
it more general.

The generality order that is used is the θ-subsumption order: C is more
general than D (written C ≥ D) if there exist a substitution θ such that Dθ ⊆ C.
If C ≥ D then the set of interpretation where C is true is a superset of those
where D is true. The same is true if D ⊆ C. Thus the clauses in the beam can
be gradually refined by adding literals to the body and atoms to the head. For
example, let us consider the following clauses:

C = accept(X) ∨ refusal(X)← invitation(X)

D = accept(X) ∨ refusal(X)← true

E = accept(X)← invitation(X)

Then C is more general than D and E, while D and E are not comparable.

The aim of FindBestClause is to discover a clause that covers all (or most of)
the positive interpretations while still ruling out some negative interpretations.

The literals that can possibly be added to a clause are specified in the lan-
guage bias, a collection of statements in an ad hoc language that prescribe which
refinements have to be considered. Two languages are possible for ICL: dlab and
rmode (see [10] for details). Given a language bias which prescribes that the
body literals must be chosen among {invitation(X), paptest(X)} and that the
head disjuncts must be chosen among {accept(X), refusal(X)}, an example of
refinements sequence performed by FindBestClause is the following:

false← true

accept(X)← true

accept(X)← invitation(X)

accept(X) ∨ refusal(X)← invitation(X)

The refinements of clauses in the beam can also be pruned: a refinement is
pruned if it cannot produce a value of the heuristic function higher than that
of the best clause (the best refinement that can be obtained is a clause that
covers all the positive examples and rules out the same negative examples as the
original clause).

When a new clause is returned by FindBestClause it is added to the current
theory. The negative interpretations that are ruled out by the clause are ruled
out as well by the updated theory, so they can be removed from N .



3.1 Application of ICL to Integrity Constraint Learning

An approach to applying ICL for learning ICs is described in [11]. Each IC is
seen as a clause that must be true in all the positive interpretations (compliant
execution traces) and false in some negative interpretation (non compliant exe-
cution traces). The theory composed of all the ICs must be such that all the ICs
are true when considering a compliant trace and at least one IC is false when
considering a non compliant one.

In order to apply ICL, a generality order and a refinement operator for ICs
must be defined. The generality order is the following: an IC C is more general
than an IC D (written C ≥ D) if there exists a substitution θ for the variables
of body(D) such that body(D)θ ⊆ body(C) and, for each disjunct d in the head
of D:

– if d is positive, then there exist a positive disjunct c in the head of C such
that dθ ⊇ c

– if d is negative, then there exist a negative disjunct c in the head of C such
that dθ ⊆ c

For example, the IC
H(invitation, T ) ∧H(accept, T3)→ E(papTest, T1) ∧ T1 > T ∨

E(refusal, T2) ∧ T2 > T

is more general than
H(invitation, T ) ∧H(accept, T3)→ E(papTest, T1) ∧ T1 > T

which in turn is more general than
H(invitation, T )→ E(papTest, T1) ∧ T1 > T

Moreover
H(invitation, T )→ E(papTest, T1) ∨E(refusal, T2)

is more general than
H(invitation, T )→ E(papTest, T1) ∨E(refusal, T2) ∧ T2 > T

and
H(sendPapTestResult(neg), T )→ EN(papTest, T1) ∧ T1 > T

is more general than
H(sendPapTestResult(neg), T )→ EN(papTest, T1)

A refinement operator can be obtained in the following way: given an IC C,
obtain a refinement D by:

– adding a literal to the body;
– adding a disjunct to the head;
– removing a literal from a positive disjunct in the head;
– adding a literal to a negative disjunct in the head.

The language bias specifies which literals can be added to the body, which di-
sjuncts can be added to the head and which literals can be added or removed
from head disjuncts.

When adding a disjunct to the head, the refinement operator behaves diffe-
rently depending on the sign of the disjunct:



– in the case of a positive disjunct, the disjunct formed by the E literal plus
all the literals in the language bias for the disjunct is added;

– in the case of a negative disjunct, only the EN literal is added.

Given an IC C, the refinement operator returns a set of ICs ρ(C) that contains
the ICs obtained by applying in all possible ways one of the above mentioned
operations. Every IC of ρ(C) is more general than C.

4 From SCIFF Integrity Constraints to DecSerFlow

The meaning of the learned SCIFF Integrity Constraints is very close to the one
of various DecSerFlow relation formulas [17]. We therefore tackled the problem
of translating a DecSerFlow model into a set of ICs and vice-versa, with the aim
of integrating the advantages of both approaches:

– DecSerFlow represents a process model in a declarative and user-friendly
graphical notation;

– SCIFF Integrity Constraints are declarative intuitive rules easy to read by
humans;

– DecSerFlow has a mapping to LTL and hence could be used to perform
monitoring functionalities or to directly enact the model;

– the SCIFF framework associates to the SCIFF language a family of proof
procedures capable of performing conformance testing, properties verifica-
tion and interoperability checking.

DecSerFlow is briefly described in Section 4.1 giving an intuition about the
translation from a DecSerFlow model to the SCIFF formalism as addressed in
[6]. We then describe in Section 4.2 how we can learn DecSerFlow constraints
from labeled traces.

4.1 DecSerFlow: a brief recap

DecSerFlow is a graphical language that adopts a declarative style of modeling:
the user does not specify possible process flows but only a set of constraints
(namely policies or business rules) among activities. For a detailed description
of the language and its mapping to Linear Temporal Logic, see [17].

To illustrate the advantages of declarative modeling, the authors consider
the problem of specifying that two different activities should not be executed
together (i.e. it is possible to execute the first or the latter activity multiple
times, but the two activities exclude each other). A procedural language is not
able to directly represent the requirement and must explicitly represent all the
possible executions (see Figure 2), leading to some problems:

– the process becomes over-specified;
– the modeler must introduce decision points to handle the possible executions,

but it is not clear how and when these decisions should be evaluated.



Instead, by using a declarative language such as DecSerFlow, forbidding the
coexistence of two activities A and B may be expressed by a special edge between
the two nodes representing A and B. This will be translated into the simple LTL
formula: ¬(⋄A ∧ ⋄B).

A B? AB ??
procedural language DecSerFlow

Fig. 2. Procedural vs. declarative approach when modeling the not coexistence between
two activities.

As shown in Figure 2, the basic intuitive concepts of DecSerFlow are: activi-
ties, atomic units of work; constraints among activities, to model policies/business
rules and constrain their execution.

Constraints are given as relationships between two (or more) activities. Each
constraint is then expressed as an LTL formula, hence the name “formulas” to
indicate DecSerFlow relationships.

DecSerFlow core relationships are grouped into three families:

– existence formulas, unary relationships used to constrain the cardinality of
activities

– relation formulas, which define (positive) relationships and dependencies bet-
ween two (or more) activities;

– negation formulas, the negated version of relation formulas (as in SCIFF,
DecSerFlow follows an open approach i.e. the model should express not only
what has to be done but also what is forbidden).

The intended meaning of DecSerFlow formulas can be expressed by using
SCIFF. In [6], the authors propose a translation by mapping atomic DecSerFlow
activities to SCIFF events and formulas to corresponding integrity constraints.

For example, let us consider the succession formula among two whatsoever
activities A and B: it states that every execution of A should be followed by
the execution of B and each B should be preceded by A, i.e. that B is response
of A and, in turn, A is precedence of B. This formula could be translated as
follows. First, the succession between activities is mapped to the response and
precedence formulas, as described above; the response and precedence formulas
are then both formalized by using a specific integrity constraint. In particular,
the response formula between A and B is mapped to

H(A, TA)→ E(B, TB) ∧ TB > TA. (3)



while the precedence formula between B and A is mapped to

H(B, TB)→ E(A, TA) ∧ TA < TB . (4)

4.2 Learning DecSerFlow Models

In order to learn DecSerFlow models, we first learn SCIFF ICs and then ma-
nually translate them into DecSerFlow constraints using the equivalences di-
scussed in the previous section. We call the system implementing this approach
DecMiner.

We decided to use SCIFF as intermediate language instead of LTL because
it can handle times and data in an explicit and quantitative way, exploiting
Constraint Logic Programming to define temporal and data-related constraints.
This is useful to deal with many processes as, for example, the Screening and
NetBill ones described in details in Section 5. Moreover it allows to think about
how to extend DecSerFlow to explicitly consider time and data. However, at the
moment, SCIFF does not support model enactment and we are working on an
extension of the SCIFF proof procedure capable of dealing with it.

To ease the translation, we provide ICL with a language bias ensuring that
the learned ICs can be translated into DecSerFlow.

Thus the language bias takes the form of a set of templates that are couples
(BS,HS): BS is a set that contains the literals that can be added to the body
and HS is a set that contains the disjuncts that can be added to the head. Each
element of HB is a couple (Sign, Literals) where Sign is either + for a positive
disjunct or - for a negative disjunct, and Literals contains the literals that can
appear in the disjunct. We will have a set of templates for each DecSerFlow
constraint, where each template in the set is an application of the constraint to
a set of activities.

5 Experiments

The experiments have been performed over a real dataset and an artificial da-
taset. The real dataset regards a health care process while the artificial dataset
regards an e-commerce protocol.

5.1 Cervical Cancer Screening Careflow and Log

As a case study for exploiting the potentialities of our approach we choose the
process of cervical cancer screening [5] proposed by the sanitary organization
of the Emilia Romagna region of Italy. Cervical cancer is a disease in which
malignant (cancer) cells form in the tissues of the cervix of the uterus. The
screening program proposes several tests in order to early detect and treat cervi-
cal cancer. It is usually composed by five phases: Screening planning; Invitation
management; First level test with pap-test; Second level test with colposcopy,
and eventually biopsy. The process is composed by 16 activities.



To perform our experiments we collected 157 traces from a database of an
Italian cervical cancer screening center. All the 157 traces have been analyzed by
a domain expert and labeled as compliant or non compliant with respect to the
cervical cancer screening protocol adopted by the screening center. The traces
classified as compliant were 55 over 157.

Each event trace was then adapted to the format required by the ICL al-
gorithm, transforming each trace into an interpretation. For this preliminary
study, we considered only the performed activities (without taking into account
originators and other parameters, except from the posted examinations results);
furthermore, we use sequence numbers rather than actual execution times.

An example of an interpretation is the following:

begin(model(m1)).

H(invitation,1).

H(refusal,2).

end(model(m1)).

5.2 NetBill

NetBill is a security and transaction protocol optimized for the selling and deli-
very of low-priced information goods, such as software or journal articles, across
the Internet. The protocols involves three parties: the customer, the merchant
and the NetBill server. It is composed of two phases: negotiation and transac-
tion. In the negotiation phase, the customer requests a price for a good from
the merchant, the merchant propose a price for the good and the customer can
accept the offer, refuse it or make another request to the merchant, thus initia-
ting a new negotiation. The transaction phase starts if the customer accepts the
offer: the merchant delivers the good to the customer encrypted with key K;
the customer creates an electronic purchase order (EPO) that is countersigned
by the merchant that add also the value of K and send the EPO to the NetBill
server; the NetBill server checks the EPO and if customer’s account contains
enough funds it transfers the price to the merchant’s account and sends a signed
receipt that includes the value K to the merchant; the merchant records the
receipt and forwards it to the customer (who can then decrypt her encrypted
goods).

The NetBill protocol is represented using 19 ICs [13]. One of them is

H(request(C,M, good(G,Q), Nneg, Trq))∧

H(present(M,C, good(G,Q), Nneg, Tp)) ∧ Trq ≤ Tp

→E(accept(C,M, good(G,Q)), Ta) ∧ Tp ≤ Ta ∨

E(refuse(C,M, good(G,Q)), T rf) ∧ Tp ≤ Trf ∨

E(request(C,M, good(G,Qrql), Nnegl), T rql) ∧ Tp ≤ Trql

(5)

This IC states that if there has been a request from the customer to the merchant
and the merchant has answered with the same price, then the customer should
either accept the offer, refuse the offer or start a new negotiation with a request.



The traces have been generated randomly in two stages: first the negotiation
phase is generated and then the transaction phase. In the negotiation phase, we
add to the end of the trace a request or present message with its arguments
randomly generated with two possible values for Q (quote). The length of the
negotiation phase is selected randomly between 2 and 5. After the completion of
the negotiation phase, either an accept or a refuse message is added to the trace
and the transaction phase is entered with probability 4/5, otherwise the trace is
closed. In the transaction phase, the messages deliver, epo, epo and key, receipt
and receipt client are added to the trace. With probability 1/4 a message from
the whole trace is then removed. Once a trace has been generated, it is classified
with the ICs of the correct model and assigned to the set of compliant or non
compliant traces depending on the result of the test. The process is repeated
until 2000 compliant traces and 2000 non compliant traces have been generated.

5.3 Results

Five experiments have been performed for the screening and the NetBill pro-
cesses. For the screening process, five folds cross validation was used, i.e., the
dataset was divided into 5 sets and in each experiment 4 were used for training
and the remaining for testing. For NetBill, the training and testing set were ge-
nerated with the procedure sketched above with different seeds for the random
function for each experiments.

DecMiner, the α-algorithm [19] and the Multi-Phase Mining approach [20]
have been applied in each experiment. The α-algorithm is one of the first process
mining algorithms and it induces Petri nets. The Multi-Phase (MP) mining
algorithm can be used to construct an Event-driven Process Chain (EPC) that
can be also translated in a Petri net. We used the implementation of these
algorithms available in the ProM suite [14]. Since the α-algorithm and the Multi-
Phase miner take as input a single set of traces, we have provided them with the
compliant traces only.

Table 1. Results of the experiments.

Experiment DecMiner α algorithm MP algorithm

Screening 97.44% 96.15% 94.89%

NetBill 96.11% 66.81% 60.52%

The average accuracy of each algorithm is reported in Table 1. The accuracy
is defined as the number of compliant traces that are correctly classified as
compliant by the learned model plus the number of non compliant traces that
are correctly classified as not compliant by the learned model divided by the total
number of traces. Compliance of an execution trace with respect to a learned
Petri net has been evaluated by using the Conformance checker ProM plug-in.



The average time taken by DecMiner are 2 minutes for Screening and 6.5
hours for NetBill on a Athlon XP64 1.80 GHz machine. The average times taken
by the α-algorithm and the MP miner are under one minute for both datasets.

5.4 Mapping the Learned ICs to DecSerFlow

In order to illustrate the behavior of the approach for inducing DecSerFlow
constraints, we report in this Section the ICs learned from the screening dataset
together with their translation into DecSerFlow constraints.

Running DecMiner on the screening dataset, we obtained the following ICs:

true

→E(examExecution(papTest), A) ∨E(refusal, B)
(IC1)

(IC1) states that there must be a pap test execution or a refusal.

H(resultPosting(positive, papTest), A)

→E(examExecution(colposcopy), B)
(IC2)

(IC2) states that if there is a positive pap test then there must be also a colpo-
scopy.

H(examExecution(papTest), A)

→E(invitation,B) ∧ prec(B,A)
(IC3)

(IC3) states that a pap-test execution must be immediately preceeded by an
invitation.

H(resultPosting(doubtful, colposcopy), A)

→E(examExecution(biopsy,B) ∧ less(A,B)
(IC4)

(IC4) states that a biopsy should be executed after a doubtful colposcopy.
The predicates less(A,B) and prec(A,B) are defined in the background kno-

wledge as follows:
less(A,B)← A < B − 1.

prec(A,B)← A is B − 1.

The ICs have been mapped into DecSerFlow constraints in the following way:

– IC1 is translated into a mutual substitution constraint between examExec-
ution(papTest) and refusal.

– IC2 is translated into a responded presence constraint between resultPo-
sting(positive,papTest) and examExecution(colposcopy).

– IC3 is translated into a chain precedence constraint between invitation and
examExecution(papTest) meaning that examExecution(papTest) must be im-
mediately preceeded by invitation.

– IC4 is translated into a response constraint between resultPosting(doubt
ful , colposcopy) and examExecution(biopsy).

The resulting DecSerFlow model is shown in Figure 3.
In the future we plan to automate this translation process. This will require

an appropriate tuning of the language bias in order to learn constraints very
close to the form of the template constraints used in [6].



examExecution(papTest ) refusalresultPosting(pos it ive , papTest ) examExecution(co lposcopy)
invitation

resultPosting(doubtful,co lposcopy ) examExecution(biopsy )
IC1IC2

IC3
IC4

Fig. 3. The DecSerFlow representation of the ICs learned from the event log

6 Related works

[1] introduced the idea of applying process mining to workflow management. The
authors propose an approach for inducing a process representation in the form
of a directed graph encoding the precedence relationships.

[19] presents the α-algorithm for inducing Petri nets from data and identifies
for which class of models the approach is guaranteed to work. The α-algorithm is
based on the discovery of binary relations in the log, such as the follows relation.

In [20] the authors describe an algorithm which derives causal dependencies
between activities and use them for constructing instance graphs, presented in
terms of Event-driven Process Chains (EPCs).

[9] is a recent work where a process model is induced in the form of a di-
sjunction of special graphs called workflow schemes.

We differ from all of these works in three respects. First, we learn from com-
pliant and non compliant traces, rather than from compliant traces only. Second,
we use a representation that is declarative rather than procedural as Petri nets
are, without sacrificing expressivity. For example, the SCIFF language supports
conjunction of happened events in the body, to model complex triggering condi-
tions, as well as disjunctive expectations in the head. Third, our language is able
to model and reason upon data, by exploiting either the underlying Constraints
Solver or the Prolog inference engine.

In [15] the authors use an extension of the Event Calculus (EC) of Kowalski
and Sergot to declaratively model event based requirements specifications. The
choice of EC is motivated by both practical and formal needs, that are shared by
our approach. In particular, in contrast to pure state-transition representations,
both the EC and SCIFF representations include an explicit time structure and
are very close to most event-based specifications. Moreover they allows us to use
the same logical foundation for verification at both design time and runtime [2].



In this paper, however, our emphasis is about the learning of the model, instead
of the verification issue. We deal with time by using suitable CLP constraints on
finite domains, while they use a temporal formalism based on Event Calculus.

We are aware that the temporal framework we use is less expressive than
EC, but we think that it is enough powerful for our goals and is a good trade
off between expressiveness and efficiency.

7 Conclusions

In this work we presented the result of our research activity aimed at proposing
a methodology for analyzing a log containing several traces labeled as compliant
or not compliant. From them we learn a SCIFF theory, containing a minimal
set of constraints able to accurately classify a new trace.

The proposed methodology is based on Inductive Logic Programming and, in
particular, on the ICL algorithm. Such an algorithm is adapted to the problem
of learning integrity constraints in the SCIFF language. By considering not only
compliant traces, but also non compliant ones, our approach is able to learn a
model which expresses not only what should be done, but also what is forbidden.

Furthermore, the learned SCIFF formulas can be translated into DecSerFlow
constraints. We called the resulting system DecMiner.

In order to test the proposed methodology, we performed a number of ex-
periments on two dataset: a cervical cancer screening log and an e-commerce
log. The accuracy of DecMiner was compared with the one of the α-algorithm.
Moreover, the ICs learned from the screening dataset are shown together with
their translation into DecSerFlow.

In the future, we plan to make the translation from the SCIFF formalism
into the DecSerFlow one automatic. Moreover, we plan to consider explicitly
activity originators and the actual execution time of each event (for example
represented as the number of days from the 1st of January 1970) in order to
learn constraints which involve also deadlines. Finally, we will investigate the
effect of noise on DecMiner, by studying the effect of misclassified examples.

Acknowledgments This work has been partially supported by NOEMALIFE un-
der the “SPRING” regional PRRITT project, by the PRIN 2005 project “Speci-
fication and verification of agent interaction protocols” and by the FIRB project
“TOCAI.IT”.

References

1. R. Agrawal, D. Gunopulos, and F. Leymann. Mining process models from workflow
logs. In Proceedings of the 6th International Conference on Extending Database
Technology, EDBT’98, volume 1377 of LNCS, pages 469–483. Springer, 1998.

2. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, M. Montali, S. Storari,
and P. Torroni. Computational logic for run-time verification of web services cho-
reographies: Exploiting the ocs-si tool. In Third International Workshop on Web
Services and Formal Methods, volume 4184 of LNCS, pages 58–72. Springer, 2006.



3. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Ve-
rifiable agent interaction in abductive logic programming: the SCIFF framework.
ACM Transactions on Computational Logics, 2007. Accepted for publication.

4. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. An abductive
interpretation for open societies. In 8th Congress of the Italian Association for
Artificial Intelligence (AI*IA 2003), volume 2829 of LNAI. Springer Verlag, 2003.

5. Cervical cancer screening web site. Available at:
http://www.cancer.gov/cancertopics/pdq/screening/cervical/healthprofessional.

6. F. Chesani, P. Mello, M. Montali, and S. Storari. Towards a decserflow declara-
tive semantics based on computational logic. Technical Report DEIS-LIA-07-002,
DEIS, Bologna, Italy, 2007.

7. K. L. Clark. Negation as failure. In Logic and Databases. Plenum Press, 1978.
8. L. De Raedt and W. Van Laer. Inductive constraint logic. In Proceedings of the

6th Conference on Algorithmic Learning Theory, volume 997 of LNAI. Springer
Verlag, 1995.

9. G. Greco, A. Guzzo, L. Pontieri, and D. Saccà. Discovering expressive process
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