
1 COOPERATION OF ABDUCTION

AND INDUCTION IN LOGIC

PROGRAMMING

Evelina Lamma, Paola Mello, Fabrizio

Riguzzi, Floriana Esposito, Stefano Ferilli, and Giovanni Semeraro

1.1 INTRODUCTION

This paper proposes an approach for the cooperation of abduction and induc-

tion in the context of Logic Programming. We do not take a stance on the

debate on the nature of abduction and induction (see Flach and Kakas, this

volume), rather we assume the de�nitions that are given in Abductive Logic

Programming (ALP) and Inductive Logic Programming (ILP).

We present an algorithm where abduction helps induction by generating

atomic hypotheses that can be used as new training examples or for com-

pleting an incomplete background knowledge. Induction helps abduction by

generalizing abductive explanations.

A number of approaches for the cooperation of abduction and induction are

presented in this volume (e.g., by Abe, Sakama, Inoue and Haneda, Mooney).

Even if these approaches have been developed independently, they show re-

markable similarities, leading one to think that there is a \natural way" for

the integration of the two inference processes, as it has been pointed out in the

introductory chapter by Flach and Kakas.

The algorithm solves a new learning problem where background and target

theory are abductive theories, and abductive derivability is used as the example

coverage relation. The algorithm is an extension of a basic top-down algorithm

adopted in ILP (Bergadano and Gunetti, 1996) where the proof procedure
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de�ned in (Kakas and Mancarella, 1990) for abductive logic programs is used

for testing the coverage of examples in substitution of the deductive proof

procedure of Logic Programming.

The algorithm has been implemented in a system called LAP (Lamma et al.,

1997) by using Sicstus Prolog 3#5. The code of the system and some of the

examples shown in the paper are available at

http://www-lia.deis.unibo.it/Software/LAP/

We also discuss how to learn abductive theories: we show that, in case of

complete knowledge, the rule part of an abductive theory can be also learned

without abduction. Abduction is not essential to this task, but it is essential in

case of absence of information, i.e. when the background theory is abductive.

The paper is organized as follows: in section 1.2 we recall the main con-

cepts of Abductive Logic Programming, Inductive Logic Programming, and

the de�nition of the abductive learning framework. Section 1.3 presents the

learning algorithm. In section 1.4 we apply the algorithm to the problem of

learning from incomplete knowledge, learning theories for abductive diagnosis

and learning exceptions to rules. Our approach to the integration of abduc-

tion and induction is discussed in detail and is compared with works by other

authors in section 1.5. Section 1.6 concludes and presents directions for future

work.

1.2 ABDUCTIVE AND INDUCTIVE LOGIC PROGRAMMING

In this section we recall the de�nitions of abduction and induction in Logic

Programming given by Flach and Kakas in the introductory chapter and we

add the satisfaction of integrity constraint to abduction and the avoidance of

negative examples to induction.

1.2.1 Abductive Logic Programming

In a Logic Programming setting, an abductive theory (Kakas et al., 1997) is a

triple hP;A; ICi where:

P is a normal logic program;

A is a set of abducible predicates;

IC is a set of integrity constraints in the form of denials, i.e.:

 A1; : : : ; Am; not Am+1; : : : ; not Am+n:

Given an abductive theory T = hP;A; ICi and a formula G, an abductive

explanation � for G is a set of ground atoms of predicates in A such that

P [ � j= G (� explains G) and P [ � j= IC (� is consistent). When there

exists an abductive explanation for G in T , we say that T abductively entails

G and we write T j=A G.

Negation As Failure (Clark, 1978) is replaced, in ALP, by Negation by

Default (Eshghi and Kowalski, 1989) and is obtained by transforming the

program into its positive version: for each predicate symbol p=arity in the
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program, a new predicate symbol not p=arity is added to the set A and the

integrity constraint  p( ~X); not p( ~X)1 is added to IC. Then, each negative

literal not p(~t) in the program is replaced by a literal not p(~t). Atoms of

the form not p(~t) are called default atoms. For simplicity, in the following we

will write abductive theories with Negation by Default and we will implicitly

assume the transformation.

We de�ne the complement l of a literal l as

l =

�
not p(~x) if l = p(~x)

p(~x) if l = not p(~x)

In (Kakas and Mancarella, 1990) a proof procedure for the positive version of

abductive logic programs has been de�ned. This procedure (reported in the

Appendix) starts from a goal G and a set of initial assumptions �i and results

in a set of consistent hypotheses (abduced literals) �o such that �o � �i and

�o is an abductive explanation of G. The proof procedure employs the notions

of abductive and consistency derivations. Intuitively, an abductive derivation

is the standard Logic Programming derivation suitably extended in order to

consider abducibles. As soon as an abducible atom � is encountered, it is

added to the current set of hypotheses, and it is proved that any integrity

constraint containing � is satis�ed. To this purpose, a consistency derivation

for � is started. Every integrity constraint containing � is considered and � is

removed from it. The constraints are satis�ed if we prove that the resulting

goals fail. In the consistency derivation, when an abducible is encountered, an

abductive derivation for its complement is started in order to prove its falsity,

so that the constraint is satis�ed.

When the procedure succeeds for the goalG and the initial set of assumptions

�i producing as output the set of assumptions �o, we say that T abductively

derives G or that G is abductively derived from T and we write T `�o

�i

G.

Negative atoms of the form not a in the explanation have to be interpreted as

\a must be false in the theory", \a cannot be assumed" or \a must be absent

from any model of the theory".

In (Brogi et al., 1997) it has been proved that the proof procedure is sound

and weakly complete with respect to an abductive model semantics under a

number of restrictions:

the abductive logic program must be ground,

abducibles must not have a de�nition in the program,

integrity constraints are denials with at least one abducible in each con-

straint.

The requirement that the program is ground is not restrictive in the case in

which there are no function symbols in the program and therefore the Her-

brand universe is �nite. In this case, in fact, we can obtain a �nite ground

1In the following, ~X represents a tuple of variables and ~t a tuple of terms.
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program from a non-ground one by grounding in all possible ways the rules

and constraints in the program.

The soundness and weak completeness of the procedure require the absence

of any de�nition for abducibles . However, when representing incomplete in-

formation, it is often the case that for some predicate a partial de�nition is

available, expressing known information about that predicate. In this case,

we can apply a transformation to T so that the resulting program T 0 has no

de�nition for abducible predicates. This is done by introducing an auxiliary

predicate �a=n for each abducible predicate a=n with a partial de�nition and

by adding the clause

a( ~X) �a( ~X)

Predicate a=n is no longer abducible , whereas �a=n is now abducible. If a(~t)

cannot be derived using the partial de�nition for a=n, it can be derived by

abducing �a(~t), provided that it is consistent with integrity constraints.

Usually, observations to be explained are positive. However, by representing

negation by default through abduction, we are able to explain also negative

observations. A negative observation is represented by a literal not l and an

explanation for it can be generated by the abductive proof procedure applied to

the goal  not l. The explanation of a negative observation has the following

meaning: if all the atoms in the explanation for not l are added to the theory,

then l will not be derivable. This di�ers from abductive frameworks proposed

by Abe in this volume for whom the explanation of negative observations is

uncommon, and by Sakama (this volume, too) for whom the explanation of

negative observations is not allowed.

1.2.2 Inductive Logic Programming

The ILP problem can be de�ned as (Bergadano and Gunetti, 1996) :

Given:

a set E+ of positive examples (atoms)

a set E� of negative examples (atoms)

a logic program B (background knowledge)

a set P of possible programs

Find:

a logic program P 2 P such that

{ 8e+ 2 E+, B [ P ` e+ (completeness)

{ 8e� 2 E�, B [ P 6` e� (consistency).

Let us introduce some terminology. The sets E+ and E� are called training

sets. The program P that we want to learn is the target program and the

predicates which are de�ned in it are target predicates. The program B is
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called background knowledge and contains the de�nitions of the predicates that

are already known. We say that the learned program P covers an example e

if P [ B ` e. A theory that covers all positive examples is said to be complete

while a theory that does not cover any negative example is said to be consistent.

The set P is called the hypothesis space.

The language bias (or simply bias in this paper) is a description of the hy-

pothesis space. Some systems require an explicit de�nition of this space and

many formalisms have been introduced in order to describe it (Bergadano and

Gunetti, 1996). In order to ease the implementation of the algorithm, we have

considered only a very simple bias in the form of a set of literals which are

allowed in the body of clauses for target predicates.

1.2.3 The New Learning Framework

We consider a new learning problem where both background and target theory

are abductive theories and the notion of deductive coverage is replaced by

abductive coverage.

Let us �rst de�ne the correctness of an abductive logic program T with

respect to the training set E+; E�. This notion replaces those of completeness

and consistency for logic programs.

De�nition 1 (Correctness) An abductive logic program T is correct, with

respect to E+
and E�

, i� there exists � such that

T `�
;
E+; not E�

where not E� = fnot e�je� 2 E�g and E+; not E�
stands for the conjunction

of each atom in E+
and not E�

De�nition 2 (Abductive Learning Problem)

Given:

a set of positive examples E+

a set of negative examples E�

an abductive theory T = hP;A; ICi as background theory

a set P of possible programs

Find:

A new abductive theory T 0 = hP [ P 0; A; ICi such that P 0 2 P and T 0
is

correct wrt. E+
and E�

.

We say that a positive example e+ is covered if T `�
;

e+. We say that a

negative example e� is not covered (or ruled out) if T `�
;
not e�



6

The abductive program that is learned can contain new rules (possibly con-

taining abducibles in the body), but not new abducible predicates2 and new

integrity constraints.

We now give an example of an Abductive Learning Problem.

Example 1 We want to learn a de�nition for the concept father from a back-

ground knowledge containing facts about the concepts parent, male and female.

Knowledge about male and female is incomplete and we can make assumptions

about them by considering them as an abducible.

Consider the following training sets and background knowledge:

E+ = ffather(john;mary); father(david; steve)g
E� = ffather(john; steve); father(kathy; ellen)g
P = fparent(john;mary);male(john);

parent(david; steve);

parent(kathy; ellen); female(kathy)g
A = fmale=1; female=1g
IC = f male(X); female(X)g

Moreover, let the bias be

father(X;Y ) � where � � fparent(X;Y ); parent(Y;X);

male(X);male(Y ); female(X); female(Y )g

A solution to this Abductive Learning Problem is the theory T 0 = hP[P 0; A; ICi
where

P 0 = ffather(X;Y ) parent(X;Y );male(X)g

In fact, the condition on the solution

T `�
;
E+; not E�

is veri�ed with

� = fmale(david); not female(david); not male(kathy)g.

Note that, for the example father(david; steve), the abductive proof procedure

returns the explanation fmale(david); not female(david)g containing also the
literal not female(david) which is implied by the constraints and male(david).

However, in this way the explanation is such that it can not be consistently

extended without violating the constraints.

Di�erently from the ILP problem, we require the conjunction of examples to

be derivable, instead of each example singularly. This is done in order to avoid

that abductive explanations for di�erent examples are inconsistent with each

other, as it is shown in the next example.

2If we exclude the abducible predicates added in order to deal with exceptions, as explained

in section 1.3.
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procedure LearnAbdLP(

inputs : E+; E� : training sets,

T = hP;A; ICi : background abductive theory,

outputs : P 0 : learned theory, � : abduced literals)

P 0 := ;
� := ;
repeat (covering loop)

GenerateRule(in: T; E+; E�; P 0;�; out: Rule; E+

Rule
;�Rule)

Add to E+ all the positive literals of target predicates in �Rule

Add to E� all the atoms corresponding to

negative literals of target predicates in �Rule

E+ := E+ �E
+

Rule

P 0 := P 0 [ fRuleg
� := � [�Rule

until E+ = ; (Completeness stopping criterion)

output P 0

Figure 1.1 The covering loop

Example 2 Consider the following abductive theory:

P = fp a:

q  b:g
A = fa=0; b=0g
IC = f a; b:g

and consider two positive examples p and q. If taken singularly, they are both

abductively derivable from the theory with, respectively, the explanations fag
and fbg. However, these explanations are inconsistent with each other because

of the integrity constraint  a; b, therefore the conjunction p; q will not be

abductively derivable in the theory.

1.3 AN ALGORITHM FOR LEARNING ABDUCTIVE LOGIC

PROGRAMS

In this section, we present an algorithm that is able to learn abductive logic

programs according to de�nition 2. It evolved from the one we proposed in

(Esposito et al., 1996).

The algorithm is obtained from the basic top-down ILP algorithm (Bergadano

and Gunetti, 1996), by replacing, for the coverage test of examples, the Prolog

proof procedure with the abductive proof procedure.

As the basic one, our algorithm is constituted by two nested loops: the

covering loop (Figure 1.1) and the specialization loop (Figure 1.2). At each

iteration of the covering loop, a new clause is generated such that it covers at

least one positive example and no negative one. Positive examples covered by

the rule are removed from the training set and a new iteration of the covering
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procedure GenerateRule(

inputs : T;E+; E�; P 0;�

outputs : Rule : rule,

E+

Rule
: positive examples covered by Rule,

�Rule : abduced literals

Select a target predicate p

Let Rule := p(X) true:

repeat (specialization loop)

select a literal L from the language bias

add L to the body of Rule

TestCoverage(in: Rule; T; P 0; E+; E�;�,

out: E+

Rule
; E�

Rule
;�Rule)

if E+

Rule
= ;

backtrack to a di�erent choice for L

until E�

Rule
= ; (Consistency stopping criterion)

output Rule;E+

Rule
;�Rule

Figure 1.2 The specialization loop

procedure TestCoverage(

inputs : Rule; T; P 0; E+; E�;�

outputs: E+

Rule
; E�

Rule
: examples covered by Rule

�Rule : new set of abduced literals

E+

Rule
:= E�

Rule
:= ;

�in := �

for each e+ 2 E+
do

if AbdDer( e+; hP [ P 0 [ fRuleg; A; ICi;�in;�out)

succeeds then Add e+ to E+

Rule
; �in := �out

endfor

for each e� 2 E�

do

if AbdDer( not e�; hP [ P 0 [ fRuleg; A; ICi;�in;�out)

succeeds then �in := �out

else Add e� to E�

Rule

endfor

�Rule := �out ��

output E+

Rule
; E�

Rule
;�Rule

Figure 1.3 Coverage testing
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loop is started. The algorithm ends when the set of positive examples becomes

empty. The new clause is generated in the specialization loop: the clause is

initially assigned an empty body, and literals are added to it until the clause

does not cover any negative example while still covering at least one positive.

The basic top-down algorithm is extended in the following respects.

First, in order to determine the positive examples E+

Rule
covered by the gen-

erated rule Rule (procedure TestCoverage in Figure 1.3), an abductive deriva-

tion is started for each positive example. This derivation results in a (possibly

empty) set of abduced literals. We give as input to the abductive procedure

also the set of literals abduced in the derivations of previous examples. In this

way, we ensure that assumptions made during the derivation of the current

example are consistent with assumptions for other examples.

Second, in order to check that no negative example is covered (E�

Rule
= ; in

Figure 1.2) by the generated rule Rule, an abductive derivation is started for

the default negation of each negative example ( not e�). Also in this case,

each derivation starts from the set of abducibles previously assumed. The set of

assumptions is initialized to the empty set at the beginning of the computation,

and is gradually extended as it is passed on from derivation to derivation. This

is done as well across di�erent clauses.

Third, some abducible predicates may be also target predicates, i.e., pred-

icates for which we want to learn a de�nition. To this purpose, after the

generation of each clause, abduced atoms of target predicates are added to the

training set, so that they become new training examples. For each positive

abduced literal l, if it is positive, l is added to E+, if it is negative, l is added

to E�.

In order to achieve consistency, in rule specialization (Figure 1.2), a rule

can be specialized by adding either a non-abducible literal or an abducible one.

However, the system does not need to be aware of what kind of literal it is

adding to the rule since the abductive proof procedure takes care of both cases.

When adding an abducible atom �( ~X) that has no de�nition in the background,

the rule becomes consistent because each negative example p( ~t�) is uncovered

by assuming not �( ~t�) and each previously covered positive example p( ~t+) is

still covered by assuming �( ~t+). If the abducible has a partial de�nition, some

positive examples will be covered without abduction and others with abduction,

while some negative examples will be uncovered with abduction and others will

be covered.

We prefer to �rst try adding non-abducible literals to the rule, since complete

information is available about them and therefore the coverage of examples is

more certain.

The algorithm also performs the task of learning exceptions to rules. The

task of learning exceptions to rules is a di�cult one because exceptions limit

the generality of the rules since they represent speci�c cases. In order to deal

with exceptions, a number of (new) auxiliary abducible predicates is provided,

so that the system can use them, for rule specialization, when no standard
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literal or abducible literal with a partial de�nition is available from the bias

such that a rule for a target predicate becomes consistent.

The algorithm can be extended in order to learn not only from examples

but also from integrity constraints on target predicates. The details of this

extension together with an example application will be described in section

1.4.4.

Note that the system is not able to learn full abductive theories, including

new integrity constraints as well. In order to do this, in (Kakas and Riguzzi,

1997) the authors proposed the use of systems that learn from interpretations,

such as Claudien (De Raedt and Bruynooghe, 1993) and ICL (De Raedt and

Van Laer, 1995).

1.4 EXAMPLES

Two interesting applications of the integration are learning from incomplete

knowledge and learning exceptions. When learning from incomplete knowl-

edge, abduction completes the information available in the background knowl-

edge. When learning exceptions, instead, assumptions are used as new training

examples in order to generate a de�nition for the class of exceptions (section

1.4.3).

When learning from incomplete data, what to do with the assumptions de-

pends on the type of theory we are learning. When learning a non-abductive

theory, abduction completes the information available in the background knowl-

edge and it is therefore natural to add the assumptions to the theory at the

end of the learning process, thus doing a form of theory revision (section 1.4.1).

When learning an abductive theory, the assumptions made do not have to be

added to the theory, since they can be guessed by abduction in the �nal theory

(section 1.4.2).

1.4.1 Learning from incomplete knowledge

Abduction is particularly suitable for modelling domains in which there is in-

complete knowledge. In this section, we show how the algorithm is able to �nd

the solution of the learning problem presented in example 1.

For the sake of clarity, in the following we repeat the problem statement. We

want to learn a de�nition for the concept father from a background knowledge

containing facts about the concepts parent, male and female, with male and

female being incompletely de�ned.

Consider the abductive background theory B = hP;A; ICi and training set:

P = fparent(john;mary);male(john);

parent(david; steve);

parent(kathy; ellen); female(kathy)g
A = fmale=1; female=1g
IC = f male(X); female(X)g
E+ = ffather(john;mary); father(david; steve)g
E� = ffather(john; steve); father(kathy; ellen)g
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Moreover, let the bias be

father(X;Y ) � where � � fparent(X;Y ); parent(Y;X);

male(X);male(Y ); female(X); female(Y )g

The program must �rst be transformed into its positive version and then into

a program where abducibles have no de�nition, as shown in section 1.2.1. For

simplicity, we omit the two transformations, and we suppose to apply the in-

verse transformations to the learned program.

At the �rst iteration of the specialization loop, the algorithm generates the

rule

father(X;Y ) :

which covers all positive examples but also all negative ones. Therefore another

iteration is started and the literal parent(X;Y ) is added to the rule

father(X;Y ) parent(X;Y ):

This clause also covers all positive examples but also the negative example

father(kathy; ellen). Note that up to this point no abducible literal has been

added to the rule, therefore no abduction has been made and the set � is still

empty. Now, an abducible literal is added to the rule, male(X), obtaining

father(X;Y ) parent(X;Y );male(X):

At this point the coverage of examples is tested. father(john;mary) is covered

without abduction, while father(david; steve) is covered with the abduction of

fmale(david); not female(david)g.
Then the coverage of negative examples is tested by starting the abductive

derivations

 not father(john; steve).

 not father(kathy; ellen).

The �rst derivation succeeds with an empty explanation while the second suc-

ceeds abducing not male(kathy) which is consistent with the fact female(kathy)

and the constraint  male(X); female(X). Now, no negative example is cov-

ered, therefore the specialization loop ends. No target atom is in �, therefore

no example is added to the training set. Positive examples covered by the rules

are removed from the training set which becomes empty. Therefore also the

covering loop terminates and the algorithm ends, returning the rule

father(X;Y ) parent(X;Y );male(X):

and the assumptions

� = fmale(david); not female(david); not male(kathy)g.
At this point, assumptions made are added to the background knowledge in or-

der to complete the theory, thus performing a kind of theory revision. Only pos-

itive assumptions are added to the resulting theory, since negative assumptions

can be derived by Negation As Failure3. In this case, only male(david)  :

is added to the theory, while not female(david) and not male(kathy) can be

derived by using Negation As Failure.

3Since Prolog proof procedure will be used with the �nal theory and therefore Negation As

Failure will replace Negation by Default.
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1.4.2 Learning Abductive Theories

In this section, we apply the algorithm to the problem of learning an abductive

theory for diagnosis from an incomplete background knowledge. When learning

an abductive theory, the observations to be explained are represented by facts

in the training set and the corresponding known explanations by facts in the

background knowledge.

It must be observed that, when the available information on explanations

is complete, it is not necessary to use our algorithm for learning the rule part

of the theory, but any standard ILP system can be used. In fact, if all the

explanations are known, then every positive example can be entailed by the

resulting theory without the need of abduction. Therefore, we argue that the

main use of abduction in learning is for completing incomplete knowledge.

In presence of incomplete information on the explanations, abduction is nec-

essary to generate the missing (part of) explanations, as in the general case of

learning from incomplete knowledge (see section 1.4.1). However, di�erently

from that case, explanations should not be added to the resulting theory. In

fact, explanations can be newly obtained from the target theory by means of

abductive reasoning.

Let us consider the case of an abductive background theory containing the

following clauses, abducibles and constraints:

P = fflat tyre(bike1):
circular(bike1):

tyre holds air(bike3):

circular(bike4):

tyre holds air(bike4):g

A = fflat tyre=1; broken spokes=1g

IC = f flat tyre(X); tyre holds air(X):

 circular(X); broken spokes(X):g

E+ = fwobbly wheel(bike1); wobbly wheel(bike2); wobbly wheel(bike3)g
E� = fwobbly wheel(bike4)g

The algorithm generates the following clause in the specializing loop:

wobbly wheel(X) flat tyre(X):

Then the clause is tested. This clause covers wobbly wheel(bike1) because

flat tyre(bike1) is speci�ed in the background knowledge and it coverswobbly wheel(bike2)

by assuming

fflat tyre(bike2); not tyre holds air(bike2)g.

The example wobbly wheel(bike3), however, cannot be covered: in fact, we can-

not assume flat tyre(bike3) since it is inconsistent with the integrity constraint
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 flat tyre(X); tyre holds air(X): and the fact tyre holds air(bike3). Then,

we check that not wobbly wheel(bike4) is derivable in the hypotheses set. This

derivation succeeds by abducing not flat tyre(bike4).

The algorithm adds the clause to the current theory and removes covered

examples from E+. A new iteration of the covering loop is then started with:

E+ = fwobbly wheel(bike3)g,
E� = fwobbly wheel(bike4)g
� = fflat tyre(bike2); not tyre holds air(bike2);

not flat tyre(bike4)g.

In order to cover the remaining positive example wobbly wheel(bike3), the sys-

tem generates the clause:

wobbly wheel(X) broken spokes(X):

which covers the example by abducing

fbroken spokes(bike3); not circular(bike3)g

In fact, these assumptions are consistent with the integrity constraint:

 circular(X); broken spokes(X):

As for the previous case, the negative example is ruled out by assuming

not broken spokes(bike4). At this point the algorithm terminates because E+

becomes empty.

The resulting set of assumptions constitute a set of diagnosis for the devices

considered in the training set. Assumptions are not added to the resulting

theory since they can be generated by abductive reasoning at any time.

1.4.3 Learning Rules with Exceptions

The task of learning exceptions to rules is a di�cult one because exceptions limit

the generality of the rules since they represent speci�c cases. In the following,

we discuss how our algorithm performs the task of learning exceptions to rules

by using a number of auxiliary abducible predicates, and show an example of

its behaviour.

In order to learn exceptions to rules, when no standard literal or abducible

literal with a partial de�nition is available from the bias such that a rule for

a target predicate p=n becomes consistent, then the algorithm specializes the

rule by adding a new abducible literal not abnormi( ~X). This addition trans-

forms the rule into a default rule that can be applied in all \normal" (or non-

abnormal) cases. The re�ned rule becomes consistent by abducing abnormi( ~t�)

for every negative example p( ~t�). Positive examples, instead, will be covered

by abducing not abnormi( ~t+) for every positive example p( ~t+). These assump-

tions are then added to the training set, and are used to learn a de�nition for

abnormi=n that describes the class of exceptions. If there are exceptions to
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exceptions, the system adds a new literal not abnormj=n to the body of the

rule for abnormi=n and the process is iterated. Therefore, we are able to learn

hierarchies of exceptions.

The above technique is implemented by including a number of predicates of

the form not abnormi=n in the bias of each target predicate of p=n that may

have exceptions. Moreover, abnormi=n and not abnormi=n are added to the

set of abducible predicates and the constraint

 abnormi( ~X); not abnormi( ~X):

is added to the (positive version of the) background knowledge. Predicates

abnormi=n are considered as target predicates, and a bias must be de�ned for

them. Since we may have exceptions to exceptions, we may also include a

number of literals of the form not abnormj( ~X) in the bias for abnormi=n.

The example which follows is inspired by (Dimopoulos and Kakas, 1995),

and shows how exceptions are dealt with. Let us consider the following back-

ground abductive theory T = hP;A; ICi and training sets:

P = fbird(X) penguin(X):

penguin(X) superpenguin(X):

bird(a):

bird(b):

penguin(c):

penguin(d):

superpenguin(e):

superpenguin(f):g
A = fabnorm1=1; abnorm2=1g
IC =fg

E+ = f
ies(a);
ies(b);
ies(e);
ies(f)g
E� = f
ies(c);
ies(d)g

The positive version of the theory will contain also the constraints:

 abnorm1(X); not abnorm1(X):

 abnorm2(X); not abnorm2(X):

Moreover, let the bias be:


ies(X) � where

� � fbird(X); penguin(X); superpenguin(X);

not abnorm1(X)g
abnorm1(X) � where

� � fbird(X); penguin(X); superpenguin(X);

not abnorm2(X)g
abnorm2(X) 
 where


 � fbird(X); penguin(X); superpenguin(X)g

The algorithm starts by generating the following rule in the specialization loop

(R1):
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ies(X) bird(X):

which covers all positive examples, but also all negative ones. In order to rule

out negative examples, the abducible literal not abnorm1 is added to the body

of R1 obtaining R2:

flies(X) bird(X); not abnorm1(X):

Now, the theory is correct and the set of assumptions resulting from the deriva-

tions of positive and (negated) negative examples is

fnot abnorm1(a); not abnorm1(b);

not abnorm1(e); not abnorm1(f);

abnorm1(c); abnorm1(d)g.

Since abnorm1=1 is a target predicate, these assumptions become new training

examples yielding:

E+ = fabnorm1(c); abnorm1(d)g
E� = fabnorm1(a); abnorm1(b); abnorm1(e); abnorm1(f)g

Therefore, a new iteration of the covering loop is started in which the following

clause is generated (R3):

abnorm1(X) penguin(X); not abnorm2(X):

The rule is correct and the set of assumptions resulting from the derivations of

positive and (negated) negative examples is

fnot abnorm2(c); not abnorm2(d);

abnorm2(e); abnorm2(f)g.

Note that no assumptions are generated for the derivations

 not abnorm1(a)

 not abnorm1(b)

since penguin(a) and penguin(b) are false.

After the addition of the new assumptions, the training sets become

E+ = fabnorm2(e); abnorm2(f)g
E� = fabnorm2(c); abnorm2(d)g

For this training set, the algorithm produces the rule

abnorm2(X) superpenguin(X):

that is correct and no assumption is generated for covering examples. The

algorithm now ends by producing the following program:

flies(X) bird(X); not abnorm1(X):

abnorm1(X) penguin(X); not abnorm2(X):

abnorm2(X) superpenguin(X):

We try to generalize exceptions in order to treat them as a whole, possibly

leading to the discovery of exceptions to exceptions. In this way, we can learn

hierarchies of exceptions.
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1.4.4 Learning from Integrity Constraints on Target Predicates

We now present a way in which training examples can be extracted from in-

tegrity constraints on target predicates. In this way, the algorithm is able to

learn not only from examples but also from integrity constraints, as it is done

in (De Raedt and Bruynooghe, 1992; Ad�e et al., 1994; Muggleton, 1995).

Let us consider the abductive program T 0 generated in the previous section,

and add to it the following user-de�ned constraint, I , on target predicates:

 rests(X); plays(X):

Consider now the new training sets:

E+ = fplays(a); plays(b); rests(e); rests(f)g
E� = fg

In this case, the information about the target predicates comes not only from

the training set, but also from integrity constraints. These constraints contain

target predicates and therefore they di�er from those usually given in the back-

ground knowledge that contain only non-target predicates, either abducible or

non-abducible. The generalization process is not limited by negative examples

but by integrity constraints. Suppose that we generalize the two positive ex-

amples for plays=1 in plays(X). This means that for all X , plays(X) is true.

However, this is inconsistent with the integrity constraint I because plays(X)

cannot be true for e and f .

The information contained in these type of integrity constraints must be

made available in a form that is exploitable by our learning algorithm, i.e.,

it must be transformed into new training examples, as it is done in theory

revision systems (De Raedt and Bruynooghe, 1992; Ad�e et al., 1994). When

the knowledge base violates a newly supplied integrity constraint, these systems

extract one example from the constraint and revise the theory on the basis of

it: in (De Raedt and Bruynooghe, 1992) the example is extracted by querying

the user on the truth value of the literals in the constraint, while in (Ad�e et al.,

1994) the example is automatically selected by the system.

In our approach, one or more examples are generated from constraints on

target predicates using the abductive proof procedure. The consistency of

each available example is checked with the constraints, and assumptions are

possibly made to ensure consistency. Assumptions about target predicates are

considered as new negative or positive examples.

In the previous case, we start an abductive derivation for

 plays(a); plays(b); rests(e); rests(f)

Since plays=1 and rests=1 are abducibles, a consistency derivation is started

for each atom. Consider plays(a), in order to have the consistency with the

constraint  plays(X); rests(X):, the literal not rests(a) is abduced. The

same is done for the other literals in the goal obtaining the set of assumptions
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fnot rests(a); not rests(b); not plays(e); not plays(f)g

that is then transformed in the set of negative examples

E� = frests(a); rests(b); plays(e); plays(f)g

Now the learning process applied to the new training set generates the following

correct rules:

plays(X) bird(X); not abnorm1(X).

rests(X) superpenguin(X):

In this way, we can learn not only from (positive and negative) examples but

also from integrity constraints.

1.5 INTEGRATION OF ABDUCTION AND INDUCTION

In this section, we describe our approach for the integration of abduction and

induction, and we relate it to other works.

In our approach, abduction is used in induction for making assumptions

about unknown facts in order to cover examples, as proposed by Abe, Sakama,

Mooney (this volume) and (Dimopoulos and Kakas, 1996; De Raedt and Bruynooghe,

1992; Ad�e et al., 1994; Ad�e and Denecker, 1995; Kanai and Kunifuji, 1997).

Abducibles can be present in the body of background rules or can be added

to the body of a target rule for specialization. These assumptions can be rel-

ative to background abducible predicates, with an empty or partial de�nition,

or to target predicates, for which a de�nition must be learned, as in work by

Mooney (this volume) and in (De Raedt and Bruynooghe, 1992; Ad�e et al.,

1994; Ad�e and Denecker, 1995; Kanai and Kunifuji, 1997). In this second

case, assumptions are also added to the training set so that they become new

training examples. Induction is then used in order to generalize assumptions.

In both cases, the set of assumptions is stored and gradually extended in order

to ensure consistency among examples. At the end of the computation, the

resulting set of assumptions can be discarded, if we are learning an abductive

theory, or added to the theory, if we want to complete an incomplete theory.

In this way, we obtain a particular instantiation of the cycle of abductive

and inductive knowledge development described by Flach and Kakas in this

volume. In our approach, abduction helps induction by generating suitable

background knowledge or training examples, while induction helps abduction

by generalizing the assumptions made.

Abe, Sakama, Mooney (this volume) and (Dimopoulos and Kakas, 1996; De

Raedt and Bruynooghe, 1992; Ad�e et al., 1994; Ad�e and Denecker, 1995; Kanai

and Kunifuji, 1997) agree on using abduction for covering examples. What

to do with the assumptions generated depends then on the task you are per-

forming. If you are performing theory revision, you can revise overspeci�c rules

by dropping the abducible literals from the body of rules (Mooney, Sakama,

this volume) or by adding the explanations to the theory (De Raedt and

Bruynooghe, 1992; Ad�e et al., 1994). In both theory revision and batch learn-

ing, you can learn a de�nition for the abducible predicates by considering the
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assumptions as examples for the abducible predicates (Mooney, this volume)

and (Kanai and Kunifuji, 1997; De Raedt and Bruynooghe, 1992; Ad�e et al.,

1994; Ad�e and Denecker, 1995).

Another approach for the use of abduction in learning is described in (Di-

mopoulos and Kakas, 1996) where each example is given together with a set

of observations that are related to it. Abduction is then used to explain the

observations in order to generate relevant background data for the inductive

generalization.

Di�erent positions exist on the treatment of negative observations. Accord-

ing to Abe (this volume), \it is very rare for hypotheses to be generated when

observations are negative", therefore he does not consider this possibility. To

avoid the di�culties of learning from positive examples only, he adopts Ab-

ductive Analogical Reasoning to generate abductive hypotheses under similar

observations: in this case, generated hypotheses satisfy the Subset Principle

and it is possible to learn from positive examples only.

Sakama (this volume), instead, revises a database that covers negative ob-

servations by revising only the extensional part of the database: by abduction,

he �nds the facts that are responsible for the coverage of the negative exam-

ple/observation and he replaces each such fact �  with the clause �  �.

Semantically, �  � (that is equivalent to � _ :�, represents two possible

worlds, one in which � is true and the other in which � is false. In this way

the inconsistency is removed but, di�erently from systems where the theory

is revised by removing �, information about the previous state is kept, thus

allowing to restore the database in its original state.

Our approach for the treatment of negative examples is similar to work by

Mooney (this volume) and (Kanai and Kunifuji, 1997). It di�ers from Abe's

one (this volume), since we do generate explanations for negative examples, and

is a generalization of Sakama's one since we are able to revise not only facts but

also rules. The kind of revision we perform is very similar: instead of adding

an abnormality literal in the head of the fact, we add a non-abnormality literal

to the body. Moreover, Sakama's procedure is e�ective for dealing with single

exceptions rather then classes of exceptions, because it treats each exception

singularly by adding a new abducible literal to a fact. Instead, we try to

generalize exceptions in order to treat them as a whole, possibly leading to the

discovery of a hierarchy of exceptions.

Christiansen (this volume) proposes a reversible demo predicate that is able

to generate the (parts of the) program that are necessary for deriving the goal.

Constraint Logic Programming techniques are used for specifying conditions

on the missing program parts in a declarative way. The approach shows a

high generality, being able to perform either induction or abduction depending

on which program part is missing, general rules or speci�c facts. The author

also shows that the system is able to learn exceptions to rules, though not

hierarchies of exceptions.
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1.6 CONCLUSIONS AND FUTURE WORK

We have proposed an algorithm where abduction and induction cooperate in

order to improve their power. Abduction helps induction by generating suitable

background knowledge or training examples, while induction helps abduction

by generalizing the assumptions made.

The algorithm solves an extended ILP problem in which both the back-

ground and target theories are abductive theories, and coverage by deduction

is replaced with coverage by abduction. The algorithm is obtained from the

basic top-down ILP algorithm by substituting, for the coverage testing, Prolog

proof procedure with an abductive proof procedure. It can be applied to the

problems of learning from incomplete knowledge, learning abductive theories

and learning rules with exceptions.

Future work will be devoted to evaluate the applicability of these ideas on

real world problems and to extend the system for learning full abductive the-

ories, including as well integrity constraints. The integration of the algorithm

with other systems for learning constraints, such as Claudien (De Raedt and

Bruynooghe, 1993) and ICL (De Raedt and Van Laer, 1995), as proposed in

(Kakas and Riguzzi, 1997), seems very promising in this respect.

Another interesting future line of research consists in investigating the idea,

proposed by Inoue and Haneda (this volume) of learning logic programs with

abduction and two kinds of negation (e.g., default negation and explicit nega-

tion).

Appendix

In the following we recall the abductive proof procedure used by our algorithm.

The procedure is taken from (Kakas and Mancarella, 1990). It is composed by

two phases: abductive derivation and consistency derivation.

Abductive derivation

An abductive derivation from (G1 �1) to (Gn �n) in hP;Ab; ICi via a selection
rule R is a sequence

(G1 �1); (G2 �2); : : : ; (Gn �n)

such that each Gi has the form  L1; : : : ; Lk, R(Gi) = Lj and (Gi+1 �i+1) is

obtained according to one of the following rules:

(A1) If Lj is not abducible or default, then Gi+1 = C and �i+1 = �i where

C is the resolvent of some clause in P with Gi on the selected literal Lj ;

(A2) If Lj is abducible or default and Lj 2 �i then

Gi+1 = L1; : : : ; Lj�1; Lj+1; : : : ; Lk and �i+1 = �i;

(A3) If Lj is abducible or default, Lj 62 �i and Lj 62 �i and there exists a

consistency derivation from (Lj �i [ fLjg) to (fg �0) then Gi+1 = 
L1; : : : ; Lj�1; Lj+1; : : : ; Lk and �i+1 = �0.
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Steps (A1) and (A2) are SLD-resolution steps with the rules of P and abductive

or default hypotheses, respectively. In step (A3) a new abductive or default

hypotheses is required and it is added to the current set of hypotheses provided

it is consistent.

Consistency derivation

A consistency derivation for an abducible or default literal � from (�; �1) to

(Fn �n) in hP;Ab; ICi is a sequence

(� �1); (F1 �1); (F2 �2); : : : ; (Fn �n)

where :

(Ci) F1 is the union of all goals of the form L1; : : : ; Ln obtained by resolving

the abducible or default � with the denials in IC with no such goal been

empty,  ;

(Cii) for each i > 1, Fi has the form f L1; : : : ; Lkg [ F
0

i
and for some j =

1; : : : ; k (Fi+1 �i+1) is obtained according to one of the following rules:

(C1) If Lj is not abducible or default, then Fi+1 = C 0 [ F 0

i
where C 0 is

the set of all resolvents of clauses in P with  L1; : : : ; Lk on the

literal Lj and  62 C
0, and �i+1 = �i;

(C2) If Lj is abducible or default, Lj 2 �i and k > 1, then

Fi+1 = f L1; : : : ; Lj�1; Lj+1; : : : ; Lkg [ F
0

i

and �i+1 = �i;

(C3) If Lj is abducible or default, Lj 2 �i then Fi+1 = F 0

i
and �i+1 = �i;

(C4) If Lj is abducible or default, Lj 62 �i and Lj 62 �i, and there exists

an abductive derivation from ( Lj �i) to ( �0) then Fi+1 = F 0

i

and �i+1 = �0.

In case (C1) the current branch splits into as many branches as the number of

resolvents of  L1; : : : ; Lk with the clauses in P on Lj . If the empty clause is

one of such resolvents the whole consistency check fails. In case (C2) the goal

under consideration is made simpler if literal Lj belongs to the current set of

hypotheses �i. In case (C3) the current branch is already consistent under the

assumptions in �i, and this branch is dropped from the consistency checking.

In case (C4) the current branch of the consistency search space can be dropped

provided  Lj is abductively provable.

Given a query L, the procedure succeeds, and returns the set of abducibles

� if there exists an abductive derivation from ( L fg) to ( �). With abuse

of terminology, in this case, we also say that the abductive derivation succeeds.
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