Exploiting Abduction for Learning from Incomplete
| nter pretations

Evelina Lamméa Paola Melld Fabrizio Riguzzi
!Dipartimento di Ingegneria, Univeraidi Ferrara, Via Saragat 1, 44100 Ferrara, Italy,
{elamma,friguzzi }@ing.unife.it
2DEIS,Universia di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
pmello@deis.unibo.it



SOMMARIO/ABSTRACT some facts and rules may be missing.

) _ ) ) In [11, 10] the authors consider a learning problem
In this paper we describe an approach for integrating alyhere the background knowledge may be incomplete and
duction and induction in the ILP setting of learning from they exploit abduction in order to complete the available
complete information both in the background knowledgeeyample by a clause, the Prolog derivation is substituted
and in the interpretations. The approach is inspired by thgy an ahductive derivation. In this way, a positive exam-
techniques developed in the learning from entailment Sefyje may be covered by abducing some positive or negative
ting for performing induction from an incomplete back- facts, Similarly, the system may avoid the coverage of a

ground knowledge. Similarly to those techniques, wenegative example by abducing some positive or negative
exploit an abductive proof procedure for completing thefycts.

available background knowledge and input interpretations \yhen learning from interpretations, we can face the

The approach has been implemented in a system called, e jncompleteness problem. In this case, the incom-
AICL that is based on the ILP system ICL. Preliminary , eteness may reside either in the background knowledge
experiments have been performed on a toy domain Wherg; i, the interpretations or in both. This may cause a good
knowledge has been gradually removed. The experimentgayse to uncover a positive example or to cover a negative
show that AICL ha§ an accuracy that is superior to the ONgyample. To this purpose, we exploit an abductive proof
of ICL for levels of incompleteness between 5% and 25%. , o cedure in the testing of the coverage of interpretations

by a clause, in order to abduce the facts that are missing
1 Introduction from either the background and/or the interpretation. The
asymmetry with respect the learning from entailment set-

The integration of abduction and induction has recently reting where only the background knowledge is incomplete
ceived a lot of attention in the field of Inductive Logic Pro- is due to the fact that in that setting the information regard
gramming (ILP) [12]. A number of ILP systems combine ing each example is contained in the background knowl-
abduction and induction in various ways: LAP [11], ACL edge together with the general knowledge that applies to
[10], Progol 5.0 [13], SOLDR [15], CF-Induction [7] and all examples. In the learning from interpretation settimg t
HAIL [14]. specific information regarding an example is stored in the

However, all these systems are relative to the ILP settingssociated interpretation, while general rules are stored
of learning from entailment [12]. To the best of our knowl- the background. So in practice both approaches complete
edge, no attempt has been performed to integrate abductiéfe same kind of knowledge.
and induction in the setting of learning from interpretatio We thus present the algorithm AICL (Abductive ICL)
[4]. that is based on ICL [5] and improves its ability of learning

In this paper we propose an approach for integrating abfrom incomplete interpretations. AICL is experimentally
duction and induction in the latter setting. In particulee, compared with ICL on a dataset regarding digital multi-
tackle a problem similar to the one examined in [11, 10]:plexers. The comparison shows that for low incomplete-
the incompleteness of available knowledge. ness levels AICL outperforms ICL.

This is an important problem because in practice the The paper is organized as follows. In section 2 we re-
knowledge acquisition process is rarely perfect: the aceall some preliminaries. In section 3 we briefly describe
quired knowledge is very often incomplete in the sense thathe ICL system. Section 4 presents an example that will be



used to explain AICL and will be the subject of the experi-

A Herbrand modefor a definite clause theor¥ is an

ments. In section 5 we illustrate the AICL system. Sectiorinterpretation where each clausefdfs true. The intersec-
6 reports on a set of preliminaries experiments for compartion of a set of Herbrand models is also a Herbrand model.
ing the two systems. In section 7 we discuss future work3 he intersection of all the Herbrand models #®ris the

and in section 8 we conclude.

2 Préiminaries
A disjunctive clausés a formula of the form

hl\/hz\/...\/hn <—b17b27...,bm

where theh; are logical atoms and; are logical literals.
The disjunctiorm; V ho V...V h,, is called theheadof the
disjunctive clause and the conjunctionA bs A ... A by,

is the called thdody: Let us define the functionsead(C)

andbody(C) that, given a disjunctive clausg, return re-

spectively the head and the body@f In some cases, we 3

will use the functiongiead(C) andbody(C) to denote the

least Herbrand model The semantics of definite clause
theories is given in terms of the least Herbrand model. We
denote the least Herbrand model of a definite clause theory
PasM(P).

Note that if P is a definite clause theory antlis a
finite interpretation,P U I is still a definite clause the-
ory. The truth of a range-restricted disjunctive cladse
in the interpretationM (P U I) where all the clauses of
P are range-restricted can be tested by running the query
?—body(C), not head(C') against the logic prograiRUI.

If the query succeeds] is false inM (P U I). If the query
finitely fails, C'is true inM (P U I).

ICL

set of the atoms in the head or of the set of literals of thdCL solves the following learning problem:

body respectively. The meaning béad(C) andbody(C)
will be clear from the context.

A definite clausés a clause where = 1 and where
all the literals in the body are positive. fActis a definite
clause with an empty body:(= 1, m = 0). A disjunctive

clause isrange-restrictedf all variables in the head also

appear in the body.

Aterm (clause) igiroundif it does not contain variables.

The Herbrand universeHy; (P) of a clausal theoryP is

Given
e aspace of possible clausal theoriés
e a setP of interpretations;
e asetN of interpretations;
e a definite clause background thedsy

Find: a clausal theoryd € H such that

the set of all the ground terms that can be constructed with

the constant and function symbols appearingPin The
Herbrand baseH 5 (P) of a clausal theonp is the set of

all the atoms constructed with the predicates appearing in

P and the terms offy;(P). A Herbrand interpretatioris
a subset ofH 5 (P).

In this paper we will consider only

e forallp € P, M(B U p) is a true interpretation for

e foralln € N, M (B Un) is a false interpretation for

Herbrand interpretations and in the following we will drop Given a disjunctive claus€' (theory H) we say thatC

the word Herbrand.

(H) coversthe interpretation? iff M (B U I) is a true in-

Let us now discuss how to ascertain the truth of disjuncterpretation forC' (H). We say thatC (H) rules outan

tive clauses in an interpretation. A disjunctive cladses
true in an interpretatiof if for all grounding substitutions
0 of C: I = body(C)0 — head(C)ONI # ). We also say
1 is a model forC', or C' makes the interpretatiohtrue, or
evenl! is a true interpretation fof’. If a clauseC' is not
true in an interpretatio, we say that”' is false in inter-
pretation | or that is not a model foIC. A clausal theory
T is true in an interpretation if and only if it every clause
of T'is true inI. We also say thaf is a true interpretation
for T'. Therefore, it is sufficient for a single clause fr@m
to be false in/ in order for7 to be false inl.

interpretation/ iff C' (H) does not cover.

ICL [5] performs a covering loop (procedure Learn, Fig-
ure 1) in which negative interpretations are progressively
ruled out and removed from the s&t At each iteration
of the loop a new clause is added to the theory. Each
clause rules out some negative interpretations. The loop
ends whenV is empty or when no clause is found.

The clause to be added in every iteration of the cover-
ing loop is returned by the procedure FindBestClause (Fig-
ure 2). It looks for a clause by using beam search with
p(©|C) as a heuristic function, wheggo|C) is the prob-

As observed by [3], the truth of a range-restricted dis-ability that an example interpretation is negative giveat th

junctive clauseC in a finite interpretatiorf can be tested
by running the query? — body(C), not head(C) on a
database containing, wherehead(C) is interpreted as a
disjunction (thusnot head(C) is a conjunction of nega-
tions). If the query succeed§, is false inI. If the query
fails, C is trueinI.

is ruled out by the claus€'. This heuristic is computed
as the number of ruled out negative interpretations over
the total number of ruled out interpretations (positive and
negative). Thus we look for clauses that cover as many
positive interpretations as possible and rule out as many
negative interpretations as possible. The search starts fr



the clausefalse < true that rules out all the negative in- pin3atl:-pinlat0,pin2atO.
terpretations but also all the positive interpretationbe T pindatl:-pinlatO,pin2atl.
clauses in the beam are gradually refined by adding literpin5atl:-pinlatl,pin2atO.
als to the body and atoms to the head. Refining a clauggin6atl:-pinlatl,pin2atl.
makes it cover more interpretations. The aim is to obtain . . ) )
clauses that cover all (or many of) the positive interpretaf©" €xample, the first clause will rule out interpretations
tions while while still ruling out some negative interpreta Wherepinlat0 —andpin2at0 are true bupin3atl is
tions. The best clause found during the search is returnd@!Se- In fact such interpretations would represent a yault
by FindBestClause. multiplexer. . _ S

The refinement process is performed according to the Incompletenes; in the mterpretaﬂqns in this case means
language bias that is a collection of statements in an ad hdfat an interpretation does not contain any fact for some of
language that specify which refinements have to be considi€ Pins-
ered. Two languages are possible for ICL: dlab and rmode
(see [1] for detalils). 5 AbductivelCL

The refinements of clauses in the beam can also be
pruned: a refinement is pruned if it can not possibly proWe modify the way in which ICL tests for the truth
duce a value of the heuristic function higher than that oPf a clause in an interpretation. Instead of using a
the best clause (the best refinement that can be obtainedstandard Prolog proof procedure for testing the query
a clause that covers all the positive examples and the sanhedy(C), not head(C), we use an abductive proof proce-
negative examples as the original clause) or if it cannot bedure.

come statistically significant. Consider a clause of the form
When a new clause is returned by FindBestClause it is
added to the current theory. The negative interpretations hiVhe V..V hy b1, b2, ... b

that it rules out are ruled out as well by the updated theory_]_h hat | dis thus:
so they can be removed from. e query that s tested Is thus:

. b1,b2,...,bm,not hy,not ha,...,not h,
4 Running Example

) _ _ ) _ Suppose this query is tested agaifst) p wherep is a

In this section we introduce a running example that will ssitive interpretation. If the interpretation is incorefd,
be u_sed to explain the beha_lwour of AICL and that will j; may happen that the query succeeds because one of the
provide a dataset for comparing ICL and AICL. head atoms is false iB U p when it should in fact be true.

Consider a two bit multiplexer: it has two input pins and Supposeh; is false becaus® and/orp are incomplete.
four output pins. T_he four output pins are numbered _fromBy using an abductive proof procedure, we may abduce
0 to 3. The behaviour of the multiplexer is the following: tacts that make; true so that the query fails and the clause
given values for the input pins, the output pin whose numis trye in the interpretation. The abduction is performed
ber is represented by the input pins is at 1, while the othegpy if the abduced atoms are consistent with the integrity
output pins may assume either O or 1. constraints.

_The aim is to learn how to distinguish a working mul-  Now consider an incomplete negative interpretation
tiplexer configuration from a faulty one. Each multiplexer 1o query may fail againgt U n because one of bodly lit-
configuration is completely described by the state of theygis is false, so the clause is considered erroneously true
six pins. Each pin can be at 0 or at 1. In total, we havey the interpretation. Suppose that is false inB U n
64 examples, 32 of which are positive (configurations of §)ecause of the incompleteness Bfand/orn. Then it
working multiplexer) and 32 of which are negative (Con-coyid be useful to abduce facts that maketrue so that
figurations of a faulty multiplexer). _ _ the query succeeds and the clause is false in the interpre-
We represent a multiplexer configuration using 12ation, Again, the abduction of facts for making true

nullary predicates, obtained by renumbering the pins froman pe performed only if the facts are consistent with the
1to 6 (pins 1 and 2 are the input pins, pins 3, 4, 5 and @ntegrity constraints.

are the output pins). For example, the multiplexer configu- vore formally, ICL is modified in two points. The first
ration descri_bed_ by the bit_string 010110 can be describegd point (1) in function FindBestClause: in order to com-
by the following interpretation: pare the current refinement with the best clause found so
far, the refinement must be tested on the positive and nega-
tive interpretations, so that the heuristic and the likedith
ratio can be computed. The new function for testing a
This is a positive example because output pin4isat1. clause is represented in Figure 3.

A correct theory for distinguishing positive from nega- In Figure 3 Derivatio(\Goal, P) implements the Pro-
tive configurations is the following: log derivation of a goalGoal from a programpP. It

pinlat0. pin2atl. pin3atO.
pindatl. pinbatl. pin6atO0.



Learn(P, N, B)
Initialize H := ()
while best claus€’ found andN is not empty
FindBestClausé?, N, B)
if best clause” found then
(2) addC to H
remove fromN all interpretations that are false for
returnH

Figure 1: ICL covering algorithm

FindBestClausé?, N, B)
Initialize Beam := { false «— true}
Initialize BestClause := ()
while Beam is not empty do
Initialize NewBeam := ()
for each claus€’ in Beam do
for each refinemenkef of C' do
() if Ref is better thamBestClause and Re f
is statistically significant the®estClause := Ref
if Ref is notto be pruned then
add Ref to NewBeam
if size of NewBeam > MaxBeamSize then
remove worst clause froi¥ew Beam
Beam := NewBeam
return BestClause

Figure 2: ICL beam search algorithm




TestClausel, N, B, C)
NP := 0 \* number of positive interpretations covered is true in them)¥
P’ := () \* set of covered positive interpretation§ *
for each interpretatiop € P
find the se© of all the substitutiong such that
Derivationbody(C'), p U B) succeeds
A:=10
covered := true
while © is not empty andovered
remove the first elemeidtfrom ©
Head = head(C)6
covered := false
while there are literals il ead andnot covered
remove the first literal in Head
if AbductiveDerivatiorf L, p U B, A) succeeds returning’ then
covered := true

A=A
if covered then
NP :=NP+1

P’ =P U{(p,A)}
NN := 0 \* number of negative interpretations not coverétlig false in them) ¥
N':= ( \* set of non covered negative intepretations *
for each interpretation € N
find the setF of all the couplegd, A) such that
AbductiveDerivatiotibody(C),n U B, () succeeds
returningd as a substitution foBody and A
as the set of abduced literals
covered := true
while E is not empty an@overed
remove the first elemenfd, A) from £
Head = head(C)6
add the facts of\ ton
call Derivatior((not Head),n U B)
remove the facts ol fromn
if the derivation succeeds then
covered := false
A=A
if not covered then
NN :=NN+1
N':=N'U{(n,A")}
return(NP, P’ NN, N")

Figure 3: AICL test function




may succeed or fail, if it succeeds it returns a substitutiortlause. The modified function Learn, besides adding the
0 for Goal. AbductiveDerivatioGoal, P, A;,) imple-  best claus€' to the current theoryd in point (2), also adds
ments the abductive derivation defined in [8]. It may sucto each interpretation the facts abduced during the cover-
ceed or falil, if it succeeds returns a substitutiioior Goal ~ age test of the clause on that interpretation.
and a set of abduced literals,,; such thatA,,; 2O A;,. AICL has been implemented in Sicstus Prolog. In or-
In order to explain the behaviour of TestClause, consideder to execute the function Derivation and AbductiveD-
the following example in which we want to test the clauseerivation on a program containing an interpretation and the
C: background knowledge, the Sicstus Prolog module system
has been used: each interpretation is loaded in a different
module and the clauses of the background are asserted in
over the incomplete positive interpretatipn all the modules.
In function TestClause the addition of the facts frém
to the current interpretation is performed by asserting the
facts in the corresponding module. Similarly, the removal
In this case the background knowledBedoes not con- of the facts is performed by using the retract predicate.
tain any clause. However, it contains some integrity con-
straints, that are used by the abductive proof procedure: g Experiments
contains the constraints that state that a pin can not be at th
same time 0 and 1. One of these constraints is for exampl€L and AICL were applied on the multiplexer dataset,
containing 32 positive interpretations and 32 negative in-
terpretations. A ten-fold cross-validation was performed
We first find the substitutions with whicbody(C) is  In order to test the performances of the two systems in the
true inpUB. There is only one such substitution, the emptycase of missing data, for each fold, facts from the interpre-
one. Thu®® = {(}. covered is set to true and the middle tations were randomly chosen and removed. In particular,
cycle is entered.Head is set topin3atl andcovered  for each fold, different percentages of facts were removed
to false. Then the inner cycle is entered and an abductiviEom the training set: from 5% to 85% in steps of 5%. In
derivation is started for the gopin3atl from the theory this way we have obtained 18 training sets for each fold:
p U B. Remember that the theofy contains the integrity one with the complete data and the other 17 with increas-
constraints. The abductive proof procedure tries to abing missing information, from 5% to 85%. ICL and AICL
ducepin3atl and succeeds because it is consistent wittwere trained on the various training sets, the learned theo-
the integrity constraint- pin3at0,pin3atl since ries were tested on the testing set (from which no informa-
pin3at0 is not true inp U B. tion was removed) and the accuracy was computed. The
Thuscovered is set to true and\ to {pin3atl }. The testing was performed by employing a Prolog derivation,
inner cycle terminates and the middle cycle is terminated.e., abductive derivation was not used in testing. The-accu
as well since there are no more substitutions to consider. racy is given by the number of covered positive examples
The value ofcovered at the end of the middle cycle in- plus the number of non covered negative examples over the

pin3atl :- pinlatO,pin2atO.

pinlat0. pin2atO.
pindatl. pin5atl. pin6atO.

;- pin3at0,pin3atl.

dicates that the example is covered. total number of examples.
Let us now consider the test of the same clatisever When learning with ICL, the background knowledge
the negative interpretationrepresented by was empty. When learning with AICL the background

knowledge contained an abductive theof¥, A, IC)
whereT is empty, A contains all the 12 predicates used
for describing the configurations aid’ contains integrity
In this case, an abductive derivation is started for the goatonstraints that state that a pin can not be at the same time
pinlat0,pin2at0 . The derivation succeeds return- 0 and 1.
ing the empty substitution and = {pin2at0 }. Thus The learning parameters for ICL were all left to their
E = {(0,{pin2at0 })}. covered is set to true. Then default values except the significance level which was set
the inner cycle is entered.Head is set topin3atl . to 0, meaning that no significance test was performed. The
The fact contained in\ is added ton and a derivation same values have been used for AICL.
for not pin3atl s started. The derivation succeeds, The accuracy on the testing set for each level of incom-
covered is set to false, the facts frodk are removed from pleteness has then been averaged over the ten folds. Figure
n, the inner cycle is terminated and the interpretation is nott shows the value of the average accuracy as a function of
covered. the incompleteness level. As can be seen from the graph
The second point in which ICL is modified is (2) in func- AICL outperforms ICL for the incompleteness levels 5%
tion Learn. The function FindBestClause not only returnsand 10%, it is only slightly superior for 15%, it outper-
the best clause found so far but it also returns the literforms ICL for 20% and 25%, is beated by ICL for 30% and
als abduced for each interpretation during the test of th85%. For higher incompleteness levels the performances

pinlatO. pin3at0.
pindatl. pin5atl. pin6atO.
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Figure 4: Accuracy as a function of the incompleteness level

are very similar. This shows that, for low incompletenesdalse or undefined. In practice a three-valued interpiatati
levels, the abductions performed by AICL are frequentlyis a consistent set of literals. In order to exploit abduttio
correct and allow AICL to reach a high accuracy. Thisin this case, we can use the fact that negation by default
means that AICL succeeds in exploiting as much as poszan be expressed abductively by having an abducible of
sible the available knowledge. Note also that AICL hasthe formnot_a for every atonu and by having constraints
a much more graceful degradation of performances, whilef the form« «a, not_a. Negative information can be rep-
ICL shows a more irregular behavior, with spikes for 15%,resented in interpretations by including in them facts ef th
35% and 55%, form not_a.
Moreover, more experiments on larger domains need to

be done in order to draw more general conclusions. In par-

7 FutureWorks ticular, we plan to apply AICL to the problem of learning

the specification of protocols of interaction among agents

The present work can be extended and improved in anNUNEom traces of their execution. In fact, these traces ang ver
ber of ways. One line of future work regards the possmmtyOften incomplete due to the impossibility of recording ev-

olf haV|n?hmuItt)|§Iet§et zf a}bdtL.lced literals: wheg tgtsrt]mg ry message exchanged between any two agents.
clause, the abguctive derivations may succeed with More - .o ,re we would also like to investigate the adop-

than one .SEt of abduc_:ed literals. At the momgnt we S'mpl.)fion of other abductive proof procedures, as for example
pick the first set that is returned. However, since the set e IFF [6], the SCIFF [2] or thed-system [9], for com-
added to the interpretation when a clause is added to th eting the interpretations. These proof procedures are in

theory, the S?t |anuerjces thf coverage of fut_ure clause eresting because they provide a better handling of non
Thus the choice of a “wrong” set of abduced literals may

hinder the further addition of good rules to the theory.ground abducibles.

This could be resolved if we allow backtracking to be per-

formed: when an abductive derivation can succeed inmor8 Conclusions

than one way, we should leave a choice point open. In the

case that, later, a best clause can not be found, we coulfe have proposed the algorithm AICL that modifies ICL in

backtrack over the open choice points. This of course caorder to achieve a better performance on incomplete data.

be computationally quite demanding, therefore trade-off§ he modification is based on the use of an abductive proof

should be adopted. procedure for testing the truth of clauses in the example
Another line of future work is suggested by the fact thatinterpretations.

incomplete interpretations could be better represented by AICL has been tested against ICL on the problem of dis-

three-valued interpretations: in them an atom can be trudinguishing working multiplexers from faulty ones. Differ



ent levels of incompleteness of the data have been considf9] A. C. Kakas, B. van Nuffelen, and M. Denecker.

ered, from 5% to 85%. For the levels of incompleteness
from 5% to 25% AICL reached a higher accuracy. More-
over AICL showed a more graceful degradation of perfor-

mances.
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