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Abstract. A bayesian network is an appropriate tool for working with 
uncertainty and probability, that are typical of real-life applications. In literature 
we find different approaches for bayesian network learning. Some of them are 
based on search and score methodology and the others follow an information 
theory based approach. One of the most known algorithm for learning bayesian 
network is the SLA algorithm. This algorithm constructs a bayesian network by 
analyzing conditional independence relationships among nodes. The SLA 
algorithm has three phases: drafting, thickening and thinning. In this work, we 
propose an alternative method for performing the drafting phase. This new 
methodology uses data mining techniques, and in particular the computation of 
a number of parameters usually defined in relation to association rules, in order 
to learn an initial structure of a bayesian network. In this paper, we present the 
BNL-rules algorithm (Bayesian Network Learner with association rules) that 
exploits a number of  association rules parameters to infer the structure of a 
bayesian network. We will also present the comparisons between SLA and 
BNL-rules algorithms on learning four bayesian networks. 

1 Introduction 

A bayesian network is an appropriate tool for working with uncertainty and 
probability, that are typical of real-life applications. A bayesian network is a directed, 
acyclic graph (DAG) whose nodes represent random variables. In bayesian networks 
each node, V, is conditionally independent of any subset of the nodes that are not its 
descendants given its parents. Bayesian networks are sometimes called causal 
networks because the arcs connecting the nodes can be thought of as representing 
direct causal relationships. Building bayesian networks on the basis of the intuitive 
(human) notion of causality usually results in networks that respect the conditional 
independence assumptions. According to [12] “… to construct a bayesian network for 
a given set of variables, we draw arcs from cause variables to immediate effects. In 
almost all cases, doing so results in a Bayesian network whose conditional-
independence implications are accurate”.  

By means of bayesian networks, we can use information about the values of some 
variables to obtain probabilities for the values of others. A probabilistic inference 
takes place, once the probabilities functions of each node conditioned to just its 
parents are given. These are usually represented in a tabled form, named conditional 
probability tables (CPTs). 



Learning techniques have been extensively applied (see, for instance [12]) in 
Bayesian networks. Given a training set of examples, learning such a network is the 
problem of finding the structure of the direct acyclic graph and the CPTs associated 
with each node in the DAG that best matches (according to some scoring metric) this 
dataset.  Various scoring metrics have been proposed (e.g., description length or 
posterior probability [2,17,20,10,12,13,14,25]).  Learning algorithms perform a search  
among possible network structures, however the search space is so vast, that any kind 
of exhaustive search can not be considered, and often a greedy approach is followed. 

One of the most known algorithm for learning bayesian network is the SLA 
algorithm presented in [8]. This algorithm constructs a bayesian network by analyzing 
conditional independence relationships among nodes. It computes the mutual 
information of each pair of nodes as a measure of dependency, and creates the 
network using this information. The SLA algorithm has three phases: drafting, 
thickening and thinning. The first phase of this algorithm is essentially Chow and 
Liu’s tree construction algorithm [9]; the second and the third phase are designed to 
extend tree construction to general bayesian network construction. The draft is a 
singly connected undirected graph (an undirected graph without loops). In a special 
case when the bayesian network is a tree or polytree, this phase can construct the 
network correctly and the second and third phase will not change anything. 

In this work, we propose another way for performing the drafting phase. This new 
methodology uses data mining techniques, and in particular the computation of a 
number of association rules parameters given a database of examples, in order to learn 
the structure of a bayesian network. Association rules describe correlation of events, 
and can be viewed as probabilistic rules. Two events are “correlated” if they are 
frequently observed together. Each association rule, is characterized by several 
parameters which can be used in structure learning. In this paper, we present the 
BNL-rules algorithm (Bayesian Network Learner with association rules) that exploits 
these parameters to infer the structure of a bayesian network. 

Section 2 discusses the conditional independency test used by the SLA algorithm. 
Section 3 describes the SLA algorithm itself.  In Section 4, we present association 
rules parameters.  In Section 5 we introduce the algorithm BNL-rules. In Section 6, 
we will present the comparisons between SLA and BNL-rules algorithms considering 
four of the most well-known bayesian networks. Finally, in Section 7, we conclude, 
and present future work. 

2 An Information Theory Based Approach 

In literature we find different approaches for bayesian network learning. Some of 
them are based on the search and score methodology [2,17,20,10,12,14,25], and the 
others follow an information theory based approach [8,21]. The SLA algorithm 
constructs bayesian networks by analyzing conditional independence relationships 
among nodes, following the second approach. Before introducing the SLA algorithm, 
we first recall the concepts of d-separation [17] and mutual information [8], which 
play an important role in this algorithm.  



For any three disjoint node sets X, Y, and Z in a bayesian network, X is said to be d-
separated from Y by Z if there is no active adjacency path between X and Y given Z. 
An adjacency path is a path between two nodes without considering the directionality 
of the arcs. An  adjacency path between X and Y is active given Z if: 
• every collider in the path is in Z or has a descendant in Z; 
• every other node in the path is outside Z. 

A collider [23] of a path is a node where two arcs in the path meet at their 
endpoints. In a bayesian network, if there is an arc from a to b, we say that a is a 
parent of b and b is a child of a. We also say that a is in the neighborhood of b and b 
is in the neighborhood of a. If there is a path from node a to node b, then a is an 
ancestor of b and b is a descendant of a. 

To understand d-Separation, we can use an analogy, which is similar to the one 
suggested in [24]. We view a bayesian network as a network system of information 
channels, where each node is a valve that is either active or inactive and the valves are 
connected by noisy information channels. The information flow can pass an active 
valve but not an inactive one. When all the valves (nodes) on one adjacency path 
between two nodes are active, we say this path is open. If any one valve in the path is 
inactive, we say the path is closed. When all paths between two nodes are closed 
given the statuses of a set of valves (nodes), we say the two nodes are d-separated by 
the set of nodes. The statuses of valves can be changed through the instantiation of a 
set of nodes.  

The amount of information flow between two nodes can be measured by using 
mutual information when no nodes are instantiated, or conditional mutual information 
when some other nodes are instantiated. In information theory, the mutual information 
of two nodes is defined as: 
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where Xi and Xj are two nodes and xi and xj are possible values for Xi and Xj.  The 
conditional mutual information is defined as 
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where C is a set of nodes and c is a possible assignment of all the nodes in C. In the 
SLA algorithm, the conditional mutual information  measures the average information 
flow between two nodes when the statuses of some valves are changed by the 
condition-set C. When equation (2) is smaller than a certain threshold value ε, we say 
that Xi, Xj are d-separated by the condition-set C, and that they are conditionally 
independent.  Thus, the mutual information is a measure of Conditional Independence 
(CI).  The use of mutual information in probabilistic model construction can be traced 
back to Chow and Liu’s tree construction algorithm [9]. In 1987, Rebane and Pearl 
extended Chow and Liu’s algorithm to causal polytree construction [19]. The SLA 
algorithm extends those algorithms further to Bayesian network construction. This 



algorithm also makes the following two assumptions: the database attributes have 
discrete values and there are no missing values in all the records; the volume of data 
is large enough for reliable CI tests. 

3 The SLA Algorithm 

The SLA algorithm has three phases: drafting, thickening and thinning. The drafting 
phase of this algorithm is essentially Chow and Liu’s tree construction algorithm; the 
thickening and thinning phase are designed to extend tree construction to general 
bayesian network construction. In the drafting phase, this algorithm computes the 
mutual information of each pair of nodes as a measure of independency, and creates a 
draft based on this information. The draft is a singly connected undirected graph (a 
graph without loops). In a special case, when the bayesian network is a tree or 
polytree, this phase can construct the network correctly and the second and third 
phase will not change anything. In the thickening phase, the algorithm adds edges 
when the pairs of nodes cannot be d-separated. The result of this phase has the 
structure of an independence map (I-map) [19] of the underlying dependency model 
in the case that the underlying model is normal DAG-Faithful [8]. In the thinning 
phase, each edge of the I-map is examined using CI tests and is removed if the two 
nodes of the edge can be d-separated. The result of this phase has the structure of a 
perfect map [19] when the underlying model is normal DAG-Faithful. At the end of 
the third phase, the SLA algorithm also carries out a procedure to orient the edges of 
the graph. The basics of the three phases are reported in Figure 1, Figure 2 and Figure 
3. 

The SLA algorithm uses the procedures: try_to_separate_A, try_to_separate_B 
and orient_edges (see Figure 2 and Figure 3). Given a graph and two nodes a and b, 
the procedure try_to_separate_A tries to identify if these two nodes are d-separated. 
From the definition of bayesian network [17] we know that if two nodes a, b in the 
network are not connected, they can be d-separated by the parent nodes of b which 
are in the paths between those two nodes. (We assume that node a appears earlier in 
the node ordering than b.) Those parent nodes form a set P. If node ordering is 
known, we can get P immediately and only one CI test is required to check if two 
nodes are d-separated. Since this information is usually not given, we have to use a 
group of CI tests to find such P. By assuming that removing a parent node of b will 
not increase the mutual information between a and b, the above procedure tries to find 
set P by identifying and removing the child-nodes and irrelevant nodes from the set of 
neighbors of a and the set of neighbors of b one at a time using a group of 
computations and comparisons of conditional mutual information. However, this 
assumption may not be true when the underlying structure satisfies the following 
conditions: 
1. There exists at least one path from a to b through a child-node of b and this child-

node is a collider on the path. 
2. In such paths, there are one or more colliders besides the child-node and all these 

colliders are the parents or ancestors of b.  



 
Fig. 1. Drafting the network 

 

Fig. 2. Thickening the network 

 
Fig. 3. Thinning the network 

In such structures, procedure try_to_separate_A may identify a parent-node of b 
as a child-node of b and remove it erroneously. As a result, the procedure fails to 
separate two d-separated nodes. To deal with these structures, a correct procedure 
try_to_separate_B is introduced. Theoretically, is possible to use procedure 
try_to_separate_B to replace procedure try_to_separate_A,  since they do the same 
thing and both of them have complexity O(N4) on CI test. But in practice, procedure 
try_to_separate_A usually uses fewer CI tests and requires smaller condition-sets. 
Therefore SLA tries to avoid using procedure try_to_separate_B whenever it is 
possible. 



Among the nodes in Bayesian networks, only colliders can let information pass 
through them when they are instantiated. The orient_edges procedure uses this 
feature to identify colliders. All other edge orientations are virtually based on these 
identified colliders. The collider based edge orientation methods have also been 
studied in [19,23]. 

4 Association rules 

Association rules describe correlation of events and can be regarded as probabilistic 
rules. Events are “correlated” if they are frequently observed together.  For example, 
in the case of sale transactions, an event is the sale of a particular product and 
association rules express which items are usually bought together.  

Consider a database D consisting of a single table.  An association rule [1] is a rule 
of the form  

A1=vA1, A2=vA2, …, Aj=vAj ⇒ B1=vB1, B2= vB2, …, Bk=vBk 
where A1, A2,…, Aj, B1, B2,…,Bk are attribute of D and vA1, vA2,…,vAj, vB1, vB2,…,vBk 

are values such that vAi (vBh) belongs to the domain of the attribute Ai (Bh). 
More formally, an association rule can be defined as follows. 

An item is a literal of the form Ai=vAi where Ai is an attribute of D and vAi belongs to 
the domain of Ai.  Let I be the set of all the possible items.  A transaction T is a record 
of D.  

An itemset X is a set of items, i.e. it is a set X such that X⊆ I. We say that a 
transaction T contains an itemset X if X ⊆ T or, alternatively, if T satisfies all the 
literals in X.  

The support of an itemset X (indicated by support(X)) is the fraction of transactions 
in D that contain X. The support of the opposite of an itemset (indicated by 
support(!X)) is the fraction of transactions in D that do not contain X. Thus, 
support(!X)= 1-support(X). 

An association rule is an implication of the form X ⇒ Y, where X and Y are 
itemsets and X ∩Y ≠∅.  The support of X ⇒ Y (indicated by support(X⇒Y)) is 
support(X ∪ Y).  The confidence of X ⇒ Y (indicated by confidence(X⇒Y)) is the 
fraction of transactions in D containing X that also contain Y.  Thus, confidence(X⇒Y) 
= support(X ∪ Y) / support(X). 

Given an association rule X ⇒ Y, we are interested in the following parameters: 
· The lift [4] (called interest in [6]) of X ⇒ Y (indicated by lift(X⇒Y)) is given 

by lift(X⇒Y) = confidence(X⇒Y) / support(Y).  Thus, lift(X⇒Y) = 
support(X∪Y) / (support(X) × support(Y)). 

· The leverage [26] of X ⇒ Y (indicated by leverage(X⇒Y)) is given by 
leverage(X⇒Y) = support(X ∪ Y) - support(X) × support(Y). 

· The conviction [6] of X ⇒ Y (indicated by conviction(X⇒Y)) is given by 
conviction(X⇒Y) = support(X) × support(!Y) / support(X ∪ !Y). Observing 
that support(X∪!Y) = support(X) - support(X∪Y), we have that 
conviction(X⇒Y) =(1-support(Y)) / (1-confidence(X⇒Y)). 



Moreover, other parameters can be defined that regard not a single association rule 
but a set of specific association rules, namely, the set of association rules that relate 
two variables.  Supposing that we have binary variables X and Y, such a set of 
association rules would be {X=0⇒ Y=0, X=1⇒ Y=0, X=0⇒ Y=1, X=1⇒ Y=1} plus 
the rules with head and body exchanged. 

These parameters are Person's X2 and the Cramer index [11]. Person's X2 has been 
proposed as an interesting parameter for association rules in [7] and [22].  In order to 
define Person's X2 and the Cramer index, let us consider two variables X and Y where 
X can assume I different values x1,...xI and Y can assume J different values y1,...yJ. 
Moreover, let us define the following parameters: n=|D|, nij=support({X=xi,Y=yj})n, 
ni•=support({X=xi})n, n•j=support({Y=yj})n and n*

ij=ni•n•j/n.  X2 is then given by  
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The Cramer Index V is instead given by 
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X2 is a statistics proposed by Karl Pearson for verifying the hypothesis of stochastic 
independence between two variables X and Y. X2 is 0 if X and Y are independent, 
while the higher it is the less probable it is that the two variables are independent. The 
Cramer Index scales the value of X2 to the maximum that can assume in the table 
examined, therefore 0≤V≤1. If V=1 we have the maximum dependence between X and 
Y.  

5 BNL-rules Algorithm  

In this section, we propose a novel method for performing the drafting phase of the 
SLA algorithm by using association rules parameters. The algorithm we propose is 
called BNL-rules (Bayesian Network Learner with association rules).  

During our experiments we tried to use both the most specific association rules and 
the most general ones. The most specific rules demonstrated to be unuseful for our 
task because they were not able describe the single dependency/independency relation 
between two variables, so we decided to use the most general ones, i.e., those with 
only one antecedent and only one consequent (named one-to-one rules). Each rule is 
characterized by the typical association rule parameters described in Section 3 (lift, 
conviction and leverage).  Moreover, we associate to each such rule the values of the 
X2 and Cramer Index parameters relative to the couple of variables involved in the 
rule. 

The BNL-rules algorithm considers all the possible one-to-one rules and computes 
for all of them the values of the parameters.  Then it sorts the rules in descending 
order of one of the parameters and builds a draft of the network: if the network has N 



nodes, the tool creates a network connecting the nodes indicated in the rules, without 
introducing loops, until it reaches N-1 arcs. In this way we obtain an undirected 
acyclic graph. At the moment we haven’t identified a method for learning arc 
orientations by using association rule parameters.  

A formal description of the BNL-rules algorithm is presented below. 
 
 

BNL-rules algorithm 
Given a set of examples described by N variables, the bayesian network drafting 
performed by BNL-rules is realized in in six steps: 
D.1. Create a graph G(V, E) where V={all the nodes of a data set}, E={ }. Create 

an empty list L. 
D.2. For each one-to-one rule compute the parameters.  Each rule and associated 

parameters become an element of  list L. 
D.3. Choose one of the parameters (lift, leverage, convinction, X2 or Cramer 

Index), and sort the elements of L in decreasing order with respect to 
this parameter. 

D.4. Get the first element of list L and remove it from the list. Add the 
corresponding edges to E. Move the pointer p to the next element of  L. 

D.5. Get the element from L at the position of the pointer p. If there is no 
adjacency path between the two nodes, add the corresponding edge to E and 
remove this element from L. 

D.6. Move the pointer p to the next element and go back to step D.5 unless p is 
pointing to the end of L or G contains N-1 edges. 

 
This algorithm is similar to the one proposed by SLA for the drafting phase, but 

instead of computing the mutual information, the algorithm computes the parameters 
of all the possible one-to-one rules. 

6 Comparison between SLA and BNL-rules algorithms 

We experimented the algorithms with four different bayesian networks: 
· The “Visit to Asia” network: A belief network for a fictitious medical example 

about whether a patient has tuberculosis, lung cancer or bronchitis, related to 
their X-ray, dyspnea, visit-to-Asia and smoking status. It has 8 nodes and 8 
arcs.  It is described in [16]. 

· The “Car_diagnosis” network: A belief network for diagnosing why a car 
won't start, based on spark plugs, headlights, main fuse, etc. It has 18 nodes 
and 20 arcs. It is described in [18]; 

· The “ALARM” network: ALARM stands for “A Logical Alarm Reduction 
Mechanism”. This is a medical diagnostic system for patient monitoring. It is a 
nontrivial belief network with 8 diagnoses, 16 findings and 13 intermediate 
variables (36 nodes and 46 arcs).  It is described in [3]; 

· The “Boelarge92” network: A subjective belief network for a particular 



scenario of neighborhood events, that shows how even distant concepts have 
some connection. It has 24 nodes and 35 arcs. It is described in [5]; 

A database of examples was generated from each network using NETICA [18].  Then 
SLA and BNL-rules are applied to learn back the network.  The learned network is 
compared with the original and the numbers of missing and extra arcs are counted. 
Tables 1, 2, 3 and 4 show these comparison results for each network, for each 
algorithm and for three different dataset dimensions (5.000, 20.000 and 100.000 
examples). 

Table 1. Results for the “Visit to Asia” network 

Data 
Set 

SLA 
Drafting 

BNL-rules 
Leverage 

BNL-rules 
Convinction 

BNL-rules 
Lift 

BNL-rules  
Pearson’s X2 

BNL-rules  
Cramèr Index 

Table 2. Results for the “Car diagnosis” network 

Data 
Set 

SLA 
Drafting 

BNL-rules 
Leverage 

BNL-rules 
convinction 

BNL-rules 
Lift 

BNL-rules  
Pearson’s X2 

BNL-rules  
Cramèr Index 

Table 3. Results for the “Alarm” network 

Table 4. Results for the “Boerlage” network 

 
In order to test whether the tool used for generating the dataset has an influence over 
the results, we repeated the experiments with datasets generating the database with 
HUGIN [15].  The results obtained are identical except for the “Alarm” network 

 Miss Extra Miss Extra Miss Extra Miss Extra Miss Extra Miss Extra 
5000 1 0 3 2 3 2 3 2 1 0 1 0 

20000 1 0 3 2 3 2 3 2 1 0 1 0 
100000 1 0 3 2 4 3 3 2 1 0 1 0 

 Miss Extra Miss Extra Miss Extra Miss Extra Miss Extra Miss Extra 
5000 4 1 5 2 9 6 10 7 5 2 5 2 

20000 4 1 3 0 7 4 8 5 3 0 4 1 
100000 4 1 3 0 7 4 8 5 3 0 4 1 

SLA 
Drafting 

BNL-rules 
Leverage 

BNL-rules 
Convinction 

BNL-rules 
Lift 

BNL-rules  
Pearson’s X2 

BNL-rules  
Cramèr Index 

Data 
Set 

Miss Extra Miss Extra Miss Extra Miss Extra Miss Extra Miss Extra 
5000 12 2 13 3 13 3 13 3 11 1 13 3 

20000 12 2 11 1 15 5 12 2 11 1 13 3 
100000 12 2 11 1 13 3 10 0 11 1 13 3 

SLA 
Drafting 

BNL-rules 
Leverage 

BNL-rules 
Convinction 

BNL-rules 
Lift 

BNL-rules  
Pearson’s X2 

BNL-rules  
Cramèr Index 

Data 
Set 

Miss Extra Miss Extra Miss Extra Miss Extra Miss Extra Miss Extra 
5000 14 0 14 0 15 1 16 2 14 0 15 1 

20000 14 0 14 0 14 0 16 2 14 0 14 0 
100000 14 0 14 0 14 0 16 2 14 0 14 0 



drafted by BNL-rules employing leverage and a dataset of 100,000 examples that, in 
the case of HUGIN, has 12 missing arcs and 2 extra arc.  Therefore the results are 
sufficiently independent from the database generation tool. 

From the tables we can observe that BNL-rules with Pearson’s X2 always obtains 
the best results when used with 20,000 and 100,000 examples, outperforming SLA in 
two cases and performing equally well in the other two cases.  When used with 5,000 
examples, BNL-rules with Pearson’s X2 does worse than SLA only for the "Car 
diagnosis" network. 

BNL-rules with leverage obtains results that are as good as those obtained with X2 
for all networks and for 20.000 and 100.000 examples apart from "Visit to Asia".  
However, note that "Visit to Asia" is very small and thus the results on it are less 
significative than those on the others.  

Note also that while the performances of SLA do not improve with the number of 
examples, those of BNL-rules with X2 improve in one case and those of BNL-rules 
with leverage improve in two cases when going from 5.000 to 20.000 examples. 

7 Conclusions 

In this work we describe a method for improving SLA [8], one of the most known 
algorithm for learning Bayesian network, by exploiting a number of association rules 
parameters.  We propose a number of novel algorithms for performing the drafting 
phase.  Each algorithm is based on the computation of a parameter usually defined in 
relation to association rules:  leverage, conviction, lift, Pearson's X2 or Cramer Index. 

We experimented the algorithms on four different Bayesian networks: “Visit to 
Asia”, “Car_diagnosis”, “Alarm” and "Boelarge":  the algorithm BNL-rules with X2 
obtained the best results and performed better that SLA in two cases and equally well 
in two other two cases better.  By starting the second and the third learning phase of 
SLA from a better structure it is possible to achieve a better final result. 

In the future we plan to compare SLA and BNL-rules on larger networks in order 
to obtain a more definitive confirmation of the validity of the approach. 
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