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Abstract

We discuss the adoption of a three-valued setting for
inductive concept learning. Distinguishing between
what is true, what is false and what is unknown can be
useful in situations where decisions have to be taken
on the basis of scarce information. In a three-valued
setting, we want to learn a definition for both the tar-
get concept and its opposite, considering positive and
negative examples as instances of two disjoint classes.
To this purpose, we adopt extended logic programs
under a well-founded semantics as the representation
formalism for learning. In this way, we are able to
represent both the concept and its opposite and deal
with incomplete or unknown information.

We discuss various approaches to be adopted in order
to handle possible inconsistencies. Default negation is
used to ensure consistency and to handle exceptions
to general rules. Exceptions to a positive concept are
identified from negative examples, whereas exceptions
to a negative concept are identified from positive ex-
amples. Exceptions can be generalized, in their turn,
by learning within a hierarchy of defaults.

Introduction

Most work on inductive concept learning considers a
two-valued setting. In such a setting, what is not en-
tailed by the learned theory is considered as false, by
using the Closed World Assumption (CWA) (Reiter
1978). However, in practice, it is more often the case
that we know with certainty the truth or falsity of a
limited number of facts and we are not able to draw any
conclusion on the remaining facts, because the infor-
mation available is too scarce. As it has been pointed
out in (De Raedt & Bruynooghe 1990), this is typi-
cally the case of an autonomous agent that incremen-
tally gathers information from its surrounding world.
The agent has to choose its actions on the basis of the
knowledge it possesses and knowing that an action cer-
tainly leads to a failure is different from not knowing
anything about its outcome. It will never try an action
when it is sure of its negative effect, but it may try an
action with an unknown outcome in situations where
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no other action can be taken or in order to expand its
knowledge.

Therefore, for such an agent, it would be much better
to be able to distinguish between what is certainly true,
what is certainly false and what is unknown. To this
purpose, the agent should adopt a three-valued set-
ting and learn a definition for both the concept and its
complement, using positive examples for the concept
as negative examples for its complement and vicev-
ersa. The learned theory will then classify instances
in three ways: instances covered by the positive defi-
nition are positive, instances covered by the negative
definition are negative and instances not covered by
any definition are unknown.

In order to represent three-valued theories of this
kind, we adopt Extended Logic Programs (ELP for
short) under the well-founded semantics with explicit
negation WFSX (Pereira & Alferes 1992). In (Pereira,
Aparicio, & Alferes 1993; Alferes & Pereira 1996) it
is shown how ELP can be applied to domains where
negative information is made symmetric to positive
one, e.g., concept hierarchies, reasoning about actions,
counterfactuals, diagnosis, and debugging.

In this work, we consider an extension of Induc-
tive Logic Programming (ILP for short) in order to
learn ELP under WFSX. As in (Inoue & Kudoh 1997;
De Raedt & Bruynooghe 1990), we learn a definition
for both a positive concept p and its (explicit) negation
—p. Coverage of examples is tested by adopting the
SLX interpreter for ELP, defined in (Alferes, Damasio,
& Pereira 1994; Alferes & Pereira 1996).

When learning both positive and negative concepts,
we may have interaction between the two: their defini-
tions may have a non-empty intersection. We must dis-
tinguish two types of atoms in the intersection. Unseen
atoms, i.e., atoms of target predicates not present in
the training set, should be assigned an unknown value,
while atoms in the training set should be assigned the
truth value of the training set to which they belong and
be considered as exceptions for the opposite definition.



Therefore, exceptions to a positive concept are identi-
fied from negative examples, whereas exceptions to a
negative concept are identified from positive examples.

Explicit negation is used to represent the opposite
concept while default negation is used to ensure con-
sistency and to handle exceptions to general rules. Ex-
ceptions can be generalized, in their turn, by learning
within a hierarchy of defaults.

Major innovations of the work concern both the ap-
plication of ILP to the case of ELP, by integrating stan-
dard ILP algorithms with a top-down interpreter for
ELP under a well-founded semantics and the discus-
sion of various approaches to be adopted in order to
deal with consistency and exceptions.

The paper is organized as follows. We first intro-
duce the new ILP framework. Then we discuss how
to avoid inconsistencies on unseen atoms through the
use of non-deterministic rules and to deal with excep-
tions through negation as default. A description of the
learning algorithm follows together with an example of
its behaviour. Finally we discuss related works and we
conclude.

Learning in a Three-valued Setting

In real world problems, complete information about
the world is impossible to achieve and it is necessary
to reason and act on the basis of the available partial
information. In situations of incomplete knowledge, it
is important to distinguish between what is true, what
is false and what is unknown.

Such situation is, for example, the one of an agent
that incrementally gathers information from the sur-
rounding world and has to select its own actions on
the basis of such knowledge. If the agent learns in
a two-valued settings, it can encounter the problems
that have been highlighted in (De Raedt & Bruynooghe
1990). When learning in a specific to general way, it
will learn a cautious definition for the target concept
and it will not be able to distinguish what is false from
what is not yet known (see figure la). Suppose the
target predicate represents the allowed actions, then
the agent will not distinguish forbidden actions from
actions with an unknown outcome and this can clearly
be a limitation. If the agent learns in a general to
specific way, instead, it will not know the difference
between what is true and what is unknown (figure 1b)
and therefore it can try actions with an unknown out-
come. Insted, by learning in a three-valued settings, it
will be able to distinguish between allowed actions, for-
bidden actions and actions with an unknown outcome
(figure 1c). In this way, the agent will know which
part of the domain needs to be further explored and
will not try actions with an unknown outcome unless
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Figure 1: (a,b): two-valued settings, (c): three-valued
setting (taken from (De Raedt & Bruynooghe 1990))

it is trying to expand its knowledge.

Learning in a three-valued settings requires the
adoption of a more expressible class of programs to
be learned. This class can be represented by means
of Extended Logic Programs, under a stable semantics
(Gelfond & Lifschitz 1991), or under a well-founded
one (Pereira & Alferes 1992). In the following, we will
adopt the well-founded semantics with explicit nega-
tion WFSX (Pereira & Alferes 1992). We will denote
negation by default by not and explicit negation by —.
—A is said the opposite literal of A (and viceversa) and
not A the complementary literal of A (and viceversa).

Starting from a set of positive and negative examples
for a target predicate p and a background knowledge
which is itself an extended logic program under WFSX,
we apply standard ILP techniques in order to learn a
definition for both the positive concept p and its oppo-
site =p. The ILP learning problem for the case of ELP
has been first introduced in (Inoue & Kudoh 1997):

Given:

e a set P of possible (extended logic) programs
e a set ET of positive examples

e aset £~ of negative examples

e a consistent extended logic program B (background
knowledge)

Find:
e an extended logic program P € P such that

— BUP E ET,=E~ (completeness)
— BUP £ E~,=E" (consistency)

where —E = {-ele € E}, and E*,~E~ (resp.
E~,-ET™) stands for the conjunction of each atom
in ET and —~E~ (resp. in E~ and —E™).

Note that, in the ILP problem, it is required that
the program is consistent only with respect to the
examples. We enlarge this condition requiring that
the program is consistent also for unseen atoms, i.e.,
BUP £ L,—L for every atom L of the target concept.



Since the SLX procedure is correct (in the sense
specified in (Alferes & Pereira 1996)), coverage of ex-
amples is tested by adopting the SLX top-down inter-
preter for extended logic programs, defined in (Alferes,
Damdsio, & Pereira 1994; Alferes & Pereira 1996). It is
important to note that neither answer-sets, nor three-
valued strong negation, enjoy relevance (Alferes &
Pereira 1996; Alferes, Przymusinski, & Pereira 1998),
i.e., they cannot have top-down querying procedures,
and that is why we use SLX, for WFSX is relevant.
We say that an example e is covered by program P if
P - e according to the SLX procedure.

Therefore the conditions that a program P must sat-
isfy in order to be a solution to the ILP problem can
be expressed as “P must cover all the positive exam-
ples and all explicit negations of the negative ones”
and “P must not cover both a literal and its explicit
negation”. A theory that satisfies the first condition
is said to be complete, while a theory that satisfies the
second is said to be consistent.

The set P is called the hypothesis space. The im-
portance of this set lies in the fact that it defines the
search space of the ILP system. In order to be able
to effectively learn a program, this space must be re-
stricted as much as possible. If the space is too big,
the search could result infeasible.

There are two broad categories of ILP learning meth-
ods: bottom-up methods, that search the space of
clauses specific to general, and top-down methods, that
search the space of clauses general to specific. In
bottom-up methods, clauses are generated by starting
with a specific clause that covers one or more positive
examples and no negative example, and by iteratively
generalizing it as much as possible without covering
any negative example. In top-down methods clauses
are constructed by starting with a general clause that
covers all positive and negative examples and by spe-
cializing it until it does no longer cover any negative
example while still covering at least one positive.

Relative Least General Generalization (RLGG)
(Plotkin 1970), Inverse Resolution (Muggleton & Bun-
tine 1992) and Inverse Entailment (Lapointe & Matwin
1992) are examples of bottom-up techniques. GOLEM
(Muggleton & Feng 1990) is a system that learns the-
ories bottom-up by using RLGG. GOLEM generates a
single clause by randomly picking couples of examples,
by computing their RLGG and by choosing the one
with the greatest coverage of positive examples. This
clause is further generalized by randomly choosing new
positive examples and by computing the RLGG of the
clause and each of the example. The generalization
that covers more examples is chosen and is further
generalized until the coverage of the clause stops in-

creasing. Covered examples are removed from E* and
the procedure is iterated until no uncovered positive
example remains.

Top-down systems, instead, share a basic algorithm
that is given as follows (adapted from (Lavrat &
Dzeroski 1994)):

algorithm LearnTopDown(
inputs : Et, E~ : training sets,
B : background theory,
outputs : H : learned theory)
Initialize H := ()
repeat (Covering loop)
GenerateClause(E™, E~, B;c)
Remove from E7T the et covered by ¢
Add cto H
until ET = 0 (Sufficiency stopping criterion)

procedure GenerateClause(
inputs : Et, E~ : training sets,
B : background theory,
outputs : ¢: clause)
Select a predicate p that must be learned
Initialize ¢ to be p(X) + .
repeat (Specialization loop)
Generate all the possible refinements of ¢
by adding a literal L to ¢
Find the refinement cp. s that is best
according to some heuristic function
Assign ¢ := cpest
until ¢ does not cover any negative example
return c (Necessity stopping criterion)

FOIL (Quinlan 1990) and Progol (Muggleton 1995) are
examples of top-down systems.

Our approach to learning ELP consists in applying
ordinary ILP techniques to learn definitions of the pos-
itive and negative concept. The ILP technique to be
used depends on the level of generality that we want
to have for the two definitions: we can look for the
Least General Solution (LGS for short) or the Most
General Solution (MGS for short). LGSs can be found
by adopting a bottom-up method while MGSs can be
found by adopting a top-down system.

The generality of the solutions should be chosen in-
dependently for the two definitions, thus leading to
four epistemological cases depending on the combina-
tion of solution generality for the positive and negative
concept. The choice of the level of generality should
be made on the basis of available knowledge on the
domain. Two of the criteria that should be taken into
account are the damage that can derive from an erro-
neous classification of an unseen object and the confi-
dence we have in the training set.

When classifying an unseen object as belonging to



a concept, we may later discover that the object be-
longs to the opposite concept. The more we generalize
a concept, the higher number of unseen atoms is cov-
ered by the definition and the higher is the risk of an
erroneous classification. Depending on the of damage
that may derive from such a mistake, we may decide to
take a cautious or a confident approach. If the possi-
ble damage for a concept is high, then we should learn
the LGS for that concept, if the possible damage is low
then we can generalize the most and learn the MGS.
The risk will depend on the use of the learned concepts
within other rules, and so distinct generalities may be
employed within the same program.

As regards the confidence in the training set, we can
learn the MGS for a concept if we are confident that
examples for the opposite concept are correct and rep-
resentative of the concept. In fact, in top-down meth-
ods, negative examples are used in order to limit the
generality of the solution. Otherwise, if we think that
examples for the opposite concept are not reliable, then
we should learn the LGS.

In order to illustrate the difference between the var-
ious generalizations, consider the following example.

Example 1 The domain contains two entities a,b and
the target concept is flies.
bird(a).
cat(b).

animal(a).
animal (b).

The training set is:

Et ={flies(a)}

E— = {flies(b)}

Below are reported the most general and least general

definitions, for both the positive and megative concept,
that constitute a solution to the learning problem:

fliesh;cs(X) <« bird(X).
fliesfos(X) <+ bird(X),animal(X).
fliesyag(X) < cat(X).
flies qs(X) < cat(X),animal(X).

Intersection of Positive and Negative
Definitions

The definitions of the positive and negative concepts
may overlap. In this case, we have a contradictory clas-
sification for the atoms in the intersection. We propose
a representation of the target theory that resolves the
conflict by distinguishing two types of atoms in the in-
tersection: those that belong to the training set and
those that don’t, also called unseen atoms (see figure
2).

Exceptions to the
positive definition:
negative atoms

Exceptions to the
negative definition:
positive atoms

Unseen atoms

Figure 2: Interaction of the positive and negative def-
initions on exceptions.

For unseen atoms, the conflict should be resolved
by classifying the atoms as unknown, since the argu-
ments for both classifications are equally strong. In-
stead, for atoms in the training set, the conflict should
be resolved by assuming the classification given by the
training set, supposing this information is reliable, i.e.,
in the hypothesis of absence of noise. In other words,
atoms in the training set that are covered by the op-
posite definition should be considered as exceptions of
that definition.

For unseen atoms in the intersection, the unknown
classification is obtained by making the rules non de-
terministic (Pereira, Aparicio, & Alferes 1991; Baral
& Gelfond 1994; Alferes & Pereira 1996). The target
theory is thus expressed in the following way:

p(X) + pH(X),not ~p(X)
—-p(X) « p (X),not p(X)

where p*(f ) and p~ (X ) are, respectively, the defini-
tions learned for the positive and the negative concept.
For each atom in the intersection, there are two partial
stable models, one containing the atom in its positive
version, the other containing the opposite literal. The
atom is unknown, according to the well-founded se-
mantics for explicit negation (Pereira & Alferes 1992),
i.e., in the least partial stable model.

Note that the program B U P can be non-stratified,
either because the original background is already non-
stratified or because the learned program is non-
stratified. In this case, three-valued semantics can pro-
duce literals with the value “unknown” and one or both
of p* and p~ may be unknown. If one is unknown and
the other is true, then the rules above make both p
and —p undefined, since the negation by default of an
undefined atom is undefined. However, this is counter-
intuitive: the defined value should prevail.

In order to handle this case, we suppose that a sys-
tem predicate unde fined(X) is available that succeeds
if and only if the atom X is undefined. So we add the



following two rules to the definitions for p and —p:

—

p(X) « ph(X),undefined(-p(X))

“p(X) < p(X),undefined(p(X))
According to these clauses, p is true when p* is true
and —p is undefined.

Let us consider now the case in which some atoms
in the intersection belong to the opposite training set.
We want to classify these atoms according to the clas-
sification given by the training set. To this purpose,
we add a non-abnormality literal (using negation as
default) of the kind not abp(f) (not abﬁp(f)) to the
rule for p (—p), expressing the default condition. Then,
for every exception p(f), an individual fact of the form
ab,(t) (ab-,(t)) is asserted (and possibly generalized)
so that the rule for p (—p) will not cover the exception.
In this way, exceptions will be present in the model of
the theory with the correct definition. The rules thus
take the following form:

p()?) — p*(f),not abp (X ) not ﬁp(f)
-p(X) « p (X),not ab_p(X X),not p(X)
p(X) « p*(X),undefined(-p(X))
-p(X) <+ p (X),undefined(p(X))

Abnormality literals have not been added to the rules
for the undefined case because an atom that is an ex-
ception is also an example and it must be covered by
the respective definition, therefore it can not be unde-
fined.

In this way, we are able to deal both with the case in
which the two definitions are inconsistent and with the
case in which exceptions to rules exist, as it is shown
in the next example.

Example 2 Consider a domain containing entities
a,b,c,d, e, f and suppose the target concept is fly. Let
the background knowledge be:

bird(a). has_wings(a)
jet(b). has_wings(b)
angel(c) has_wings(c). has_limbs(c).
penguin(d) has_wings(d) has_limbs(d).
dog(e). has_limbs(e).
cat(f). has_limbs(f)

and let the training set be:
Et ={flies(a)}

E~ = {flies(d), flies(e)}
The learned theory is:

flies(X) <+  fliesT(X),not abgiies(X),

not —flies(X).

flies” E’ E flies™

Figure 3: Coverage of definitions for the positive and
negative concept

flies™(X),not flies(X).
flies™(X),undefined(—flies(X)).
flies™ (X),unde fined(flies(X)).

—flies(X) <+

flies(X) «
—flies(X) <«
abiies+(d)

where

flies™(X)
flies™(X)

+— has-wings(X).
—  haslimbs(X).

Moreover, the abnormality fact absiies(d) can be gen-
eralized obtaining
absiies(X) < penguin(X).

This example (represented in figure 3) shows all the
various cases for an atom when learning in a three-
valued setting. a and e are examples that are consis-
tently covered by the definitions. b and f are unseen
atoms on which there is no contradiction. c and d are
atoms where there is contradiction, but c is classified
as unknown whereas d is considered as an exception to
the positive definition and is classified as negative.
The probability and type of interaction depend on
the level of generality of the definitions learned for p™
and p~. The higher is the generality, the higher is the
probability of interaction between the two.

Algorithm

The algorithm that follows learns ELP of the form de-
scribed in the previous section:

algorithm LearnELP(

inputs : Et, E~ : training sets,
B : background theory,
outputs : H : learned theory)

LearnHierarchy(E™, E~, B; H,)

LearnHierarchy(E~, E*, B; H_;)

Obtain H by transforming H, and H-, into
non-deterministic rules and by adding
the clauses for the undefined case

output H

procedure LearnHierarchy(
inputs : Et : positive examples,



E~ : negative examples,
B : background theory,
outputs : H : learned theory)
Learn(E', E~, B; Hp)
H:=H,
for each rule r in H,, do
Find the sets E, E,~ of positive and negative
examples covered by r
if £ is not empty then
Add the literal not_ab, (X) to r
Obtain Ef, and E;, from E, and E; by
transforming each atom p(#) into ab(f)

LearnHiera,rchy(E:bT, E,, ,B;H,)
H:=HUH,
endif
enfor
output H

The algorithm uses a procedure LearnHierarchy that,
given a set of positive, a set of negative examples and a
background knowledge, returns a definition for the pos-
itive concept, consisting of default rules, together with
definitions for the abnormality literals. The procedure
LearnHierarchy is called twice, once for the positive
concept and once for the negative concept. In the call
for the negative concept, E~ is used as the positive
training set and ET as the negative one.

LearnHierarchy first calls a procedure
Learn(E', E~, B; H,,) that learns a definition H,, for
the target concept p. Learn consists of an ordinary ILP
algorithm, either bottom-up or top-down, modified to
adopt the SLX interpreter for testing the coverage of
examples and to relax the consistency requirement of
the solution. The algorithm thus returns a theory that
may cover some negative examples. These negative
examples are then treated as exceptions, by adding a
default literal to the inconsistent rules and learning a
definition for the abnormality predicate. In particu-

— —

lar, for each rule r = p(X) < Body(X) in H,, a new
non-abnormality literal not_ab,(X) is added to r and
a definition for ab,(X) is learned by recursively calling
LearnHierarchy. Examples for ab, are obtained from
examples for p by observing that, in order to cover a
positive (uncover a negative) example p(t) for p, the
atom ab,(f) must be false (true). Therefore, positive
(negative) examples for ab, are obtained from the set
E; of negative (E;" of positive) examples covered by
the rule.

When learning a definition for ab,, in turn, Learn-
Hierarchy may find exceptions to exceptions and call
itself recursively again. In this way we are able to learn
a hierarchy of exceptions.

Let us now discuss in more detail the algorithm that
implements the Learn procedure. We need an algo-
rithm that, if a consistent solution can not be found,
returns a theory that covers the least number of nega-
tive examples.

Two approaches are possible. The first consists in
learning the least general clause from positive exam-
ples only: since the clause is not tested on negative ex-
amples, it may cover some of them. This approach can
be realized by adopting a bottom-up technique such as
RLGG, for example by using the system GOLEM that
implements it, as in (Inoue & Kudoh 1997).

The second approach consists in learning from posi-
tive and negative examples adopting a top-down learn-
ing algorithm where consistency of clauses (necessity
stopping criterion in the top-down algorithm) is re-
placed by a weaker requirement. The simplest criterion
that can be adopted is to stop specializing the clause
when no literal can be added that reduces the coverage
of negative examples.

Other criteria can be used that are based on heuris-
tic functions. For example, the algorithm could stop
adding literals when the accuracy rises above a cer-
tain threshold, where accuracy is defined as the ra-
tio of covered positive examples over the total number
of examples covered by the clause. In ILP, various
heuristic necessity stopping criteria that relax the con-
sistency requirement have been designed in order to
handle noise. In presence of noise, erroneous infor-
mation about negative examples may have the effect
of causing an overspecialization of clauses in order to
make them consistent. Instead, by relaxing the con-
sistency requirement, sufficiently general rules may be
learned that cover a limited number of negative exam-
ples. These heuristic stopping criteria can be useful as
well to learn definitions of concepts with exceptions:
when a clause should be specialized too much in order
to make it consistent, we prefer to transform it into a
default rule and consider the covered negative exam-
ples as exceptions.

For example, FOIL (Quinlan 1990) uses a stopping
criterion that is based on the encoding length restric-
tion (Quinlan 1990) which restrict the total length of
an induced clause to the number of bits needed to ex-
plicitly enumerate the training examples it covers. The
construction of a clause is stopped when adding any lit-
eral would cause the length of the clause to exceed the
number of bits required to encode the set of examples.

In order to show the behaviour of the algorithm
when learning exceptions and to compare it with those
of LELP, we will consider the learning problem that
is described in example 3.4 in (Inoue & Kudoh 1997)
where the definition of the concept flies is learned.



Example 3 Consider the following background knowl-
edge and training sets:

penguin(l). penguin(2).
bird(3). bird(4). bird(5).
bird(X) < pen(X).
animal(6). animal(7) animal (8).
animal(9). animal(10). animal(11).
animal(12).
animal(X) < bird(X).

Et ={flies(3), flies(4), flies(5)}

E~ = {flies(1), flies(2), flies(6), flies(7), flies(8)
flies(9), flies(10), flies(11), flies(12)}

We consider the case in which a top-down method is
adopted for the procedure Learn. The stopping crite-
rion used is the simplest, i.e., we stop when no literal
can be added to reduce the number of covered negative
examples.

The algorithm first learns the positive concept. The
first call of the Learn procedure produces the rule

(1) flies(X) « bird(X)
that is inconsistent since it covers the negative exam-
ples E; = {flies(1), flies(2)}. Therefore, the rule is
specialized by adding a default literal

(2) flies(X) « bird(X),not abz(X)
and LearnHierarchy is called recursively with training
sets

Et ={abs(1),ab2(2)}

E~ = {abs(3),ab2(4),ab2(5)}
The new call of Learn now returns the rule

(8) ab2(X) « penguin(X)
Since the clause is consistent, both recursive calls of
LearnHierarchy return and the algorithm starts learn-
ing the negative concept. It first generates the rule

(4) —flies(X) < animal(X)
that covers as well the negative examples E, =
{flies(3), flies(4), flies(5)}. The rule is then trans-
formed into the default rule

(5) —flies(X) < animal(X), not abs(X)
and LearnHierarchy is called with training sets

Et = {abs(3),abs(4),abs(5)}

E = {ab5(1), ab5(2), abs (6), ab5(7), ab5(8),

ab5(9), ab5(10), ab5(11), ab5(12)}

Now the following rule is learned

(6) abs(X) « bird(X)
The rule covers the mnegative examples E; =
{abs(1),abs(2)} and is thus transformed into

(7) abs(X) « bird(X),not abr(X)
Finally, LearnHierarchy is called for learning a defini-
tion for aby with the following training sets

B+ = {abs(1), abs (2)}

E™ = {ab7(3), aby (4)7 ab7(5)7 }

From this training set, the consistent rule

(8) ab7(X) + pen(X)
1s generated. The algorithm now terminates by making
the clauses for flies and - flies non-deterministic and
by adding the clauses for the undefined case.

Related Work

The problems raised by negation and uncertainty
in concept-learning, and Inductive Logic Program-
ming in particular, were pointed out in some previ-
ous work (e.g., (Bain & Muggleton 1992; De Raedt &
Bruynooghe 1990)). For concept learning, the use of
the CWA for target predicates is no longer acceptable
because it does not allow to distinguish between what
is false and what is undefined. To avoid this problem,
De Raedt and Bruynooghe (De Raedt & Bruynooghe
1990) proposed to use a three valued logic and an
explicit definition of the negated concept in concept
learning. This technique has been integrated within
the CLINT system, an interactive concept-learner. In
the resulting system, both a positive and a negative
definition are learned for a concept (predicate) p, stat-
ing, respectively, the conditions under which p is true
and false. Furthermore, it is required that the concept
descriptions be consistent.

The system LELP (Learning ELP) (Inoue & Kudoh
1997) learns ELP under answer-set semantics. As our
algorithm, LELP is able to learn non-deterministic de-
fault rules with a hierarchy of exceptions. From the
point of view of the learning problems that the two al-
gorithms can solve, they are equivalent when the back-
ground is a definite logic program: all the examples
shown in (Inoue & Kudoh 1997) can be learned by our
algorithm and, viceversa, example 2 can be learned by
LELP.

When the background is an ELP, instead, the adop-
tion of a well-founded semantics gives a number of ad-
vantages with respect to the answer-set semantics. For
non-stratified background theories, answer-sets seman-
tics does not enjoy the structural property of relevance
(Dix 1995a; 1995b), like our WFSX does, and so they
cannot employ top-down proof procedures. For the
well-founded semantics, instead, the top-down SLX in-
terpreter is available, that can be used for testing the
coverage of examples in the learning algorithm. More-
over, by means of WFSX, we have introduced a method
to choose one concept when the other is undefined
which they cannot replicate because in the answer-set
semantics one has to compute eventually all answer-
sets to find out if an atom is unknown. Last but not
least, answer-sets semantics is not cumulative, which
implies that you cannot assert what you learn without
the risk of changing the semantics of what you learned.

The structure of the two algorithms is similar: LELP



first generates candidate rules from a concept using an
ordinary ILP framework. Then exceptions are iden-
tified (as covered examples of the opposite set) and
rules specialized through negation as default and ab-
normality atoms, which are then assumed to prevent
the coverage of exceptions. These assumptions can be,
in their turn, generalized to generate hierarchical de-
fault rules.

A difference between us and Inoue & Kudoh is
in the level of generality of the definitions they can
learn. LELP generate clauses from positive examples
only therefore it can only employ a bottom-up ILP
technique and learn the LGS. Instead, we can choose
whether to adopt a bottom-up or a top-down algorithm
and we can learn theories of different generality for dif-
ferent target concepts.

Another difference consists in the fact that LELP
learns a definition only for the concept that has the
highest number of examples in the training set. It
learns both positive and negative concepts only when
the number of positive examples is close to that of neg-
ative ones, while we always learn both concepts.

LELP also differs from our approach because it adds
to the theory a clause for the negative concept given
in terms of the abnormality literals for the positive
concept. For example, in the case of example 2, LELP
would produce the following theory:

(9) flies(X) < haswings(X),not aby (X).

(10) ab1(X) « penguin(X).

(11) —flies(X) < haslimbs(X).

(12) —flies(X) < aby (X).

We do not generate clause (12) since, when learning a
definition for both flies and —flies, the examples it
covers are already covered by clause (11) and therefore
such a clause is redundant.

Several other authors have also addressed the task
of learning rules with exceptions (Dimopoulos & Kakas
1995; De Raedt & Bruynooghe 1990). In these frame-
works, nonmonotonicity and exceptions are dealt with
by learning logic programs with negation. In (Di-
mopoulos & Kakas 1995) the authors rely on a lan-
guage which uses a limited form of “classical” (or, bet-
ter, syntactic) negation together with a priority rela-
tion among the sentences of the program (Kakas, Man-
carella, & Dung 1994) which can be easily mapped into
negation as default.

It is worth mentioning that the treatment of excep-
tions by means of the addition of a non-abnormality
literal to each rule (as we and (Inoue & Kudoh 1997)
do) is similar to the approach for declarative debugging
followed in (Pereira, Damésio, & Alferes 1993). In or-
der to debug a logic program, in (Pereira, Damésio, &
Alferes 1993) the authors first transform it by adding a

different default literal to each rule. These literals are
then used as assumptions of the correctness of the rule,
to be possibly revised in the face of a wrong solution.
The debugging algorithm determines the assumptions
that led to the wrong solution, thus identifying the in-
correct rules.

Non-abnormality literals can also be viewed as new
abducible predicates, as done for instance in (Espos-
ito et al. 1996; 1998; Inoue 1998). In particular, in
(Esposito et al. 1996; 1998) the authors have consid-
ered the integration and cooperation of induction and
abduction in order to learn Abductive Logic Programs
(ALP) from (possibly) incomplete background knowl-
edge expressed as ALP in its turn. In order to make a
rule for a target predicate p consistent, the rule is spe-
cialized by adding a new abducible literal not_ab;(X).
Exceptions are ruled out by abducing ab;(f) for them.
These assumptions are then used to learn a definition
for ab; that describes the class of exceptions. In this
way, they are able to learn hierarchies of exceptions.

Conclusions

We have shown that Extended Logic Programs are an
appropriate representation formalism for learning in a
three-valued setting. In this case, one has to learn a
definition for both the target and the opposite con-
cept, by considering positive and negative examples as
instances of two disjoint classes.

With ELP we are able to represent opposite concepts
and to deal with their interaction. Inconsistencies are
dealt with differently according to the type of atom
causing them. Unseen atoms are classified as unknown
through the adoption of non-deterministic rules, while
exceptions are dealt with by non-abnormality defaults.

We have presented an algorithm that learns ELP of
the form above and to learn hierarchies of exceptions.
The algorithm incorporates a standard ILP algorithm
suitably extended to adopt the SLX interpreter for
ELP and to relax the consistency requirement. De-
pending on the type of ILP algorithm, either bottom-
up or top-down, we can learn the most general solution
or the least general solution for the concept and its op-
posite. The generality of solutions should be chosen
independently for the two concepts on the basis of the
damage that can derive from an erroneous classifica-
tion and of the confidence in the training set.
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