
Belief Revision by Multi-Agent Geneti SearhEvelina LammaDipartimento di Ingegneria,Universit�a di Ferrara, Via Saragat 1,44100 Ferrara, Italy,elamma�deis.unibo.it Lu��s Moniz PereiraCentro de Inteligênia Arti�ial (CENTRIA),Fauldade de Ciênias e Tenologia,Universidade Nova de Lisboa,2825-114 Caparia, Portugallmp�di.ft.unl.ptFabrizio RiguzziDipartimento di Ingegneria,Universit�a di Ferrara, Via Saragat 1,44100 Ferrara, Italy,friguzzi�ing.unife.itAbstratThe revision of beliefs is an important general pur-pose funtionality that an agent must exhibit. Theagent usually needs to perform this task in oopera-tion with other agents, beause aess to knowledgeand the knowledge itself are distributed in nature.In this work, we propose a new approah for per-forming belief revision in a soiety of logi-basedagents, by means of a (distributed) geneti algo-rithm, where the revisable assumptions of eah agentare oded into hromosomes as bit-strings. Eahagent by itself loally performs a geneti searh inthe spae of possible revisions of its knowledge, andexhanges geneti information by rossing its revis-able hromosomes with those of other agents.We have performed experiments omparing theevolution in beliefs of a single agent informed of thewhole of knowledge, to that of a soiety of agents,eah agent aessing only part of the knowledge. Inspite that the distribution of knowledge inreases thediÆulty of the problem, experimental results showthat the solutions found in the multi-agent ase areomparable in terms of auray to those obtainedin the single agent ase.The geneti algorithm we propose, besides enom-passing the Darwinian operators of seletion, muta-tion and rossover, also omprises a Lamarkian op-erator that mutates the genes in a hromosome asa onsequene of the hromosome phenotype's indi-vidual experiene obtained while solving a belief re-vision problem. These hromosomi mutations aredireted by a logi-based belief revision proedurethat relies on traing the logial derivations lead-ing to inonsisteny of belief, so as to remove thesederivations' support on the gene oded assumptions,e�etively by mutating the latter. Beause of the use

a Lamarkian operator, and following the literature,the genes in these hromosomes that are modi�ed bythe Lamarkian operator are best dubbed \memes",sine they ode the memory of the experienes of anindividual along its lifetime, besides being transmit-ted to its progeny.We believe our method to be important for situa-tions where lassial belief revision methods hardlyapply: those where environments are non-uniformand time hanging. These an be explored by dis-tributed agents that evolve genetially to aomplishooperative belief revision, if they use our approah.1 IntrodutionBelief revision is indeed an important funtionalitythat agents must exhibit: agents should be able tomodify their beliefs in order to model the outsideworld. Moreover, they need to perform this taskin ooperation with other agents, beause aess toknowledge and the knowledge itself are distributed innature, i.e., eah agent has only a partial knowledgeof the world.We onsider a de�nition of the belief revision prob-lem that onsists in removing a ontradition froman extended logi program [15, 2, 3℄ by modifyingthe truth value of a seleted set of literals alled re-visables. The program ontains as well lauses withfalse (?) in the head, representing integrity on-straints. Any model of the program must ensurethat the body of integrity onstraints be false forthe program to be non-ontraditory. Contraditionmay also arise in an extended logi program whenboth a literal L and its opposite :L are obtainablein the model of the program. Suh a problem hasbeen widely studied in the literature, and various so-lutions have been proposed [4, 9℄ that are based on1



abdutive logi proof proedures.In this work, we propose a new approah for per-forming belief revision in a soiety of logi-basedagents, by means of a (distributed) geneti algo-rithm. The problem an be modeled by means ofa geneti algorithm, by assigning to eah revisableof a logi program a gene in a hromosome. In thease of a two-valued revision, the gene will have thevalue 1 if the orresponding revisable is true and thevalue 0 if the revisable is false. The �tness funtionthat is used in this ase is represented in part by theperentage of integrity onstraints that are satis�edby a hromosome.Eah agent keeps a population of hromosomesand �nds a solution to the revision problem by meansof a geneti algorithm. We onsider a formulationof the revision problem where eah agent has thesame set of revisables and the same program, butis subjeted to possibly di�erent observations andonstraints. Observations and onstraints may varyover time, and an di�er from agent to agent beauseagents may explore di�erent regions of the world.Eah agent by itself loally performs a geneti searhin the spae of possible revisions of its knowledge,and exhanges geneti information by rossing itsrevisable hromosomes with those of other agents.In this way, we ahieve distribution in belief revi-sion sine hromosomes oming from di�erent agents,through rossover, ontribute to solve the problem.In the geneti algorithm we also exploit ompu-tational logi tehniques: the algorithm, omprisesa Lamarkian operator that di�ers from a Dar-winian mutation operator beause, instead of ran-domly modifying the genes, it modi�es them in orderto improve the �tness of the hromosome. Genes thatare modi�ed by this operator are also alled \memes"[5℄. The Lamarkian operator modi�es the memes bymeans of a (logi-based) proedure inspired by [16℄:the logial derivations leading to the inonsistenyof belief are traed so as to remove these derivations'support on the meme oded assumptions, e�etivelyby mutating the latter. In our algorithm, therefore,omputational logi is used in order to �nd good re-visions that are then distributed by means of therossover geneti operator.We have performed experiments omparing theevolution in beliefs of a single agent informed of thewhole of knowledge, to that of a soiety of agents,eah agent aessing only part of the knowledge. Theexperiments have been performed on problems ofmodel based diagnosis, a natural domain in whih be-lief revision tehniques apply [9℄, and on the n-queenproblem. In spite that the distribution of knowledgeinreases the diÆulty of the problem, experimentalresults show that the solutions found in the multi-agent ase are omparable in terms of auray tothose obtained in the single agent ase.Moreover, we have seen that the adoption of

omputational logi methods in a geneti algorithmprovides an improvement over purely geneti ap-proahes.2 Logi Programming BasisIn this setion we �rst provide some logi program-ming fundamentals, and then we give a de�nition ofthe belief revision problem adapted from [16℄.2.1 LanguageGiven a �rst order language Lang, an extended logiprogram [15, 2, 3℄ is a set of rules and integrity on-straints of the formH  B1; : : : ; Bn; not C1; : : : ; not Cm (m � 0; n � 0)where H;B1; : : : ; Bn; C1; : : : ; Cm are objetive liter-als, and in integrity onstraints H is ? (false). Anobjetive literal is either an atom A or its expliitnegation :A, where ::A = A. not L is alled a de-fault or negative literal. Literals are either objetiveor default ones. The default omplement of obje-tive literal L is not L, and of default literal not L isL. A rule stands for all its ground instanes withrespet to Lang. The notation H  B is also usedto represent a rule, where the set B ontains the lit-erals in its body. For every pair of objetive literalsfL;:Lg in Lang, we impliitly assume the onstraint?  L;:L.The set of all objetive literals of a program P isalled its extended Herbrand base and is representedas HE(P ).We onsider the Extended Well Founded Seman-tis (WFSX ) that extends the well founded seman-tis (WFS ) [17℄ for normal logi programs to pro-grams extended with expliit negation, besides theimpliit or default negation of normal programs.WFSX is obtained from WFS by adding the oher-ene priniple (CP) relating the two forms of nega-tion: \if L is an objetive literal and :L belongs tothe model of a program, then also not L belongs tothe model", i.e., :L ! not L. See [2, 11℄ or theAppendix for a de�nition of WFSX.We say that a set of literals S is ontraditory i�? 2 S. The paraonsistent version of WFSX, thatallows models to ontain the atom ?, is alled WF-SXp [7, 8℄.2.2 Revising Contraditory ExtendedLogi ProgramsExtended logi programs are liable to be ontradi-tory beause of integrity onstraints, either thosethat are user-de�ned or those of the form ? L;:Lthat are impliitely assumed. Let us see an exampleof a ontraditory program.



Example 2.1 Consider P = fa;?  a; not bg1.Sine we have no rules for b, by the Closed WorldAssumption CWA, it is natural to aept not b astrue. However, beause of the integrity onstraint,we an onlude ? and thus have ontradition.It is arguable that the (CWA) may not be heldof atom b sine it leads to ontradition. Revisingsuh CWAs is the basis of the ontradition removalmethod of [16℄. In order to selet a partiular on-tradition removal proess, three questions must beanswered:1. For whih literals is revision of their truth-valueallowed ?2. To what truth values do we hange the revisableliterals ?3. How to hoose among possible revisions ?The options taken here are lari�ed in the disus-sion in setion 2.4, giving two di�erent answers tothese questions. Both use the same riteria to an-swer 1 and 3, but di�er on the seond one. Forexample 2.1 the �rst way of removing ontradi-tion gives fa; not :a; not :bg as the intended mean-ing of P , where b is revised to unde�ned, ahiev-able by adding b not b to P . The seond givesfa; b; not :a; not :bg, by revising b to true, ahiev-able by adding b to P .2.3 Contraditory Well FoundedModelTo revise ontraditions, we need to identify the on-traditory sets of onsequenes implied by the appli-ations of CWA. The main idea is to ompute allonsequenes of the program, even those leading toontraditions, as well as those arising from ontra-ditions. Furthermore, the oherene priniple is en-fored at eah step.Example 2.2 Consider program P:a not b. (i) :a not . (ii) d a. (iii)e :a. (iv)1. not b and not  hold sine there are no rules foreither b or .2. :a and a hold from 1 and rules (i) and (ii).3. ? holds from 2 and impliit onstraint a;:a.4. not a and not :a hold from 2 and inferene rule(CP ).5. d and e hold from 2 and rules (iii) and (iv).6. not d and not e hold from 4 and rules (iii) and(iv), as they are the only rules for d and e.1? a;:a and ? b;:b are impliitly assumed.

7. not :d and not :e hold from 5 and inferene rule(CP ).The whole set of onsequenes is the WFSXpmodel: f?;:a; a; not a; not :a; not b; not ;d; not d; not :d; e; not e; not :eg2.4 Contradition Removal SetsTo abolish ontradition, the �rst issue to onsideris whih default literals true by CWA are allowed tohange their truth values. We adopt the approah of[16℄ where the andidates for revision are all the ob-jetive literals that have no rules in the program. ByCWA, their default negation is true. These literalsare alled revisables.De�nition 2.1 Revisables The revisables of a pro-gram P are the elements of a hosen subset Rev(P ),of the set of all objetive literals L having no rulesfor them in P .The revisables thus are objetive literals that do notappear in rule heads but only in rule bodies, eitherin a positive or default form. By the CWA, everyrevisable R is false, i.e., not R is true. Now we iden-tify the revisables that have to be revised to trueor unde�ned in order to restore onsisteny. Theseare the ones that support ontradition. Intuitively,a support of a literal onsists of the revisable liter-als in the leaves of a derivation for it in the WFSXpmodel.De�nition 2.2 Set of assumptions supportinga literal A support set (of assumptions) of a literalL of the WFSXp model MP of a program P , denotedby SS(L), with respet to the set of revisable Rev(P )is obtained as follows:1. If L is an objetive literal in MP then for eahrule L  B in P , suh that B � MP there isone SS(L) formed by the union of a SS for eahBi 2 B. If B is empty then SS(L) = fg.2. If L is a default literal not A 2MP :(a) if no rules for A exist in P then a supportset of L is fnot Ag.(b) if rules for A exist in P that have a non-empty body, then hoose from eah suhrule a single literal suh that its defaultomplement belongs to MP . There existsone SS for not A whih is the union of oneSS for the default omplement of the ho-sen literal in eah rule.() if :A belongs to MP then there exist, ad-ditionally, support sets SS for not A equalto eah SS(:A).



The de�nitions of revisable literals and of supportsets di�er from those given in [16℄ beause there therevisables are the default omplement of the liter-als without de�nition and support sets there ontainall the literals in the nodes of a derivation for L.We have provided these modi�ed de�nitions beausethey simplify the introdution of the Lamarkian op-erator in the next setion.Example 2.3 The WFSXp model MP of::p not .:b not e. p t.p a,not b.a. b , a.b d.is fa; not :a; not b;:b; not ; not :; not d; not :d;not e; not :e; not t; not :t; p;:p; not p; not :p;?g.Here the revisables are f; d; eg. There are twosupport sets for not b:SS1(not b)=SS(not ) [ SS(not d) by rule 2bSS1(not b)=fnot g [ fnot dg=fnot ; not dg by rule 2aNotie that the other possibility of hoosing lit-erals for SS(not b); i.e. SS1(not b) = SS(not a) [SS(not d); an't be onsidered beause not a doesn'tbelong to MP . The other support set for not b isobtained using rule 2:SS2(not b) = SS(:b) by rule 2SS2(not b) = SS(not e) by rule 1SS2(not b) = fnot eg by rule 2aNow the support sets for the objetive literal p areeasily omputed:SS(p)=SS(a)[SS(not b) by rule 1SS(p)=fg[SS(not b) by rule 1(the only rule for a is fat a)So SS1(p) = SS1(not b) = fnot ; not dg andSS2(p) = SS2(not b) = fnot eg. :p has the uniquesupport set fnot g. Consequently, beause ontra-dition is obtained only via ?  p;:p, SS1(?) =fnot ; not dg and SS2(?)= fnot e; not g.Proposition 2.1 Existene of support sets Ev-ery literal L belonging to the WFSXp model of a pro-gram P has at least one support set SS(L).We de�ne a spetrum of possible revisions usingthe notion of hitting set:De�nition 2.3 Hitting set A hitting set of a ol-letion C of sets is formed by the union of one non-empty subset from eah S 2 C. A hitting set is min-imal i� no proper subset is a hitting set. If fg 2 C,then C has no hitting sets.

De�nition 2.4 Removal set A removal set of aliteral L of a program P is a hitting set of all supportsets SS(L).We an revise ontraditory programs by hang-ing the truth value of the literals of some removalset of ?. The truth value an be hanged either tounde�ned or false. It an be hanged to unde�nedby adding, for eah literal not L in the removal set,the inhibition rule L  not L to P (making L ef-fetively unde�ned), while it an be hanged to falseby adding L to P . In ase the literals are revised tounde�ned, then the ontradition is removed and nonew ontradition an arise. In ase they are revisedto false, a new ontradition may arise and thereforethis (onvergent) ontradition removal proess mustbe iterated. This de�nes the possible revisions of aontraditory program.We answer the seond question above by onsider-ing only a two-valued revisions, i.e. where the truthvalue of a revisable an only be hanged to true orfalse. We answer the third question by prefering torevise minimal sets of revisables:De�nition 2.5 Contradition removal set Aontradition removal set (CRS) of P is a minimalremoval set of ?.Example 2.3 (ont.) The support sets of ? arefnot ; not dg and fnot ; not eg. Its removal sets are(RS1 and RS4 being minimal):RS1(?; R) = fnot gRS2(?; R) = fnot ; not egRS3(?; R) = fnot ; not dgRS4(?; R) = fnot d; not egRS5(?; R) = fnot ; not d; not egDe�nition 2.6 Revisable program A program isrevisable i� it has a ontradition removal set.The CRSs are minimal hitting sets of the olle-tion of support sets of ?. In [16℄ an algorithm foromputing the CRSs is presented.3 A geneti algorithm formulti-agent belief revisionThe algorithm here proposed for belief revision ex-tends the standard geneti algorithm (desribed forexample in [14℄) in two ways:� rossover is performed among hromosomes be-longing to di�erent agents,� a Lamarkian operator alled Learn is added inorder to bring a hromosome loser to a orretrevision by hanging the value of the revisables.Eah agent exeutes the following algorithm:



GA(Fitness;max gen; p; r;m; l)Fitness : a funtion that assigns an evaluationsore to a hypothesis oded as a hromosomemax gen : the maximum number of generationsbefore terminationp: the number of individuals in the populationr: the fration of the population to bereplaed by Crossover at eah stepm: the fration of the population to bemutatedl: the fration of the population that shouldevolve LamarkianlyInitialize population: P  generate phypotheses at randomEvaluate: for eah h in P , omputeFitness(h)gen 0While gen � max genCreate a new population Ps:Selet: Probabilistially selet (1� r)pmembers of P to be added to Ps.The probability Pr(hi) of seletinghypothesis hi from P is given byPr(hi) = Fitness(hi)�pj=1Fitness(hj )Crossover:For i=1 to rpProbabilistially selet a hypothesish1 from P , aording to Pr(h1)given aboveObtain an hypothesis h2 from anotheragent hosen at randomCrossover h1 with h2 obtaining h01Add h01 to PsMutate: Choose m perent of the membersof Ps with uniform probability.For eah, invert one randomly seletedbit in its representationLearn: Choose lp hypotheses from Ps withuniform probability and substitute eahof them with the modi�ed hypothesesreturned by the proedure LearnUpdate: P  PsReturn the hypothesis from P with the highest�tnessIn belief revision, eah individual hypothesis is de-sribed by the truth value of all the revisables. Sinewe onsider a two-valued revision, eah hypothesisgives the truth value true or false to every revisableand therefore it an be onsidered as a set ontainingone literal, either positive or default, for every revis-able. A hromosome is obtained by assoiating a bitto eah revisable that has value 1 if the revisable istrue and 0 if it is false.

Various �tness funtions an be used in belief re-vision. The simplest �tness funtion is the followingFitness(hi) = ninwhere ni is the number of integrity onstraints sat-is�ed by hypothesis hi and n is the total number ofintegrity onstraints. We will all it an auray �t-ness funtion. Another possible �tness funtion isthe followingFitness(hi) = nin � nn+ jhij + fijhij � jhijn+ jhijwhere fi is the number of revisables in hi that arefalse, and jhij is the total number of revisables. Wewill all it a hybrid �tness funtion. This funtion isa weighted average of the auray and the frationof false literals in the solution. In this way, the �tnessfuntion prefers hypotheses with a lower number oftrue revisable, whih is desirable in some ases.The �rst extension to the standard geneti algo-rithm onsists in a rossover operator that allowsthe exhange of genes among agents. The standarduniform rossover operator produes a new o�springfrom two parent strings by opying seleted bits fromeah parent. The bit at position i in the o�spring isopied from the bit in position i in one of the twoparents. The hoie of whih parent provides the bitfor position i is determined by an additional stringalled rossover mask. This string is a sequene ofbits eah of whih has the following meaning: if bitin position i is 0, then the bit in position i in the o�-spring is opied from the �rst parent, otherwise it isopied from the seond parent. In uniform rossover,the mask is generated as a bit string where eah bitis hosen at random and independently of the others.The rossover operator we onsider di�ers from thestandard uniform operator beause one of the par-ents used in rossover omes from the population ofanother agent.The other extension to the standard geneti al-gorithm onsists in the addition of the Lamarkianoperator Learn. This operator hanges the valuesof the revisables in a hromosome C so that a big-ger number of onstraints is satis�ed, thus bringingC loser to a solution. Learn di�ers from a normalbelief revision operator beause it does not assumethat all the revisables are false by CWA before therevision but it starts from the truth values that aregiven by the hromosome C. Therefore, it has torevise some revisables from true to false and othersfrom false to true. As a onsequene, the support setdoes not ontain only default literals but also revis-able objetive literals.Learn works in the following way: given a hro-mosome C, it �nds all the support sets for ? suhthat they ontain literals in C. Therefore, it does



not �nd all support sets for ? but only those thatare subsets of C.The de�nition of support set that is used by theLamarkian operator is therefore di�erent from def-inition 2.2 and is given as follows:De�nition 3.1 Lamarkian support set of aliteral A support set of a literal L of the WFSXpmodel MP of a program P aording to a given setof literals H is denoted by SS(L;H) and is obtainedas follows:1. If L is an objetive literal in MP then for eahrule L  B in P , suh that B � MP there isone SS(L;H) for eah Bi 2 B. If B is emptythen SS(L;H) = fg.2. If L is a revisable literal in MP , then(a) if L belongs to H, then a support set of Lis fLg.(b) if the default omplement of L belongs toH, then there is no support set for L.3. If L is a default literal not A 2MP :(a) if A is a revisable then:i. if L belongs to H, then a support setof L is fnot Ag.ii. if A belongs to H, then there is no sup-port set for L.(b) if rules for A exist in P that have a non-empty body, then hoose from eah suhrule a single literal suh that its defaultomplement belongs to MP . There existsone SS for not A for every SS of eah de-fault omplement of the hosen literals.() if :A belongs to MP then there exist, addi-tionally, support sets SS of not A equal toeah SS(:A).Sine the Lamarkian support sets for ? representonly a subset of all the support sets for ?, a hittingset generated from them is not neessarily a ontra-dition removal set and therefore it does not repre-sent a solution to the belief revision problem. How-ever, it eliminates some of the derivation paths to ?and, therefore, may inrease the number of satis�edonstraints, thus improving the �tness, as requiredby the notion of Lamarkian operator.To �nd the support sets we need to know whihliterals belong to the model of a program. This infor-mation is obtainable through some sound and orretproedure for WFSXp suh as the one desribed in[1℄, or the one in [4℄.In the ase of the iruit diagnosis problems in se-tion 4, the support sets proedure beomes simpli�edin that the ourrenes of default negated literals inthe program pertain only to revisables.

The algorithm implementing the Learn operatoris given below.proedure Learn(C;C 0)inputs : A hromosome C translated into a setof revisablesoutputs : A revised hromosome C 0Find the support sets for ?:Support sets([?℄; C; fg; fg; SS)Find a hitting set HS: Hitting set(SS;HS)Change the value of the literals in thehromosome C that appear as well in HSproedure Support sets(GL;C; S; SSin; SSout):inputs :GL a list of goalsA hromosome H translated into a set ofrevisablesThe urrent support set SThe urrent set of support sets SSinoutputs :A set SSout ontaining the support setsfor the �rst goal in the listIf GL is empty, then return SSout = SSinConsider the �rst literal L of the �rst goalG of GL (GL = [GjRGL℄ using Prolognotation for lists)(1) if G is empty then add the urrentsupport set to SSin and all reursivelythe algorithm on the rest of GLSupport sets(RGL;H; fg; SSin[ fSg;SSout)(2) if G is not empty (G = [LjRG℄) then:(2a) if L is a revisable and is in H ,then add it to S, and all the algorithmreursively on the rest of GSupport sets([RGjRGL℄; H; S [ fLg;SSin; SSout)(2b) if L is a revisable and it is not in H ,or its opposite is in H , disard Sand all the algorithm reursively on therest of GL Support sets(RGL;H; S [ fLg; SSin; SSout)(2) if it is not a revisable then redue it withall the rules, obtaining the new goalsG1; :::; Gn, one for eah mathing rule,add the goals to GL and allthe algorihtm reursively Support sets([[G1jRG℄; :::; [GnjRG℄jRGL℄; H; S; SSin; SSout)(2d) if it is not a revisable and there are norules, then return without adding S to SS(SSout = SSin)proedure hitting set(SS;HS):Pik a literal from every support set in SSAdd it to HS if it does not lead to ontradition



(i.e. the literal must not be already presentin its omplemented form).If it leads to ontradition pik another literal.Simpli�ed versions of this algorithm have also beenonsidered in order to separately test the e�etive-ness of eah of the features added to the standard ge-neti algorithm. In partiular, four algorithms havebeen onsidered named in the sequel algorithms 1, 2,3 and 4. Algorithm 1 is a standard single agent ge-neti algorithm: rossover is performed only amonghromosomes of the same agent and the Lamarkianoperator is not used. Algorithm 2 adds to algorithm1 the use of the Lamarkian operator, with a param-eter l (perentage of the population to be mutatedLamarkianly) equal to 0.6. Algorithm 3 is a multi-agent algorithm without the Lamarkian operator,i.e., rossover is performed between hromosomes ofdi�erent agents but the operator Learn is not appliedto them. Algorithm 4 extends algorithm 3 by addingthe Lamarkian operator, with a parameter l equalto 0.6. For all the algorithms, the mutation rate(parameter m) and the rossover rate (parameter r)have been set to 0.2.In algorithms 3 and 4 the agents share the sameset of observations and program lauses but have dif-ferent sets of onstraints. At the end of the ompu-tation, in order to �nd a single solution for the revi-sion problem, the best hromosome in eah agent isonsidered and is sored with a �tness funtion thatonsiders all the onstraints (global �tness funtion).Then the hromosome with the highest global �tnessis returned as the solution. In this way the multi-agent system �nds a solution for the global beliefrevision problem.These algorithms have been used in order to ex-perimentally prove the following theses:1. the distributed algorithm (with or without theLamarkian operator) has a performane that isomparable (and, in partiular, not signi�antlyinferior) to that of the non-distributed one, inthe same number of generations and the sameoverall number of individuals, despite the distr-bution of knowledge;2. Lamarkism is never worse than Darwinism andmay outperform it both in the single and in themulti agent ase;In order to test thesis 1, the results obtained byalgorithm 1 is ompared to the one obtained by al-gorithm 3 and the same is done for algorithms 2 and4. In order to test thesis 2, the results obtained byalgorithm 1 is ompared to the one obtained by al-gorithm 2 and the same is done for algorithms 3 and4.

4 ExperimentsThe algorithms have been tested on a number of be-lief revision problems in order to prove the abovetheses. In partiular, we have onsidered problemsof digital iruit diagnosis, as per [9℄, and the n-queenproblem.4.1 Experiment MethodologyIn order to evaluate if the auray di�erenes be-tween algorithms are signi�ant, we have omputeda 10-fold ross-validated paired t test for every pair ofalgorithms (see [10℄ for an overview of statistial testsfor the omparison of mahine learning algorithms).This test is omputed as follows. Given two algo-rithms A and B, let pA(i) (respetively pB(i)) bethe maximum �tness ahieved by algorithm A (re-spetively B) in trial i. If we assume that the 10di�erenes p(i) = pA(i) � pB(i) are drawn indepen-dently from a normal distribution, then we an applythe Student t-test by omputing the statistit = �ppnrPni=1(p(i)��p)2n�1where n is the number of folds (10) and �p is�p = 1n nXi=1 p(i)In the null hypothesis, i.e. that A and B obtainthe same �tness, this statisti has a t distributionwith n � 1 (9) degrees of freedom. If we onsider aprobability of 90%, then the null hypothesis an berejeted if jtj > t9;0:90 = 1:3834.2 Digital Ciruit DiagnosisIn problems of digital iruit diagnosis there is a dif-ferene between the observed and the predited out-puts. Figure 1 shows a sample iruit together withthe observed inputs and outputs of the iruit andthe predited outputs of eah gate. The aim of thediagnosis is to �nd whih omponents are faulty. Aproblem of digital iruit diagnosis an be modelledas a belief revision problem by desribing it with alogi program onsisting of four groups of lauses:one that allows to ompute the predited output ofeah omponent, one that desribes the topology ofthe iruit, one that desribes the observed inputsand outputs, and one that onsists of integrity on-straints stating that the predited value for an out-put of the system annot be di�erent from the ob-served value. The representation formalism we use isthe one of [9℄. As regards the integrity onstraints,we have two onstraints for eah output of the iruit,



Figure 1: 17 iruit from ISCAS85's set of benh-mark iruits.one stating that the output an not be 0 if it was ob-served to be 1 and the other stating that the outputan not be 1 if it was observed to be 0. For exam-ple, the onstraint i([obs(out(nand2, g22), 0),val(out(nand2, g22), 1)℄). states that the valueof the output of g22 annot be 1 if it was observedto be 0.The revisable in this ase are of the form ab(Name)and their meaning is that omponent Name is abnor-mal.The system has been tested on some real worldproblems taken from the ISCAS85 benhmark ir-uits [6℄ that have been used as well for testing thebelief revision system REVISE [9℄.2We have onsidered the voter iruit that has 59gates and 4 outputs, orresponding respetively to59 revisables and 8 onstraints.Algorithms 1, 2, 3 and 4 have been tested on thevoter iruit. Eah algorithm was run 10 times. Theparameters that have been used for the runs are: 10maximum generations, 40 individuals for algorithms1 and 2 (single agent), 10 individuals per agent and 4agents for algorithms 3 and 4. In algorithms 3 and 4eah agent has the same set of observations and pro-gram lauses, while the integrity onstraints are dis-tributed among the agents so that eah agent knowsonly the onstraints that are related to one same out-put. The hybrid �tness funtion was adopted.In table 1 we show, for eah algorithm, the value ofthe �tness funtion and of its standard deviation forthe best hypothesis after ten generations averagedover the 10 runs, while table 2 shows the value of thet statistis for the various ouples of algorithms.4.3 n-queen ProblemThe n-queen problem onsists in positioning nqueens on a n � n hekboard so that no queen at-taks eah other. This problem an be seen as Con-straint Satisfation Problem (CSP) where the on-straints are: the total number of queens must be n;2These examples an be found athttp://www.soi.ity.a.uk/�msh/revise/.

Algorithm Fitness Standard Deviation1 0.9537 0.0354942 0.9582 0.0154143 0.9776 0.0078664 0.9805 0.007209Table 1: Voter experiments with algorithms 1, 2, 3and 4 Comparison jtj value1-2 0.3943-4 0.7751-3 1.7492-4 2.647Table 2: Result of the t-test for di�erent ouples ofalgorithms on the voter dataset.for eah row, the total number of queens must not bebigger than one; for eah olumn, the total numberof queens must not be bigger than one and, for eahdiagonal, the total number of queens must not be big-ger than one. This problem an be seen as a beliefrevision problem by assigning a revisable of the formqueen(Row,Column) to eah position (Row,Column)in the hekboard. Then, eah onstraint of the CSPan be written as an integrity onstraint.Algorithms 1, 2, 3 and 4 have been tested alsoon the n-queen problem with the same parameter asfor the voter experiment: eah algorithm was run10 times, eah run had 10 maximum generations, 40individuals for algorithms 1 and 2 (single agent), 10individuals per agent and 4 agents for algorithms 3and 4. The auray �tness funtion was adopted.We have onsidered a problem with n = 8. In thisase there is a total of 43 onstraints: 1 onstraintfor the total number of queens, 8 onstraints for therows, 8 for the olumns and 26 for the diagonals. Formulti-agent experiments eah agent has the same setof observations and program lauses, while the on-straints were divided amongst them: 2 onstraints onthe rows and 2 on the olumns have been assigned toeah agent, while the onstraints on diagonals havebeen divided in groups of 6, 6, 7 and 7 and orre-spondingly assigned to the agents. The onstrainton the total number of queens has been assigned toone of the agents with only 6 onstraints on the di-agonals. Therefore, three agents have 9 onstraintsand one agent has only 8.Table 3 shows, for eah algorithm, the value ofthe �tness funtion for the best hypothesis averagedover the 10 runs while table 4 shows the value of thet statistis for the various ouples of algorithms.



Algorithm Fitness Standard Deviation1 0.7581 0.066862 0.8232 0.012003 0.7930 0.029924 0.8069 0.03110Table 3: n-queen experiments with algorithms 1, 2,3 and 4 Comparison jtj value1-2 2.5903-4 0.9491-3 1.1582-4 1.328Table 4: Result of the t-test for di�erent ouples ofalgorithms on the n-queen dataset.4.4 Disussion of Experimental Re-sultsAs an be seen from tables 2 and 4, in the voter asealgorithm 3 performs signi�antly better than algo-rithm 1 as well as algorithm 4 with regards to algo-rithm 2. In the n-queen ase, instead, the di�erenefor the pairs of algorithms (1,3) and (2,4) is not sta-tistially signi�ant for the voter problem but not forthe n-queen problem. These two ases prove thesis1, i.e., adopting a distributed algorithm does not pe-nalize and may atually improve the �tness. So ouralgorithm allows to bene�t from parallel exeution.The di�erene in results between the two ases mayour beause in the n-queen problem the problem ismore onstrained and the onstraints are more inter-dependent and therefore distributedly �nding loalsolutions and then exhanging them is less e�etive.As regards thesis 2, the di�erene for the pairs ofalgorithms (1,2) and (3,4) is statistially signi�antonly for the ouple (1,2) in the n-queen ase. There-fore, thesis 2 is on�rmed by the data. Moreover, inanother follow-up work [12℄ we have shown that, byallowing memes to be rossed over only if they havebeen aessed by the Lamarkian algorithm, we ob-tain a statistially signi�ant di�erene for the ouple(3,4) in both ases.5 Related WorkIn [13℄ the authors propose an approah for perform-ing belief revision in a multi agent ontext. In theirapproah, eah agent exploits an Assumptions BasedTruth Maintenane (ATMS) system in order to per-form the revision of beliefs. As in our approah,eah agent has a di�erent repository for knowledgeand its beliefs may not be onsistent with those ofother agents, onsisteny is enfored only loally in-

side eah agent. Di�erently from us, in [13℄ the au-thors onsider an exhange of beliefs by means ofa number of ommuniations primitives. Communi-ation happens in three ases. The �rst is when anagent an not establish by itself the truth value of anassumption or a goal: in this ase, it asks it to its a-quaintanes. The seond ase is when an agent �ndsa onlusion or an assumption that it knows being ofinterest for another agent: in this ase it ommuni-ates the results. The third ase is when an agent hasrevised the truth value of a belief that it had previ-ously ommuniated to other agents: in this ase theagent ommuniates the other agents the new truthvalue for the belief. Therefore, in [13℄ the oopera-tion among agents is expliit, while in our work theooperation emerges as the result of the ontinuousexhange of hromosomes among agents.In [13℄ the system is able to answer uniquely toqueries posed to the system by means of a meta-levelalgorithm that works in the following way: a fat isfalse if it is onsidered false by at least one agent, afat is true if no agent onsiders it false and there isat least one agent that onsiders it true. In our sys-tem, instead, the global result of the belief revisionproess is given by the hromosome with the bestglobal auray, also omputed by means of a meta-level algorithm that onsiders all the onstraints.6 Conlusions and FutureWorkWe have presented a geneti algorithm for perform-ing belief revision in a multi-agent environment. Inthis setting, individuals belonging to di�erent agentsare exposed to di�erent experienes. This happensbeause the agents explore di�erent parts of theworld or beause the world surrounding an agenthanges over time. The algorithm permits the ex-hange of hromosomes from di�erent agents and thisallows a distributed belief revision proess to be per-formed.The algorithm ombines two di�erent evolutionstrategies, one based on Darwin's and the otheron Lamark's evolutionary theory. The algorithmtherefore inludes also a Lamarkian operator thathanges the memes of an agent in order to improveits �tness. The operator is implemented by means ofa logi-based belief revision proedure that, by tra-ing logial derivations, identi�es the memes leadingto ontradition.Experiments on problems of digital iruit designand on the n-queen problem show that, in spite ofthe fat that eah agent has only a partial knowledgeof the world, the multi-agent system �nds revisionsthat are omparable in terms of auray with thoseobtained by a single-agent possessing all the knowl-edge.



In the future, we plan to explore also the ase inwhih the hromosomes do not have all the relevantrevisables to start with (three-valued revision). Inthis ase, when a hromosome aquires new revis-ables from another hromosome, it is obtaining spe-ialized knowledge. This is for example the ase ofthe diagnosis of a ar fault performed by di�erentexperts: the expert mehani, the expert eletriian,the expert ar designer, et. Eah of them makesa diagnosis about the part of the ar that onernstheir speiality. Next they all have to ome to a jointdiagnosis by exhanging information about eah oth-ers' revisables.7 AknowledgementsL. M. Pereira aknowledges the support of PRAXISprojet MENTAL \An Arhiteture for MentalAgents".Referenes[1℄ J. J. Alferes, C. V. Dam�asio, and L. M. Pereira.A logi programming system for non-monotonireasoning. Journal of Automated Reasoning,14:93{147, 1995.[2℄ J. J. Alferes and L. M. Pereira. Reasoningwith Logi Programming, volume 1111 of LNAI.Springer-Verlag, 1996.[3℄ J. J. Alferes, L. M. Pereira, and T. C.Przymusinski. \Classial" negation in non-monotoni reasoning and logi programming.Journal of Automated Reasoning, 20:107{142,1998.[4℄ J. J. Alferes, L. M. Pereira, and T. Swift. Well-founded abdution via tabled dual programs. InD. De Shreye, editor, Pros. of the 16th In-ternational Conferene on Logi Programming,pages 426{440, Las Crues, New Mexio, 1999.MIT Press.[5℄ Susan Blakmore. The Meme Mahine. OxfordU.P., Oxford, UK, 1999.[6℄ F. Brglez, P. Pownall, and R. Hum. AeleratedATPG and fault grading via testability analy-sis. In Proeedings of IEEE Int. Symposium onCiruits and Systems, pages 695{698, 1985. TheISCAS85 benhmark netlist are available via ftpmn.mn.org.[7℄ C. V. Dam�asio and L. M. Pereira. Abdutionon 3-valued extended logi programs. In V. W.Marek, A. Nerode, and M. Truszynski, editors,Logi Programming and Non-Monotoni Rea-soning - Pro. of 3rd International Conferene

LPNMR'95, volume 925 of LNAI, pages 29{42,Germany, 1997. Springer-Verlag.[8℄ C. V. Dam�asio and L. M. Pereira. A surveyon paraonsistent semantis for extended logiprograms. In D.M. Gabbay and Ph. Smets, edi-tors, Handbook of Defeasible Reasoning and Un-ertainty Management Systems, volume 2, pages241{320. Kluwer Aademi Publishers, 1998.[9℄ C. V. Dam�asio, L. M. Pereira, andM. Shroeder. REVISE: Logi program-ming and diagnosis. In Proeedings of Logi-Programming and Non-Monotoni Reasoning,LPNMR'97, volume 1265 of LNAI, Germany,1997. Springer-Verlag.[10℄ T. Dietterih. Approximate satistial testsfor omparing supervised lassi�ationlearning algorithms. Neural Computa-tion, in press (draft version available athttp://www.s.orst.edu/ tgd/projets/supervised.html), 2000.[11℄ J. Dix, L. M. Pereira, and T. Przymusinski.Prolegomena to logi programming and non-monotoni reasoning. In J. Dix, L. M. Pereira,and T. Przymusinski, editors, Non-MonotoniExtensions of Logi Programming - Seleted pa-pers from NMELP'96, number 1216 in LNAI,pages 1{36, Germany, 1997. Springer-Verlag.[12℄ E. Lamma, F. Riguzzi, and L. M. Pereira. Be-lief revision via lamarkian evolution. TehnialReport DEIS-LIA-00-004, University of Bologna(Italy), 2000. LIA Series no. 44.[13℄ B. Malheiro, N. R. Jennings, and E. Oliveira.Belief revision in multiagent systems. In Pro-eedings of the 11th European Conferene on Ar-ti�ial Intelligene, 1994.[14℄ T. M. Mithell. Mahine Learning. MGrawHill, 1997.[15℄ L. M. Pereira and J. J. Alferes. Well foundedsemantis for logi programs with expliit nega-tion. In Proeedings of the European Confereneon Arti�ial Intelligenee ECAI92, pages 102{106. John Wiley and Sons, 1992.[16℄ L. M. Pereira, C. V. Dam�asio, and J. J. Alferes.Diagnosis and debugging as ontradition re-moval. In L. M. Pereira and A. Nerode, edi-tors, Proeedings of the 2nd International Work-shop on Logi Programming and Non-monotoniReasoning, pages 316{330. MIT Press, 1993.[17℄ A. Van Gelder, K. A. Ross, and J. S. Shlipf.The well-founded semantis for general logiprograms. Journal of the ACM, 38(3):620{650,1991.


