Belief Revision by Multi-Agent Genetic Search

Evelina Lamma
Dipartimento di Ingegneria,
Universita di Ferrara, Via Saragat 1,
44100 Ferrara, Italy,
elamma@deis.unibo.it

Luis Moniz Pereira

Centro de Inteligéncia Artificial (CENTRIA),

Faculdade de Ciéncias e Tecnologia,
Universidade Nova de Lisboa,
2825-114 Caparica, Portugal

Imp@di.fct.unl.pt

Fabrizio Riguzzi
Dipartimento di Ingegneria,
Universita di Ferrara, Via Saragat 1,
44100 Ferrara, Italy,
friguzzi@ing.unife.it

Abstract

The revision of beliefs is an important general pur-
pose functionality that an agent must exhibit. The
agent usually needs to perform this task in coopera-
tion with other agents, because access to knowledge
and the knowledge itself are distributed in nature.

In this work, we propose a new approach for per-
forming belief revision in a society of logic-based
agents, by means of a (distributed) genetic algo-
rithm, where the revisable assumptions of each agent
are coded into chromosomes as bit-strings. Each
agent by itself locally performs a genetic search in
the space of possible revisions of its knowledge, and
exchanges genetic information by crossing its revis-
able chromosomes with those of other agents.

We have performed experiments comparing the
evolution in beliefs of a single agent informed of the
whole of knowledge, to that of a society of agents,
each agent accessing only part of the knowledge. In
spite that the distribution of knowledge increases the
difficulty of the problem, experimental results show
that the solutions found in the multi-agent case are
comparable in terms of accuracy to those obtained
in the single agent case.

The genetic algorithm we propose, besides encom-
passing the Darwinian operators of selection, muta-
tion and crossover, also comprises a Lamarckian op-
erator that mutates the genes in a chromosome as
a consequence of the chromosome phenotype’s indi-
vidual experience obtained while solving a belief re-
vision problem. These chromosomic mutations are
directed by a logic-based belief revision procedure
that relies on tracing the logical derivations lead-
ing to inconsistency of belief, so as to remove these
derivations’ support on the gene coded assumptions,
effectively by mutating the latter. Because of the use

a Lamarckian operator, and following the literature,
the genes in these chromosomes that are modified by
the Lamarckian operator are best dubbed “memes”,
since they code the memory of the experiences of an
individual along its lifetime, besides being transmit-
ted to its progeny.

We believe our method to be important for situa-
tions where classical belief revision methods hardly
apply: those where environments are non-uniform
and time changing. These can be explored by dis-
tributed agents that evolve genetically to accomplish
cooperative belief revision, if they use our approach.

1 Introduction

Belief revision is indeed an important functionality
that agents must exhibit: agents should be able to
modify their beliefs in order to model the outside
world. Moreover, they need to perform this task
in cooperation with other agents, because access to
knowledge and the knowledge itself are distributed in
nature, i.e., each agent has only a partial knowledge
of the world.

We consider a definition of the belief revision prob-
lem that consists in removing a contradiction from
an extended logic program [15, 2, 3] by modifying
the truth value of a selected set of literals called re-
visables. The program contains as well clauses with
false (L) in the head, representing integrity con-
straints. Any model of the program must ensure
that the body of integrity constraints be false for
the program to be non-contradictory. Contradiction
may also arise in an extended logic program when
both a literal L and its opposite =L are obtainable
in the model of the program. Such a problem has
been widely studied in the literature, and various so-
lutions have been proposed [4, 9] that are based on

abductive logic proof procedures.

In this work, we propose a new approach for per-
forming belief revision in a society of logic-based
agents, by means of a (distributed) genetic algo-
rithm. The problem can be modeled by means of
a genetic algorithm, by assigning to each revisable
of a logic program a gene in a chromosome. In the
case of a two-valued revision, the gene will have the
value 1 if the corresponding revisable is true and the
value 0 if the revisable is false. The fitness function
that is used in this case is represented in part by the
percentage of integrity constraints that are satisfied
by a chromosome.

Each agent keeps a population of chromosomes
and finds a solution to the revision problem by means
of a genetic algorithm. We consider a formulation
of the revision problem where each agent has the
same set of revisables and the same program, but
is subjected to possibly different observations and
constraints. Observations and constraints may vary
over time, and can differ from agent to agent because
agents may explore different regions of the world.
Each agent by itself locally performs a genetic search
in the space of possible revisions of its knowledge,
and exchanges genetic information by crossing its
revisable chromosomes with those of other agents.
In this way, we achieve distribution in belief revi-
sion since chromosomes coming from different agents,
through crossover, contribute to solve the problem.

In the genetic algorithm we also exploit compu-
tational logic techniques: the algorithm, comprises
a Lamarckian operator that differs from a Dar-
winian mutation operator because, instead of ran-
domly modifying the genes, it modifies them in order
to improve the fitness of the chromosome. Genes that
are modified by this operator are also called “memes”
[5]. The Lamarckian operator modifies the memes by
means of a (logic-based) procedure inspired by [16]:
the logical derivations leading to the inconsistency
of belief are traced so as to remove these derivations’
support on the meme coded assumptions, effectively
by mutating the latter. In our algorithm, therefore,
computational logic is used in order to find good re-
visions that are then distributed by means of the
crossover genetic operator.

We have performed experiments comparing the
evolution in beliefs of a single agent informed of the
whole of knowledge, to that of a society of agents,
each agent accessing only part of the knowledge. The
experiments have been performed on problems of
model based diagnosis, a natural domain in which be-
lief revision techniques apply [9], and on the n-queen
problem. In spite that the distribution of knowledge
increases the difficulty of the problem, experimental
results show that the solutions found in the multi-
agent case are comparable in terms of accuracy to
those obtained in the single agent case.

Moreover, we have seen that the adoption of

computational logic methods in a genetic algorithm
provides an improvement over purely genetic ap-
proaches.

2 Logic Programming Basis

In this section we first provide some logic program-
ming fundamentals, and then we give a definition of
the belief revision problem adapted from [16].

2.1 Language

Given a first order language Lang, an extended logic
program [15, 2, 3] is a set of rules and integrity con-
straints of the form

H <« By,...,B,,notCy,...,not Cp, (m>0,n>0)

where H, By,...,By,C1,...,Cy, are objective liter-
als, and in integrity constraints H is L (false). An
objective literal is either an atom A or its explicit
negation —A, where =—A = A. not L is called a de-
fault or negative literal. Literals are either objective
or default ones. The default complement of objec-
tive literal L is not L, and of default literal not L is
L. A rule stands for all its ground instances with
respect to Lang. The notation H < B is also used
to represent a rule, where the set B contains the lit-
erals in its body. For every pair of objective literals
{L,~L}in Lang, we implicitly assume the constraint
1« L,~L.

The set of all objective literals of a program P is
called its extended Herbrand base and is represented
as HE(P).

We consider the Extended Well Founded Seman-
tics (WFSX) that extends the well founded seman-
tics (WFS) [17] for normal logic programs to pro-
grams extended with explicit negation, besides the
implicit or default negation of normal programs.
WFSX is obtained from WFS by adding the coher-
ence principle (CP) relating the two forms of nega-
tion: “if L is an objective literal and —L belongs to
the model of a program, then also not L belongs to
the model”, i.e., L — not L. See [2, 11] or the
Appendix for a definition of WFSX.

We say that a set of literals S is contradictory iff
1 € S. The paraconsistent version of WFSX, that
allows models to contain the atom L, is called WF-
SXp [7, §].

2.2 Revising Contradictory Extended
Logic Programs

Extended logic programs are liable to be contradic-
tory because of integrity constraints, either those
that are user-defined or those of the form L < L,—L
that are implicitely assumed. Let us see an example
of a contradictory program.

Example 2.1 Consider P = {a; 1 + a,notb}’.
Since we have no rules for b, by the Closed World
Assumption CWA, it is natural to accept notb as
true. However, because of the integrity constraint,
we can conclude | and thus have contradiction.

It is arguable that the (CWA) may not be held
of atom b since it leads to contradiction. Revising
such CWAs is the basis of the contradiction removal
method of [16]. In order to select a particular con-
tradiction removal process, three questions must be
answered:

1. For which literals is revision of their truth-value
allowed ?

2. To what truth values do we change the revisable
literals ?

3. How to choose among possible revisions ?

The options taken here are clarified in the discus-
sion in section 2.4, giving two different answers to
these questions. Both use the same criteria to an-
swer 1 and 3, but differ on the second one. For
example 2.1 the first way of removing contradic-
tion gives {a,not —a,not —b} as the intended mean-
ing of P, where b is revised to undefined, achiev-
able by adding b+ notb to P. The second gives
{a, b,not -a,not —b}, by revising b to true, achiev-
able by adding b to P.

2.3 Contradictory @ Well Founded

Model

To revise contradictions, we need to identify the con-
tradictory sets of consequences implied by the appli-
cations of CWA. The main idea is to compute all
consequences of the program, even those leading to
contradictions, as well as those arising from contra-
dictions. Furthermore, the coherence principle is en-
forced at each step.

Example 2.2 Consider program P:

a¢not b. (i) —a¢not c. (ii)

e<—a. (iv)

d¢a. (iii)

1. not b and not ¢ hold since there are no rules for
either b or c.

2. —a and a hold from 1 and rules (i) and (ii).

3. L holds from 2 and implicit constraint < a, —a.

4. not a and not —a hold from 2 and inference rule

(CP).
5. d and e hold from 2 and rules (iii) and (iv).

6. not d and not e hold from 4 and rules (iii) and
(iv), as they are the only rules for d and e.

1] «a,-a and L < b,—b are implicitly assumed.

7. not =d and not —e hold from 5 and inference rule
(CP).

The whole set of consequences is the WFSXp
model:

{1, -a,a,not a,not ~a,not b, not c,
d,not d,not —d, e, not e, not —e}

2.4 Contradiction Removal Sets

To abolish contradiction, the first issue to consider
is which default literals true by CWA are allowed to
change their truth values. We adopt the approach of
[16] where the candidates for revision are all the ob-
jective literals that have no rules in the program. By
CWA, their default negation is true. These literals
are called revisables.

Definition 2.1 Revisables The revisables of a pro-
gram P are the elements of a chosen subset Rev(P),
of the set of all objective literals L having no rules
for them in P.

The revisables thus are objective literals that do not
appear in rule heads but only in rule bodies, either
in a positive or default form. By the CWA, every
revisable R is false, i.e., not R is true. Now we iden-
tify the revisables that have to be revised to true
or undefined in order to restore consistency. These
are the ones that support contradiction. Intuitively,
a support of a literal consists of the revisable liter-
als in the leaves of a derivation for it in the WFSXp
model.

Definition 2.2 Set of assumptions supporting
a literal A support set (of assumptions) of a literal
L of the WFSXp model Mp of a program P, denoted
by SS(L), with respect to the set of revisable Rev(P)
is obtained as follows:

1. If L is an objective literal in Mp then for each
rule L < B in P, such that B C Mp there is
one SS(L) formed by the union of a SS for each
B; € B. If B is empty then SS(L) = {}.

2. If L is a default literal not A € Mp:

(a) if no rules for A exist in P then a support
set of L is {not A}.

(b) if rules for A exist in P that have a non-
empty body, then choose from each such
rule a single literal such that its default
complement belongs to Mp. There exists
one SS for not A which is the union of one
SS for the default complement of the cho-
sen literal in each rule.

(¢) if =A belongs to Mp then there exist, ad-
ditionally, support sets SS for not A equal
to each SS(—A).

The definitions of revisable literals and of support
sets differ from those given in [16] because there the
revisables are the default complement of the liter-
als without definition and support sets there contain
all the literals in the nodes of a derivation for L.
We have provided these modified definitions because
they simplify the introduction of the Lamarckian op-
erator in the next section.

Example 2.3 The WFSXp model Mp of:

—-p<—not c. p <t. b¢——c, a.
p <a,notb. b<—d.
—b<—not e. a.

is {a, not —a,not b, b, not ¢, not —¢, not d, not —d,
not e, not —e, not t, not —t, p, ~p, not p,not —p, L }.

Here the revisables are {c,d,e}. There are two
support sets for not b:

SSi(not b)=S5S(not ¢c) USS(notd) by rule 2b
SS1(not b)={not c} U {not d} =

{not ¢, not d} by rule 2a

Notice that the other possibility of choosing lit-
erals for SS(notbd), i.e. SSi(notb) = SS(nota)U
SS(not d), can’t be considered because not a doesn’t
belong to Mp. The other support set for not b is
obtained using rule 2c:

SSa(not b) = SS(—b) by rule 2¢
SSa(notb) = SS(note) by rule 1
SS2(not b) = {not e} by rule 2a

Now the support sets for the objective literal p are
easily computed:

SS(p)=SS(a)uSS(notb)
SS(p)={}USS(notbd)

(the only rule for ais fact a)

by rule 1
by rule 1

So SSi(p) = SS1(notb) = {notc,notd} and
SS5(p) = SSa(notb) = {note}. —p has the unique
support set {not c}. Consequently, because contra-
diction is obtained only via L « p,—p, SSi(L) =
{not ¢,not d} and SSy(L)= {note,not c}.

Proposition 2.1 Existence of support sets Ev-
ery literal L belonging to the WFSXp model of a pro-
gram P has at least one support set SS(L).

We define a spectrum of possible revisions using
the notion of hitting set:

Definition 2.3 Hitting set A hitting set of a col-
lection C of sets is formed by the union of one non-
empty subset from each S € C. A hitting set is min-
imal iff no proper subset is a hitting set. If {} € C,
then C' has no hitting sets.

Definition 2.4 Removal set A removal set of a
literal L of a program P is a hitting set of all support
sets SS(L).

We can revise contradictory programs by chang-
ing the truth value of the literals of some removal
set of L. The truth value can be changed either to
undefined or false. It can be changed to undefined
by adding, for each literal not L in the removal set,
the inhibition rule L < not L to P (making L ef-
fectively undefined), while it can be changed to false
by adding L to P. In case the literals are revised to
undefined, then the contradiction is removed and no
new contradiction can arise. In case they are revised
to false, a new contradiction may arise and therefore
this (convergent) contradiction removal process must
be iterated. This defines the possible revisions of a
contradictory program.

We answer the second question above by consider-
ing only a two-valued revisions, i.e. where the truth
value of a revisable can only be changed to true or
false. We answer the third question by prefering to
revise minimal sets of revisables:

Definition 2.5 Contradiction removal set A
contradiction removal set (CRS) of P is a minimal
removal set of L.

Example 2.3 (cont.) The support sets of L are
{not ¢,not d} and {not ¢, not e}. Its removal sets are
(RS; and RSy being minimal):

RS (L, R) = {not ¢}

RS>(L, R) = {not ¢,not e}
RS3(L, R) = {not ¢,not d}
RS4(L, R) = {not d,not e}
RS5(L, R) = {not c,not d,not e}

Definition 2.6 Revisable program A program is
revisable iff it has a contradiction removal set.

The CRS's are minimal hitting sets of the collec-
tion of support sets of L. In [16] an algorithm for
computing the CRS's is presented.

3 A genetic algorithm for
multi-agent belief revision

The algorithm here proposed for belief revision ex-
tends the standard genetic algorithm (described for
example in [14]) in two ways:

e crossover is performed among chromosomes be-
longing to different agents,

e a Lamarckian operator called Learn is added in
order to bring a chromosome closer to a correct
revision by changing the value of the revisables.

Each agent executes the following algorithm:

GA(Fitness, max_gen,p,r,m,l)

Flitness : a function that assigns an evaluation
score to a hypothesis coded as a chromosome

max_gen : the maximum number of generations
before termination

p: the number of individuals in the population

r: the fraction of the population to be
replaced by Crossover at each step

m: the fraction of the population to be
mutated

l: the fraction of the population that should
evolve Lamarckianly

Initialize population: P < generate p
hypotheses at random

Evaluate: for each h in P, compute
Fitness(h)

gen <0

While gen < maz_gen

Create a new population Py:

Select: Probabilistically select (1 —r)p
members of P to be added to Ps.
The probability Pr(h;) of selecting
hypothesis h; from P is given by

N Fitness(h;)
Pr(h’) - Eif:lFitness(hj)

Crossover:
For i=1 to rp
Probabilistically select a hypothesis
hy from P, according to Pr(hy)
given above
Obtain an hypothesis hy from another
agent chosen at random
Crossover hy with he obtaining h}
Add hf to P
Mutate: Choose m percent of the members
of P; with uniform probability.
For each, invert one randomly selected
bit in its representation
Learn: Choose Ip hypotheses from P; with
uniform probability and substitute each
of them with the modified hypotheses
returned by the procedure Learn
Update: P« P
Return the hypothesis from P with the highest
fitness

In belief revision, each individual hypothesis is de-
scribed by the truth value of all the revisables. Since
we consider a two-valued revision, each hypothesis
gives the truth value true or false to every revisable
and therefore it can be considered as a set containing
one literal, either positive or default, for every revis-
able. A chromosome is obtained by associating a bit
to each revisable that has value 1 if the revisable is
true and 0 if it is false.

Various fitness functions can be used in belief re-
vision. The simplest fitness function is the following

Fitness(h;) = ni
n
where n; is the number of integrity constraints sat-
isfied by hypothesis h; and n is the total number of
integrity constraints. We will call it an accuracy fit-
ness function. Another possible fitness function is
the following

n; n fi

Xi‘__ ﬂ
n n+|hi| |hl|

Fitness(h;) = T
where f; is the number of revisables in h; that are
false, and |h;| is the total number of revisables. We
will call it a hybrid fitness function. This function is
a weighted average of the accuracy and the fraction
of false literals in the solution. In this way, the fitness
function prefers hypotheses with a lower number of
true revisable, which is desirable in some cases.

The first extension to the standard genetic algo-
rithm consists in a crossover operator that allows
the exchange of genes among agents. The standard
uniform crossover operator produces a new offspring
from two parent strings by copying selected bits from
each parent. The bit at position i in the offspring is
copied from the bit in position i in one of the two
parents. The choice of which parent provides the bit
for position ¢ is determined by an additional string
called crossover mask. This string is a sequence of
bits each of which has the following meaning: if bit
in position i is 0, then the bit in position i in the off-
spring is copied from the first parent, otherwise it is
copied from the second parent. In uniform crossover,
the mask is generated as a bit string where each bit
is chosen at random and independently of the others.
The crossover operator we consider differs from the
standard uniform operator because one of the par-
ents used in crossover comes from the population of
another agent.

The other extension to the standard genetic al-
gorithm consists in the addition of the Lamarckian
operator Learn. This operator changes the values
of the revisables in a chromosome C' so that a big-
ger number of constraints is satisfied, thus bringing
C closer to a solution. Learn differs from a normal
belief revision operator because it does not assume
that all the revisables are false by CWA before the
revision but it starts from the truth values that are
given by the chromosome C. Therefore, it has to
revise some revisables from true to false and others
from false to true. As a consequence, the support set
does not contain only default literals but also revis-
able objective literals.

Learn works in the following way: given a chro-
mosome C, it finds all the support sets for L such
that they contain literals in C'. Therefore, it does

not find all support sets for L but only those that
are subsets of C.

The definition of support set that is used by the
Lamarckian operator is therefore different from def-
inition 2.2 and is given as follows:

Definition 3.1 Lamarckian support set of a
literal A support set of a literal L of the WFSXp
model Mp of a program P according to a given set
of literals H is denoted by SS(L, H) and is obtained
as follows:

1. If L is an objective literal in Mp then for each
rule L < B in P, such that B C Mp there is
one SS(L,H) for each B; € B. If B is empty
then SS(L,H) = {}.

2. If L is a revisable literal in Mp, then

(a) if L belongs to H, then a support set of L
is {L}.

(b) if the default complement of L belongs to
H, then there is no support set for L.

3. If L is a default literal not A € Mp:

(a) if A is a revisable then:

i. if L belongs to H, then a support set
of L is {not A}.

i1. if A belongs to H, then there is no sup-
port set for L.

(b) if rules for A exist in P that have a non-
empty body, then choose from each such
rule a single literal such that its default
complement belongs to Mp. There exists
one SS for not A for every SS of each de-
fault complement of the chosen literals.

(¢) if = A belongs to Mp then there exist, addi-
tionally, support sets SS of not A equal to
each SS(-A).

Since the Lamarckian support sets for L represent
only a subset of all the support sets for L, a hitting
set generated from them is not necessarily a contra-
diction removal set and therefore it does not repre-
sent a solution to the belief revision problem. How-
ever, it eliminates some of the derivation paths to L
and, therefore, may increase the number of satisfied
constraints, thus improving the fitness, as required
by the notion of Lamarckian operator.

To find the support sets we need to know which
literals belong to the model of a program. This infor-
mation is obtainable through some sound and correct
procedure for WFSXp such as the one described in
[1], or the one in [4].

In the case of the circuit diagnosis problems in sec-
tion 4, the support sets procedure becomes simplified
in that the occurrences of default negated literals in
the program pertain only to revisables.

The algorithm implementing the Learn operator
is given below.

procedure Learn(C,C")
inputs : A chromosome C' translated into a set
of revisables
outputs : A revised chromosome C’

Find the support sets for L:
Support_sets([L], C, {}, {}, SS)

Find a hitting set HS: Hitting_set(SS, HS)

Change the value of the literals in the
chromosome C' that appear as well in HS

procedure Support_sets(GL,C, S, SSin,SSout):
inputs :
GL a list of goals
A chromosome H translated into a set of
revisables
The current support set S
The current set of support sets SSin
outputs :
A set SSout containing the support sets
for the first goal in the list

If GL is empty, then return SSout = SSin
Consider the first literal L of the first goal
G of GL (GL = [G|RGL] using Prolog
notation for lists)
(1) if G is empty then add the current
support set to SSin and call recursively
the algorithm on the rest of GL
Support_sets(RGL,H,{},SSin U {S},
SSout)
(2) if G is not empty (G = [L|RG]) then:
(2a) if L is a revisable and is in H,
then add it to S, and call the algorithm
recursively on the rest of G
Support_sets([RG|RGL],H,S U {L},
SSin, SSout)
(2b) if L is a revisable and it is not in H,
or its opposite is in H, discard S
and call the algorithm recursively on the
rest of GL Support_sets(RGL,
H,SU{L},SSin,SSout)
(2c) if it is not a revisable then reduce it with
all the rules, obtaining the new goals
Gy, ...,Gy, one for each matching rule,
add the goals to GL and call
the algorihtm recursively Support_sets([[G1
|RGY, ..., [Gn|RG]|RGL], H, S, SSin, SSout)
(2d) if it is not a revisable and there are no
rules, then return without adding S to SS
(SSout = SSin)

procedure hitting_set(SS, HS):
Pick a literal from every support set in SS
Add it to HS if it does not lead to contradiction

(i.e. the literal must not be already present
in its complemented form).
If it leads to contradiction pick another literal.

Simplified versions of this algorithm have also been
considered in order to separately test the effective-
ness of each of the features added to the standard ge-
netic algorithm. In particular, four algorithms have
been considered named in the sequel algorithms 1, 2,
3 and 4. Algorithm 1 is a standard single agent ge-
netic algorithm: crossover is performed only among
chromosomes of the same agent and the Lamarckian
operator is not used. Algorithm 2 adds to algorithm
1 the use of the Lamarckian operator, with a param-
eter [(percentage of the population to be mutated
Lamarckianly) equal to 0.6. Algorithm 3 is a multi-
agent algorithm without the Lamarckian operator,
i.e., crossover is performed between chromosomes of
different agents but the operator Learn is not applied
to them. Algorithm 4 extends algorithm 3 by adding
the Lamarckian operator, with a parameter [equal
to 0.6. For all the algorithms, the mutation rate
(parameter m) and the crossover rate (parameter r)
have been set to 0.2.

In algorithms 3 and 4 the agents share the same
set of observations and program clauses but have dif-
ferent sets of constraints. At the end of the compu-
tation, in order to find a single solution for the revi-
sion problem, the best chromosome in each agent is
considered and is scored with a fitness function that
considers all the constraints (global fitness function).
Then the chromosome with the highest global fitness
is returned as the solution. In this way the multi-
agent system finds a solution for the global belief
revision problem.

These algorithms have been used in order to ex-
perimentally prove the following theses:

1. the distributed algorithm (with or without the
Lamarckian operator) has a performance that is
comparable (and, in particular, not significantly
inferior) to that of the non-distributed one, in
the same number of generations and the same
overall number of individuals, despite the distr-
bution of knowledge;

2. Lamarckism is never worse than Darwinism and
may outperform it both in the single and in the
multi agent case;

In order to test thesis 1, the results obtained by
algorithm 1 is compared to the one obtained by al-
gorithm 3 and the same is done for algorithms 2 and
4. In order to test thesis 2, the results obtained by
algorithm 1 is compared to the one obtained by al-
gorithm 2 and the same is done for algorithms 3 and
4.

4 Experiments

The algorithms have been tested on a number of be-
lief revision problems in order to prove the above
theses. In particular, we have considered problems
of digital circuit diagnosis, as per [9], and the n-queen
problem.

4.1 Experiment Methodology

In order to evaluate if the accuracy differences be-
tween algorithms are significant, we have computed
a 10-fold cross-validated paired ¢ test for every pair of
algorithms (see [10] for an overview of statistical tests
for the comparison of machine learning algorithms).
This test is computed as follows. Given two algo-
rithms A and B, let pa(i) (respectively pg(i)) be
the maximum fitness achieved by algorithm A (re-
spectively B) in trial ¢. If we assume that the 10
differences p(i) = pa(i) — pp(i) are drawn indepen-
dently from a normal distribution, then we can apply
the Student ¢-test by computing the statistic

N VI
o () —p)?

n—1

t =

where n is the number of folds (10) and p is

1 n
= _ (2)
=13
i=1
In the null hypothesis, i.e. that A and B obtain
the same fitness, this statistic has a ¢ distribution
with n — 1 (9) degrees of freedom. If we consider a
probability of 90%, then the null hypothesis can be
rejected if
|t| > tg’o.go - 1383

4.2 Digital Circuit Diagnosis

In problems of digital circuit diagnosis there is a dif-
ference between the observed and the predicted out-
puts. Figure 1 shows a sample circuit together with
the observed inputs and outputs of the circuit and
the predicted outputs of each gate. The aim of the
diagnosis is to find which components are faulty. A
problem of digital circuit diagnosis can be modelled
as a belief revision problem by describing it with a
logic program consisting of four groups of clauses:
one that allows to compute the predicted output of
each component, one that describes the topology of
the circuit, one that describes the observed inputs
and outputs, and one that consists of integrity con-
straints stating that the predicted value for an out-
put of the system cannot be different from the ob-
served value. The representation formalism we use is
the one of [9]. As regards the integrity constraints,
we have two constraints for each output of the circuit,

0 gl

| g3_|:
1

0 g6

Figure 1: c17 circuit from ISCAS85’s set of bench-
mark circuits.

one stating that the output can not be 0 if it was ob-
served to be 1 and the other stating that the output
can not be 1 if it was observed to be 0. For exam-
ple, the constraint ic ([obs (out (nand2, g22), 0),
val (out(nand2, g22), 1)]). states that the value
of the output of g22 cannot be 1 if it was observed
to be 0.

The revisable in this case are of the form ab(Name)
and their meaning is that component Name is abnor-
mal.

The system has been tested on some real world
problems taken from the ISCAS85 benchmark cir-
cuits [6] that have been used as well for testing the
belief revision system REVISE [9].2

We have considered the voter circuit that has 59
gates and 4 outputs, corresponding respectively to
59 revisables and 8 constraints.

Algorithms 1, 2, 3 and 4 have been tested on the
voter circuit. Each algorithm was run 10 times. The
parameters that have been used for the runs are: 10
maximum generations, 40 individuals for algorithms
1 and 2 (single agent), 10 individuals per agent and 4
agents for algorithms 3 and 4. In algorithms 3 and 4
each agent has the same set of observations and pro-
gram clauses, while the integrity constraints are dis-
tributed among the agents so that each agent knows
only the constraints that are related to one same out-
put. The hybrid fitness function was adopted.

In table 1 we show, for each algorithm, the value of
the fitness function and of its standard deviation for
the best hypothesis after ten generations averaged
over the 10 runs, while table 2 shows the value of the
t statistics for the various couples of algorithms.

4.3 n-queen Problem

The n-queen problem consists in positioning n
queens on a n X n checkboard so that no queen at-
tacks each other. This problem can be seen as Con-
straint Satisfaction Problem (CSP) where the con-
straints are: the total number of queens must be n;

2These examples can be found at
http://www.soi.city.ac.uk/~msch/revise/.

Algorithm | Fitness | Standard Deviation
1 0.9537 0.035494
2 0.9582 0.015414
3 0.9776 0.007866
4 0.9805 0.007209

Table 1: Voter experiments with algorithms 1, 2, 3
and 4

Comparison | |t| value
1-2 0.394
3-4 0.775
1-3 1.749
2-4 2.647

Table 2: Result of the t-test for different couples of
algorithms on the voter dataset.

for each row, the total number of queens must not be
bigger than one; for each column, the total number
of queens must not be bigger than one and, for each
diagonal, the total number of queens must not be big-
ger than one. This problem can be seen as a belief
revision problem by assigning a revisable of the form
queen (Row,Column) to each position (Row,Column)
in the checkboard. Then, each constraint of the CSP
can be written as an integrity constraint.

Algorithms 1, 2, 3 and 4 have been tested also
on the n-queen problem with the same parameter as
for the voter experiment: each algorithm was run
10 times, each run had 10 maximum generations, 40
individuals for algorithms 1 and 2 (single agent), 10
individuals per agent and 4 agents for algorithms 3
and 4. The accuracy fitness function was adopted.

We have considered a problem with n = 8. In this
case there is a total of 43 constraints: 1 constraint
for the total number of queens, 8 constraints for the
rows, 8 for the columns and 26 for the diagonals. For
multi-agent experiments each agent has the same set
of observations and program clauses, while the con-
straints were divided amongst them: 2 constraints on
the rows and 2 on the columns have been assigned to
each agent, while the constraints on diagonals have
been divided in groups of 6, 6, 7 and 7 and corre-
spondingly assigned to the agents. The constraint
on the total number of queens has been assigned to
one of the agents with only 6 constraints on the di-
agonals. Therefore, three agents have 9 constraints
and one agent has only 8.

Table 3 shows, for each algorithm, the value of
the fitness function for the best hypothesis averaged
over the 10 runs while table 4 shows the value of the
t statistics for the various couples of algorithms.

Algorithm | Fitness | Standard Deviation
1 0.7581 0.06686
2 0.8232 0.01200
3 0.7930 0.02992
4 0.8069 0.03110

Table 3: n-queen experiments with algorithms 1, 2,
3 and 4

Comparison | |t| value
1-2 2.590
34 0.949
1-3 1.158
2-4 1.328

Table 4: Result of the t-test for different couples of
algorithms on the n-queen dataset.

4.4 Discussion of Experimental Re-
sults

As can be seen from tables 2 and 4, in the voter case
algorithm 3 performs significantly better than algo-
rithm 1 as well as algorithm 4 with regards to algo-
rithm 2. In the n-queen case, instead, the difference
for the pairs of algorithms (1,3) and (2,4) is not sta-
tistically significant for the voter problem but not for
the n-queen problem. These two cases prove thesis
1, i.e., adopting a distributed algorithm does not pe-
nalize and may actually improve the fitness. So our
algorithm allows to benefit from parallel execution.
The difference in results between the two cases may
occur because in the n-queen problem the problem is
more constrained and the constraints are more inter-
dependent and therefore distributedly finding local
solutions and then exchanging them is less effective.

As regards thesis 2, the difference for the pairs of
algorithms (1,2) and (3,4) is statistically significant
only for the couple (1,2) in the n-queen case. There-
fore, thesis 2 is confirmed by the data. Moreover, in
another follow-up work [12] we have shown that, by
allowing memes to be crossed over only if they have
been accessed by the Lamarckian algorithm, we ob-
tain a statistically significant difference for the couple
(3,4) in both cases.

5 Related Work

In [13] the authors propose an approach for perform-
ing belief revision in a multi agent context. In their
approach, each agent exploits an Assumptions Based
Truth Maintenance (ATMS) system in order to per-
form the revision of beliefs. As in our approach,
each agent has a different repository for knowledge
and its beliefs may not be consistent with those of
other agents, consistency is enforced only locally in-

side each agent. Differently from us, in [13] the au-
thors consider an exchange of beliefs by means of
a number of communications primitives. Communi-
cation happens in three cases. The first is when an
agent can not establish by itself the truth value of an
assumption or a goal: in this case, it asks it to its ac-
quaintances. The second case is when an agent finds
a conclusion or an assumption that it knows being of
interest for another agent: in this case it communi-
cates the results. The third case is when an agent has
revised the truth value of a belief that it had previ-
ously communicated to other agents: in this case the
agent communicates the other agents the new truth
value for the belief. Therefore, in [13] the coopera-
tion among agents is explicit, while in our work the
cooperation emerges as the result of the continuous
exchange of chromosomes among agents.

In [13] the system is able to answer uniquely to
queries posed to the system by means of a meta-level
algorithm that works in the following way: a fact is
false if it is considered false by at least one agent, a
fact is true if no agent considers it false and there is
at least one agent that considers it true. In our sys-
tem, instead, the global result of the belief revision
process is given by the chromosome with the best
global accuracy, also computed by means of a meta-
level algorithm that considers all the constraints.

6 Conclusions and Future

Work

We have presented a genetic algorithm for perform-
ing belief revision in a multi-agent environment. In
this setting, individuals belonging to different agents
are exposed to different experiences. This happens
because the agents explore different parts of the
world or because the world surrounding an agent
changes over time. The algorithm permits the ex-
change of chromosomes from different agents and this
allows a distributed belief revision process to be per-
formed.

The algorithm combines two different evolution
strategies, one based on Darwin’s and the other
on Lamarck’s evolutionary theory. The algorithm
therefore includes also a Lamarckian operator that
changes the memes of an agent in order to improve
its fitness. The operator is implemented by means of
a logic-based belief revision procedure that, by trac-
ing logical derivations, identifies the memes leading
to contradiction.

Experiments on problems of digital circuit design
and on the n-queen problem show that, in spite of
the fact that each agent has only a partial knowledge
of the world, the multi-agent system finds revisions
that are comparable in terms of accuracy with those
obtained by a single-agent possessing all the knowl-
edge.

In the future, we plan to explore also the case in
which the chromosomes do not have all the relevant
revisables to start with (three-valued revision). In
this case, when a chromosome acquires new revis-
ables from another chromosome, it is obtaining spe-
cialized knowledge. This is for example the case of
the diagnosis of a car fault performed by different
experts: the expert mechanic, the expert electrician,
the expert car designer, etc. Each of them makes
a diagnosis about the part of the car that concerns
their speciality. Next they all have to come to a joint
diagnosis by exchanging information about each oth-
ers’ revisables.

7 Acknowledgements

L. M. Pereira acknowledges the support of PRAXIS
project MENTAL “An Architecture for Mental
Agents”.

References

[1] J. J. Alferes, C. V. Damésio, and L. M. Pereira.
A logic programming system for non-monotonic
reasoning. Journal of Automated Reasoning,
14:93-147, 1995.

[2] J. J. Alferes and L. M. Pereira. Reasoning
with Logic Programming, volume 1111 of LNAL
Springer-Verlag, 1996.

3] J. J. Alferes, L. M. Pereira, and T. C.
Przymusinski. “Classical” negation in non-
monotonic reasoning and logic programming.
Journal of Automated Reasoning, 20:107-142,
1998.

[4] J. J. Alferes, L. M. Pereira, and T. Swift. Well-
founded abduction via tabled dual programs. In
D. De Schreye, editor, Procs. of the 16th In-
ternational Conference on Logic Programming,
pages 426-440, Las Cruces, New Mexico, 1999.
MIT Press.

[5] Susan Blackmore. The Meme Machine. Oxford
U.P., Oxford, UK, 1999.

[6] F. Brglez, P. Pownall, and R. Hum. Accelerated
ATPG and fault grading via testability analy-
sis. In Proceedings of IEEFE Int. Symposium on
Clircuits and Systems, pages 695-698, 1985. The
ISCASS85 benchmark netlist are available via ftp
mcnc.mcnc. org.

[7] C. V. Damésio and L. M. Pereira. Abduction
on 3-valued extended logic programs. In V. W.
Marek, A. Nerode, and M. Trusczynski, editors,
Logic Programming and Non-Monotonic Rea-
soning - Proc. of 3rd International Conference

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

LPNMR’95, volume 925 of LNAI pages 29-42,
Germany, 1997. Springer-Verlag.

C. V. Damasio and L. M. Pereira. A survey
on paraconsistent semantics for extended logic
programs. In D.M. Gabbay and Ph. Smets, edi-
tors, Handbook of Defeasible Reasoning and Un-
certainty Management Systems, volume 2, pages
241-320. Kluwer Academic Publishers, 1998.

C. V. Damésio, L. M. Pereira, and
M. Schroeder. REVISE: Logic program-
ming and diagnosis. In Proceedings of Logic-
Programming and Non-Monotonic Reasoning,
LPNMR’97, volume 1265 of LNAI, Germany,
1997. Springer-Verlag.

T. Dietterich. Approximate satistical tests
for comparing supervised classification
learning algorithms. Neural Computa-
tion, in press (draft version available at
http://www.cs.orst.edu/ tgd/projects
/supervised.html), 2000.

J. Dix, L. M. Pereira, and T. Przymusinski.
Prolegomena to logic programming and non-
monotonic reasoning. In J. Dix, L. M. Pereira,
and T. Przymusinski, editors, Non-Monotonic
Ezxtensions of Logic Programming - Selected pa-
pers from NMELP’96, number 1216 in LNAI,
pages 1-36, Germany, 1997. Springer-Verlag.

E. Lamma, F. Riguzzi, and L. M. Pereira. Be-
lief revision via lamarckian evolution. Technical
Report DEIS-LIA-00-004, University of Bologna
(Italy), 2000. LIA Series no. 44.

B. Malheiro, N. R. Jennings, and E. Oliveira.
Belief revision in multiagent systems. In Pro-
ceedings of the 11th European Conference on Ar-
tificial Intelligence, 1994.

T. M. Mitchell.
Hill, 1997.

L. M. Pereira and J. J. Alferes. Well founded
semantics for logic programs with explicit nega-
tion. In Proceedings of the European Conference
on Artificial Intelligenece ECAI92, pages 102—
106. John Wiley and Sons, 1992.

L. M. Pereira, C. V. Damasio, and J. J. Alferes.
Diagnosis and debugging as contradiction re-
moval. In L. M. Pereira and A. Nerode, edi-
tors, Proceedings of the 2nd International Work-
shop on Logic Programming and Non-monotonic
Reasoning, pages 316-330. MIT Press, 1993.

A. Van Gelder, K. A. Ross, and J. S. Schlipf.
The well-founded semantics for general logic
programs. Journal of the ACM, 38(3):620-650,
1991.

Machine Learning. McGraw

