
Exploiting Association and Correlation Rules 
Parameters for Improving the K2 Algorithm 

Evelina Lamma1 and Fabrizio Riguzzi1 and Sergio Storari1,2

Abstract.   A Bayesian network is an appropriate tool to deal with 
the uncertainty that is typical of real-life applications. Bayesian 
network arcs represent statistical dependence between different 
variables.  In the data mining field, association and correlation 
rules can be interpreted as well as expressing statistical 
dependence relations.  K2 is a well-known algorithm which is able 
to learn Bayesian networks.  In this paper we present two 
extensions of K2 called K2-Lift and K2-X2 that exploit two 
parameters normally defined in relation to association and 
correlation rules.  The experiments performed show that K2-Lift 
and K2-X2 improve K2 with respect to both the quality of the 
learned network and the execution time. 

1 INTRODUCTION 
A Bayesian network is an appropriate tool for working with the 
uncertainty that is typical of real-life applications. A Bayesian 
network [17] is a directed, acyclic graph (DAG) whose nodes 
represent random variables. In Bayesian networks each node, V, is 
conditionally independent of any subset of the nodes that are not 
its descendants, given its parents. Bayesian networks are 
sometimes called causal networks because the arcs connecting the 
nodes can be thought of as representing direct causal relationships. 
Building Bayesian networks on the basis of the intuitive (human) 
notion of causality usually results in networks for which the 
implied conditional independence assumptions are appropriate. 
According to [13] “… to construct a Bayesian network for a given 
set of variables, we draw arcs from cause variables to immediate 
effects. In almost all cases, doing so results in a Bayesian network 
whose conditional-independence implications are accurate”.  

By means of Bayesian networks, we can use information about 
the values of some variables to obtain probabilities for the values 
of others. A probabilistic inference takes place once the probability 
functions of each node conditioned to just its parents are given. 
These are usually represented in a tabled form, named Conditional 
Probability Tables (CPTs). 

Techniques for learning Bayesian networks have been 
extensively investigated (see, for instance [13]). Given a training 
set of examples, learning such a network is the problem of finding 
the structure of the direct acyclic graph and the CPTs associated 
with each node in the DAG that best match (according to some 

scoring metric) the dataset. Optimality is evaluated with respect to 
a given scoring metric (e.g., description length or posterior 
probability [3],[11],[13],[14],[15],[20],[22],[28]). A procedure for 
searching among possible structures is needed. However, the 
search space is so vast that any kind of exhaustive search cannot 
be considered, and a greedy approach is followed. 

The K2 algorithm [11] is a typical search & score method. It 
starts by assuming that a node has no parents, after which in every 
step it adds incrementally the parent whose addition mostly 
increases the probability of the resulting structure. K2 stops adding 
parents when the addition of a single parent cannot increase the 
probability of the network given the data. Other search and score 
methods include the algorithms based on the MDL principle [28], 
and the CB algorithm [24]. 

In this work, we propose the algorithms K2-Lift and K2-X2 that 
improve the quality of learned networks and reduce the 
computational resources needed. These algorithms exploit 
parameters normally defined in relation to association rules [1] and 
correlation rules [8] to obtain  new knowledge to be used for 
improving K2. Association rules describe co-occurrence of events, 
and can be viewed as probabilistic rules. Correlation rules instead 
describe correlation between events. Each association or 
correlation rule is characterized by several parameters which can 
be used to identify the absence of dependence among the nodes. In 
this work, we exploit in particular the parameters lift and X2 in 
order to improve K2. 

The paper is structured as follows. Section 2 provides an 
introduction to Bayesian networks.  Section 3 describes the K2 
algorithm. In Section 4 we briefly present association and 
correlation rules.  Section 5 illustrates the algorithms K2-Lift and 
K2-X2.  In Section 6 we  show  an experimental comparison among 
K2, K2-Lift and K2-X2 considering three of the most known 
Bayesian networks.  Finally, in Section 7, we conclude and present 
future work. 

2 BAYESIAN NETWORKS 
A Bayesian network B is defined as a pair B = (G,GPr), where G is 
a directed, acyclic graph G = (V(G), A(G)), witha set of nodes 
V(G) = {V1, …, Vn}, representing a set of stochastic variables and 
a set of arcs A(G) ⊆ V(G) × V(G), representing conditional and 
unconditional stochastic independences among the variables, 
modeled by absence of arcs among nodes [19],[21]. In the 
following, variables will  be denoted by upper-case letters, e.g. V, 
whereas a variable  V which takes on a value v , i.e. V = v, will be 
abbreviated to v.
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When it is not necessary to refer to a specific value of a 
variable, we will usually just refer to a variable, which thus stands 
for any value of the variable. 

The basic property of a Bayesian network is that any variable 
corresponding to a node in the graph G is (conditionally) 
independent of its non-descendants given its parents; this is called 
the local Markov property. A joint probability distribution Pr(V1, 
…, Vn) is defined on the variables. As a consequence of the local 
Markov property, the following decomposition property holds:  

 

             
1

1

Pr( ,..., ) Pr( | ( ))
n

n i i
i

V V V Vπ
=

=∏
 

    (1) 

 
where π(Vi) denotes the conjunction of variables corresponding 

to the parents of Vi, for i=1, …, n. A directed graph that respects 
all independence information in a probability distribution is called 
an I-map; if it respects all dependence information, it is called a D-
map. A graph that is both an I-map and a D-map, is called a 
perfect map. 

Once the network is built, probabilistic statements can be 
derived from it by probabilistic inference, using one of the 
inference algorithms described in the literature (e.g. [19],[21]). 

3 THE K2 ALGORITHM 
In the literature, we find different approaches for Bayesian 
network learning. Some of them are based on the search and score 
methodology [3],[11],[13],[14],[15],[20],[22],[28], and the others 
follow an information theory based approach [9],[24].  

A frequently used procedure for Bayesian network structure 
construction from data is the K2 algorithm [11]. Given a database 
D, this algorithm searches for the Bayesian network structure G* 
with maximal Pr(G,D), where Pr(G,D) is determined as described 
below. Let V(G) be a set of n discrete variables, where a variable 
Vi ∈ V(G) has ri possible value assignments vik k=1, … ,ri . Let D 
be a database of m cases, where each case contains a value 
assignment for each variable in V(G). Let G denote a Bayesian 
network structure containing just the variables in V(G), and let 
GPr be the associated set of conditional probability distributions. 
Each node Vi ∈ V(G) has a set of parents π(Vi). Let wij denote the 
jth unique instantiation of π(Vi) relative to D. Suppose there are qi 
such unique instantiations of π(Vi). Define Nijk to be the number of 
cases in D in which variable Vi has the value vik and π(Vi) is 
instantiated as wij. Let  
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Given a Bayesian network model, assuming that the cases occur 
independently and the conditional probability density function 
f(GPr | G) is uniform, then it follows that 

1 1 1

( 1)!
Pr( , ) Pr( ) !

( 1)!

i iq rn
i

ijk
ij ii j k

r
G D G N

N r= = =

−
=

+ −∏∏ ∏     (3)

The K2 algorithm assumes that an ordering on the variables is 
available and that all structures are equally likely. For every node 
Vi it searches for the set of parent nodes that maximizes the 
following function: 
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K2 adopts a greedy heuristic method. It starts by assuming that 
a node lacks parents, after which in every step it adds 
incrementally the parent whose addition most increases the 
probability of the resulting structure. K2 stops adding parents to 
the nodes when the addition of a single parent cannot increase the 
probability of the network given the data (i.e. the function 
g(Vj,π(Vi))).  

A pseudo code representation of K2 algorithm is shown in 
Figure 1. 

 

 
 

Figure 1.   Pseudo code representation of the K2 algorithm 

4 ASSOCIATION AND CORRELATION RULES 
Association rules [1] describe co-occurrence of events and can 

be regarded as probabilistic rules. Good examples from real life 
are databases of sales transactions. In this case the aim is to find 
the items that are usually bought together, information that is used 
for developing successful marketing strategies. 

Consider a database D consisting of a single table.  An 
association rule [1] is a rule of the form  

A1=vA1, A2=vA2, …, Aj=vAj ⇒ B1=vB1, B2= vB2, …, Bk=vBk 
where A1, A2,…, Aj, B1, B2,…,Bk are attribute names and vA1, 

vA2,…,vAj, vB1, vB2,…,vBk are values such that vAi (vBh) belongs to the 
domain of the attribute Ai (Bh). 

More formally, an association rule can be defined as follows. 
An item is a literal of the form Attributei=vAttributei where vAttributei 
belongs to the domain of Attributei.  Let M be the set of all the 
possible items. A transaction T is a record of the database.  

An itemset X is a set of items, i.e. it is a set X such that X⊆ M. 
We say that a transaction T contains an itemset X if X ⊆ T or, 
alternatively, if T satisfies all the literals in X.  

The support of an itemset X (indicated by support(X)) is the 
fraction of transactions in D that contain X. 

An association rule is an implication of the form X ⇒ Y, 
where X and Y are itemsets and X ∩ Y ≠∅.  

For an association rule X ⇒ Y we define the following 
parameters: 
• The support of X ⇒ Y (indicated by support(X ⇒ Y)) is 

support(X  ∪ Y).  
• The lift [5] of X ⇒ Y (indicated by lift(X ⇒ Y)) is given by 

lift(X ⇒ Y) = support(X ∪ Y) / (support(X) × support(Y)). 

1.  for i=1 to n 
2. { 
3.    π(Vi)=0; 
4.    repeat 
5.   { 
6.          select Vj∈{V1, … ,Vi-1} - π(Vi) that 

maximizes g(i, π(Vi) ∪ {Vj}); 
7.          ∆ = g(Vj, π(Vi)  ∪  {Vj}) - g(Vj, π(Vi)); 
8.          if ∆ > 0  then π(Vi) = π(Vi)  ∪  {Vj}; 
9.   } until ∆ < 0   or π(Vi) = {V1, … ,Vi-1}; 
10.} 



A correlation rule [8] is a set of variable names {A1, A2,..., An}.  
Correlation rule {A1, A2,...,An} means that the variables A1, A2, ..., 
An are correlated. 

With respect to correlation rules, the Pearson's X2 statistic 
[8],[12] can be defined. This statistic measures the degree of 
correlation: if the statistic is 0, then the variables in the rule are 
uncorrelated.  If it bigger that 0 then there is a certain degree of 
correlation.  In the case of a rule with two variables X and Y, X2 

can be defined as follows.  Let X assume I different values x1,...xI 
and Y assume J different values y1,...yJ. Moreover, let us define the 
following parameters: n=|D|, nij=support({X=xi,Y=yj})n, 
ni•=support({X=xi})n, n•j=support({Y=yj})n and n*

ij=ni•n•j/n.  X2 is 
then given by  
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The X2 test is based on the X2 distribution with (I-1)(J-1) degrees 
of freedom. The hypothesis that X and Y are uncorrelated can be 
rejected with a certain level of significance if X2 is above a 
threshold obtained from the distribution.  For example, for 1 
degree of freedom (the case of binary variables) and a significance 
level of 95% the threshold for X2 is 3.84.  Thus, if X2 is above 
3.84, we are 95% sure that X and Y are correlated. 

5 K2-LIFT AND K2-X2 ALGORITHMS 
In this section, we describe the algorithms K2-Lift and K2-X2 that 
improve the K2 algorithm described in Section 3 by exploiting 
association and correlation rules parameters. The K2 algorithm, in 
order to work, requires the total ordering of the nodes. This 
ordering is not always simple to obtain especially in complex 
domains characterized by many attributes. In addition to this 
limitation, the algorithm has a high computational cost and 
produces a significant number of extra arcs in the learned network. 

The high computational cost is due to function (4) (see Section 
3) which requires many computational resources especially for 
nodes characterized by a great number of parents.  

The extra arc problem arises especially when the network is 
characterized by a lot of root nodes (nodes without parents). 
During network learning, the algorithm tries to add parents to each 
of these nodes until it maximizes function (4). The algorithm will 
add at least one arc to root nodes because the value of the 
heuristics for this new structure is always better than the value of 
the previous structure.  

The new proposed approach uses the knowledge represented by 
association and correlation rules parameters in order to reduce the 
set of nodes from which the K2 algorithm tries to identify the best 
set of parents.  

We consider only association rules with only one antecedent 
and only one consequent (named one-to-one rules) because they 
represent dependence/independence relation between two 
variables.  Each rule is characterized by a value for the lift 
parameter described in Section 4. 

K2-Lift is based on the following observation.  In the case in 
which two nodes Q and P are maximally dependent then 
support(Q=qi∪P=pj)=support(Q=qi)=support(P=pj) and the lift 
for the rule P=pj ⇒ Q=qi would be 
1/support(P=pj)=1/support(Q=qi).  In the case that P and Q are not 

maximally dependent then 1/support(Q=qi) ≠1/support(P=pj). We 
consider in this case the average of these two values: 
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where s(X=x) stands for support(X=x). We use this parameter 
as a measure of the lift in the case of maximal dependency and we 
compare the actual lift of the rule P=pj ⇒ Q=qi with this value by 
computing the formula 
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where the –1 addendum is used because we want to measure 
the departure of lift from the case of independence in which lift is 
equal to 1. 

We compute the value of LiftNorm for all possible rules 
involving P and Q and we take the minimum value MinLiftNorm 
for LiftNorm.  Then we compare this value to a threshold:  if 
MinLiftNorm is greater or equal to the threshold we discard P from 
the possible parents of node Q.  In the experiments we have used a 
threshold of 97%. 

We compare MinLiftNorm with a threshold instead of 
comparing directly the lift of a rule with a threshold because the 
lift has a minimum, which is 1, but has not a fixed maximum, 
because its theoretical maximum is 
1/support(P=pj)=1/support(Q=qi).  Therefore, in order to use the 
lift parameter, it was necessary to consider a measure that takes 
into account the theoretical maximum value for it. 

K2-X2 differs from K2 because it deletes from the set of 
allowable parents of a node Q all those nodes P for which the X2 
statistic of the correlation rule {P,Q} is below the threshold value 
given by a 95% significance. 

In both cases, if MinLiftNorm is below the threshold for many 
couples of variables and if X2 is above the threshold for many 
correlation rules, then K2-Lift and K2-X2 will not remove many 
variables from the list of parents and the successive execution of 
K2 will require more time and will possibly incur in more errors. 

6 EXPERIMENTAL COMPARISONS 
We compared K2, K2-X2 and K2-Lift on three different Bayesian 
networks: 
• The “Visit to Asia” network: A belief network for a fictitious 

medical example about whether a patient has tuberculosis, lung 
cancer or bronchitis on the basis of their X-ray, dyspnea, visit-
to-Asia and smoking status. It has 8 nodes and 8 arcs, and is 
described in [19]. 

• “Boelarge92”: A belief network for a particular scenario of 
neighborhood events that shows how even distant concepts can 
have some connection. It has 24 nodes and 35 arcs. It is 
described in [6]; 

• The “ALARM” network: ALARM stands for “A Logical Alarm 
Reduction Mechanism”. This is a medical diagnostic system for 
patient monitoring. It is a nontrivial belief network with 8 
diagnoses, 16 findings and 13 intermediate variables (37 nodes 
and 46 arcs), and is described in [4]. 
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The dataset of examples used for learning has been obtained 
with Hugin [16]. This tool, given the structure and the CPTs of a 
Bayesian network is able to automatically generate a dataset of N 
examples representing its  probability relations. Each experiment 
was conducted by first generating a dataset from one of the above 
networks and then trying to learn back the network using K2, K2-
X2 and K2-Lift. For each network, two datasets of examples were 
generated, one with 5000 examples and another with 20000 
examples, except for the ALARM network for which the datasets 
have 5000 and 10000 examples. This was done because the 
ALARM network was really computationally demanding. The 
learned networks are compared with the original network in Table 
1.  For each algorithm we indicate: the numbers of missing and 
extra arcs; the number of computations of the function g(Vi,π(Vi)) 
(Num g); the number of computation of Nijk (Num Nijk).  The last 
two parameters represent the computational resources needed by 
the algorithms. 

Analysing these experimental results we can observe that both 
K2-Lift and K2-X2 improve with respect to K2 both in terms of the 
quality of the learned network and in terms of the used 
computational resources.  Moreover, it must be noted that in the 
case of the ALARM network K2-Lift finds a network with a much 
higher quality with respect to both K2 and K2-X2. 

From these experiments we can observe that K2-Lift and K2-X2 
work reasonably well on medium networks where the nodes are 
not too interconnected.  Further experiments are required in order 
to test the two algorithms on larger and denser networks. 

We have also compared K2-Lift and K2-X2 with the algorithm 
K3 [7] on the Visit to Asia network and preliminary experiments 
showed that our algorithms achieve an improvement as regards the 
quality of the resulting network. 

7 CONCLUSIONS 
In this work we describe two methods for improving K2 [11], one 
of the most known algorithm for learning Bayesian network, by 
exploiting association and correlation rules parameters.  

The K2 algorithm starts by assuming that a node has no parents, 
after which in every step it adds incrementally the parent whose 
addition mostly increases the probability of the resulting structure.  
K2 stops adding parents to the nodes when the addition of a single 
parent does not increase the probability of the resulting network 
given the data. 

In this work, we reduce the set of allowable parents from which 

the algorithm selects actual parents and avoid extra arc insertions. 
This new methodology uses data mining techniques, and in 
particular the computation of association and correlation rules 
parameters from a database of examples, in order to learn the 
structure of a Bayesian network. We have presented the K2-X2 and 
K2-Lift algorithms that exploit the X2 and lift parameter of, 
respectively, correlation and association rules in order to improve 
the performance of the K2 algorithm. 

Experiments discussed in the paper show that the proposed 
approach allows to obtain networks that have a higher quality with 
respect to K2 in a shorter time. 

In the future, we  plan to compare K2-X2 and K2-Lift with an 
algorithm based on MDL [28] and other Bayesian network 
learning algorithms.  
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