
Noname manuscript No.
(will be inserted by the editor)

Lifted Discriminative Learning of Probabilistic Logic
Programs

Arnaud Nguembang Fadja · Fabrizio Riguzzi

the date of receipt and acceptance should be inserted later

Abstract Probabilistic logic programming (PLP) provides a powerful tool for reason-

ing with uncertain relational models. However, learning probabilistic logic programs

is expensive due to the high cost of inference. Among the proposals to overcome this

problem, one of the most promising is lifted inference. In this paper we consider PLP

models that are amenable to lifted inference and present an algorithm for performing

parameter and structure learning of these models from positive and negative exam-

ples. We discuss parameter learning with EM and LBFGS and structure learning with

LIFTCOVER, an algorithm similar to SLIPCOVER. The results of the comparison of

LIFTCOVER with SLIPCOVER on 12 datasets show that it can achieve solutions of

similar or better quality in a fraction of the time.

Keywords Statistical Relational Learning, Probabilistic Inductive Logic Program-

ming, Probabilistic Logic Programming, Lifted Inference, Expectation Maximization

1 Introduction

Probabilistic Logic Programming (PLP) is a powerful tool for reasoning in uncertain

relational domains that is gaining popularity in Statistical Relational Artificial Intel-

ligence (StarAI) due to its expressiveness and intuitiveness. PLP has been applied

successfully to a variety of fields, such as natural language processing (Sato and Kub-

ota, 2015; Riguzzi et al, 2017b; Nguembang Fadja and Riguzzi, 2017), bioinformatics

(Mørk and Holmes, 2012; De Raedt et al, 2007; Sato and Kameya, 1997), link predic-

tion in social networks (Meert et al, 2010), entity resolution (Riguzzi, 2014) and model

checking (Gorlin et al, 2012).

Among the different approaches that have been proposed for representing prob-

abilistic information in Logic Programming, the distribution semantics (Sato, 1995)

achieved wide use (De Raedt and Kimmig, 2015; Riguzzi and Swift, 2018) and under-

lies many languages, such as Independent Choice Logic (Poole, 2000), PRISM (Sato,

Dipartimento di Ingegneria – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy · Dipartimento di Matematica e Informatica – University
of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy E-mail: [fabrizio.riguzzi,arnaud.nguembafadja]@unife.it

1995), Logic Programs with Annotated Disjunctions (Vennekens et al, 2004a) and

ProbLog (De Raedt et al, 2007). While these languages differ syntactically, they have

the same expressive power, as there are linear transformations among them Vennekens

and Verbaeten (2003).

The problem of learning probabilistic logic program has received considerable at-

tention. However, PLP usually require expensive learning procedures due to the high

cost of inference. SLIPCOVER (Bellodi and Riguzzi, 2015) for example performs struc-

ture learning of probabilistic logic programs using knowledge compilation for param-

eter learning: the expectations needed for the EM parameter learning algorithm are

computed using the Binary Decision Diagrams (BDDs) that are built for inference.

Compiling explanations for queries into BDDs has a #P cost in the number of random

variables. Lifted inference (Poole, 2003) was proposed for improving the performance

of reasoning in probabilistic relational models by reasoning on whole populations of

individuals instead of considering each individual separately. For example, consider the

following Logic Program with Annotated Disjunctions (adapted from (De Raedt and

Kimmig, 2015)):

popular(X) : p :− friends(X,Y), famous(Y)

which states that a person is popular with probability p ∈ [0, 1] if he has a famous

friend. To compute the probability that john is popular, let n be the number of john’s

famous friends. john is not popular if the rule doesn’t fire (the head is not implied) for

any his famous friends therefore P (¬popular(john)) = (1−p)n. So P (popular(john)) =

1− (1− p)n. To compute this probability, we do not need to know information about

john’s individual famous friends, we just need to know their number. Computing this

value has a cost logarithmic in n, as computing an is Θ(logn) with the “square and

multiply” algorithm (Gordon, 1998), rather than #P in n.

Various algorithms have been proposed for performing lifted inference for PLP (Van

den Broeck et al, 2014; Bellodi et al, 2014), see (Riguzzi et al, 2017a) for a survey and

comparison of the approaches.

In this paper we consider a simple PLP language (called liftable PLP) where pro-

grams contain clauses with a single annotated atom in the head and the predicate of

this atom is the same for all clauses. In this case, all the above approaches for lifted

inference coincide and reduce to a computation similar to the one of the example above.

For this language, we discuss how to perform discriminative parameter learning by

using EM or optimizing the likelihood with Limited-memory BFGS (LBFGS) (Nocedal,

1980).

A previous approach for performing lifted learning (Van Haaren et al, 2016) tar-

geted generative learning for Markov Logic Networks, so it cannot be applied directly

to PLP.

We also present LIFTCOVER for “LIFTed slipCOVER”, an algorithm for perform-

ing discriminative structure learning of liftable PLP programs obtained from SLIP-

COVER (Bellodi and Riguzzi, 2015) by simplifying structure search and replacing pa-

rameter learning with one of the specialized approaches. We thus obtain LIFTCOVER-

EM and LIFTCOVER-LBFGS that performs EM and LBFGS respectively.

We compare LIFTCOVER-EM, LIFTCOVER-LBFGS and SLIPCOVER on 12

datasets. The results show that LIFTCOVER-EM is nearly always faster and more

accurate than SLIPCOVER while LIFTCOVER-LBFGS is often faster and similarly

accurate than SLIPCOVER.

2

Liftable PLP can also be seen as a language where the contributions of different

groundings of a clause and of different clauses are combined using a noisy-OR combining

rule and is therefore very much related to languages such as First-Order Probabilistic

Logic (Koller and Pfeffer, 1997), Bayesian Logic Programs (Kersting and De Raedt,

2002) and the First-Order Conditional Influence Language (Natarajan et al, 2009).

Liftable PLP can be seen as a special case of each of these languages in which simpler

inference and learning algorithms can be used. The experimental results show that the

algorithm still yield good quality results notwithstanding the language restrictions.

The paper is organized as follows: Section 2 introduces PLP under the distribution

semantics, Section 3 presents the liftable PLP language, Sections 4 and 5 illustrate

parameter and structure learning respectively, Section 6 discusses related work, Section

7 describes the experiments performed and Section 8 concludes the paper.

2 Probabilistic Logic Programming

We consider Probabilistic Logic Programming under the distribution semantics (Sato,

1995) for integrating logic programming with probability. Languages with this seman-

tics were shown expressive enough to represent a wide variety of domains (Riguzzi et al,

2016; Alberti et al, 2017). A program in a language adopting the distribution semantics

defines a probability distribution over normal logic programs called instances or worlds.

Each normal program is assumed to have a total well-founded model (Van Gelder et al,

1991). Then the distribution is extended to queries and the probability of a query is

obtained by marginalizing the joint distribution of the query and the programs.

A PLP language under the distribution semantics with a general syntax is Logic

Programs with Annotated Disjunctions (LPADs) (Vennekens et al, 2004b). We present

here the semantics of LPADs for the case of no function symbols, if function symbols

are allowed see (Riguzzi, 2016). However, function symbols are usually absent from the

learning problems we consider, where the task is to learn a knowedge-based classifier.

Function symbols are necessary for program induction which however is outside the

scope of this paper.

In LPADs, heads of clauses are disjunctions in which each atom is annotated with a

probability. Let us consider an LPAD T with n clauses: T = {C1, . . . , Cn}. Each clause

Ci takes the form: hi1 : Πi1; . . . ;hivi : Πivi :− bi1, . . . , biui , where hi1, . . . , hivi are logi-

cal atoms, bi1, . . . , biui are logical literals and

Πi1, . . . , Πivi are real numbers in the interval [0, 1] that sum to 1. bi1, . . . , biui is indi-

cated with body(Ci). Note that if vi = 1 the clause corresponds to a non-disjunctive

clause. We also allow clauses where
∑vi
k=1Πik < 1: in this case the head of the anno-

tated disjunctive clause implicitly contains an extra atom null that does not appear in

the body of any clause and whose annotation is 1−
∑vi
k=1Πik. We denote by ground(T)

the grounding of an LPAD T .

Each grounding Ciθj of a clause Ci corresponds to a random variable Xij with

values {1, . . . , vi} where vi is the number of head atoms of Ci. The random variables

Xij are independent of each other. An atomic choice (Poole, 1997) is a triple (Ci, θj , k)

where Ci ∈ T , θj is a substitution that grounds Ci and k ∈ {1, . . . , vi} identifies one

of the head atoms. In practice (Ci, θj , k) corresponds to an assignment Xij = k.

A selection σ is a set of atomic choices that, for each clause Ciθj in ground(T),

contains an atomic choice (Ci, θj , k). Let us indicate with ST the set of all selec-

tions. A selection σ identifies a normal logic program lσ defined as lσ = {(hik ←

3

body(Ci))θj |(Ci, θj , k) ∈ σ}. lσ is called an instance, possible world or simply world of

T . Since the random variables associated with ground clauses are independent, we can

assign probabilities to instances: P (lσ) =
∏

(Ci,θj ,k)∈σΠik.

We consider only sound LPADs where, for each selection σ in ST , the well-founded

model of the program lσ chosen by σ is two-valued. We write lσ |= q to mean that the

ground atomic query q is true in the well-founded model of the program lσ. Since the

well-founded model of each world is two-valued, q can only be true or false in lσ.

We denote the set of all instances by LT . Let P (LT) be the distribution over

instances. Consider a ground atomic query q. The probability of q given an instance l

is P (q|l) = 1 if l |= q and 0 otherwise. The probability of q is given by

P (q) =
∑
l∈LT

P (q, l) =
∑
l∈LT

P (q|l)P (l) =
∑

l∈LT :l|=q

P (l) (1)

Computing P (q) by generating all the worlds is impractical because their number is

exponential in the number of ground probabilistic clauses. A successful alternative ap-

proach finds explanations for the query q (De Raedt et al, 2007), where an explanation

is a set of clause choices that are sufficient for entailing the query. Explanations are

then encoded as a Boolean formula and the problem is reduced to that of computing

the probability that the formula is true given the probabilities of being true of all the

(mutually independent) Boolean random variables. This is the disjoint-sum problem

so called because it can be solved by finding a DNF formula where all the disjuncts are

mutually exclusive. The problem has complexity #P (Valiant, 1979) in the number of

random variables so it is very difficult but problems of significant size have been solved

in practice using knowledge compilation (Darwiche and Marquis, 2002), i.e. converting

the Boolean formula into a language from which the computation of the probability is

polynomial (De Raedt et al, 2007; Riguzzi and Swift, 2011), such as Binary Decision

Diagrams.

3 Liftable PLP

We restrict the language of LPADs by allowing only clauses of the form

Ci = hi : Πi :− bi1, . . . , biui

in the program where all the clauses share the same predicate for the single atom in

the head, let us call this predicate target/a with a the arity. The literals in the body

have predicates other than target/a and are defined by facts and rules that are certain,

i.e., they have a single atom in the head with probability 1. The predicate target/a is

called target and the others input predicates. Suppose there are n probabilistic clauses

of the form above in the program. We call this language liftable PLP.

The problem is to compute the probability of a ground instantiation q of target/a.

This can be done at the lifted level. We should first find the number of ground instanti-

ations of clauses for target/a such that the body is true and the head is equal to q. Sup-

pose there are mi such instantiations {θi1, . . . , θimi}, for rule Ci for i = 1, . . . , n. Each

instantiation θij corresponds to a random variable Xij taking values 1 with probability

Πi and 0 with probability 1−Πi. The query q is true if at least one of the random vari-

ables for a rule takes value 1: q = true⇔
∨n
i=1

∨mi
j=1(Xij = 1). In other words q is false

4

only if no random variable takes value 1. All the random variables are mutually indepen-

dent so the probability that none takes value 1 is
∏n
i=1

∏mi
j=1(1−Πi) =

∏n
i=1(1−Πi)mi

and the probability of q being true is P (q) = 1−
∏n
i=1(1−Πi)mi . So once the number

of clause instantiations with the body true is known, the probability of the query can

be computed in logarithmic time. Note that finding an assignment of a set of logical

variables that makes a conjunction true is an NP-complete problem (Kietz and Lübbe,

1994), therefore computing the probability of the query may be prohibitive.

However, when using knowledge compilation, to the cost of finding the assignment,

we must sum the cost of performing the compilation, that is #P in the number of satis-

fying logical variables assignments (clause instantiations with the body true). Therefore

inference in liftable PLP is significantly cheaper than in the general case. Moreover,

in machine learning the conjunctions are usually short and the knowledge compilation

cost dominates.

The general language of PLP is necessary when the user wants to induce a knowl-

edge base or an ontology regarding the domain. In that case, the possibility of having

more than one head, possibly involving more than one predicate, and the possibility

of learning probabilistic rules for subgoals is useful because the resulting program can

thus represent and organize general knowledge about the domain. Moreover, the result-

ing program can then be used for answering different types of queries instead of being

restricted to answering queries about a single predicate. This is similar to the problem

of learning multiple predicates in Inductive Logic Programming. While this problem

has received considerable attention, most work concentrated on learning a single pred-

icate, for example systems such as FOIL (Quinlan, 1990), Progol (Muggleton, 1995)

and Aleph (Srinivasan, 2007) learn a single predicate at a time. Furthermore, most

benchmark datasets are focused on predicting the truth value of atoms for a single

predicate. For example, all the datasets we consider in the experimental evaluation,

Section 7, include positive and negative example for a single predicate.

We believe that the problem of inducing general knowledge bases will become very

important in the near future because of the growth of the Semantic Web: more and

more data is being published on the web but ontologies are often shallow. If we want to

be able to provide answers for complex queries given the available data, we need deep

and complex knowledge bases and learning them appears to be a promising direction.

We can picture the dependence of the random variable q associated with the query

from the random variables of clause groundings with the body true as in Figure 1. Here

the conditional probability table of q is that of an or: P (q) = 1 if at least one of its

parents is equal to 1 and 0 otherwise. The variables from clause groundings are

{X11, . . . , X1m1 , X21, . . . , X2m2 , . . . , Xn1, . . . , Xnmn}.

These are parentless variables, with Xij having the conditional probability table (CPT)

P (Xij = 1) = Πi and P (Xij = 0) = 1−Πi.
This is an example of a noisy-OR model (Good, 1961; Pearl, 1988): an event is

associated to a number of conditions each of which alone can cause the event to happen.

The conditions/causes are noisy, i.e., they have a probability of being active and they

are mutually unconditionally independent. A liftable PLP program encodes a noisy-OR

model where the event is the query q being true and causes are the ground instantiations

of the clauses that have the body true: each can cause the query to be true with the

probability given by the clause annotation.

5

X11 . . . Xnmn

q

Fig. 1 Bayesian Network representing the dependency between the query q and the random
variables associated with groundings of the clauses with the body true.

Example 1 Let us consider the UW-CSE domain (Kok and Domingos, 2005) where

the objective is to predict the “advised by” relation between students and professors.

In this case the target predicate is advisedby/2 and a program for predicting such

predicate may be
advisedby(A,B) : 0.4 :−
student(A), professor(B), publication(C,A), publication(C,B).

advisedby(A,B) : 0.5 :−
student(A), professor(B), ta(C,A), taughtby(C,B).

where publication(A,B) means that A is a publication with author B, ta(C,A) means

that A is a teaching assistant for course C and taughtby(C,B) means that course C is

taught by B. The probability that a student is advised by a professor depends on the

number of joint publications and the number of courses the professor teaches where

the student is a TA, the higher these numbers the higher the probability.

Suppose we want to compute the probability of q = advisedby(harry, ben) where

harry is a student, ben is a professor, they have 4 joint publications and ben teaches 2

courses where harry is a TA. Then the first clause has 4 groundings with head q where

the body is true, the second clause has 2 groundings with head q where the body is

true and P (advisedby(harry, ben)) = 1− (1− 0.4)4(1− 0.5)2 = 0.9676.

4 Parameter Learning

Learning problems can be divided into discriminative and generative (Koller and Fried-

man, 2009). Given input data x, generative learning means learning the joint distribu-

tion P (x). Discriminative learning instead means identifying one of the data variables

y which we want to predict and learning the conditional distribution P (y|x). If y is

Boolean, as in our case, it is natural to identify values y = 1 as positive examples

and values y = 0 as negative examples. In generative learning identifying positive and

negative examples is less obvious. We consider discriminative learning because we want

to predict only atoms for the target predicate, while the atoms for the input predicates

are assumed as given.

The problem of discriminative learning of the parameters of a liftable PLP T =

{C1, . . . , Cn} can be expressed as follows: given a liftable PLP T , a set

E+ = {e1, . . . , eQ}

of positive examples (ground atoms for the target predicate) and a set

E− = {eQ+1, . . . , eR}

6

of negative examples (ground atoms for the target predicate) and background knowl-

edge B, find the parameters of T such that the likelihood

L =

Q∏
q=1

P (eq)

R∏
r=Q+1

P (¬er)

is maximized. The likelihood is given by the product of the probability of each example.

The background knowledge B is a normal logic program defining the input predi-

cates with certainty. In the simplest case it is a set of ground facts, i.e., an interpretation

I, describing the domain by means of the observed facts for the input predicates. It

also called a mega-example because we can consider the case where we have a set of

interpretations I = {I1, . . . , IU} each describing a different sub-domain from the uni-

verse considered. In that case, each mega-example Iu will be associated with its set of

positive and negative examples E+
u and E−u that are to be evaluated against Iu. These

examples can be opportunely encoded in Iu so that the training data is represented

fully by I, for example by encoding positive examples as facts for the target predicate

and negative examples as facts of the form neg(er) with er ∈ E−u . This is a common

situation in StarAI.

The likelihood can be unfolded to

L =

Q∏
q=1

(
1−

n∏
l=1

(1−Πl)mlq
)

R∏
r=Q+1

n∏
l=1

(1−Πl)mlr (2)

where miq (mir) is the number of instantiations of Ci whose head is eq (er) and whose

body is true. We can aggregate the negative examples

L =

n∏
l=1

(1−Πl)ml−
Q∏
q=1

(
1−

n∏
l=1

(1−Πl)mlq
)

(3)

where ml− =
∑R
r=Q+1mlr.

We can maximize L using an Expectation Maximization (EM) algorithm (Dempster

et al, 1977) since the Xij variables are hidden. To perform EM, we need to compute

the conditional probabilities P (Xij = 1|e) and P (Xij = 1|¬e) where e is an example

(a ground atom) and Xij are its parents.

Alternatively, we can use gradient descent to optimize L. In this case, we need to

compute the gradient of the likelihood with respect to the parameters. In the following

subsections we consider each method in turn.

4.1 EM Algorithm

The EM algorithm (Dempster et al, 1977) finds the maximum likelihood estimates of

parameters in models with hidden variables by alternating between an expectation (E)

step and a maximization (M) step. The algorithm starts with random values for the

parameters. Then, in the E step, it computes the distribution of values of the hidden

variables given the observed ones and the current value of the parameters. In the M

step it computes the value of the parameters that maximize the expected log-likelihood

(LL). Then the parameters are updated and the algorithm goes back to the E step,

stopping when the log-likelihood does not improve anymore.

7

To perform EM, we need to compute the distribution of the hidden variables given

the observed ones, in our case P (Xij = 1|e) and P (Xij = 1|¬e). e is a single example

that is a ground atom for the target predicate. The Xij variables are relative to the

ground instantiations of the probabilistic clauses whose body is true when the head is

unified with e. Different examples don’t share clause groundings, as the constants in

them are different. Therefore the Xij variables are not shared among examples.

Let us now compute P (Xij = 1, e):

P (Xij = 1, e) = P (e|Xij = 1)P (Xij = 1) = P (Xij = 1) = Πi

since P (e|Xij = 1) = 1, so

P (Xij = 1|e) =
P (Xij = 1, e)

P (e)
=

Πi
1−

∏n
i=1(1−Πi)mi

(4)

P (Xij = 0|e) = 1− Πi
1−

∏n
i=1(1−Πi)mi

(5)

P (Xij = 1|¬e) is given by

P (Xij = 1,¬e) = P (¬e|Xij = 1)P (Xij = 1) = 0

since P (¬e|Xij = 1) = 0, so

P (Xij = 1|¬e) = 0 (6)

P (Xij = 0|¬e) = 1. (7)

This leads to the EM algorithm of Algorithm 1, with the Expectation and Maxi-

mization functions shown in Algorithms 2 and 3.

Function EM stops when the difference between the current value of the LL and

the previous one is below a given threshold or when such a difference relative to the

absolute value of the current one is below a given threshold.

Function Expectation updates, for each clause Ci, two counters, ci1 and ci2, one

for each value of the random variables Xij associated with clause Ci. These counters

accumulate the values of the conditional probability of the values of the hidden vari-

ables. The counters are updated taking into account first the negative examples and

then the positive ones. Negative examples can be considered in bulk because their con-

tribution is the same for all groundings of all examples, while positive examples must

be considered one by one, for each one updating the counters of all the clauses.

Function Maximization then simply computes the new values of the parameters by

dividing ci1 by the sum of ci1 and ci2.

4.2 Gradient-Based Optimization

Gradient-based methods include gradient descent and its derivatives, such as second-

order methods like Limited-memory BFGS (LBFGS) (Nocedal, 1980), an optimiza-

tion algorithm in the family of quasi-Newton methods that approximates the Broy-

den–Fletcher–Goldfarb–Shanno (BFGS) algorithm using a limited amount of computer

memory.

8

Algorithm 1 Function EM

1: function EM(restarts,max iter, ε, δ)
2: BestLL← −inf
3: BestPar ← []
4: for j ← 1, restarts do
5: for i← 1, n do . n: number of rules
6: Πi ← random
7: end for
8: LL = −inf
9: iter ← 0

10: repeat
11: iter ← iter + 1
12: LL0 = LL
13: LL = Expectation
14: Maximization
15: until LL− LL0 < ε ∨ LL− LL0 < −LL · δ ∨ iter > max iter
16: if LL > BestLL then
17: BestLL← LL
18: BestPar ← [Π1, . . . , Πn]
19: end if
20: end for
21: return BestLL,BestPar
22: end function

Algorithm 2 Function Expectation
1: function Expectation
2: LL←

∑
i∈Rulesmi− log(1−Πi)

3: . mi−: total number of groundings of rule i with the body true in a negative example
4: for i← 1, n do
5: ci1 ← 0
6: ci2 ← mi−
7: end for
8: for r ← 1, P do . P : number of positive examples
9: probex← 1−

∏
i∈Rules(1−Πi)

mir

10: . mir: number of groundings of rule i with the body true in example r
11: LL← LL+ log probex
12: for i← 1, n do

13: condp← Πi
probex

14: ci1 ← ci1 +mircondp
15: ci2 ← ci2 +mir(1− condp)
16: end for
17: end for
18: return LL
19: end function

Algorithm 3 Function Maximization
1: procedure Maximization
2: for i← 1, n do
3: Πi =

ci1
ci1+ci2

4: end for
5: end procedure

To perform gradient-based optimization we need to compute the partial derivatives

of the likelihood with respect to the parameters. Let us recall the likelihood

L =

n∏
l=1

(1−Πl)ml−
Q∏
q=1

(
1−

n∏
l=1

(1−Πl)mlq
)

(8)

where ml− =
∑R
r=Q+1mlr. Its partial derivative with respect to Πi is

9

∂L

∂Πi
=
∂
∏n
l=1(1−Πl)

ml−

∂Πi

Q∏
q=1

(
1−

n∏
l=1

(1−Πl)
mlq

)

+

n∏
l=1

(1−Πl)
ml−

∂
∏Q
q=1 (1−

∏n
l=1(1−Πl)

mlq)

∂Πi

= −mi−(1−Πi)
mi−−1

n∏
l=1,l 6=i

(1−Πl)
ml−

Q∏
q=1

(
1−

n∏
l=1

(1−Πl)
mlq

)

+

n∏
l=1

(1−Πl)
ml−

Q∑
q=1

miq(1−Πi)
miq−1

n∏
l=1,l 6=i

(1−Πl)
mlq

·
Q∏

q′=1,q′ 6=q

(
1−

n∏
l=1

(1−Πl)
mlq′

)
(9)

for the differentiation product rule, and

∂L

∂Πi
= −mi−(1−Πi)

mi−−1
n∏

l=1,l 6=i

(1−Πl)
ml−

(1−Πi)
mi−

(1−Πi)mi−

Q∏
q=1

(
1−

n∏
l=1

(1−Πl)
mlq

)
+

n∏
l=1

(1−Πl)
ml−

Q∑
q=1

miq

∏n
l=1(1−Πl)

mlq

1−Πi

Q∏
q′=1,q′ 6=q

(
1−

n∏
l=1

(1−Πl)
mlq′

)
·
1−

∏n
l=1(1−Πl)

mlq

1−
∏n
l=1(1−Πl)mlq

(10)

by dividing and multiplying for (1−Πi)mi− , (1−Πi) and 1−
∏n
l=1(1−Πl)mlq various

factors. Then

∂L

∂Πi
= −mi−(1−Πi)

mi−−1L

(1−Πi)mi−
+

Q∑
q=1

miq

∏n
l=1(1−Πl)

mlqL

(1−Πi)(1−
∏n
l=1(1−Πl)mlq)

= − mi−L

1−Πi
+

Q∑
q=1

miq

∏n
l=1(1−Πl)

mlqL

(1−Πi)(1−
∏n
l=1(1−Πl)mlq)

=
L

1−Πi

(
Q∑
q=1

miq

∏n
l=1(1−Πl)

mlq

1−
∏n
l=1(1−Πl)mlq

−mi−

)

=
L

1−Πi

(
Q∑
q=1

miq
1− P (eq)

P (eq)
−mi−

)

=
L

1−Πi

(
Q∑
q=1

miq

(
1

P (eq)
− 1

)
−mi−

)
(11)

10

by simple algebra.

The equation ∂L
∂Πi

= 0 does not admit a closed form solution, not even where there

is a single clause, so we must use optimization to find the maximum of L.

5 Structure Learning

The discriminative structure learning problem can be expressed as: given a set E+ =

{e1, . . . , eQ} of positive examples, a set E− = {eQ+1, . . . , eR} of negative examples

and a background knowledge B, find a liftable PLP T such that the likelihood is

maximized. The background knowledge B may be a normal logic program defining all

the predicates except the target (the input predicates).

We solve this problem by first identifying good clauses guided by the log likeli-

hood (LL) of the data. Clauses are found by a top-down beam search. The refinement

operator adds a literal to the body of the current clause, the literal is taken from a

bottom clause built as in Progol (Muggleton, 1995). The set of clauses found in this

phase is then considered as a single theory and parameter learning is performed on it.

Then the clauses with a parameter below a user define threshold WMin are discarded

and the theory is returned. The resulting algorithm, LIFTCOVER, is very similar

to SLIPCOVER (Bellodi and Riguzzi, 2015). The difference between the two is that

LIFTCOVER uses lifted parameter learning instead of the EM algorithm over BDDs

of (Bellodi and Riguzzi, 2013). Moreover they use a different approach for performing

the selection of the rules to be included in the final model: while SLIPCOVER does

a hill-climbing search in which it adds one clause at a time to the theory, learns the

parameters and keeps the clause if the LL is smaller than before, LIFTCOVER learns

the parameters for the whole set of clauses found during the search in the space of

clauses. This is allowed by the fact that parameter learning in LIFTCOVER is much

faster so it can be applied to large theories. Then rules with a small parameter can be

discarded as they provide small contributions to the predictions. In practice structure

search is thus performed in LIFTCOVER by parameter learning, as is done for example

in (Nishino et al, 2014; Wang et al, 2014).

Algorithm 4 shows the main LIFTCOVER function. Line 2 calls InitialBeam (see

Algorithm 5) that builds an initial beam Beam consisting of bottom clauses.

The set ot literals allowed in the bottom clause is defined by the language bias that

is expressed by means of mode declarations. They are atoms of the form modeh(r, s)

(head declarations) or modeb(r, s) (body declaration), where s, the schema, is a ground

literal and r is an integer called the recall. A schema is a template for literals in the

head or body of a clause and can contain special placemarker terms of the form #type,

+type and -type, which stand, respectively, for ground terms, input variables and

output variables of a type. An input variable in a body literal of a clause must be

either an input variable in the head or an output variable in a preceding body literal

in the clause. If M is a set of mode declarations, L(M) is the language of M , i.e. the

set of clauses {C = h :− b1, . . . , bm} such that the head atom h (resp. body literals

bi) is obtained from some head (resp. body) declaration in M by replacing all #type

placemarkers with ground terms and all +type (resp. -type) placemarkers with input

(resp. output) variables. We extend this type of mode declarations with placemarker

terms of the form -#type, which are treated as # when defining L(M) but differ in

the creation of the bottom clauses, see below.

11

Algorithm 4 Function LIFTCOVER

1: function LIFTCOVER(NB,NI ,NInt,NS ,NA,NV)
2: Beam =InitialBeam(NInt,NS ,NA) . Bottom clauses building
3: CC ← ∅
4: Steps← 1
5: NewBeam← []
6: repeat
7: Remove the first couple ((Cl, Literals), LL) from Beam . Remove the first clause
8: Refs ←ClauseRefinements((Cl, Literals,NV)) . Find all refinements Refs of

(Cl, Literals)
9: for all (Cl′, Literals′) ∈ Refs do

10: (LL′′, {Cl′′})←LearnWeights(I, {Cl′})
11: NewBeam←Insert((Cl′′, Literals′), LL′′, NewBeam,NB) . The refinement

is inserted in the beam in order of likelihood, possibly removing the last clause if the size of the
beam NB is exceeded

12: CC ← CC ∪ {Cl′}
13: end for
14: Beam← NewBeam
15: Steps← Steps+ 1
16: until Steps > NI or Beam is empty
17: (LL, Th)←LearnWeights(CC)
18: Remove from Th the clauses with a weight smaller than WMin
19: return Th
20: end function

Algorithm 5 Function InitialBeam

1: function InitialBeam(NInt,NS ,NA)
2: Beam← []
3: for all modeh declarations modeh(r, s) do
4: for i = 1→ NInt do
5: Select randomly a mega-example I
6: for j = 1→ NA do
7: Select randomly an atom h from I matching schema(s)
8: Bottom clause BC ←Saturation(h, r,NS), let BC be Head :− Body
9: Beam← [((h : 0.5 :− true,Body),−∞)|Beam]

10: end for
11: end for
12: end for
13: return Beam
14: end function

The bottom clause is the clause with the longest true body in L(M). The bottom

clause is built with a method called saturation: an example e is randomly selected and

the set of atoms Body that are true regarding the example e is built incrementally. by

considering the constants in e and querying the background for true atoms regarding

these constants. A list of constants is kept and it is enlarged with those in -type

placemarkers in the answers to the queries. The recall indicates how many answers to

the queries must be considered. Besides an integer, it may be the symbol *, indicating

all answers.

The procedure is iterated a user-defined number of times. Then a bottom clause is

obtained from the clause e← Body by replacing ground terms with variables respecting

the mode declarations. Placemarkers -#type are treated as #type when variabilizing

because they are not replaced by variables but as -type placemarkers when building

B, because terms in those positions are added to the current list of constants.

Function Saturation, shown in Algorithm 6, builds a bottom clause for an example

Head, where NS is a user-defined number of saturation steps to be performed.

In SLIPCOVER, a beam is a set of tuples ((Cl, Literals), LL) with Cl a clause,

Literals the set of literals admissible in the body of Cl and LL the log-likelihood of Cl.

12

Algorithm 6 Function Saturation

1: function Saturation(Head, r,NS)
2: InTerms = ∅,
3: BC = ∅ . BC: bottom clause
4: for all arguments t of Head do
5: if t corresponds to a +type then
6: add t to InTerms
7: end if
8: end for
9: Let BC’s head be Head

10: repeat
11: Steps← 1
12: for all modeb declarations modeb(r, s) do
13: for all possible subs. σ of variables corresponding to +type in schema(s) by terms

from InTerms do
14: for j = 1→ r do
15: if goal b = schema(s) succeeds with answer substitution σ′ then
16: for all v/t ∈ σ and σ′ do
17: if v corresponds to a −type or −#type then
18: add t to the set InTerms if not already present
19: end if
20: end for
21: Add b to BC’s body
22: end if
23: end for
24: end for
25: end for
26: Steps← Steps+ 1
27: until Steps > NS
28: Replace constants with variables in BC, using the same variable for equal terms
29: return BC
30: end function

Function InitialBeam, shown in Algorithm 5, returns returns an initial beam contain-

ing tuples ((h : 0.5 :− true, Literals),−∞) for each bottom clause h : 0.5 :− Literals.

The likelihood is initialized to −∞.

Then LIFTCOVER runs a beam search in the space of clauses for the target pred-

icate.

In each beam search iteration, the first clause of the beam is removed and all

its refinements are computed. Each refinement Cl′ is scored by performing parameter

learning with T = {Cl′} and using the resulting LL as the heuristic. The scored re-

finements are inserted back into the beam in order of heuristic. If the beam exceeds

a maximum user-defined size, the bottom elements are removed. Moreover, the refine-

ments are added to a set of clauses CC .

For each clause Cl with Literals admissible in the body, Function ClauseRefine-

ments, shown in Algorithm 7, computes refinements by adding a literal from Literals

to the body. Furthermore, the refinements must respect the input-output modes of the

bias declarations, must be connected (i.e., each body literal must share a variable with

the head or a previous body literal) and their number of variables must not exceed a

user-defined number NV . Refinements are of the form (Cl′, L′) where Cl′ is the refined

clause Cl′ and L′ is the new set of literals allowed in the body of Cl′.

Beam search is iterated a user-defined number of times or until the beam becomes

empty. The output of this search phase is represented by the set CC of clauses. Then

parameter learning is applied to the whole set CC , i.e., T = CC . Finally clauses with

a weight smaller than WMin are removed.

The separate search for clauses has similarity with the covering loop of ILP systems

such as Aleph (Srinivasan, 2007) and Progol (Muggleton, 1995). Differently from the

13

ILP case, however, the positive examples covered are not removed from the training set

because coverage is probabilistic, so an example that is assigned nonzero probability

by a clause may have its probability increased by further clauses. A selection of clauses

is performed by parameter learning: clauses with very small weights are removed.

Algorithm 7 Function ClauseRefinements

1: function ClauseRefinements((Cl, Literals),NV)
2: Refs = ∅, Nvar = 0; . Nvar:number of different variables in a clause
3: for all b ∈ Literals do
4: Literals′ ← Literals \ {b}
5: Add b to Cl body obtaining Cl′

6: Nvar ← number of Cl′ variables
7: if Cl′ is connected ∧ Nvar < NV then
8: Refs ← Refs ∪ {(Cl′, Literals′)}
9: end if

10: end for
11: return Refs
12: end function

6 Related Work

We first consider the work related to liftable PLP from the field of lifted inference and

then that from the field of probabilistic rule learning.

Lifted inference for PLP under the distribution semantics is surveyed by Riguzzi

et al (2017a) that discuss three approaches.

LP2 (Bellodi et al, 2014) uses an algorithm that extends Generalized Counting First

Order Variable Elimination (GC-FOVE) (Taghipour et al, 2013) for taking into account

clauses that have variables in bodies not appearing in the head (existentially quanti-

fied variables). Weighted First Order Model Counting (WFOMC) (Van den Broeck

et al, 2014) uses a Skolemization algorithm that eliminates existential quantifiers from

a theory without changing its weighted model count. Kisynski and Poole (Kisynski and

Poole, 2009) proposed an approach based on Aggregation Parfactors that can repre-

sent noisy-OR models. The three approaches have been compared experimentally in

(Riguzzi et al, 2017a) for general PLP and WFOMC was found the fastest.

Relational Logistic Regression (Kazemi et al, 2014) is a generalization of logistic

regression that can also be applied to PLP.

LP2, Aggregation Parfactors and Relational Logistic Regression reduce to the same

algorithm for performing inference when the language is restricted to liftable PLP.

LP2 is based on GC-FOVE that in turn is an extension of Variable Elimination (VE)

(Zhang and Poole, 1994, 1996). VE was designed from the start to be able to exploit

causal independence, the situation where multiple causes contribute independently to a

common effect. Noisy-OR is a prominent example of causal independence. The capacity

of VE to deal with noisy-OR is exploited in LP2 to aggregate the contributions of

multiple ground clause to the probability of the same atom in a lifted way., i.e., without

generating the groundings.

We now discuss Aggregation Parfactors and Relational Logistic Regression. We

first introduce parametrized random variables (PRV) that are represented by logical

atoms. Each logical variable in a PRV is typed with a population. A parfactor is a triple

〈C,V , F 〉 where C is a set of inequality constraints on parameters (logical variables),

14

V is a set of PRV and F is a factor that is a function from the Cartesian product of

ranges of PRVs in V to real values.

Aggregation parfactors (Kisynski and Poole, 2009) can represent different kind

of causal independence models, of which noisy-OR and noisy-MAX are special cases.

Aggregation parfactors are a generalization of parfactors that are defined over two of

PRVs one of which contains one more logical variable that the other. Therefore, the

contributions of the PRV with the extra logical variable have to be aggregated and this

is done by converting the aggregation parfactor into two regular parfactors. We can

correctly encode liftable PLP with aggregation parfactors obtaining the same formula

for calculating the probability of queries.

Relational Logistic Regression (Kazemi et al, 2014) generalizes logistic regression,

where the probability of a child Boolean random variable Q is modeled on the basis of

the values of parent random variables {X1, . . . , Xn} as

P (q|X1, . . . , Xn) = sigmoid(w0 +
∑
i

wiXi)

where q ≡ (Q = true) and sigmoid(x) = 1/(1+e−x). For the case of Boolean variables,

we can assume that the values are encoded with 0 for false and 1 for true.

To apply logistic regression to the relational case, the authors introduce the notion

of weighted parent formula (WPF) for a PRVQ(X), whereX is a set of logical variables:

a WPF is a triple 〈L,F,wi〉 where L is a set of logical variables for which L ∩X = ∅,
F is a Boolean formula of parent PRVs of Q(X) such that each logical variable in F is

either X or in L, and wi is a weight.

Suppose Ri(Xi) are the parents of PRV Q(X), where Xi is the set of logical vari-

ables in Ri. A relational logistic regression (RLR) for Q with parents Ri(Xi) is defined

using a set of WPFs as:

P (Q(X)|Π) = sigmoid

 ∑
〈L,F,wi〉

wi
∑
L

FΠ,X→x


where Π represents the assigned values to parents of Q, x represents an assignment

of an individual to each logical variable in X, and FΠ,X→x is formula F with each

logical variable X in it being replaced according to x, and evaluated in Π. So RLR

performs an aggregation of the parents of a PRV. The authors show that RLR can

model noisy-OR therefore they can encode liftable PLP.

Lifted learning is still an open problem. An approach for performing lifted genera-

tive learning was proposed in (Van Haaren et al, 2016): while the paper discusses both

weight and structure learning, it focuses on Markov Logic Networks and generative

learning, so it is not directly applicable to the setting considered in this paper.

Liftable PLP is very much related to (Koller and Pfeffer, 1997; Kersting and

De Raedt, 2002; Natarajan et al, 2009) where the contributions of different rules and

different rule groundings are combined with noisy-OR combining rules. First-Order

Probabilistic Logic (FOPL) (Koller and Pfeffer, 1997) and Bayesian Logic Programs

(BLP) (Kersting and De Raedt, 2002) consider ground atoms as random variables and

admit rules with a single atom in the head and only positive literals in the body. The

meaning of such rules is that, for each grounding, the head atom random variable

directly depends from the body atoms random variables. Thus rules are simply tem-

plates that can be used to generate a Bayesian network by a Knowledge-Based Model

15

Construction (KBMC) approach (Wellman et al, 1992). Ground rules determine the

families of the network and the random variables may have non-Boolean domains. The

rules are also associated with parameters that define the CPT of the head variable

given the body variables. In the case where an atom h appears in the head of more

than one ground rule, the Bayesian network contains an extra family where the child

is the variable for atom h and there is a parent h′ for each rule whose family and

CPT is defined by the rule. This extra family encodes a combining rule, i.e., a way of

combining the contributions of the different rules for the same atom. Both FOPL and

BLP allow different combining rules, including a noisy-OR combining rule where the

CPT of the extra family encodes a disjunction, so liftable PLP models can be encoded

directly in both FOPL and BLP. Differently from Liftable PLP, FOPL and BLP allow

multiple layers of rules. Koller and Pfeffer (1997) and Kersting and De Raedt (2002)

also present learning algorithms: the first discusses an EM algorithm for parameter

learning and the latter EM and gradient descent parameter learning algorithms to-

gether with a structure learning algorithm. The learning problems are similar to the

ones considered in this paper. Additionally, Kersting and De Raedt (2002) consider the

case where non-target atoms may be unobserved in the data. Both articles derive for-

mulas for updating the parameters but, given the generality of the settings considered

(non-Boolean domains, multiple layers of rules, different combining rules, incomplete-

ness of the data), the formulas involve quantities to be computed by inference in the

Bayesian network, while our formula depend on the parameters only.

Scooby, the structure learning algorithm of (Kersting and De Raedt, 2002), is

similar to LIFTCOVER in the sense that it performs a greedy search in the space

of programs evaluating each hypothesis by performing parameter learning. Scooby

performs a local search by applying theory revisions to an initial hypothesis, while

LIFTCOVER performs a beam search in the space of clauses followed by search in the

space of theories by parameter learning.

The First-Order Conditional Influence Language (FOCIL) (Natarajan et al, 2009),

like FOPL and BLP, considers probabilistic rules compactly encoding probabilistic de-

pendencies. FOCIL is more similar to liftable PLP because it allows only one layer

of rules. FOCIL uses different combining rules with respect to liftable PLP: the con-

tributions of different groundings of the same rule with the same random variable in

the head are combined by taking the mean and the contributions of different rules are

combined either with a weighted mean or with a noisy-OR combining rule. Liftable

PLP instead uses noisy-OR for both types of contributions. Natarajan et al (2009) also

present parameter learning algorithms for optimizing the mean squared errors or the

log likelihood using gradient descent or EM both for weighted mean and with noisy-

OR. While the derivation of the update formulas for the weights are similar, they differ

because we don’t use the mean combining function.

16

7 Experiments

LIFTCOVER1 has been implemented in SWI-Prolog (Wielemaker et al, 2012) using a

porting2 of YAP-LBFGS3, a foreign language interface to libLBFGS4.

LIFTCOVER has been tested on the following 12 real world datasets: the 4 classic

benchmarks UW-CSE (Kok and Domingos, 2005), Mutagenesis (Srinivasan et al, 1996),

Carcinogenesis (Srinivasan et al, 1997), Mondial (Schulte and Khosravi, 2012); the 4

datasets Bupa, Nba, Pyrimidine, Triazine from https://relational.fit.cvut.cz/,

and the 4 datasets Financial, Sisya, Sisyb and Yeast from (Struyf et al, 2006)5.

Statistics on all the domains are reported in Table 1. In all datasets the mega-

examples are defined only by facts, there are no background non-probabilistic rules.

Dataset P T PEx NEx F

Financial 9 92658 34 223 10
Bupa 12 2781 145 200 5
Mondial 11 10985 572 616 5
Mutagen. 20 15249 125 126 10
Sisyb 9 354507 3705 9229 10
Sisya 9 358839 10723 6544 10
Pyrimidine 29 2037 20 20 4
Yeast 12 53988 1299 5456 10
Nba 4 1218 15 15 5
Triazine 62 10079 20 20 4
UW-CSE 15 2673 113 20680 5
Carcinogen. 36 24533 182 155 1

Table 1 Characteristics of the datasets for the experiments: number of predicates (P), of
tuples (T) (i.e., ground atoms), of positive (PEx) and negative (NEx) examples for target
predicate(s), of folds (F). The number of tuples includes the target positive examples.

We would like to test the hypothesis that LIFTCOVER allows fast learning without

a significant degradation of the quality of the solution with respect to SLIPCOVER:

In order to compare the two systems fairly, in all datasets the language bias for SLIP-

COVER allows only one atom in the head and only input predicates in the body, so

the space of allowed clauses is the same for the two algorithms.

To evaluate the performance, we drew Precision-Recall curves and Receiver Op-

erating Characteristics curves, computing the Area Under the Curve (AUC-PR and

AUC-ROC respectively) with the methods reported in (Davis and Goadrich, 2006;

Fawcett, 2006). AUC was used to measure the quality of the learned models as classi-

fiers for predicting the truth values of atoms for target predicates, larger areas means

better classifiers.

SLIPCOVER was compared with Aleph (Srinivasan, 2007), SLIPCASE (Bellodi

and Riguzzi, 2012), SEM-CP-logic (Meert et al, 2008) LSM (Kok and Domingos, 2010),

1 The code of the systems and the datasets are available at https://bitbucket.org/
machinelearningunife/liftcover.

2 https://github.com/friguzzi/lbfgs
3 Developed by Bernd Gutmann.
4 http://www.chokkan.org/software/liblbfgs/
5 https://dtai.cs.kuleuven.be/ACE/doc/

17

https://relational.fit.cvut.cz/
https://bitbucket.org/machinelearningunife/liftcover
https://bitbucket.org/machinelearningunife/liftcover
https://github.com/friguzzi/lbfgs
http://www.chokkan.org/software/liblbfgs/
https://dtai.cs.kuleuven.be/ACE/doc/

ALEPH++ExactL1 (Huynh and Mooney, 2008), LEMUR (Di Mauro et al, 2015),

BUSL (Mihalkova and Mooney, 2007), MLN-BC, MLN-BT (Khot et al, 2011) RDN-

B (Natarajan et al, 2012), SLS (Hoos and Stützle, 2004) and RRR (Železný et al,

2002, 2006) in (Bellodi and Riguzzi, 2015) and (Di Mauro et al, 2015) on 8 datasets.

In almost all datasets SLIPCOVER was among the top 4 systems in terms of AUC-

PR, thus showing that it is among the state of the art of StarAI. Thus comparing

LIFTCOVER with SLIPCOVER will also provide an evaluation of its performance in

the general context of StarAI.

LIFTCOVER-EM was run with the following parameters for EM: restarts = 1,

max iter = 10, ε = 10−4 and δ = 10−5. The default parameters have been used

for libLBFGS. The parameters controlling structure learning are: the number NInt of

mega-examples on which to build the bottom clauses, the number NA of bottom clauses

to be built for each mega-example, the number NS of saturation steps (for building the

bottom clauses), the maximum number NI of clause search iterations, the size NB of

the beam, the maximum number NV of variables in a rule, the threshold for the rule

parameter WMin under which the rule is removed and the maximum numbers NIS of

iterations of structure search of SLIPCOVER. Table 2 shows the values we have used.

WMin was set to 0 in all dataset in order to perform the simplest pruning type, that

of rules that don’t influence at all the prediction. The other parameters for UW-CSE,

Mutagenesis, Carcinogenesis, Mondial have been set as in (Di Mauro et al, 2015). For

the other datasets they have been set by a random search with the objective of keeping

the computation time of both algorithms within a few hundred seconds

Dataset NB NI NInt NS NA NV WMin NIS
Financial 100 20 1 1 1 4 0 50
Bupa 100 20 1 1 1 4 0 50
Mondial 1000 10 1 2 6 5 0 10000
Mutagen. 100 10 1 1 1 4 0 500
Sisb 100 20 1 1 1 50 0 40
Sisya 100 20 1 1 1 4 0 40
Pyrimidine 100 20 1 1 1 100 0 50
Yeast 100 20 1 1 1 4 0 50
Nba 100 20 1 1 1 100 0 50
Triazine 100 20 1 1 1 4 0 50
UW-CSE 20 60 1 1 1 4 0 500
Carcinogen. 100 60 1 2 1 3 0 50

Table 2 Parameters controlling structure search for LIFTCOVER and SLIPCOVER.

All experiments were performed on GNU/Linux machines with an Intel Xeon

Haswell E5-2630 v3 (2.40GHz) CPU with 8GB of memory allocated to the job.

Figures 2, 3 and 4 show histograms of the average over the folds of AUC-ROC, AUC-

PR and the execution time respectively of LIFTCOVER-EM, LIFTCOVER-LBFGS

and SLIPCOVER. Tables 3, 4 and 5 show the same data in a tabular way.

LIFTCOVER-EM beats SLIPCOVER 8 times and ties twice in terms of AUC-ROC

and beats SLIPCOVER 5 times and ties twice in terms of AUC-PR, with two cases

(Sisya and Sisyb) where it is nearly as good. In terms of execution time, LIFTCOVER-

EM is faster than SLIPCOVER in 9 cases and in the other three cases is nearly as fast.

18

Fig. 2 Histograms of average AUC-ROC.

In 7 cases the gap is of one or more orders of magnitude (UW-CSE, Carcinognesis,

Nba, Triazine, Sisya, Sisyb, Yeast).

LIFTCOVER-LBFGS beats SLIPCOVER 4 times (in Sisya they are very close)

and ties twice in terms of AUC-ROC and beats SLIPCOVER 5 times and ties once in

terms of AUC-PR, with two cases where it is nearly as good. In terms of execution time,

LIFTCOVER-LBFGS beats SLIPCOVER 9 times, with one case where SLIPCOVER is

nearly as fast. In 5 cases the gap is of one or more orders of magnitude (UW- CSE, Car-

cinogenesis, Nba, Sisya, Sisyb). In Mutagenesis and Pyrimidine LIFTCOVER-LBFGS

takes about ten times and twice as much as SLIPCOVER respectively. The reason for

these differences may be due to the fact that these are small-medium datasets which are

relatively easy for the systems (and also for ILP systems in general (Reutemann et al,

2004)), so SLIPCOVER is able to achieve good performance even with the allowed

small search space.

Overall we see that both lifted algorithms are usually faster, sometimes by a large

margin, with respect to SLIPCOVER, especially LIFTCOVER-EM. Moreover, this

system often finds better quality solutions, showing that structure search by parameter

learning is effective.

19

AUC-ROC LIFTCOVER-EM LIFTCOVER-LBFGS SLIPCOVER
Financial 0.432 0.535 0.568
Bupa 1.000 1.000 1.000

Mondial 0.663 0.643 0.630
Mutagen. 0.931 0.649 0.826
Sisyb 0.500 0.500 0.500
Sisya 0.372 0.721 0.719

Pyrimidine 1.000 0.850 0.925
Yeast 0.786 0.721 0.733
Nba 0.531 0.650 0.575

Triazine 0.713 0.760 0.544
UW-CSE 0.977 0.762 0.935

Carcinogen. 0.766 0.472 0.695

Table 3 Average AUC-ROC.

Fig. 3 Histograms of average AUC-PR.

20

AUC-PR LIFTCOVER-EM LIFTCOVER-LBFGS SLIPCOVER
Financial 0.126 0.187 0.173
Bupa 1.000 1.000 1.000

Mondial 0.763 0.723 0.776
Mutagen. 0.971 0.725 0.920
Sisyb 0.286 0.286 0.287
Sisya 0.706 0.706 0.708

Pyrimidine 1.000 0.819 0.956
Yeast 0.502 0.448 0.428
Nba 0.550 0.705 0.550

Triazine 0.734 0.760 0.560
UW-CSE 0.220 0.263 0.163

Carcinogen. 0.672 0.561 0.745

Table 4 Average AUC-PR.

Fig. 4 Histograms of average time in seconds. The scale of the Y axis is logarithmic.

21

Time LIFTCOVER-EM LIFTCOVER-LBFGS SLIPCOVER
Financial 0.235 0.246 0.178
Bupa 0.243 1.239 1.349

Mondial 5.911 3.984 6.490
Mutagen. 12.77 122.8 12.11
Sisyb 0.226 0.412 37.00
Sisya 0.932 2.252 45.75

Pyrimidine 54.99 126.1 54.62
Yeast 0.502 69.30 202.4
Nba 0.599 1.036 386.0

Triazine 56.69 109.1 728.2
UW-CSE 8.054 178.6 1069

Carcinogen. 7.850 76.49 25568

Table 5 Average time in seconds.

Between the two lifted algorithms, the EM version wins 6 times and ties twice with

respect to AUC-ROC and wins 5 times and ties 3 times with respect to AUC-PR.

In terms of execution times, the EM version wins on all dataset except Mondial, with

differences below one order of magnitude except UW-CSE and Yeast. So LIFTCOVER-

EM appears to be superior both in terms of solution quality and of computation time.

EM seems to be better at escaping local maxima and cheaper than LBFGS, possibly

also due to the fact that LBFGS may require a careful tuning of parameters and that

it is implemented as a foreign language library.

Therefore, LIFTCOVER represents a valid alternative to SLIPCOVER when learn-

ing the definition of a single predicate by using a single layer of rules with a single head.

While the problem of inducing general probabilistic logic program will come to

fore soon, learning a restricted language may be a valid alternative in many cases.

For example, in (Bellodi and Riguzzi, 2015) and (Di Mauro et al, 2015) SLIPCOVER

was applied to the UW-CSE dataset with a language bias that allowed multiple heads

and clauses for non-target predicates. The values of AUCPR obtained there are 0.13

and 0.11 respectively, that are lower than the values obtained by LIFTCOVER and

SLIPCOVER shown in Table 4. Therefore restricting the language bias in this case

actually improved the performance, probably because it has a regularizing effect.

Moreover, by looking at the characteristics of the datasets, there doesn’t seem to

exist a clear relationship between the number of predicates/number of tuples and the

performance: complex datasets (large number of predicates) may be hard for LIFT-

COVER (Carcinogenesis) or easy (Triazine) and large datasets (large number of tuples)

may be hard for LIFTCOVER (Financial) or easy (Yeast). We leave for future work

further experiments to investigate whether the adoption of a more expressive language

can improve the performance for the datasets that are hard for LIFTCOVER such as

Sisyb and Financial.

8 Conclusions

We have presented an algorithm that learns the structure of a restricted version of

probabilistic logic programs using either EM or LBFGS for parameter learning. The

results show that LIFTCOVER-EM and LIFTCOVER-LBFGS are faster than SLIP-

22

COVER and often more accurate, with LIFTCOVER-EM performing slightly better

than LIFTCOVER-LBFGS.

Regarding the restriction imposed on the language, the results of SLIPCOVER

on the UW-CSE dataset with a more expressive language are inferior to those of the

restricted language. In the future we plan to perform further experiments to investigate

the impact of the adoption of a more expressive language on the datasets that are hard

for LIFTCOVER. Moreover, we plan to compare LIFTCOVER directly with other

algorithms designed for scalability such as (Nath and Domingos, 2015; Huynh and

Mooney, 2011).

We also plan to test the influence of settings in LBFGS and to add explicit regu-

larization to parameter learning in order to reduce overfitting.

Acknowledgments:

This work was supported by the “National Group of Computing Science (GNCS-

INDAM)” and by Regione Emilia Romagna under the Piano triennale alte competenze

- POR FSE 2014/2020 Obiettivo tematico 10.

References

Alberti M, Bellodi E, Cota G, Riguzzi F, Zese R (2017) cplint on SWISH: Probabilistic

logical inference with a web browser. Intelligenza Artificiale 11(1):47–64, DOI 10.

3233/IA-170105

Bellodi E, Riguzzi F (2012) Learning the structure of probabilistic logic programs. In:

Muggleton S, Tamaddoni-Nezhad A, Lisi F (eds) 22nd International Conference on

Inductive Logic Programming, Springer Berlin Heidelberg, LNCS, vol 7207, pp 61–75

Bellodi E, Riguzzi F (2013) Expectation maximization over binary decision diagrams

for probabilistic logic programs. Intelligent Data Analysis 17(2):343–363

Bellodi E, Riguzzi F (2015) Structure learning of probabilistic logic programs by search-

ing the clause space. Theory and Practice of Logic Programming 15(2):169–212,

DOI 10.1017/S1471068413000689

Bellodi E, Lamma E, Riguzzi F, Costa VS, Zese R (2014) Lifted variable elimination

for probabilistic logic programming. Theory and Practice of Logic Programming

14(4-5):681–695, DOI 10.1017/S1471068414000283

Darwiche A, Marquis P (2002) A knowledge compilation map. Journal of Artificial

Intelligence Research 17:229–264

Davis J, Goadrich M (2006) The relationship between precision-recall and ROC curves.

In: European Conference on Machine Learning (ECML 2006), ACM, pp 233–240

De Raedt L, Kimmig A (2015) Probabilistic (logic) programming concepts. Machine

Learning 100(1):5–47

De Raedt L, Kimmig A, Toivonen H (2007) ProbLog: A probabilistic Prolog and its

application in link discovery. In: Veloso MM (ed) 20th International Joint Conference

on Artificial Intelligence (IJCAI 2007), AAAI Press/IJCAI, vol 7, pp 2462–2467

Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data

via the EM algorithm. Journal of the Royal Statistical Society Series B (method-

ological) pp 1–38

23

Di Mauro N, Bellodi E, Riguzzi F (2015) Bandit-based Monte-Carlo structure learning

of probabilistic logic programs. Machine Learning 100(1):127–156, DOI 10.1007/

s10994-015-5510-3

Fawcett T (2006) An introduction to ROC analysis. Pattern Recognition Letters

27:861–874

Good IJ (1961) A causal calculus (i). The British journal for the philosophy of science

11(44):305–318

Gordon DM (1998) A survey of fast exponentiation methods. Journal of Algorithms

27(1):129 – 146, DOI 10.1006/jagm.1997.0913

Gorlin A, Ramakrishnan CR, Smolka SA (2012) Model checking with probabilistic

tabled logic programming. Theory and Practice of Logic Programming 12(4-5):681–

700

Hoos HH, Stützle T (2004) Stochastic Local Search: Foundations & Applications. El-

sevier / Morgan Kaufmann

Huynh TN, Mooney RJ (2008) Discriminative structure and parameter learning for

markov logic networks. In: Cohen WW, McCallum A, Roweis ST (eds) Proceedings

of the 25th international conference on Machine learning, ACM, pp 416–423

Huynh TN, Mooney RJ (2011) Online structure learning for markov logic networks. In:

Gunopulos D, Hofmann T, Malerba D, Vazirgiannis M (eds) European Conference on

Machine Learning and Principles and Practice of Knowledge Discovery in Databases

(ECMLPKDD 2011), Springer, Lecture Notes in Computer Science, vol 6912, pp

81–96, DOI 10.1007/978-3-642-23783-6 6

Kazemi SM, Buchman D, Kersting K, Natarajan S, Poole D (2014) Relational logistic

regression. In: Baral C, Giacomo GD, Eiter T (eds) 14th International Conference

on Principles of Knowledge Representation and Reasoning (KR 2014), AAAI Press

Kersting K, De Raedt L (2002) Basic principles of learning bayesian logic programs.

In: Institute for Computer Science, University of Freiburg, Citeseer

Khot T, Natarajan S, Kersting K, Shavlik JW (2011) Learning Markov Logic Networks

via functional gradient boosting. In: Proceedings of the 11th IEEE International

Conference on Data Mining, IEEE, pp 320–329

Kietz J, Lübbe M (1994) An efficient subsumption algorithm for inductive logic pro-

gramming. In: Cohen WW, Hirsh H (eds) 11th International Conference on Machine

Learning, Morgan Kaufmann, pp 130–138

Kisynski J, Poole D (2009) Lifted aggregation in directed first-order probabilistic mod-

els. In: Boutilier C (ed) 21st International Joint Conference on Artificial Intelligence

(IJCAI 2009), pp 1922–1929

Kok S, Domingos P (2005) Learning the structure of Markov Logic Networks. In: 22nd

International Conference on Machine learning, ACM, pp 441–448

Kok S, Domingos P (2010) Learning Markov Logic Networks using structural motifs. In:

Fürnkranz J, Joachims T (eds) 27th International Conference on Machine Learning,

Omnipress, pp 551–558

Koller D, Friedman N (2009) Probabilistic Graphical Models: Principles and Tech-

niques. Adaptive computation and machine learning, MIT Press, Cambridge, MA

Koller D, Pfeffer A (1997) Learning probabilities for noisy first-order rules. In: IJCAI,

pp 1316–1323

Meert W, Struyf J, Blockeel H (2008) Learning ground CP-Logic theories by leveraging

Bayesian network learning techniques. Fundamenta Informaticae 89(1):131–160

Meert W, Struyf J, Blockeel H (2010) CP-Logic theory inference with contextual vari-

able elimination and comparison to BDD based inference methods. In: De Raedt

24

L (ed) Inductive Logic Programming, 19th International Conference, (ILP 2009),

Springer, Lecture Notes in Computer Science, vol 5989, pp 96–109, DOI 10.1007/

978-3-642-13840-9 10

Mihalkova L, Mooney RJ (2007) Bottom-up learning of markov logic network structure.

In: Proceedings of the 24th International Conference on Machine Learning, ACM,

pp 625–632

Mørk S, Holmes I (2012) Evaluating bacterial gene-finding hmm structures as proba-

bilistic logic programs. Bioinformatics 28(5):636–642

Muggleton S (1995) Inverse entailment and Progol. New Generation Computing

13:245–286

Natarajan S, Tadepalli P, Kunapuli G, Shavlik J (2009) Learning parameters for rela-

tional probabilistic models with noisy-or combining rule. In: Machine Learning and

Applications, 2009. ICMLA’09. International Conference on, IEEE, pp 141–146

Natarajan S, Khot T, Kersting K, Gutmann B, Shavlik J (2012) Gradient-based boost-

ing for statistical relational learning: The relational dependency network case. Ma-

chine Learning 86(1):25–56

Nath A, Domingos P (2015) Learning relational sum-product networks. In: Bonet B,

Koenig S (eds) 29th National Conference on Artificial Intelligence, AAAI’15, Austin,

Texas, USA, AAAI Press, pp 2878–2886

Nguembang Fadja A, Riguzzi F (2017) Probabilistic logic programming in action.

In: Holzinger A, Goebel R, Ferri M, Palade V (eds) Towards Integrative Machine

Learning and Knowledge Extraction, Lecture Notes in Computer Science, vol 10344,

Springer, DOI 10.1007/978-3-319-69775-8 5

Nishino M, Yamamoto A, Nagata M (2014) A sparse parameter learning method for

probabilistic logic programs. In: Statistical Relational Artificial Intelligence, Papers

from the 2014 AAAI Workshop, AAAI Press, AAAI Workshops, vol WS-14-13

Nocedal J (1980) Updating quasi-newton matrices with limited storage. Mathematics

of Computation 35(151):773–782

Pearl J (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann

Poole D (1997) The Independent Choice Logic for modelling multiple agents under

uncertainty. Artificial Intelligence 94:7–56

Poole D (2000) Abducing through negation as failure: Stable models within the inde-

pendent choice logic. Journal of Logic Programming 44(1-3):5–35

Poole D (2003) First-order probabilistic inference. In: IJCAI, vol 3, pp 985–991

Quinlan JR (1990) Learning logical definitions from relations. Machine Learning 5:239–

266, DOI 10.1007/BF00117105

Reutemann P, Pfahringer B, Frank E (2004) A toolbox for learning from relational data

with propositional and multi-instance learners. In: Webb GI, Yu X (eds) 17th Aus-

tralian Joint Conference on Artificial Intelligence (AI 1994), Springer, Lecture Notes

in Computer Science, vol 3339, pp 1017–1023, DOI 10.1007/978-3-540-30549-1\ 95

Riguzzi F (2014) Speeding up inference for probabilistic logic programs. The Computer

Journal 57(3):347–363, DOI 10.1093/comjnl/bxt096

Riguzzi F (2016) The distribution semantics for normal programs with function sym-

bols. International Journal of Approximate Reasoning 77:1 – 19, DOI 10.1016/j.ijar.

2016.05.005

Riguzzi F, Swift T (2011) The PITA system: Tabling and answer subsumption for rea-

soning under uncertainty. Theory and Practice of Logic Programming 11(4–5):433–

449, DOI 10.1017/S147106841100010X

25

Riguzzi F, Swift T (2018) Probabilistic logic programming under the distribution se-

mantics. In: Kifer M, Liu YA (eds) Declarative Logic Programming: Theory, Systems,

and Applications, Association for Computing Machinery and Morgan & Claypool

Riguzzi F, Bellodi E, Lamma E, Zese R, Cota G (2016) Probabilistic logic programming

on the web. Software: Practice and Experience 46(10):1381–1396, DOI 10.1002/spe.

2386

Riguzzi F, Bellodi E, Zese R, Cota G, Lamma E (2017a) A survey of lifted inference

approaches for probabilistic logic programming under the distribution semantics. In-

ternational Journal of Approximate Reasoning 80:313–333, DOI 10.1016/j.ijar.2016.

10.002

Riguzzi F, Lamma E, Alberti M, Bellodi E, Zese R, Cota G (2017b) Probabilistic logic

programming for natural language processing. In: Chesani F, Mello P, Milano M

(eds) Workshop on Deep Understanding and Reasoning, URANIA 2016, Sun SITE

Central Europe, CEUR Workshop Proceedings, vol 1802, pp 30–37

Sato T (1995) A statistical learning method for logic programs with distribution se-

mantics. In: Sterling L (ed) 12th International Conference on Logic Programming

(ICLP 1995), MIT Press, pp 715–729

Sato T, Kameya Y (1997) PRISM: a language for symbolic-statistical modeling. In:

15th International Joint Conference on Artificial Intelligence (IJCAI 1997), vol 97,

pp 1330–1339

Sato T, Kubota K (2015) Viterbi training in PRISM. Theory and Practice of Logic

Programming 15(02):147–168

Schulte O, Khosravi H (2012) Learning graphical models for relational data via lattice

search. Machine Learning 88(3):331–368

Srinivasan A (2007) The aleph manual. http://www.cs.ox.ac.uk/activities/

machlearn/Aleph/aleph.html, accessed April 3, 2018

Srinivasan A, Muggleton S, Sternberg MJE, King RD (1996) Theories for mutagenicity:

A study in first-order and feature-based induction. Artificial Intelligence 85(1-2):277–

299

Srinivasan A, King RD, Muggleton S, Sternberg MJE (1997) Carcinogenesis predictions

using ILP. In: Lavrac N, Dzeroski S (eds) 7th International Workshop on Inductive

Logic Programming, Springer Berlin Heidelberg, Lecture Notes in Computer Science,

vol 1297, pp 273–287

Struyf J, Davis J, Page D (2006) An efficient approximation to lookahead in relational

learners. In: European Conference on Machine Learning (ECML 2006), Springer,

Lecture Notes in Computer Science, pp 775–782, DOI 10.1007/11871842 79

Taghipour N, Fierens D, Davis J, Blockeel H (2013) Lifted variable elimination: Decou-

pling the operators from the constraint language. Journal of Artificial Intelligence

Research 47:393–439

Valiant LG (1979) The complexity of enumeration and reliability problems. SIAM

Journal on Computing 8(3):410–421

Van den Broeck G, Meert W, Darwiche A (2014) Skolemization for weighted first-

order model counting. In: Baral C, Giacomo GD, Eiter T (eds) 14th International

Conference on Principles of Knowledge Representation and Reasoning (KR 2014),

AAAI Press, pp 111–120

Van Gelder A, Ross KA, Schlipf JS (1991) The well-founded semantics for general logic

programs. Journal of the ACM 38(3):620–650

Van Haaren J, Van den Broeck G, Meert W, Davis J (2016) Lifted generative

learning of markov logic networks. Machine Learning 103(1):27–55, DOI 10.1007/

26

http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html
http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html

s10994-015-5532-x

Vennekens J, Verbaeten S (2003) Logic programs with annotated disjunctions. Tech.

Rep. CW386, KU Leuven

Vennekens J, Verbaeten S, Bruynooghe M (2004a) Logic programs with annotated

disjunctions. In: Demoen B, Lifschitz V (eds) 24th International Conference on Logic

Programming (ICLP 2004), Springer, Berlin, Lecture Notes in Computer Science, vol

3131, pp 195–209

Vennekens J, Verbaeten S, Bruynooghe M (2004b) Logic Programs With Annotated

Disjunctions. In: 24th International Conference on Logic Programming (ICLP 2004),

Springer, Lecture Notes in Computer Science, vol 3132, pp 431–445

Wang WY, Mazaitis K, Cohen WW (2014) Structure learning via parameter learning.

In: Li J, Wang XS, Garofalakis MN, Soboroff I, Suel T, Wang M (eds) 23rd ACM In-

ternational Conference on Conference on Information and Knowledge Management,

CIKM 2014, ACM Press, pp 1199–1208, DOI 10.1145/2661829.2662022

Wellman MP, Breese JS, Goldman RP (1992) From knowledge bases to decision models.

The Knowledge Engineering Review 7(1):35–53

Wielemaker J, Schrijvers T, Triska M, Lager T (2012) SWI-Prolog. Theory and Practice

of Logic Programming 12(1-2):67–96, DOI 10.1017/S1471068411000494

Železný F, Srinivasan A, Page CD (2002) Lattice-search runtime distributions may

be heavy-tailed. In: Proceedings of the 12th International Conference on Inductive

Logic Programming, Springer

Železný F, Srinivasan A, Page Jr CD (2006) Randomised restarted search in ILP.

Machine Learning 64(1-3):183–208

Zhang NL, Poole D (1994) A simple approach to bayesian network computations. In:

10th Canadian Conference on Artificial Intelligence, Canadian AI 1994, pp 171–178

Zhang NL, Poole DL (1996) Exploiting causal independence in Bayesian network in-

ference. Journal of Artificial Intelligence Research 5:301–328

27

	Introduction
	Probabilistic Logic Programming
	Liftable PLP
	Parameter Learning
	Structure Learning
	Related Work
	Experiments
	Conclusions

