
Belief Revision by Lamarckian EvolutionEvelina Lamma1, Lu��s Moniz Pereira2, and Fabrizio Riguzzi11 Dipartimento di Ingegneria, Universit�a di Ferrara,Via Saragat 1, 44100 Ferrara, Italyelamma@ing.unife.it, friguzzi@ing.unife.it2 Centro de Inteligência Arti�cial (CENTRIA), Departamento de Inform�atica,Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2825-114Caparica, Portugallmp@di.fct.unl.ptAbstract. We propose a multi-agent genetic algorithm to accomplishbelief revision. The algorithm implements a new evolutionary strategyresulting from a combination of Darwinian and Lamarckian approaches.Besides encompassing the Darwinian operators of selection, mutationand crossover, it comprises a Lamarckian operator that mutates the genesin a chromosome that code for the believed assumptions. These self mu-tations are performed as a consequence of the chromosome phenotype'sexperience obtained while solving a belief revision problem. They aredirected by a belief revision procedure which relies on tracing the logicalderivations leading to inconsistency of belief, so as to remove the latter'ssupport on the gene coded assumptions, by mutating the genes.1 IntroductionHerein, we propose a genetic algorithm for belief revision that includes, be-sides Darwin's operators of selection, mutation and crossover [1], a logic basedLamarckian operator as well. This operator di�ers from Darwinian ones preciselybecause it modi�es a chromosome coding beliefs so that its �tness is improvedby experience rather than in random way.We venture that the combination of Darwinian and Lamarckian operatorswill be useful not only for standard belief revision problems, but especially forproblems where di�erent chromosomes may be exposed to di�erent constraintsand environmental observations. In these cases, the Lamarckian and Darwinianoperators play di�erent rôles: the Lamarckian one is employed to bring a givenchromosome closer to a solution (or even �nd an exact one) to the current beliefrevision problem, whereas the Darwinian ones exert the rôle of randomly produc-ing alternative belief chromosomes so as to deal with unencountered situations,by means of exchanging genes amongst them.We tested this hypothesis on multi-agent joint belief revision problems. Insuch a distributed setting, agents usually take advantage of each other's knowl-edge and experience by explicitly communicating messages to that e�ect. Asmultiple-population GAs (see [2], for discussion), we allow knowledge and ex-perience to be coded as genes in an agent and consider several sub-populations



which exchange individuals occasionally. In particular, genes are exchanged withthose of other agents, not by explicit message passing but through the crossovergenetic operator. The new o�spring agent chromosomes can be naturally selectedaccording to their gene coded knowledge governing their behaviour.Crucial to this endeavour, we introduce a logic-based technique for modifyingcultural genes, i.e. memes, on the basis of individual agent experience. The tech-nique amounts to a form of belief revision, where a meme codes for an agent'sbelief or assumption about a piece of knowledge, and which is then diverselymodi�ed on the basis of how the present beliefs may be contradicted by obser-vations and laws (expressed as integrity constraints). These self mutations areindeed performed as the outcome of the chromosome phenotype's (i.e., agent's)experience while solving a belief revision problem. They are directed by a be-lief revision procedure, which relies on tracing the logical derivations leadingto inconsistency of belief, so as to remove the latter's support on gene codedassumptions by mutating the memes involved. Each agent possesses a pool ofchromosomes containing such diversely modi�ed memes, or alternative assump-tions, which cross-fertilize Darwinianly amongst themselves. Such an experience-in
uenced genetic evolution mechanism is aptly called Lamarckian.To illustrate how these mechanisms, of individual agent Lamarckian evolu-tion and of Darwinian agent genetics, can jointly lead to improved single agentpopulation behaviour in collaborative problem-solving, we apply them to dis-tributed model-based diagnosis of digital circuits, a natural domain in whichbelief revision techniques apply [3].2 PreliminariesWe consider belief revision of �rst order theories expressed in the language ofextended logic programs [4]. For this language, we adopt the Extended WellFounded Semantics (WFSX ) that extends the well founded semantics (WFS ) [5]for normal logic programs to programs extended with explicit negation, besidesthe implicit or default negation of normal programs.Extended logic programs are liable to be contradictory because of integrityconstraints, either those that are user-de�ned or those of the form ?  L;:Lthat are implicitely assumed. The revisables of a program P are the elements ofa chosen subset Rev(P ), of the set of all literals L having no rules for them inP , and code revisable beliefs.3 A genetic algorithm for multi-agent belief revisionThe algorithm here proposed for belief revision extends the standard geneticalgorithm (described for example in [1]) in two ways:{ crossover is performed among chromosomes belonging to di�erent agents,{ a Lamarckian operator called Learn is added in order to bring a chromosomecloser to a correct revision by changing the value of revisables.



In two-valued belief revision, each individual hypothesis is described by thetruth value of all the revisables. Therefore each hypothesis can be consideredas a set containing one literal, either positive or default, for every revisable. Achromosome is obtained by associating a bit to each revisable that has value 1if the revisable is true and 0 if it is false.The �tness function that has been used takes the following form:Fitness(hi) = nin + fijhij � 0:5where ni is the number of integrity constraints satis�ed by hypothesis hi, n isthe total number of integrity constraints, fi is the number of revisables in hithat are false, and jhij is the total number of revisables. In this way, the �tnessfunction takes into account both the fraction of constraints that are satis�ed andthe number of revisables whose truth value must be changed to true, preferringhypotheses with a lower number of these. Assuming that the initial value of therevisables is false, this means that minimal revisions are encouraged. The factor0.5 was chosen in order to give more importance to the accuracy, rather than tothe number of unchanged revisables.The Lamarckian operator Learn changes the values of the revisables in achromosome C so that a bigger number of constraints is satis�ed, thus bringingC closer to a solution.This is done by modifying the belief revision techniques presented in [6]. Inparticular, in [6] an algorithm for belief revision is presented that is based onthe notions of support sets, hitting sets and removal sets. Intuitively, a supportset of a literal is the set of revisable supporting the derivation of the literal. Thehitting set of a collection C of sets is formed by the union of one non-emptysubset from each S 2 C. A hitting set is minimal i� no proper subset is a hittingset. A removal set of a literal is a hitting set of all the support sets of the literal.Contradiction in [6] is removed by �nding the removal set of ?.Each agent executes the following algorithm:GA(Fitness;max gen; p; r;m; l)Fitness: a function that assigns an evaluation score to a hypothesis codedas a chromosome, max gen: the maximum number of generations beforetermination, p: the number of individuals in the population, r: the fractionof the population to be replaced by Crossover at each step, m: the fraction ofthe population to be mutated, l: the fraction of the population that shouldevolve Lamarckianly.Initialize population: P  generate p hypotheses at randomEvaluate: for each h in P , compute Fitness(h)gen 0While gen � max genCreate a new population Ps:Select: Probabilistically select (1� r)p members of Pto add to Ps. The probability Pr(hi) of selecting



hypothesis hi from P is given byPr(hi) = Fitness(hi)�pj=1Fitness(hj )Crossover:For i=1 to rpProbabilistically select an hypothesis h1 from P ,according to Pr(h1) given aboveObtain an hypothesis h2 from another agentchosen at randomCrossover h1 with h2 obtaining h01Add h01 to PsMutate: Choose m percent of the members of Ps withuniform probability. For each, invert onerandomly selected bit in its representationLearn: Choose lp hypotheses from Ps with uniformprobability and substitute each of them with themodi�ed hypotheses returned by the procedure LearnUpdate: P  PsReturn the hypothesis from P with the highest �tnessThe Lamarckian operator Learn works in the following way: given a chromosomeC, it �nds all the support sets for ? such that they contain literals in C. Thesesupport sets are called Lamarckian support sets (a formal de�nition for them isgiven in [7]). Therefore, it does not �nd all support sets for ? but only thosethat are subsets of C.Since the Lamarckian support sets for ? represent only a subset of all thesupport sets for ?, a hitting set generated from them is not necessarily a con-tradiction removal set and therefore it does not represent a solution to the beliefrevision problem. However, it eliminates some of the derivation paths to ? and,therefore, may increase the number of satis�ed constraints, thus improving the�tness, as required by the notion of Lamarckian operator.In the case of the circuit diagnosis problems in section 4, the support setsprocedure becomes simpli�ed in that the occurrences of default negated literalspertain only to revisables.When computing the support sets, the Lamarckian operator also modi�es anextra bit associated with each meme each time the meme is considered in thecomputation of Lamarckian support sets. This bit indicates whether the memehas been \accessed" by the operator. This is needed for the crossover operatorthat is described below.procedure Learn(C;C 0)inputs : C: a chromosome translated into a set of revisablesoutputs : C 0 the revised chromosomeFind the support sets for ?: Support sets([?]; C; fg; fg; SS)Find a hitting set HS: Hitting set(SS;HS)Change the value of the literals in the chromosome C



that appear as well in HSprocedure Support sets(GL;C; S; SSin; SSout):inputs :GL: list of goals,C: a chromosome translated into a set of revisables,S: the current support set, SSin: the current set of support setsoutputs : SSout: a set containing the support sets for the �rst goal in thelistIf GL is empty, then return SSout = SSinConsider the �rst literal L of the �rst goal G of GL(GL = [GjRGL] using Prolog notation for lists)(1) if G is empty then add the current support set to SSinand call recursively the algorithm on the rest of GLSupport sets(RGL;C; fg; SSin[ fSg; SSout)(2) if G is not empty (G = [LjRG]) then:(2a) if L is a revisable and is in C, then add it to S,set to 1 L's access bitand call the algorithm recursively on the rest of GSupport sets([RGjRGL]; C; S [ fLg; SSin; SSout)(2b) if L is a revisable and it is not in C, or its oppositeis in C, then set to 1 L's access bit, discard Sand call the algorithm recursively on the rest of GLSupport sets(RGL;C; S [ fLg; SSin; SSout)(2c) if it is not a revisable then reduce it with all the rules,obtaining the new goals G1; :::; Gn, one for eachmatching rule, add the goals to GL and callthe algorihtm recursively Support sets([[G1jRG]; :::;[GnjRG]jRGL]; C; S; SSin; SSout)(2d) if it is not a revisable and there are no rules, then returnwithout adding S to SS (SSout = SSin)procedure hitting set(SS;HS):Pick a literal from every support set in SSAdd it to HS if it does not lead to contradiction(i.e., the literal must not be already presentin its complemented form).If it leads to contradiction pick another literal.The crossover operator is an extension of a standard uniform crossover operator.The crossover operator produces a new o�spring from two parent strings bycopying selected bits from each parent. The bit at position i in the o�spring iscopied from the bit at position i in one of the two parents. The choice of whichparent provides the bit for position i is determined by the crossover mask that,in uniform crossover, is generated as a bit string where each bit is chosen atrandom and independently of the others.



In our setting, one of the parents comes from the agent local population,while the other comes from the population of another agent. However, not all thebits in the chromosome are treated equally. In particular, we distinguish genesfrom memes: genes are modi�ed only by Darwinian operators, while memes aremodi�ed by Darwinian and Lamarckian operators. Genes in the o�spring can becopied from both parents, while memes can be copied from the parent comingfrom another agent only if they have been \accessed" by the other agent as aresult of the application of the Lamarckian operator.In this way, an agent can acquire from another agent only memes that havebeen checked for consistency. Therefore, the 
ow of memes is asymmetrical andgoes from a \teacher" to a \learner", but not vice versa. In particular, in theasymmetrical crossover operator the mask is generated again as a random bitstring and crossover is performed in the following way: if the i-th bit in the maskis 1 and the i-th bit in the other agent's chromosome has been accessed, then thei-th bit of the o�spring is copied from the other agent's chromosome, otherwiseit is copied from the local agent's chromosome. Simpli�ed versions of this algo-rithm have also been considered in order to separately test the e�ectiveness ofeach of the features added to the standard genetic algorithm. In particular, �vealgorithms have been considered named in the sequel algorithms 1, 2, 3, 4 and 5.Algorithm 1 is a standard single agent genetic algorithm: crossover is performedonly among chromosomes of the same agent and the Lamarckian operator isnot used. Algorithm 2 adds to algorithm 1 the use of the Lamarckian operator,with a parameter l (percentage of the population to be mutated Lamarckianly)equal to 0.6. Algorithm 3 is a multi-agent algorithm without the Lamarckianoperator, i.e., crossover is performed between chromosomes of di�erent agentsbut the operator Learn is not applied to them. Algorithm 4 extends algorithm 3by adding the Lamarckian operator, with a parameter l equal to 0.6. However, itdoes not distinguish genes from memes, i.e. crossover is always symmetric. Algo-rithm 5 di�ers from algorithm 4 because it treats genes and memes di�erently,exchanging only those memes that have been accessed.These algorithms have been used in order to experimentally prove the fol-lowing theses:1. Lamarckism plus Darwinism outperforms Darwinism alone in the singleagent case;2. the distributed algorithm (with or without the Lamarckian operator) per-forms better than the non-distributed one, in the same number of genera-tions, because of parallel exploration;3. Lamarckism plus Darwinism outperforms Darwinism alone in the multi-agent case;4. the distributed algorithm with the distinction between genes and memesperforms better than the one without the distinction.



Circuit Algorithm Fitness Standard Deviation Correct solutionvoter 1 1.295 0.00634 100 %2 1.312 0.01728 100 %alu4 flat 1 1.193 0.03939 20 %2 1.213 0.01765 33 %Table 1. Experiments on digital circuits debugging4 ExperimentsThe algorithms have been tested on a number of belief revision problems in orderto prove the above theses. In particular, we have considered problems of digitalcircuit diagnosis, as per [3]. A problem of digital circuit diagnosis can be modelledas a belief revision problem by describing it with a logic program consisting offour groups of clauses: one that allows to compute the predicted output of eachcomponent, one that describes the topology of the circuit, one that describesthe observed inputs and outputs, and one that consists of integrity constraintsstating that the predicted value for an output of the system cannot be di�erentfrom the observed value. The revisables are literals of the form ab(Name) which,if true, state that the gate Name is faulty. The representation formalism we useis the one of [3].If the digital circuit is faulty, one or more of the constraints will be violated.By means of belief revision, the values of the revisables are changed in order torestore consistency.The system has been tested on some real world problems taken from theISCAS85 benchmark circuits [8] that has been used as well for testing the beliefrevision system REVISE [3].1We have considered the voter and alu4 flat circuits: voter has 59 gatesand 4 outputs, corresponding respectively to 59 revisables and 8 constraints,while alu4 flat has 100 gates and 8 outputs, corresponding respectively to 100revisables and 16 constraints.We have �rst tested algorithms 1 and 2 on the voter and alu4 flat circuits.The parameters of the genetic algorithms were 30 for the population and 10 forthe number of generations. Both algorithms were run 5 times and the resultingmaximum �tness averaged. In table 1 the Fitness column shows the value of the�tness function for the best hypothesis after ten generations averaged over the5 runs together with its standard deviation, while the Correct solution columnshows the percentage of times in which a correct solution was found.From these results it can be seen that thesis 1 is proved, i.e., that the useof a Lamarckian operator improves the �tness of the best hypothesis. Moreover,the algorithm does not heavily depend on the initial population, as shown bythe low values for the standard deviation. Finally, the Lamarckian operatordoes not greatly in
uence the dependency on the initial population, as can be1 These examples can be found at http://www.soi.city.ac.uk/�msch/revise/.



Circuit Algorithm Fitness Standard Deviation Correct solutionvoter 2 1.319 0.00415 100 %3 1.314 0.00928 100 %4 1.325 0.03321 100 %5 1.392 0.06296 100 %Table 2. Experiments with algorithms 2, 3, 4 and 5seen from the fact that in one case (voter) the use of the Lamarckian operatorhas increased the standard deviation but in the other case (alu4 flat) it hasdecreased it.Algorithms 2, 3, 4 and 5 have been tested on the voter circuit. Each algo-rithm was run 5 times. The parameters that have been used for the runs are:10 maximum generations, 40 individuals for algorithm 2 (single agent), 10 indi-viduals per agent and 4 agents for algorithms 3, 4 and 5. In algorithms 3, 4 and5 each agent has the same set of observations and program clauses, while theintegrity constraints are distributed among the agents so that each agent knowsonly the constraints that are related to one same output.In table 2 we show, for each algorithm, the value of the �tness function forthe best hypothesis after ten generations averaged over the �ve runs.As can be seen, theses 2, 3 and 4 are also con�rmed. If we compare the resultsof algorithm 1 (table 1) and 3 and those of algorithms 2 and 4 we realize thatthe cooperation among agents improves the quality of the results with respectto the single agent case in the same number of generations (thesis 2). The �tnessincrement between algorithms 3 and 4 shows the usefulness of the Lamarckianoperator in the multi-agent case (thesis 3). Finally, the �tness increment betweenalgorithms 4 and 5 shows the usefulness of the distinction of memes from genesand of the asymmetrical crossover mechanism among memes (thesis 4). Again,the low values for the standard deviation in all cases show that the result doesnot heavily depend on the initial population.5 Related WorkVarious authors have investigated the integration of Darwinian and Lamarckianevolution into a genetic algorithm [9{12]. A Lamarckian operator �rst translatesa genotype into its corresponding phenotype and performs a local search in thephenotype's space. The local optimum that is obtained is then translated backinto its corresponding genotype and added to the population for further evo-lution. [9] has shown that the traditional genetic algorithm performs well forsearching widely separated portions of the search space caused by a scatteredpopulation, while Lamarckism is more pro�cient for exploring localized areasof the population that would otherwise be missed by the global search of thegenetic algorithm. Therefore, Lamarckism can play an important rôle when thepopulation has converged to areas of local maxima that would not be thoroughly



explored by the standard genetic algorithm. The adoption of a Lamarckian oper-ator provides a signi�cant speedup in the performance of the genetic algorithm.Similarly to the approaches in [9{12], we adopt a procedure for Lamarckianevolution that �rst translates the chromosome into its phenotype and then mod-i�es it in order to improve its �tness. In our case too the Lamarckian operatorimproves the performance of the genetic algorithm. Di�erently from [9{12], theprocedure does not perform a local search but �nds an improvement by tracinglogical derivations causally supporting the undesired behaviour.Our work is also related to coevolutive approaches and distributed GAs (see[13, 14, 2]. It can be considered a cooperative coevolutionary approach(see [13, 14]to belief revision since knowledge about the domain problem (and constraints inparticular) are spread among the agents, each of which is ruled by a GA. In thisrespect, each species represents a possibly partial solution to the belief revisionproblem. While in [13] the complete solutions (to the problem of function opti-mization, in that paper) are obtained by assembling the representative membersof each of the species present, in our work the solution is obtained by evolutionand exchange between species, and by the application of the crossover operatorto members of two species, the foreigner of which may have already gained inexperience (i.e., it evolved Lamarckianly).According to the classi�cation given in [2], our approach is a multiple-popula-tion coarse-grained GA. Multiple-population (or distributed) GAs consist ofseveral subpopulations which exchange individuals occasionally by migration.Rather than migration, we consider instead selection of members of di�erentsub-population to be merged by crossover. This form of virtual migration is syn-chronous with the application of crossover operator. Furthermore, the topologywe consider is in fully connected, but again the application of crossover choosesa chromosome from a selected agent.6 Conclusions and Future WorkWe have proposed a novel way of looking at belief revision, which is GA based,and hence a new application domain for GAs. Since it is still in the initial de-velopment stages, and it cannot be expected yet to compete with hard-boiledmethods for belief revision. On the other hand, we believe our method to beimportant for situations where classical belief revision methods hardly apply:Those where environments are non-uniform and time changing. These can beexplored by distributed agents that evolve genetically to accomplish coopera-tive belief revision, using our approach. Notwithstanding, some type of e�cienthybrid implementation approach might emerge, combining hard-boiled belief re-vision techniques with the newly introduced GA suplement. Our contributionhas been to get the new approach o� the ground.References1. T. M. Mitchell. Machine Learning. McGraw Hill, 1997.
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