Belief Revision by Lamarckian Evolution
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Abstract. We propose a multi-agent genetic algorithm to accomplish
belief revision. The algorithm implements a new evolutionary strategy
resulting from a combination of Darwinian and Lamarckian approaches.
Besides encompassing the Darwinian operators of selection, mutation
and crossover, it comprises a Lamarckian operator that mutates the genes
in a chromosome that code for the believed assumptions. These self mu-
tations are performed as a consequence of the chromosome phenotype’s
experience obtained while solving a belief revision problem. They are
directed by a belief revision procedure which relies on tracing the logical
derivations leading to inconsistency of belief, so as to remove the latter’s
support on the gene coded assumptions, by mutating the genes.

1 Introduction

Herein, we propose a genetic algorithm for belief revision that includes, be-
sides Darwin’s operators of selection, mutation and crossover [1], a logic based
Lamarckian operator as well. This operator differs from Darwinian ones precisely
because it modifies a chromosome coding beliefs so that its fitness is improved
by experience rather than in random way.

We venture that the combination of Darwinian and Lamarckian operators
will be useful not only for standard belief revision problems, but especially for
problems where different chromosomes may be exposed to different constraints
and environmental observations. In these cases, the Lamarckian and Darwinian
operators play different roles: the Lamarckian one is employed to bring a given
chromosome closer to a solution (or even find an exact one) to the current belief
revision problem, whereas the Darwinian ones exert the role of randomly produc-
ing alternative belief chromosomes so as to deal with unencountered situations,
by means of exchanging genes amongst them.

We tested this hypothesis on multi-agent joint belief revision problems. In
such a distributed setting, agents usually take advantage of each other’s knowl-
edge and experience by explicitly communicating messages to that effect. As
multiple-population GAs (see [2], for discussion), we allow knowledge and ex-
perience to be coded as genes in an agent and consider several sub-populations



which exchange individuals occasionally. In particular, genes are exchanged with
those of other agents, not by explicit message passing but through the crossover
genetic operator. The new offspring agent chromosomes can be naturally selected
according to their gene coded knowledge governing their behaviour.

Crucial to this endeavour, we introduce a logic-based technique for modifying
cultural genes, i.e. memes, on the basis of individual agent experience. The tech-
nique amounts to a form of belief revision, where a meme codes for an agent’s
belief or assumption about a piece of knowledge, and which is then diversely
modified on the basis of how the present beliefs may be contradicted by obser-
vations and laws (expressed as integrity constraints). These self mutations are
indeed performed as the outcome of the chromosome phenotype’s (i.e., agent’s)
experience while solving a belief revision problem. They are directed by a be-
lief revision procedure, which relies on tracing the logical derivations leading
to inconsistency of belief, so as to remove the latter’s support on gene coded
assumptions by mutating the memes involved. Each agent possesses a pool of
chromosomes containing such diversely modified memes, or alternative assump-
tions, which cross-fertilize Darwinianly amongst themselves. Such an experience-
influenced genetic evolution mechanism is aptly called Lamarckian.

To illustrate how these mechanisms, of individual agent Lamarckian evolu-
tion and of Darwinian agent genetics, can jointly lead to improved single agent
population behaviour in collaborative problem-solving, we apply them to dis-
tributed model-based diagnosis of digital circuits, a natural domain in which
belief revision techniques apply [3].

2 Preliminaries

We consider belief revision of first order theories expressed in the language of
extended logic programs [4]. For this language, we adopt the Extended Well
Founded Semantics (WFSX) that extends the well founded semantics (WFS) [5]
for normal logic programs to programs extended with explicit negation, besides
the implicit or default negation of normal programs.

Extended logic programs are liable to be contradictory because of integrity
constraints, either those that are user-defined or those of the form L « L,—L
that are implicitely assumed. The revisables of a program P are the elements of
a chosen subset Rev(P), of the set of all literals L having no rules for them in
P , and code revisable beliefs.

3 A genetic algorithm for multi-agent belief revision

The algorithm here proposed for belief revision extends the standard genetic
algorithm (described for example in [1]) in two ways:

— crossover is performed among chromosomes belonging to different agents,
— a Lamarckian operator called Learn is added in order to bring a chromosome
closer to a correct revision by changing the value of revisables.



In two-valued belief revision, each individual hypothesis is described by the
truth value of all the revisables. Therefore each hypothesis can be considered
as a set containing one literal, either positive or default, for every revisable. A
chromosome is obtained by associating a bit to each revisable that has value 1
if the revisable is true and 0 if it is false.

The fitness function that has been used takes the following form:

Fitness(h;) = Dy Ji

x 0.5

where n; is the number of integrity constraints satisfied by hypothesis h;, n is
the total number of integrity constraints, f; is the number of revisables in h;
that are false, and |h;| is the total number of revisables. In this way, the fitness
function takes into account both the fraction of constraints that are satisfied and
the number of revisables whose truth value must be changed to true, preferring
hypotheses with a lower number of these. Assuming that the initial value of the
revisables is false, this means that minimal revisions are encouraged. The factor
0.5 was chosen in order to give more importance to the accuracy, rather than to
the number of unchanged revisables.

The Lamarckian operator Learn changes the values of the revisables in a
chromosome C' so that a bigger number of constraints is satisfied, thus bringing
C closer to a solution.

This is done by modifying the belief revision techniques presented in [6]. In
particular, in [6] an algorithm for belief revision is presented that is based on
the notions of support sets, hitting sets and removal sets. Intuitively, a support
set of a literal is the set of revisable supporting the derivation of the literal. The
hitting set of a collection C of sets is formed by the union of one non-empty
subset from each S € C'. A hitting set is minimal iff no proper subset is a hitting
set. A removal set of a literal is a hitting set of all the support sets of the literal.
Contradiction in [6] is removed by finding the removal set of L.

Each agent executes the following algorithm:

GA(Fitness, maz_gen,p,r,m,l)
Fitness: a function that assigns an evaluation score to a hypothesis coded
as a chromosome, max_gen: the maximum number of generations before
termination, p: the number of individuals in the population, r: the fraction
of the population to be replaced by Crossover at each step, m: the fraction of
the population to be mutated, I: the fraction of the population that should
evolve Lamarckianly.

Initialize population: P < generate p hypotheses at random
Evaluate: for each h in P, compute Fitness(h)
gen <0
While gen < maz_gen
Create a new population Py:
Select: Probabilistically select (1 — r)p members of P
to add to Ps. The probability Pr(h;) of selecting



hypothesis h; from P is given by

N Fitness(hi)
PT(h‘) - E;’=1Fitness(hj)

Crossover:
For i=1 to rp
Probabilistically select an hypothesis h; from P,
according to Pr(h;) given above
Obtain an hypothesis hy from another agent
chosen at random
Crossover h; with hy obtaining h}
Add b} to P
Mutate: Choose m percent of the members of P; with
uniform probability. For each, invert one
randomly selected bit in its representation
Learn: Choose Ip hypotheses from P, with uniform
probability and substitute each of them with the
modified hypotheses returned by the procedure Learn
Update: P + P;
Return the hypothesis from P with the highest fitness

The Lamarckian operator Learn works in the following way: given a chromosome
C, it finds all the support sets for L such that they contain literals in C'. These
support sets are called Lamarckian support sets (a formal definition for them is
given in [7]). Therefore, it does not find all support sets for L but only those
that are subsets of C'.

Since the Lamarckian support sets for L represent only a subset of all the
support sets for L, a hitting set generated from them is not necessarily a con-
tradiction removal set and therefore it does not represent a solution to the belief
revision problem. However, it eliminates some of the derivation paths to L and,
therefore, may increase the number of satisfied constraints, thus improving the
fitness, as required by the notion of Lamarckian operator.

In the case of the circuit diagnosis problems in section 4, the support sets
procedure becomes simplified in that the occurrences of default negated literals
pertain only to revisables.

When computing the support sets, the Lamarckian operator also modifies an
extra bit associated with each meme each time the meme is considered in the
computation of Lamarckian support sets. This bit indicates whether the meme
has been “accessed” by the operator. This is needed for the crossover operator
that is described below.

procedure Learn(C,C")
inputs : C: a chromosome translated into a set of revisables
outputs : C' the revised chromosome

Find the support sets for L: Support_sets([L],C,{},{},S95)
Find a hitting set HS: Hitting_set(SS, HS)
Change the value of the literals in the chromosome C'



that appear as well in HS

procedure Support_sets(GL,C,S,SSin,SSout):
inputs : GL: list of goals, C': a chromosome translated into a set of revisables,

S: the current support set, SSin: the current set of support sets

outputs : SSout: a set containing the support sets for the first goal in the
list

If GL is empty, then return SSout = SSin
Consider the first literal L of the first goal G of GL

(GL = [G|RGL] using Prolog notation for lists)

(1) if G is empty then add the current support set to SSin
and call recursively the algorithm on the rest of GL
Support_sets(RGL,C,{},SSin U {S}, SSout)

(2) if G is not empty (G = [L|RG]) then:

(2a) if L is a revisable and is in C, then add it to S,
set to 1 L’s access bit
and call the algorithm recursively on the rest of G
Support_sets([RG|RGL],C,S U{L},SSin,SSout)

(2b) if L is a revisable and it is not in C, or its opposite
is in C, then set to 1 L’s access bit, discard S
and call the algorithm recursively on the rest of GL
Support_sets(RGL,C,S U{L}, SSin,SSout)

(2c) if it is not a revisable then reduce it with all the rules,
obtaining the new goals G, ..., G}, one for each
matching rule, add the goals to GL and call
the algorihtm recursively Support_sets([[G1|RG], ...,
[GR|RG]|IRGL],C,S,SSin,SSout)

(2d) if it is not a revisable and there are no rules, then return
without adding S to SS (SSout = SSin)

procedure hitting_set(SS, HS):
Pick a literal from every support set in S.S
Add it to HS if it does not lead to contradiction
(i-e., the literal must not be already present
in its complemented form).
If it leads to contradiction pick another literal.

The crossover operator is an extension of a standard uniform crossover operator.
The crossover operator produces a new offspring from two parent strings by
copying selected bits from each parent. The bit at position ¢ in the offspring is
copied from the bit at position ¢ in one of the two parents. The choice of which
parent provides the bit for position ¢ is determined by the crossover mask that,
in uniform crossover, is generated as a bit string where each bit is chosen at
random and independently of the others.



In our setting, one of the parents comes from the agent local population,
while the other comes from the population of another agent. However, not all the
bits in the chromosome are treated equally. In particular, we distinguish genes
from memes: genes are modified only by Darwinian operators, while memes are
modified by Darwinian and Lamarckian operators. Genes in the offspring can be
copied from both parents, while memes can be copied from the parent coming
from another agent only if they have been “accessed” by the other agent as a
result of the application of the Lamarckian operator.

In this way, an agent can acquire from another agent only memes that have
been checked for consistency. Therefore, the flow of memes is asymmetrical and
goes from a “teacher” to a “learner”, but not vice versa. In particular, in the
asymmetrical crossover operator the mask is generated again as a random bit
string and crossover is performed in the following way: if the i-th bit in the mask
is 1 and the ¢-th bit in the other agent’s chromosome has been accessed, then the
i-th bit of the offspring is copied from the other agent’s chromosome, otherwise
it is copied from the local agent’s chromosome. Simplified versions of this algo-
rithm have also been considered in order to separately test the effectiveness of
each of the features added to the standard genetic algorithm. In particular, five
algorithms have been considered named in the sequel algorithms 1, 2, 3, 4 and 5.
Algorithm 1 is a standard single agent genetic algorithm: crossover is performed
only among chromosomes of the same agent and the Lamarckian operator is
not used. Algorithm 2 adds to algorithm 1 the use of the Lamarckian operator,
with a parameter | (percentage of the population to be mutated Lamarckianly)
equal to 0.6. Algorithm 3 is a multi-agent algorithm without the Lamarckian
operator, i.e., crossover is performed between chromosomes of different agents
but the operator Learn is not applied to them. Algorithm 4 extends algorithm 3
by adding the Lamarckian operator, with a parameter [ equal to 0.6. However, it
does not distinguish genes from memes, i.e. crossover is always symmetric. Algo-
rithm 5 differs from algorithm 4 because it treats genes and memes differently,
exchanging only those memes that have been accessed.

These algorithms have been used in order to experimentally prove the fol-
lowing theses:

1. Lamarckism plus Darwinism outperforms Darwinism alone in the single
agent case;

2. the distributed algorithm (with or without the Lamarckian operator) per-
forms better than the non-distributed one, in the same number of genera-
tions, because of parallel exploration;

3. Lamarckism plus Darwinism outperforms Darwinism alone in the multi-
agent case;

4. the distributed algorithm with the distinction between genes and memes
performs better than the one without the distinction.



Circuit |Algorithm|Fitness|Standard Deviation|Correct solution
voter 1 1.295 0.00634 100 %
2 1.312 0.01728 100 %
alu4_flat 1 1.193 0.03939 20 %
2 1.213 0.01765 33 %

Table 1. Experiments on digital circuits debugging

4 Experiments

The algorithms have been tested on a number of belief revision problems in order
to prove the above theses. In particular, we have considered problems of digital
circuit diagnosis, as per [3]. A problem of digital circuit diagnosis can be modelled
as a belief revision problem by describing it with a logic program consisting of
four groups of clauses: one that allows to compute the predicted output of each
component, one that describes the topology of the circuit, one that describes
the observed inputs and outputs, and one that consists of integrity constraints
stating that the predicted value for an output of the system cannot be different
from the observed value. The revisables are literals of the form ab (Name) which,
if true, state that the gate Name is faulty. The representation formalism we use
is the one of [3].

If the digital circuit is faulty, one or more of the constraints will be violated.
By means of belief revision, the values of the revisables are changed in order to
restore consistency.

The system has been tested on some real world problems taken from the
ISCASS85 benchmark circuits [8] that has been used as well for testing the belief
revision system REVISE [3].!

We have considered the voter and alu4_flat circuits: voter has 59 gates
and 4 outputs, corresponding respectively to 59 revisables and 8 constraints,
while alu4_flat has 100 gates and 8 outputs, corresponding respectively to 100
revisables and 16 constraints.

We have first tested algorithms 1 and 2 on the voter and alu4_flat circuits.
The parameters of the genetic algorithms were 30 for the population and 10 for
the number of generations. Both algorithms were run 5 times and the resulting
maximum fitness averaged. In table 1 the Fitness column shows the value of the
fitness function for the best hypothesis after ten generations averaged over the
5 runs together with its standard deviation, while the Correct solution column
shows the percentage of times in which a correct solution was found.

From these results it can be seen that thesis 1 is proved, i.e., that the use
of a Lamarckian operator improves the fitness of the best hypothesis. Moreover,
the algorithm does not heavily depend on the initial population, as shown by
the low values for the standard deviation. Finally, the Lamarckian operator
does not greatly influence the dependency on the initial population, as can be

! These examples can be found at http://www.soi.city.ac.uk/~msch/revise/.



Circuit|Algorithm|Fitness|Standard Deviation|Correct solution
voter 2 1.319 0.00415 100 %

3 1.314 0.00928 100 %

4 1.325 0.03321 100 %

5 1.392 0.06296 100 %

Table 2. Experiments with algorithms 2, 3, 4 and 5

seen from the fact that in one case (voter) the use of the Lamarckian operator
has increased the standard deviation but in the other case (alu4_flat) it has
decreased it.

Algorithms 2, 3, 4 and 5 have been tested on the voter circuit. Each algo-
rithm was run 5 times. The parameters that have been used for the runs are:
10 maximum generations, 40 individuals for algorithm 2 (single agent), 10 indi-
viduals per agent and 4 agents for algorithms 3, 4 and 5. In algorithms 3, 4 and
5 each agent has the same set of observations and program clauses, while the
integrity constraints are distributed among the agents so that each agent knows
only the constraints that are related to one same output.

In table 2 we show, for each algorithm, the value of the fitness function for
the best hypothesis after ten generations averaged over the five runs.

As can be seen, theses 2, 3 and 4 are also confirmed. If we compare the results
of algorithm 1 (table 1) and 3 and those of algorithms 2 and 4 we realize that
the cooperation among agents improves the quality of the results with respect
to the single agent case in the same number of generations (thesis 2). The fitness
increment between algorithms 3 and 4 shows the usefulness of the Lamarckian
operator in the multi-agent case (thesis 3). Finally, the fitness increment between
algorithms 4 and 5 shows the usefulness of the distinction of memes from genes
and of the asymmetrical crossover mechanism among memes (thesis 4). Again,
the low values for the standard deviation in all cases show that the result does
not heavily depend on the initial population.

5 Related Work

Various authors have investigated the integration of Darwinian and Lamarckian
evolution into a genetic algorithm [9-12]. A Lamarckian operator first translates
a genotype into its corresponding phenotype and performs a local search in the
phenotype’s space. The local optimum that is obtained is then translated back
into its corresponding genotype and added to the population for further evo-
lution. [9] has shown that the traditional genetic algorithm performs well for
searching widely separated portions of the search space caused by a scattered
population, while Lamarckism is more proficient for exploring localized areas
of the population that would otherwise be missed by the global search of the
genetic algorithm. Therefore, Lamarckism can play an important role when the
population has converged to areas of local maxima that would not be thoroughly



explored by the standard genetic algorithm. The adoption of a Lamarckian oper-
ator provides a significant speedup in the performance of the genetic algorithm.

Similarly to the approaches in [9-12], we adopt a procedure for Lamarckian
evolution that first translates the chromosome into its phenotype and then mod-
ifies it in order to improve its fitness. In our case too the Lamarckian operator
improves the performance of the genetic algorithm. Differently from [9-12], the
procedure does not perform a local search but finds an improvement by tracing
logical derivations causally supporting the undesired behaviour.

Our work is also related to coevolutive approaches and distributed GAs (see
[13,14,2]. It can be considered a cooperative coevolutionary approach(see [13, 14]
to belief revision since knowledge about the domain problem (and constraints in
particular) are spread among the agents, each of which is ruled by a GA. In this
respect, each species represents a possibly partial solution to the belief revision
problem. While in [13] the complete solutions (to the problem of function opti-
mization, in that paper) are obtained by assembling the representative members
of each of the species present, in our work the solution is obtained by evolution
and exchange between species, and by the application of the crossover operator
to members of two species, the foreigner of which may have already gained in
experience (i.e., it evolved Lamarckianly).

According to the classification given in [2], our approach is a multiple-popula-
tion coarse-grained GA. Multiple-population (or distributed) GAs consist of
several subpopulations which exchange individuals occasionally by migration.
Rather than migration, we consider instead selection of members of different
sub-population to be merged by crossover. This form of virtual migration is syn-
chronous with the application of crossover operator. Furthermore, the topology
we consider is in fully connected, but again the application of crossover chooses
a chromosome from a selected agent.

6 Conclusions and Future Work

We have proposed a novel way of looking at belief revision, which is GA based,
and hence a new application domain for GAs. Since it is still in the initial de-
velopment stages, and it cannot be expected yet to compete with hard-boiled
methods for belief revision. On the other hand, we believe our method to be
important for situations where classical belief revision methods hardly apply:
Those where environments are non-uniform and time changing. These can be
explored by distributed agents that evolve genetically to accomplish coopera-
tive belief revision, using our approach. Notwithstanding, some type of efficient
hybrid implementation approach might emerge, combining hard-boiled belief re-
vision techniques with the newly introduced GA suplement. Our contribution
has been to get the new approach off the ground.
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