
Improving the SLA algorithm using association rules

Evelina Lamma1, Fabrizio Riguzzi1, Andrea Stambazzi1, Sergio Storari1,2

1University of Ferrara, Department of Engineering, via Saragat 1, 44100 Ferrara, Italy
2University of Bologna, DEIS, viale Risorgimento 2, 40136 Bologna, Italy

{elamma, friguzzi, astambazzi, sstorari}@ing.unife.it

Abstract. A bayesian network is an appropriate tool for working with
uncertainty and probability, that are typical of real-life applications. In literature
we find different approaches for bayesian network learning. Some of them are
based on search and score methodology and the others follow an information
theory based approach. One of the most known algorithm for learning bayesian
network is the SLA algorithm. This algorithm constructs a bayesian network by
analyzing conditional independence relationships among nodes. The SLA
algorithm has three phases: drafting, thickening and thinning. In this work, we
propose an alternative method for performing the drafting phase. This new
methodology uses data mining techniques, and in particular the computation of
a number of parameters usually defined in relation to association rules, in order
to learn an initial structure of a bayesian network. In this paper, we present the
BNL-rules algorithm (Bayesian Network Learner with association rules) that
exploits a number of association rules parameters to infer the structure of a
bayesian network. We will also present the comparisons between SLA and
BNL-rules algorithms on learning four bayesian networks.

1 Introduction

A bayesian network is an appropriate tool for working with uncertainty and
probability, that are typical of real-life applications. A bayesian network is a directed,
acyclic graph (DAG) whose nodes represent random variables. In bayesian networks
each node, V, is conditionally independent of any subset of the nodes that are not its
descendants given its parents. Bayesian networks are sometimes called causal
networks because the arcs connecting the nodes can be thought of as representing
direct causal relationships. Building bayesian networks on the basis of the intuitive
(human) notion of causality usually results in networks that respect the conditional
independence assumptions. According to [12] “… to construct a bayesian network for
a given set of variables, we draw arcs from cause variables to immediate effects. In
almost all cases, doing so results in a Bayesian network whose conditional-
independence implications are accurate”.

By means of bayesian networks, we can use information about the values of some
variables to obtain probabilities for the values of others. A probabilistic inference
takes place, once the probabilities functions of each node conditioned to just its
parents are given. These are usually represented in a tabled form, named conditional
probability tables (CPTs).

Learning techniques have been extensively applied (see, for instance [12]) in
Bayesian networks. Given a training set of examples, learning such a network is the
problem of finding the structure of the direct acyclic graph and the CPTs associated
with each node in the DAG that best matches (according to some scoring metric) this
dataset. Various scoring metrics have been proposed (e.g., description length or
posterior probability [2,17,20,10,12,13,14,25]). Learning algorithms perform a search
among possible network structures, however the search space is so vast, that any kind
of exhaustive search can not be considered, and often a greedy approach is followed.

One of the most known algorithm for learning bayesian network is the SLA
algorithm presented in [8]. This algorithm constructs a bayesian network by analyzing
conditional independence relationships among nodes. It computes the mutual
information of each pair of nodes as a measure of dependency, and creates the
network using this information. The SLA algorithm has three phases: drafting,
thickening and thinning. The first phase of this algorithm is essentially Chow and
Liu’s tree construction algorithm [9]; the second and the third phase are designed to
extend tree construction to general bayesian network construction. The draft is a
singly connected undirected graph (an undirected graph without loops). In a special
case when the bayesian network is a tree or polytree, this phase can construct the
network correctly and the second and third phase will not change anything.

In this work, we propose another way for performing the drafting phase. This new
methodology uses data mining techniques, and in particular the computation of a
number of association rules parameters given a database of examples, in order to learn
the structure of a bayesian network. Association rules describe correlation of events,
and can be viewed as probabilistic rules. Two events are “correlated” if they are
frequently observed together. Each association rule, is characterized by several
parameters which can be used in structure learning. In this paper, we present the
BNL-rules algorithm (Bayesian Network Learner with association rules) that exploits
these parameters to infer the structure of a bayesian network.

Section 2 discusses the conditional independency test used by the SLA algorithm.
Section 3 describes the SLA algorithm itself. In Section 4, we present association
rules parameters. In Section 5 we introduce the algorithm BNL-rules. In Section 6,
we will present the comparisons between SLA and BNL-rules algorithms considering
four of the most well-known bayesian networks. Finally, in Section 7, we conclude,
and present future work.

2 An Information Theory Based Approach

In literature we find different approaches for bayesian network learning. Some of
them are based on the search and score methodology [2,17,20,10,12,14,25], and the
others follow an information theory based approach [8,21]. The SLA algorithm
constructs bayesian networks by analyzing conditional independence relationships
among nodes, following the second approach. Before introducing the SLA algorithm,
we first recall the concepts of d-separation [17] and mutual information [8], which
play an important role in this algorithm.

For any three disjoint node sets X, Y, and Z in a bayesian network, X is said to be d-
separated from Y by Z if there is no active adjacency path between X and Y given Z.
An adjacency path is a path between two nodes without considering the directionality
of the arcs. An adjacency path between X and Y is active given Z if:
• every collider in the path is in Z or has a descendant in Z;
• every other node in the path is outside Z.

A collider [23] of a path is a node where two arcs in the path meet at their
endpoints. In a bayesian network, if there is an arc from a to b, we say that a is a
parent of b and b is a child of a. We also say that a is in the neighborhood of b and b
is in the neighborhood of a. If there is a path from node a to node b, then a is an
ancestor of b and b is a descendant of a.

To understand d-Separation, we can use an analogy, which is similar to the one
suggested in [24]. We view a bayesian network as a network system of information
channels, where each node is a valve that is either active or inactive and the valves are
connected by noisy information channels. The information flow can pass an active
valve but not an inactive one. When all the valves (nodes) on one adjacency path
between two nodes are active, we say this path is open. If any one valve in the path is
inactive, we say the path is closed. When all paths between two nodes are closed
given the statuses of a set of valves (nodes), we say the two nodes are d-separated by
the set of nodes. The statuses of valves can be changed through the instantiation of a
set of nodes.

The amount of information flow between two nodes can be measured by using
mutual information when no nodes are instantiated, or conditional mutual information
when some other nodes are instantiated. In information theory, the mutual information
of two nodes is defined as:

() () ()
() (),

,
, , log

i j

i j
i j i j

x x i j

P x x
I X X P x x

P x P x
= ∑ (1)

where Xi and Xj are two nodes and xi and xj are possible values for Xi and Xj. The
conditional mutual information is defined as

() () ()
() (), ,

, |
, | , , log

| |i j

i j
i j i j

x x c i j

P x x c
I X X C P x x c

P x c P x c
= ∑

 (2)

where C is a set of nodes and c is a possible assignment of all the nodes in C. In the
SLA algorithm, the conditional mutual information measures the average information
flow between two nodes when the statuses of some valves are changed by the
condition-set C. When equation (2) is smaller than a certain threshold value ε, we say
that Xi, Xj are d-separated by the condition-set C, and that they are conditionally
independent. Thus, the mutual information is a measure of Conditional Independence
(CI). The use of mutual information in probabilistic model construction can be traced
back to Chow and Liu’s tree construction algorithm [9]. In 1987, Rebane and Pearl
extended Chow and Liu’s algorithm to causal polytree construction [19]. The SLA
algorithm extends those algorithms further to Bayesian network construction. This

algorithm also makes the following two assumptions: the database attributes have
discrete values and there are no missing values in all the records; the volume of data
is large enough for reliable CI tests.

3 The SLA Algorithm

The SLA algorithm has three phases: drafting, thickening and thinning. The drafting
phase of this algorithm is essentially Chow and Liu’s tree construction algorithm; the
thickening and thinning phase are designed to extend tree construction to general
bayesian network construction. In the drafting phase, this algorithm computes the
mutual information of each pair of nodes as a measure of independency, and creates a
draft based on this information. The draft is a singly connected undirected graph (a
graph without loops). In a special case, when the bayesian network is a tree or
polytree, this phase can construct the network correctly and the second and third
phase will not change anything. In the thickening phase, the algorithm adds edges
when the pairs of nodes cannot be d-separated. The result of this phase has the
structure of an independence map (I-map) [19] of the underlying dependency model
in the case that the underlying model is normal DAG-Faithful [8]. In the thinning
phase, each edge of the I-map is examined using CI tests and is removed if the two
nodes of the edge can be d-separated. The result of this phase has the structure of a
perfect map [19] when the underlying model is normal DAG-Faithful. At the end of
the third phase, the SLA algorithm also carries out a procedure to orient the edges of
the graph. The basics of the three phases are reported in Figure 1, Figure 2 and Figure
3.

The SLA algorithm uses the procedures: try_to_separate_A, try_to_separate_B
and orient_edges (see Figure 2 and Figure 3). Given a graph and two nodes a and b,
the procedure try_to_separate_A tries to identify if these two nodes are d-separated.
From the definition of bayesian network [17] we know that if two nodes a, b in the
network are not connected, they can be d-separated by the parent nodes of b which
are in the paths between those two nodes. (We assume that node a appears earlier in
the node ordering than b.) Those parent nodes form a set P. If node ordering is
known, we can get P immediately and only one CI test is required to check if two
nodes are d-separated. Since this information is usually not given, we have to use a
group of CI tests to find such P. By assuming that removing a parent node of b will
not increase the mutual information between a and b, the above procedure tries to find
set P by identifying and removing the child-nodes and irrelevant nodes from the set of
neighbors of a and the set of neighbors of b one at a time using a group of
computations and comparisons of conditional mutual information. However, this
assumption may not be true when the underlying structure satisfies the following
conditions:
1. There exists at least one path from a to b through a child-node of b and this child-

node is a collider on the path.
2. In such paths, there are one or more colliders besides the child-node and all these

colliders are the parents or ancestors of b.

Fig. 1. Drafting the network

Fig. 2. Thickening the network

Fig. 3. Thinning the network

In such structures, procedure try_to_separate_A may identify a parent-node of b
as a child-node of b and remove it erroneously. As a result, the procedure fails to
separate two d-separated nodes. To deal with these structures, a correct procedure
try_to_separate_B is introduced. Theoretically, is possible to use procedure
try_to_separate_B to replace procedure try_to_separate_A, since they do the same
thing and both of them have complexity O(N4) on CI test. But in practice, procedure
try_to_separate_A usually uses fewer CI tests and requires smaller condition-sets.
Therefore SLA tries to avoid using procedure try_to_separate_B whenever it is
possible.

Among the nodes in Bayesian networks, only colliders can let information pass
through them when they are instantiated. The orient_edges procedure uses this
feature to identify colliders. All other edge orientations are virtually based on these
identified colliders. The collider based edge orientation methods have also been
studied in [19,23].

4 Association rules

Association rules describe correlation of events and can be regarded as probabilistic
rules. Events are “correlated” if they are frequently observed together. For example,
in the case of sale transactions, an event is the sale of a particular product and
association rules express which items are usually bought together.

Consider a database D consisting of a single table. An association rule [1] is a rule
of the form

A1=vA1, A2=vA2, …, Aj=vAj ⇒ B1=vB1, B2= vB2, …, Bk=vBk
where A1, A2,…, Aj, B1, B2,…,Bk are attribute of D and vA1, vA2,…,vAj, vB1, vB2,…,vBk

are values such that vAi (vBh) belongs to the domain of the attribute Ai (Bh).
More formally, an association rule can be defined as follows.

An item is a literal of the form Ai=vAi where Ai is an attribute of D and vAi belongs to
the domain of Ai. Let I be the set of all the possible items. A transaction T is a record
of D.

An itemset X is a set of items, i.e. it is a set X such that X⊆ I. We say that a
transaction T contains an itemset X if X ⊆ T or, alternatively, if T satisfies all the
literals in X.

The support of an itemset X (indicated by support(X)) is the fraction of transactions
in D that contain X. The support of the opposite of an itemset (indicated by
support(!X)) is the fraction of transactions in D that do not contain X. Thus,
support(!X)= 1-support(X).

An association rule is an implication of the form X ⇒ Y, where X and Y are
itemsets and X ∩Y ≠∅. The support of X ⇒ Y (indicated by support(X⇒Y)) is
support(X ∪ Y). The confidence of X ⇒ Y (indicated by confidence(X⇒Y)) is the
fraction of transactions in D containing X that also contain Y. Thus, confidence(X⇒Y)
= support(X ∪ Y) / support(X).

Given an association rule X ⇒ Y, we are interested in the following parameters:
· The lift [4] (called interest in [6]) of X ⇒ Y (indicated by lift(X⇒Y)) is given

by lift(X⇒Y) = confidence(X⇒Y) / support(Y). Thus, lift(X⇒Y) =
support(X∪Y) / (support(X) × support(Y)).

· The leverage [26] of X ⇒ Y (indicated by leverage(X⇒Y)) is given by
leverage(X⇒Y) = support(X ∪ Y) - support(X) × support(Y).

· The conviction [6] of X ⇒ Y (indicated by conviction(X⇒Y)) is given by
conviction(X⇒Y) = support(X) × support(!Y) / support(X ∪ !Y). Observing
that support(X∪!Y) = support(X) - support(X∪Y), we have that
conviction(X⇒Y) =(1-support(Y)) / (1-confidence(X⇒Y)).

Moreover, other parameters can be defined that regard not a single association rule
but a set of specific association rules, namely, the set of association rules that relate
two variables. Supposing that we have binary variables X and Y, such a set of
association rules would be {X=0⇒ Y=0, X=1⇒ Y=0, X=0⇒ Y=1, X=1⇒ Y=1} plus
the rules with head and body exchanged.

These parameters are Person's X2 and the Cramer index [11]. Person's X2 has been
proposed as an interesting parameter for association rules in [7] and [22]. In order to
define Person's X2 and the Cramer index, let us consider two variables X and Y where
X can assume I different values x1,...xI and Y can assume J different values y1,...yJ.
Moreover, let us define the following parameters: n=|D|, nij=support({X=xi,Y=yj})n,
ni•=support({X=xi})n, n•j=support({Y=yj})n and n*

ij=ni•n•j/n. X2 is then given by

∑∑
= =

−
=

I

i

J

j ij

ijij

n
nn

X
1 1

*

2*
2)(

(3)

The Cramer Index V is instead given by

)}1(),1min{(

2

−−
=

JIn
XV

(3)

X2 is a statistics proposed by Karl Pearson for verifying the hypothesis of stochastic
independence between two variables X and Y. X2 is 0 if X and Y are independent,
while the higher it is the less probable it is that the two variables are independent. The
Cramer Index scales the value of X2 to the maximum that can assume in the table
examined, therefore 0≤V≤1. If V=1 we have the maximum dependence between X and
Y.

5 BNL-rules Algorithm

In this section, we propose a novel method for performing the drafting phase of the
SLA algorithm by using association rules parameters. The algorithm we propose is
called BNL-rules (Bayesian Network Learner with association rules).

During our experiments we tried to use both the most specific association rules and
the most general ones. The most specific rules demonstrated to be unuseful for our
task because they were not able describe the single dependency/independency relation
between two variables, so we decided to use the most general ones, i.e., those with
only one antecedent and only one consequent (named one-to-one rules). Each rule is
characterized by the typical association rule parameters described in Section 3 (lift,
conviction and leverage). Moreover, we associate to each such rule the values of the
X2 and Cramer Index parameters relative to the couple of variables involved in the
rule.

The BNL-rules algorithm considers all the possible one-to-one rules and computes
for all of them the values of the parameters. Then it sorts the rules in descending
order of one of the parameters and builds a draft of the network: if the network has N

nodes, the tool creates a network connecting the nodes indicated in the rules, without
introducing loops, until it reaches N-1 arcs. In this way we obtain an undirected
acyclic graph. At the moment we haven’t identified a method for learning arc
orientations by using association rule parameters.

A formal description of the BNL-rules algorithm is presented below.

BNL-rules algorithm
Given a set of examples described by N variables, the bayesian network drafting
performed by BNL-rules is realized in in six steps:
D.1. Create a graph G(V, E) where V={all the nodes of a data set}, E={ }. Create

an empty list L.
D.2. For each one-to-one rule compute the parameters. Each rule and associated

parameters become an element of list L.
D.3. Choose one of the parameters (lift, leverage, convinction, X2 or Cramer

Index), and sort the elements of L in decreasing order with respect to
this parameter.

D.4. Get the first element of list L and remove it from the list. Add the
corresponding edges to E. Move the pointer p to the next element of L.

D.5. Get the element from L at the position of the pointer p. If there is no
adjacency path between the two nodes, add the corresponding edge to E and
remove this element from L.

D.6. Move the pointer p to the next element and go back to step D.5 unless p is
pointing to the end of L or G contains N-1 edges.

This algorithm is similar to the one proposed by SLA for the drafting phase, but

instead of computing the mutual information, the algorithm computes the parameters
of all the possible one-to-one rules.

6 Comparison between SLA and BNL-rules algorithms

We experimented the algorithms with four different bayesian networks:
· The “Visit to Asia” network: A belief network for a fictitious medical example

about whether a patient has tuberculosis, lung cancer or bronchitis, related to
their X-ray, dyspnea, visit-to-Asia and smoking status. It has 8 nodes and 8
arcs. It is described in [16].

· The “Car_diagnosis” network: A belief network for diagnosing why a car
won't start, based on spark plugs, headlights, main fuse, etc. It has 18 nodes
and 20 arcs. It is described in [18];

· The “ALARM” network: ALARM stands for “A Logical Alarm Reduction
Mechanism”. This is a medical diagnostic system for patient monitoring. It is a
nontrivial belief network with 8 diagnoses, 16 findings and 13 intermediate
variables (36 nodes and 46 arcs). It is described in [3];

· The “Boelarge92” network: A subjective belief network for a particular

scenario of neighborhood events, that shows how even distant concepts have
some connection. It has 24 nodes and 35 arcs. It is described in [5];

A database of examples was generated from each network using NETICA [18]. Then
SLA and BNL-rules are applied to learn back the network. The learned network is
compared with the original and the numbers of missing and extra arcs are counted.
Tables 1, 2, 3 and 4 show these comparison results for each network, for each
algorithm and for three different dataset dimensions (5.000, 20.000 and 100.000
examples).

Table 1. Results for the “Visit to Asia” network

Data
Set

SLA
Drafting

BNL-rules
Leverage

BNL-rules
Convinction

BNL-rules
Lift

BNL-rules
Pearson’s X2

BNL-rules
Cramèr Index

Table 2. Results for the “Car diagnosis” network

Data
Set

SLA
Drafting

BNL-rules
Leverage

BNL-rules
convinction

BNL-rules
Lift

BNL-rules
Pearson’s X2

BNL-rules
Cramèr Index

Table 3. Results for the “Alarm” network

Table 4. Results for the “Boerlage” network

In order to test whether the tool used for generating the dataset has an influence over
the results, we repeated the experiments with datasets generating the database with
HUGIN [15]. The results obtained are identical except for the “Alarm” network

 Miss Extra Miss Extra Miss Extra Miss Extra Miss Extra Miss Extra
5000 1 0 3 2 3 2 3 2 1 0 1 0

20000 1 0 3 2 3 2 3 2 1 0 1 0
100000 1 0 3 2 4 3 3 2 1 0 1 0

 Miss Extra Miss Extra Miss Extra Miss Extra Miss Extra Miss Extra
5000 4 1 5 2 9 6 10 7 5 2 5 2

20000 4 1 3 0 7 4 8 5 3 0 4 1
100000 4 1 3 0 7 4 8 5 3 0 4 1

SLA
Drafting

BNL-rules
Leverage

BNL-rules
Convinction

BNL-rules
Lift

BNL-rules
Pearson’s X2

BNL-rules
Cramèr Index

Data
Set

Miss Extra Miss Extra Miss Extra Miss Extra Miss Extra Miss Extra
5000 12 2 13 3 13 3 13 3 11 1 13 3

20000 12 2 11 1 15 5 12 2 11 1 13 3
100000 12 2 11 1 13 3 10 0 11 1 13 3

SLA
Drafting

BNL-rules
Leverage

BNL-rules
Convinction

BNL-rules
Lift

BNL-rules
Pearson’s X2

BNL-rules
Cramèr Index

Data
Set

Miss Extra Miss Extra Miss Extra Miss Extra Miss Extra Miss Extra
5000 14 0 14 0 15 1 16 2 14 0 15 1

20000 14 0 14 0 14 0 16 2 14 0 14 0
100000 14 0 14 0 14 0 16 2 14 0 14 0

drafted by BNL-rules employing leverage and a dataset of 100,000 examples that, in
the case of HUGIN, has 12 missing arcs and 2 extra arc. Therefore the results are
sufficiently independent from the database generation tool.

From the tables we can observe that BNL-rules with Pearson’s X2 always obtains
the best results when used with 20,000 and 100,000 examples, outperforming SLA in
two cases and performing equally well in the other two cases. When used with 5,000
examples, BNL-rules with Pearson’s X2 does worse than SLA only for the "Car
diagnosis" network.

BNL-rules with leverage obtains results that are as good as those obtained with X2
for all networks and for 20.000 and 100.000 examples apart from "Visit to Asia".
However, note that "Visit to Asia" is very small and thus the results on it are less
significative than those on the others.

Note also that while the performances of SLA do not improve with the number of
examples, those of BNL-rules with X2 improve in one case and those of BNL-rules
with leverage improve in two cases when going from 5.000 to 20.000 examples.

7 Conclusions

In this work we describe a method for improving SLA [8], one of the most known
algorithm for learning Bayesian network, by exploiting a number of association rules
parameters. We propose a number of novel algorithms for performing the drafting
phase. Each algorithm is based on the computation of a parameter usually defined in
relation to association rules: leverage, conviction, lift, Pearson's X2 or Cramer Index.

We experimented the algorithms on four different Bayesian networks: “Visit to
Asia”, “Car_diagnosis”, “Alarm” and "Boelarge": the algorithm BNL-rules with X2
obtained the best results and performed better that SLA in two cases and equally well
in two other two cases better. By starting the second and the third learning phase of
SLA from a better structure it is possible to achieve a better final result.

In the future we plan to compare SLA and BNL-rules on larger networks in order
to obtain a more definitive confirmation of the validity of the approach.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Buneman, P., Jajodia, S. (eds.): Proceedings of the 1993
ACM SIGMOD International Conference on Management of Data, Washington,
D.C., May 26-28, 1993. ACM Press 22(2) (1993) 207-216

2. Akaike, H.: A new Look at Statistical Model Identification. IEEE Trans. Automatic
Control 19 (1974) 716-723

3. Beinlich, I.A., Suermondt, H.J., Chavez, R.M., Cooper, G.F.: The ALARM
monitoring system: A case study with two probabilistic inference techniques for
belief networks. In: Hunter, J. (ed.): Proceedings of the Second European Conference
on Artificial Intelligence in Medicine (AIME 89). Springer, Berlin (1989) 247-256

4. Berry, J.A., Linoff, G.S.: Data Mining Techniques for Marketing, Sales and
Customer Support. John Wiley & Sons Inc., New York (1997)

5. Boerlage, Brent: Link Strength in Bayesian Networks. MSc Thesis, Dept. Computer
Science, Univ. of British Columbia, BC (1992).

6. Brin, S., Motwani, R., Ullman, J., Tsur, S.: Dynamic Itemset Counting and
Implication Rules for Market Basket Data. In: Peckham, J. (ed.): Proceedings ACM
SIGMOD International Conference on Management of Data. SIGMOD 26(2) (1997)
255-264

7. Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: Generalizing
association rule to correlations. In: Proceedings ACM SIGMOD International
Conference on Management of Data. SIGMOD (1997) 265-276

8. Cheng, J., Greiner, R., Kelly, J., Bell, D., Liu, W.: Learning Bayesian networks from
data: An information-theory based approach, Artificial Intelligence 137 (2002) 43–90

9. Chow, C.K., Liu, C.N.: Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory 14 (1968) 462-467

10. Cooper, G., Herskovits, E.: A Bayesian method for the induction of probabilistic
networks from data. Machine Learning 9 (1992) 309-347

11. Giudici, P.: Data mining - Metodi statistici per le applicazioni aziendali. McGraw-
Hill, Milano (2001)

12. Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian Networks: the
combination of knowledge and statistical data. Machine Learning 20 (1995) 197-243

13. Heckerman, D.: Tutorial on learning in Bayesian networks. In: Jordan, M. (ed.):
Learning in Graphical Models. MIT Press, Cambridge, MA (1999)

14. Herskovits, E.H.: Computer-based probabilistic-network construction. Doctoral
Dissertation, Medical Informatics, Stanford University (1991)

15. Hugin, http://www.hugin.com
16. Lauritzen, S.L., Spiegelhalter D.J.: Local computations with probabilities on

graphical structures and their application to expert systems. J. Royal Statistics Society
B 50(2) (1988) 157-194

17. Madigan, D., Raftery A.:. Model Selection and Accounting for Model Uncertainty in
Graphical Models Using Occam’s Window. J. Am. Statist. Association 89 (1994)
1535-1546

18. Netica, http://www.norsys.com
19. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible

inference. Morgan Kaufmann, San Francisco (1988)
20. Rissanen, J.: Stochastic Complexity (with discussion). J. Roy. Statist. Soc. B 49

(1987) 223-239
21. Sigh, M., Valtorta, M.: Construction of Bayesian Network Structures from Data: a

Brief Survey and an Efficient Algorithm. In: Heckerman, D., Mamdani, A. (eds.):
Proceedings of the Conference on Uncertainty in Artificial Intelligence. Morgan
Kaufmann, San Francisco (1993) 259–265

22. Silverstein, C., Brin, S., Motwani, R., Ullman, J.D.: Scalable Techniques for Mining
Causal Structures. Data Mining and Knowledge Discovery 4(2/3) (2000) 163-192

23. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. Lecture
Notes in Statistics. Springer, Berlin (1993)

24. Spirtes, P., Glymour, C., Scheines, R.: An algorithm for fast recovery of sparse causal
graphs. Social Science Computer Review 9 (1991) 62-72

25. Suzuki, J.: Learning Bayesian Belief Networks Based on the MDL principle: An
Efficient Algorithm Using the Branch and Bound Technique. IEICE Transactions on
Communications Electronics Information and Systems (1999)

26. WEKA http://www.cs.waikato.ac.nz/~ml/weka/doc_gui/weka.associations.ItemSet.
html#leverageForRule

