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tThe revision of beliefs is an important general pur-pose fun
tionality that an agent must exhibit. Theagent usually needs to perform this task in 
oopera-tion with other agents, be
ause a

ess to knowledgeand the knowledge itself are distributed in nature.In this work, we propose a new approa
h for per-forming belief revision in a so
iety of logi
-basedagents, by means of a (distributed) geneti
 algo-rithm, where the revisable assumptions of ea
h agentare 
oded into 
hromosomes as bit-strings. Ea
hagent by itself lo
ally performs a geneti
 sear
h inthe spa
e of possible revisions of its knowledge, andex
hanges geneti
 information by 
rossing its revis-able 
hromosomes with those of other agents.We have performed experiments 
omparing theevolution in beliefs of a single agent informed of thewhole of knowledge, to that of a so
iety of agents,ea
h agent a

essing only part of the knowledge. Inspite that the distribution of knowledge in
reases thediÆ
ulty of the problem, experimental results showthat the solutions found in the multi-agent 
ase are
omparable in terms of a

ura
y to those obtainedin the single agent 
ase.The geneti
 algorithm we propose, besides en
om-passing the Darwinian operators of sele
tion, muta-tion and 
rossover, also 
omprises a Lamar
kian op-erator that mutates the genes in a 
hromosome asa 
onsequen
e of the 
hromosome phenotype's indi-vidual experien
e obtained while solving a belief re-vision problem. These 
hromosomi
 mutations aredire
ted by a logi
-based belief revision pro
edurethat relies on tra
ing the logi
al derivations lead-ing to in
onsisten
y of belief, so as to remove thesederivations' support on the gene 
oded assumptions,e�e
tively by mutating the latter. Be
ause of the use

a Lamar
kian operator, and following the literature,the genes in these 
hromosomes that are modi�ed bythe Lamar
kian operator are best dubbed \memes",sin
e they 
ode the memory of the experien
es of anindividual along its lifetime, besides being transmit-ted to its progeny.We believe our method to be important for situa-tions where 
lassi
al belief revision methods hardlyapply: those where environments are non-uniformand time 
hanging. These 
an be explored by dis-tributed agents that evolve geneti
ally to a

omplish
ooperative belief revision, if they use our approa
h.1 Introdu
tionBelief revision is indeed an important fun
tionalitythat agents must exhibit: agents should be able tomodify their beliefs in order to model the outsideworld. Moreover, they need to perform this taskin 
ooperation with other agents, be
ause a

ess toknowledge and the knowledge itself are distributed innature, i.e., ea
h agent has only a partial knowledgeof the world.We 
onsider a de�nition of the belief revision prob-lem that 
onsists in removing a 
ontradi
tion froman extended logi
 program [15, 2, 3℄ by modifyingthe truth value of a sele
ted set of literals 
alled re-visables. The program 
ontains as well 
lauses withfalse (?) in the head, representing integrity 
on-straints. Any model of the program must ensurethat the body of integrity 
onstraints be false forthe program to be non-
ontradi
tory. Contradi
tionmay also arise in an extended logi
 program whenboth a literal L and its opposite :L are obtainablein the model of the program. Su
h a problem hasbeen widely studied in the literature, and various so-lutions have been proposed [4, 9℄ that are based on1



abdu
tive logi
 proof pro
edures.In this work, we propose a new approa
h for per-forming belief revision in a so
iety of logi
-basedagents, by means of a (distributed) geneti
 algo-rithm. The problem 
an be modeled by means ofa geneti
 algorithm, by assigning to ea
h revisableof a logi
 program a gene in a 
hromosome. In the
ase of a two-valued revision, the gene will have thevalue 1 if the 
orresponding revisable is true and thevalue 0 if the revisable is false. The �tness fun
tionthat is used in this 
ase is represented in part by theper
entage of integrity 
onstraints that are satis�edby a 
hromosome.Ea
h agent keeps a population of 
hromosomesand �nds a solution to the revision problem by meansof a geneti
 algorithm. We 
onsider a formulationof the revision problem where ea
h agent has thesame set of revisables and the same program, butis subje
ted to possibly di�erent observations and
onstraints. Observations and 
onstraints may varyover time, and 
an di�er from agent to agent be
auseagents may explore di�erent regions of the world.Ea
h agent by itself lo
ally performs a geneti
 sear
hin the spa
e of possible revisions of its knowledge,and ex
hanges geneti
 information by 
rossing itsrevisable 
hromosomes with those of other agents.In this way, we a
hieve distribution in belief revi-sion sin
e 
hromosomes 
oming from di�erent agents,through 
rossover, 
ontribute to solve the problem.In the geneti
 algorithm we also exploit 
ompu-tational logi
 te
hniques: the algorithm, 
omprisesa Lamar
kian operator that di�ers from a Dar-winian mutation operator be
ause, instead of ran-domly modifying the genes, it modi�es them in orderto improve the �tness of the 
hromosome. Genes thatare modi�ed by this operator are also 
alled \memes"[5℄. The Lamar
kian operator modi�es the memes bymeans of a (logi
-based) pro
edure inspired by [16℄:the logi
al derivations leading to the in
onsisten
yof belief are tra
ed so as to remove these derivations'support on the meme 
oded assumptions, e�e
tivelyby mutating the latter. In our algorithm, therefore,
omputational logi
 is used in order to �nd good re-visions that are then distributed by means of the
rossover geneti
 operator.We have performed experiments 
omparing theevolution in beliefs of a single agent informed of thewhole of knowledge, to that of a so
iety of agents,ea
h agent a

essing only part of the knowledge. Theexperiments have been performed on problems ofmodel based diagnosis, a natural domain in whi
h be-lief revision te
hniques apply [9℄, and on the n-queenproblem. In spite that the distribution of knowledgein
reases the diÆ
ulty of the problem, experimentalresults show that the solutions found in the multi-agent 
ase are 
omparable in terms of a

ura
y tothose obtained in the single agent 
ase.Moreover, we have seen that the adoption of


omputational logi
 methods in a geneti
 algorithmprovides an improvement over purely geneti
 ap-proa
hes.2 Logi
 Programming BasisIn this se
tion we �rst provide some logi
 program-ming fundamentals, and then we give a de�nition ofthe belief revision problem adapted from [16℄.2.1 LanguageGiven a �rst order language Lang, an extended logi
program [15, 2, 3℄ is a set of rules and integrity 
on-straints of the formH  B1; : : : ; Bn; not C1; : : : ; not Cm (m � 0; n � 0)where H;B1; : : : ; Bn; C1; : : : ; Cm are obje
tive liter-als, and in integrity 
onstraints H is ? (false). Anobje
tive literal is either an atom A or its expli
itnegation :A, where ::A = A. not L is 
alled a de-fault or negative literal. Literals are either obje
tiveor default ones. The default 
omplement of obje
-tive literal L is not L, and of default literal not L isL. A rule stands for all its ground instan
es withrespe
t to Lang. The notation H  B is also usedto represent a rule, where the set B 
ontains the lit-erals in its body. For every pair of obje
tive literalsfL;:Lg in Lang, we impli
itly assume the 
onstraint?  L;:L.The set of all obje
tive literals of a program P is
alled its extended Herbrand base and is representedas HE(P ).We 
onsider the Extended Well Founded Seman-ti
s (WFSX ) that extends the well founded seman-ti
s (WFS ) [17℄ for normal logi
 programs to pro-grams extended with expli
it negation, besides theimpli
it or default negation of normal programs.WFSX is obtained from WFS by adding the 
oher-en
e prin
iple (CP) relating the two forms of nega-tion: \if L is an obje
tive literal and :L belongs tothe model of a program, then also not L belongs tothe model", i.e., :L ! not L. See [2, 11℄ or theAppendix for a de�nition of WFSX.We say that a set of literals S is 
ontradi
tory i�? 2 S. The para
onsistent version of WFSX, thatallows models to 
ontain the atom ?, is 
alled WF-SXp [7, 8℄.2.2 Revising Contradi
tory ExtendedLogi
 ProgramsExtended logi
 programs are liable to be 
ontradi
-tory be
ause of integrity 
onstraints, either thosethat are user-de�ned or those of the form ? L;:Lthat are impli
itely assumed. Let us see an exampleof a 
ontradi
tory program.



Example 2.1 Consider P = fa;?  a; not bg1.Sin
e we have no rules for b, by the Closed WorldAssumption CWA, it is natural to a

ept not b astrue. However, be
ause of the integrity 
onstraint,we 
an 
on
lude ? and thus have 
ontradi
tion.It is arguable that the (CWA) may not be heldof atom b sin
e it leads to 
ontradi
tion. Revisingsu
h CWAs is the basis of the 
ontradi
tion removalmethod of [16℄. In order to sele
t a parti
ular 
on-tradi
tion removal pro
ess, three questions must beanswered:1. For whi
h literals is revision of their truth-valueallowed ?2. To what truth values do we 
hange the revisableliterals ?3. How to 
hoose among possible revisions ?The options taken here are 
lari�ed in the dis
us-sion in se
tion 2.4, giving two di�erent answers tothese questions. Both use the same 
riteria to an-swer 1 and 3, but di�er on the se
ond one. Forexample 2.1 the �rst way of removing 
ontradi
-tion gives fa; not :a; not :bg as the intended mean-ing of P , where b is revised to unde�ned, a
hiev-able by adding b not b to P . The se
ond givesfa; b; not :a; not :bg, by revising b to true, a
hiev-able by adding b to P .2.3 Contradi
tory Well FoundedModelTo revise 
ontradi
tions, we need to identify the 
on-tradi
tory sets of 
onsequen
es implied by the appli-
ations of CWA. The main idea is to 
ompute all
onsequen
es of the program, even those leading to
ontradi
tions, as well as those arising from 
ontra-di
tions. Furthermore, the 
oheren
e prin
iple is en-for
ed at ea
h step.Example 2.2 Consider program P:a not b. (i) :a not 
. (ii) d a. (iii)e :a. (iv)1. not b and not 
 hold sin
e there are no rules foreither b or 
.2. :a and a hold from 1 and rules (i) and (ii).3. ? holds from 2 and impli
it 
onstraint a;:a.4. not a and not :a hold from 2 and inferen
e rule(CP ).5. d and e hold from 2 and rules (iii) and (iv).6. not d and not e hold from 4 and rules (iii) and(iv), as they are the only rules for d and e.1? a;:a and ? b;:b are impli
itly assumed.

7. not :d and not :e hold from 5 and inferen
e rule(CP ).The whole set of 
onsequen
es is the WFSXpmodel: f?;:a; a; not a; not :a; not b; not 
;d; not d; not :d; e; not e; not :eg2.4 Contradi
tion Removal SetsTo abolish 
ontradi
tion, the �rst issue to 
onsideris whi
h default literals true by CWA are allowed to
hange their truth values. We adopt the approa
h of[16℄ where the 
andidates for revision are all the ob-je
tive literals that have no rules in the program. ByCWA, their default negation is true. These literalsare 
alled revisables.De�nition 2.1 Revisables The revisables of a pro-gram P are the elements of a 
hosen subset Rev(P ),of the set of all obje
tive literals L having no rulesfor them in P .The revisables thus are obje
tive literals that do notappear in rule heads but only in rule bodies, eitherin a positive or default form. By the CWA, everyrevisable R is false, i.e., not R is true. Now we iden-tify the revisables that have to be revised to trueor unde�ned in order to restore 
onsisten
y. Theseare the ones that support 
ontradi
tion. Intuitively,a support of a literal 
onsists of the revisable liter-als in the leaves of a derivation for it in the WFSXpmodel.De�nition 2.2 Set of assumptions supportinga literal A support set (of assumptions) of a literalL of the WFSXp model MP of a program P , denotedby SS(L), with respe
t to the set of revisable Rev(P )is obtained as follows:1. If L is an obje
tive literal in MP then for ea
hrule L  B in P , su
h that B � MP there isone SS(L) formed by the union of a SS for ea
hBi 2 B. If B is empty then SS(L) = fg.2. If L is a default literal not A 2MP :(a) if no rules for A exist in P then a supportset of L is fnot Ag.(b) if rules for A exist in P that have a non-empty body, then 
hoose from ea
h su
hrule a single literal su
h that its default
omplement belongs to MP . There existsone SS for not A whi
h is the union of oneSS for the default 
omplement of the 
ho-sen literal in ea
h rule.(
) if :A belongs to MP then there exist, ad-ditionally, support sets SS for not A equalto ea
h SS(:A).



The de�nitions of revisable literals and of supportsets di�er from those given in [16℄ be
ause there therevisables are the default 
omplement of the liter-als without de�nition and support sets there 
ontainall the literals in the nodes of a derivation for L.We have provided these modi�ed de�nitions be
ausethey simplify the introdu
tion of the Lamar
kian op-erator in the next se
tion.Example 2.3 The WFSXp model MP of::p not 
.:b not e. p t.p a,not b.a. b 
, a.b d.is fa; not :a; not b;:b; not 
; not :
; not d; not :d;not e; not :e; not t; not :t; p;:p; not p; not :p;?g.Here the revisables are f
; d; eg. There are twosupport sets for not b:SS1(not b)=SS(not 
) [ SS(not d) by rule 2bSS1(not b)=fnot 
g [ fnot dg=fnot 
; not dg by rule 2aNoti
e that the other possibility of 
hoosing lit-erals for SS(not b); i.e. SS1(not b) = SS(not a) [SS(not d); 
an't be 
onsidered be
ause not a doesn'tbelong to MP . The other support set for not b isobtained using rule 2
:SS2(not b) = SS(:b) by rule 2
SS2(not b) = SS(not e) by rule 1SS2(not b) = fnot eg by rule 2aNow the support sets for the obje
tive literal p areeasily 
omputed:SS(p)=SS(a)[SS(not b) by rule 1SS(p)=fg[SS(not b) by rule 1(the only rule for a is fa
t a)So SS1(p) = SS1(not b) = fnot 
; not dg andSS2(p) = SS2(not b) = fnot eg. :p has the uniquesupport set fnot 
g. Consequently, be
ause 
ontra-di
tion is obtained only via ?  p;:p, SS1(?) =fnot 
; not dg and SS2(?)= fnot e; not 
g.Proposition 2.1 Existen
e of support sets Ev-ery literal L belonging to the WFSXp model of a pro-gram P has at least one support set SS(L).We de�ne a spe
trum of possible revisions usingthe notion of hitting set:De�nition 2.3 Hitting set A hitting set of a 
ol-le
tion C of sets is formed by the union of one non-empty subset from ea
h S 2 C. A hitting set is min-imal i� no proper subset is a hitting set. If fg 2 C,then C has no hitting sets.

De�nition 2.4 Removal set A removal set of aliteral L of a program P is a hitting set of all supportsets SS(L).We 
an revise 
ontradi
tory programs by 
hang-ing the truth value of the literals of some removalset of ?. The truth value 
an be 
hanged either tounde�ned or false. It 
an be 
hanged to unde�nedby adding, for ea
h literal not L in the removal set,the inhibition rule L  not L to P (making L ef-fe
tively unde�ned), while it 
an be 
hanged to falseby adding L to P . In 
ase the literals are revised tounde�ned, then the 
ontradi
tion is removed and nonew 
ontradi
tion 
an arise. In 
ase they are revisedto false, a new 
ontradi
tion may arise and thereforethis (
onvergent) 
ontradi
tion removal pro
ess mustbe iterated. This de�nes the possible revisions of a
ontradi
tory program.We answer the se
ond question above by 
onsider-ing only a two-valued revisions, i.e. where the truthvalue of a revisable 
an only be 
hanged to true orfalse. We answer the third question by prefering torevise minimal sets of revisables:De�nition 2.5 Contradi
tion removal set A
ontradi
tion removal set (CRS) of P is a minimalremoval set of ?.Example 2.3 (
ont.) The support sets of ? arefnot 
; not dg and fnot 
; not eg. Its removal sets are(RS1 and RS4 being minimal):RS1(?; R) = fnot 
gRS2(?; R) = fnot 
; not egRS3(?; R) = fnot 
; not dgRS4(?; R) = fnot d; not egRS5(?; R) = fnot 
; not d; not egDe�nition 2.6 Revisable program A program isrevisable i� it has a 
ontradi
tion removal set.The CRSs are minimal hitting sets of the 
olle
-tion of support sets of ?. In [16℄ an algorithm for
omputing the CRSs is presented.3 A geneti
 algorithm formulti-agent belief revisionThe algorithm here proposed for belief revision ex-tends the standard geneti
 algorithm (des
ribed forexample in [14℄) in two ways:� 
rossover is performed among 
hromosomes be-longing to di�erent agents,� a Lamar
kian operator 
alled Learn is added inorder to bring a 
hromosome 
loser to a 
orre
trevision by 
hanging the value of the revisables.Ea
h agent exe
utes the following algorithm:



GA(Fitness;max gen; p; r;m; l)Fitness : a fun
tion that assigns an evaluations
ore to a hypothesis 
oded as a 
hromosomemax gen : the maximum number of generationsbefore terminationp: the number of individuals in the populationr: the fra
tion of the population to berepla
ed by Crossover at ea
h stepm: the fra
tion of the population to bemutatedl: the fra
tion of the population that shouldevolve Lamar
kianlyInitialize population: P  generate phypotheses at randomEvaluate: for ea
h h in P , 
omputeFitness(h)gen 0While gen � max genCreate a new population Ps:Sele
t: Probabilisti
ally sele
t (1� r)pmembers of P to be added to Ps.The probability Pr(hi) of sele
tinghypothesis hi from P is given byPr(hi) = Fitness(hi)�pj=1Fitness(hj )Crossover:For i=1 to rpProbabilisti
ally sele
t a hypothesish1 from P , a

ording to Pr(h1)given aboveObtain an hypothesis h2 from anotheragent 
hosen at randomCrossover h1 with h2 obtaining h01Add h01 to PsMutate: Choose m per
ent of the membersof Ps with uniform probability.For ea
h, invert one randomly sele
tedbit in its representationLearn: Choose lp hypotheses from Ps withuniform probability and substitute ea
hof them with the modi�ed hypothesesreturned by the pro
edure LearnUpdate: P  PsReturn the hypothesis from P with the highest�tnessIn belief revision, ea
h individual hypothesis is de-s
ribed by the truth value of all the revisables. Sin
ewe 
onsider a two-valued revision, ea
h hypothesisgives the truth value true or false to every revisableand therefore it 
an be 
onsidered as a set 
ontainingone literal, either positive or default, for every revis-able. A 
hromosome is obtained by asso
iating a bitto ea
h revisable that has value 1 if the revisable istrue and 0 if it is false.

Various �tness fun
tions 
an be used in belief re-vision. The simplest �tness fun
tion is the followingFitness(hi) = ninwhere ni is the number of integrity 
onstraints sat-is�ed by hypothesis hi and n is the total number ofintegrity 
onstraints. We will 
all it an a

ura
y �t-ness fun
tion. Another possible �tness fun
tion isthe followingFitness(hi) = nin � nn+ jhij + fijhij � jhijn+ jhijwhere fi is the number of revisables in hi that arefalse, and jhij is the total number of revisables. Wewill 
all it a hybrid �tness fun
tion. This fun
tion isa weighted average of the a

ura
y and the fra
tionof false literals in the solution. In this way, the �tnessfun
tion prefers hypotheses with a lower number oftrue revisable, whi
h is desirable in some 
ases.The �rst extension to the standard geneti
 algo-rithm 
onsists in a 
rossover operator that allowsthe ex
hange of genes among agents. The standarduniform 
rossover operator produ
es a new o�springfrom two parent strings by 
opying sele
ted bits fromea
h parent. The bit at position i in the o�spring is
opied from the bit in position i in one of the twoparents. The 
hoi
e of whi
h parent provides the bitfor position i is determined by an additional string
alled 
rossover mask. This string is a sequen
e ofbits ea
h of whi
h has the following meaning: if bitin position i is 0, then the bit in position i in the o�-spring is 
opied from the �rst parent, otherwise it is
opied from the se
ond parent. In uniform 
rossover,the mask is generated as a bit string where ea
h bitis 
hosen at random and independently of the others.The 
rossover operator we 
onsider di�ers from thestandard uniform operator be
ause one of the par-ents used in 
rossover 
omes from the population ofanother agent.The other extension to the standard geneti
 al-gorithm 
onsists in the addition of the Lamar
kianoperator Learn. This operator 
hanges the valuesof the revisables in a 
hromosome C so that a big-ger number of 
onstraints is satis�ed, thus bringingC 
loser to a solution. Learn di�ers from a normalbelief revision operator be
ause it does not assumethat all the revisables are false by CWA before therevision but it starts from the truth values that aregiven by the 
hromosome C. Therefore, it has torevise some revisables from true to false and othersfrom false to true. As a 
onsequen
e, the support setdoes not 
ontain only default literals but also revis-able obje
tive literals.Learn works in the following way: given a 
hro-mosome C, it �nds all the support sets for ? su
hthat they 
ontain literals in C. Therefore, it does



not �nd all support sets for ? but only those thatare subsets of C.The de�nition of support set that is used by theLamar
kian operator is therefore di�erent from def-inition 2.2 and is given as follows:De�nition 3.1 Lamar
kian support set of aliteral A support set of a literal L of the WFSXpmodel MP of a program P a

ording to a given setof literals H is denoted by SS(L;H) and is obtainedas follows:1. If L is an obje
tive literal in MP then for ea
hrule L  B in P , su
h that B � MP there isone SS(L;H) for ea
h Bi 2 B. If B is emptythen SS(L;H) = fg.2. If L is a revisable literal in MP , then(a) if L belongs to H, then a support set of Lis fLg.(b) if the default 
omplement of L belongs toH, then there is no support set for L.3. If L is a default literal not A 2MP :(a) if A is a revisable then:i. if L belongs to H, then a support setof L is fnot Ag.ii. if A belongs to H, then there is no sup-port set for L.(b) if rules for A exist in P that have a non-empty body, then 
hoose from ea
h su
hrule a single literal su
h that its default
omplement belongs to MP . There existsone SS for not A for every SS of ea
h de-fault 
omplement of the 
hosen literals.(
) if :A belongs to MP then there exist, addi-tionally, support sets SS of not A equal toea
h SS(:A).Sin
e the Lamar
kian support sets for ? representonly a subset of all the support sets for ?, a hittingset generated from them is not ne
essarily a 
ontra-di
tion removal set and therefore it does not repre-sent a solution to the belief revision problem. How-ever, it eliminates some of the derivation paths to ?and, therefore, may in
rease the number of satis�ed
onstraints, thus improving the �tness, as requiredby the notion of Lamar
kian operator.To �nd the support sets we need to know whi
hliterals belong to the model of a program. This infor-mation is obtainable through some sound and 
orre
tpro
edure for WFSXp su
h as the one des
ribed in[1℄, or the one in [4℄.In the 
ase of the 
ir
uit diagnosis problems in se
-tion 4, the support sets pro
edure be
omes simpli�edin that the o

urren
es of default negated literals inthe program pertain only to revisables.

The algorithm implementing the Learn operatoris given below.pro
edure Learn(C;C 0)inputs : A 
hromosome C translated into a setof revisablesoutputs : A revised 
hromosome C 0Find the support sets for ?:Support sets([?℄; C; fg; fg; SS)Find a hitting set HS: Hitting set(SS;HS)Change the value of the literals in the
hromosome C that appear as well in HSpro
edure Support sets(GL;C; S; SSin; SSout):inputs :GL a list of goalsA 
hromosome H translated into a set ofrevisablesThe 
urrent support set SThe 
urrent set of support sets SSinoutputs :A set SSout 
ontaining the support setsfor the �rst goal in the listIf GL is empty, then return SSout = SSinConsider the �rst literal L of the �rst goalG of GL (GL = [GjRGL℄ using Prolognotation for lists)(1) if G is empty then add the 
urrentsupport set to SSin and 
all re
ursivelythe algorithm on the rest of GLSupport sets(RGL;H; fg; SSin[ fSg;SSout)(2) if G is not empty (G = [LjRG℄) then:(2a) if L is a revisable and is in H ,then add it to S, and 
all the algorithmre
ursively on the rest of GSupport sets([RGjRGL℄; H; S [ fLg;SSin; SSout)(2b) if L is a revisable and it is not in H ,or its opposite is in H , dis
ard Sand 
all the algorithm re
ursively on therest of GL Support sets(RGL;H; S [ fLg; SSin; SSout)(2
) if it is not a revisable then redu
e it withall the rules, obtaining the new goalsG1; :::; Gn, one for ea
h mat
hing rule,add the goals to GL and 
allthe algorihtm re
ursively Support sets([[G1jRG℄; :::; [GnjRG℄jRGL℄; H; S; SSin; SSout)(2d) if it is not a revisable and there are norules, then return without adding S to SS(SSout = SSin)pro
edure hitting set(SS;HS):Pi
k a literal from every support set in SSAdd it to HS if it does not lead to 
ontradi
tion



(i.e. the literal must not be already presentin its 
omplemented form).If it leads to 
ontradi
tion pi
k another literal.Simpli�ed versions of this algorithm have also been
onsidered in order to separately test the e�e
tive-ness of ea
h of the features added to the standard ge-neti
 algorithm. In parti
ular, four algorithms havebeen 
onsidered named in the sequel algorithms 1, 2,3 and 4. Algorithm 1 is a standard single agent ge-neti
 algorithm: 
rossover is performed only among
hromosomes of the same agent and the Lamar
kianoperator is not used. Algorithm 2 adds to algorithm1 the use of the Lamar
kian operator, with a param-eter l (per
entage of the population to be mutatedLamar
kianly) equal to 0.6. Algorithm 3 is a multi-agent algorithm without the Lamar
kian operator,i.e., 
rossover is performed between 
hromosomes ofdi�erent agents but the operator Learn is not appliedto them. Algorithm 4 extends algorithm 3 by addingthe Lamar
kian operator, with a parameter l equalto 0.6. For all the algorithms, the mutation rate(parameter m) and the 
rossover rate (parameter r)have been set to 0.2.In algorithms 3 and 4 the agents share the sameset of observations and program 
lauses but have dif-ferent sets of 
onstraints. At the end of the 
ompu-tation, in order to �nd a single solution for the revi-sion problem, the best 
hromosome in ea
h agent is
onsidered and is s
ored with a �tness fun
tion that
onsiders all the 
onstraints (global �tness fun
tion).Then the 
hromosome with the highest global �tnessis returned as the solution. In this way the multi-agent system �nds a solution for the global beliefrevision problem.These algorithms have been used in order to ex-perimentally prove the following theses:1. the distributed algorithm (with or without theLamar
kian operator) has a performan
e that is
omparable (and, in parti
ular, not signi�
antlyinferior) to that of the non-distributed one, inthe same number of generations and the sameoverall number of individuals, despite the distr-bution of knowledge;2. Lamar
kism is never worse than Darwinism andmay outperform it both in the single and in themulti agent 
ase;In order to test thesis 1, the results obtained byalgorithm 1 is 
ompared to the one obtained by al-gorithm 3 and the same is done for algorithms 2 and4. In order to test thesis 2, the results obtained byalgorithm 1 is 
ompared to the one obtained by al-gorithm 2 and the same is done for algorithms 3 and4.

4 ExperimentsThe algorithms have been tested on a number of be-lief revision problems in order to prove the abovetheses. In parti
ular, we have 
onsidered problemsof digital 
ir
uit diagnosis, as per [9℄, and the n-queenproblem.4.1 Experiment MethodologyIn order to evaluate if the a

ura
y di�eren
es be-tween algorithms are signi�
ant, we have 
omputeda 10-fold 
ross-validated paired t test for every pair ofalgorithms (see [10℄ for an overview of statisti
al testsfor the 
omparison of ma
hine learning algorithms).This test is 
omputed as follows. Given two algo-rithms A and B, let pA(i) (respe
tively pB(i)) bethe maximum �tness a
hieved by algorithm A (re-spe
tively B) in trial i. If we assume that the 10di�eren
es p(i) = pA(i) � pB(i) are drawn indepen-dently from a normal distribution, then we 
an applythe Student t-test by 
omputing the statisti
t = �ppnrPni=1(p(i)��p)2n�1where n is the number of folds (10) and �p is�p = 1n nXi=1 p(i)In the null hypothesis, i.e. that A and B obtainthe same �tness, this statisti
 has a t distributionwith n � 1 (9) degrees of freedom. If we 
onsider aprobability of 90%, then the null hypothesis 
an bereje
ted if jtj > t9;0:90 = 1:3834.2 Digital Cir
uit DiagnosisIn problems of digital 
ir
uit diagnosis there is a dif-feren
e between the observed and the predi
ted out-puts. Figure 1 shows a sample 
ir
uit together withthe observed inputs and outputs of the 
ir
uit andthe predi
ted outputs of ea
h gate. The aim of thediagnosis is to �nd whi
h 
omponents are faulty. Aproblem of digital 
ir
uit diagnosis 
an be modelledas a belief revision problem by des
ribing it with alogi
 program 
onsisting of four groups of 
lauses:one that allows to 
ompute the predi
ted output ofea
h 
omponent, one that des
ribes the topology ofthe 
ir
uit, one that des
ribes the observed inputsand outputs, and one that 
onsists of integrity 
on-straints stating that the predi
ted value for an out-put of the system 
annot be di�erent from the ob-served value. The representation formalism we use isthe one of [9℄. As regards the integrity 
onstraints,we have two 
onstraints for ea
h output of the 
ir
uit,
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ir
uit from ISCAS85's set of ben
h-mark 
ir
uits.one stating that the output 
an not be 0 if it was ob-served to be 1 and the other stating that the output
an not be 1 if it was observed to be 0. For exam-ple, the 
onstraint i
([obs(out(nand2, g22), 0),val(out(nand2, g22), 1)℄). states that the valueof the output of g22 
annot be 1 if it was observedto be 0.The revisable in this 
ase are of the form ab(Name)and their meaning is that 
omponent Name is abnor-mal.The system has been tested on some real worldproblems taken from the ISCAS85 ben
hmark 
ir-
uits [6℄ that have been used as well for testing thebelief revision system REVISE [9℄.2We have 
onsidered the voter 
ir
uit that has 59gates and 4 outputs, 
orresponding respe
tively to59 revisables and 8 
onstraints.Algorithms 1, 2, 3 and 4 have been tested on thevoter 
ir
uit. Ea
h algorithm was run 10 times. Theparameters that have been used for the runs are: 10maximum generations, 40 individuals for algorithms1 and 2 (single agent), 10 individuals per agent and 4agents for algorithms 3 and 4. In algorithms 3 and 4ea
h agent has the same set of observations and pro-gram 
lauses, while the integrity 
onstraints are dis-tributed among the agents so that ea
h agent knowsonly the 
onstraints that are related to one same out-put. The hybrid �tness fun
tion was adopted.In table 1 we show, for ea
h algorithm, the value ofthe �tness fun
tion and of its standard deviation forthe best hypothesis after ten generations averagedover the 10 runs, while table 2 shows the value of thet statisti
s for the various 
ouples of algorithms.4.3 n-queen ProblemThe n-queen problem 
onsists in positioning nqueens on a n � n 
he
kboard so that no queen at-ta
ks ea
h other. This problem 
an be seen as Con-straint Satisfa
tion Problem (CSP) where the 
on-straints are: the total number of queens must be n;2These examples 
an be found athttp://www.soi.
ity.a
.uk/�ms
h/revise/.

Algorithm Fitness Standard Deviation1 0.9537 0.0354942 0.9582 0.0154143 0.9776 0.0078664 0.9805 0.007209Table 1: Voter experiments with algorithms 1, 2, 3and 4 Comparison jtj value1-2 0.3943-4 0.7751-3 1.7492-4 2.647Table 2: Result of the t-test for di�erent 
ouples ofalgorithms on the voter dataset.for ea
h row, the total number of queens must not bebigger than one; for ea
h 
olumn, the total numberof queens must not be bigger than one and, for ea
hdiagonal, the total number of queens must not be big-ger than one. This problem 
an be seen as a beliefrevision problem by assigning a revisable of the formqueen(Row,Column) to ea
h position (Row,Column)in the 
he
kboard. Then, ea
h 
onstraint of the CSP
an be written as an integrity 
onstraint.Algorithms 1, 2, 3 and 4 have been tested alsoon the n-queen problem with the same parameter asfor the voter experiment: ea
h algorithm was run10 times, ea
h run had 10 maximum generations, 40individuals for algorithms 1 and 2 (single agent), 10individuals per agent and 4 agents for algorithms 3and 4. The a

ura
y �tness fun
tion was adopted.We have 
onsidered a problem with n = 8. In this
ase there is a total of 43 
onstraints: 1 
onstraintfor the total number of queens, 8 
onstraints for therows, 8 for the 
olumns and 26 for the diagonals. Formulti-agent experiments ea
h agent has the same setof observations and program 
lauses, while the 
on-straints were divided amongst them: 2 
onstraints onthe rows and 2 on the 
olumns have been assigned toea
h agent, while the 
onstraints on diagonals havebeen divided in groups of 6, 6, 7 and 7 and 
orre-spondingly assigned to the agents. The 
onstrainton the total number of queens has been assigned toone of the agents with only 6 
onstraints on the di-agonals. Therefore, three agents have 9 
onstraintsand one agent has only 8.Table 3 shows, for ea
h algorithm, the value ofthe �tness fun
tion for the best hypothesis averagedover the 10 runs while table 4 shows the value of thet statisti
s for the various 
ouples of algorithms.



Algorithm Fitness Standard Deviation1 0.7581 0.066862 0.8232 0.012003 0.7930 0.029924 0.8069 0.03110Table 3: n-queen experiments with algorithms 1, 2,3 and 4 Comparison jtj value1-2 2.5903-4 0.9491-3 1.1582-4 1.328Table 4: Result of the t-test for di�erent 
ouples ofalgorithms on the n-queen dataset.4.4 Dis
ussion of Experimental Re-sultsAs 
an be seen from tables 2 and 4, in the voter 
asealgorithm 3 performs signi�
antly better than algo-rithm 1 as well as algorithm 4 with regards to algo-rithm 2. In the n-queen 
ase, instead, the di�eren
efor the pairs of algorithms (1,3) and (2,4) is not sta-tisti
ally signi�
ant for the voter problem but not forthe n-queen problem. These two 
ases prove thesis1, i.e., adopting a distributed algorithm does not pe-nalize and may a
tually improve the �tness. So ouralgorithm allows to bene�t from parallel exe
ution.The di�eren
e in results between the two 
ases mayo

ur be
ause in the n-queen problem the problem ismore 
onstrained and the 
onstraints are more inter-dependent and therefore distributedly �nding lo
alsolutions and then ex
hanging them is less e�e
tive.As regards thesis 2, the di�eren
e for the pairs ofalgorithms (1,2) and (3,4) is statisti
ally signi�
antonly for the 
ouple (1,2) in the n-queen 
ase. There-fore, thesis 2 is 
on�rmed by the data. Moreover, inanother follow-up work [12℄ we have shown that, byallowing memes to be 
rossed over only if they havebeen a

essed by the Lamar
kian algorithm, we ob-tain a statisti
ally signi�
ant di�eren
e for the 
ouple(3,4) in both 
ases.5 Related WorkIn [13℄ the authors propose an approa
h for perform-ing belief revision in a multi agent 
ontext. In theirapproa
h, ea
h agent exploits an Assumptions BasedTruth Maintenan
e (ATMS) system in order to per-form the revision of beliefs. As in our approa
h,ea
h agent has a di�erent repository for knowledgeand its beliefs may not be 
onsistent with those ofother agents, 
onsisten
y is enfor
ed only lo
ally in-

side ea
h agent. Di�erently from us, in [13℄ the au-thors 
onsider an ex
hange of beliefs by means ofa number of 
ommuni
ations primitives. Communi-
ation happens in three 
ases. The �rst is when anagent 
an not establish by itself the truth value of anassumption or a goal: in this 
ase, it asks it to its a
-quaintan
es. The se
ond 
ase is when an agent �ndsa 
on
lusion or an assumption that it knows being ofinterest for another agent: in this 
ase it 
ommuni-
ates the results. The third 
ase is when an agent hasrevised the truth value of a belief that it had previ-ously 
ommuni
ated to other agents: in this 
ase theagent 
ommuni
ates the other agents the new truthvalue for the belief. Therefore, in [13℄ the 
oopera-tion among agents is expli
it, while in our work the
ooperation emerges as the result of the 
ontinuousex
hange of 
hromosomes among agents.In [13℄ the system is able to answer uniquely toqueries posed to the system by means of a meta-levelalgorithm that works in the following way: a fa
t isfalse if it is 
onsidered false by at least one agent, afa
t is true if no agent 
onsiders it false and there isat least one agent that 
onsiders it true. In our sys-tem, instead, the global result of the belief revisionpro
ess is given by the 
hromosome with the bestglobal a

ura
y, also 
omputed by means of a meta-level algorithm that 
onsiders all the 
onstraints.6 Con
lusions and FutureWorkWe have presented a geneti
 algorithm for perform-ing belief revision in a multi-agent environment. Inthis setting, individuals belonging to di�erent agentsare exposed to di�erent experien
es. This happensbe
ause the agents explore di�erent parts of theworld or be
ause the world surrounding an agent
hanges over time. The algorithm permits the ex-
hange of 
hromosomes from di�erent agents and thisallows a distributed belief revision pro
ess to be per-formed.The algorithm 
ombines two di�erent evolutionstrategies, one based on Darwin's and the otheron Lamar
k's evolutionary theory. The algorithmtherefore in
ludes also a Lamar
kian operator that
hanges the memes of an agent in order to improveits �tness. The operator is implemented by means ofa logi
-based belief revision pro
edure that, by tra
-ing logi
al derivations, identi�es the memes leadingto 
ontradi
tion.Experiments on problems of digital 
ir
uit designand on the n-queen problem show that, in spite ofthe fa
t that ea
h agent has only a partial knowledgeof the world, the multi-agent system �nds revisionsthat are 
omparable in terms of a

ura
y with thoseobtained by a single-agent possessing all the knowl-edge.



In the future, we plan to explore also the 
ase inwhi
h the 
hromosomes do not have all the relevantrevisables to start with (three-valued revision). Inthis 
ase, when a 
hromosome a
quires new revis-ables from another 
hromosome, it is obtaining spe-
ialized knowledge. This is for example the 
ase ofthe diagnosis of a 
ar fault performed by di�erentexperts: the expert me
hani
, the expert ele
tri
ian,the expert 
ar designer, et
. Ea
h of them makesa diagnosis about the part of the 
ar that 
on
ernstheir spe
iality. Next they all have to 
ome to a jointdiagnosis by ex
hanging information about ea
h oth-ers' revisables.7 A
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