
Integrating Abduction and Induction

Fabrizio Riguzzi1

1 Introduction

Lately, the relationship and integration between abduction

and induction have received much attention and have been

the subject of a series of ECAI and IJCAI workshops since

1996 [4]. In the context of Logic Programming, the two infer-

ence processes are studied, respectively, in the research �elds

of Abductive Logic Programming (ALP for short) [5] and In-

ductive Logic Programming (ILP for short) [9]. Even if the

de�nitions of abduction and induction are still subject of de-

bate, we will adopt the rather established de�nitions for ab-

duction and induction that are given in ALP and ILP.

Abduction is the process of inferring explanations for ob-

servations. In ALP, explanations are obtained from abductive

theories of the form T = hP;A; ICi where P is a logic pro-

gram, A is a set of abducible predicates and IC is a set of

integrity constraints in the form of denials. The problem of

abduction can then be stated as follows [5]: given an abduc-

tive theory T = hP;A; ICi and an observation O, �nd an

explanation � for the observation such that it contains only

atoms of abducible predicates, it entails O together with P

(P [� j= O) and it is consistent with integrity constraints

(P [� j= IC). In this case we say that T abductively entails

O with abductive explanation � and we write T j=A O. In

ALP, deafult negation is modelled through abduction by con-

sidering negative literals as new abducible literals of the form

not p and by including constraints of the form p; not p.

Induction, instead, is the process of inferring general rules

from examples. In ILP, the problem of induction can be stated

as follows [9]: given a logic program B (background knowl-

edge), a set of positive and negative examples E+ and E�

and a hypothesis space P, �nd a logic program P 2 P such

that B [P entails every positive example and no negative

one.

We propose an approach for the integration of abduction

and induction that consists in extending an Inductive Logic

Programming system with abductive reasoning capabilities.

In the resulting system, abduction is used to make assump-

tions in order to cover positive examples and avoid the cov-

erage of negative ones. The assumptions generated can then

be generalized in their turn.

The integration thus increases the power of both inference

processes: abduction helps induction by generating atomic hy-

potheses that can be used as new training examples or to com-

plete an incomplete background knowledge, while induction

helps abduction by generalizing abductive explanations.

The system is able to perform the following tasks: learn-

1 DEIS, Universit�a di Bologna, Viale Risorgimento 2, 40136
Bologna, Italy friguzzi@deis.unibo.it

ing from incomplete knowledge, learning abductive theories,

learning exceptions, learning multiple predicates and learning

normal logic programs. In ILP, various systems have been pro-

posed that solve each of these problems singularly by means

of ad hoc techniques [10, 2, 1]. By integrating abduction and

induction, we obtain a framework where the above problems

can be solved in a general and principled way.

Section 2 presents the algorithm while the tasks that can

be accomplished by it are discussed in section 3.

2 The Algorithm

The algorithm is an evolution of those proposed in [7, 8].

It solves a new learning problem where both background and

target theory are abductive theories and abductive entailment

is used in place of deductive entailment as the coverage rela-

tion.

Abductive Learning Problem: given an abductive the-

ory T = hP; A; ICi as background theory, a set of positive and

negative examples E+ and E� and a set P of possible pro-

grams, �nd a new abductive theory T 0 = hP [P 0; A; ICi
such that P 0 2 P and T 0 j=A E+; not E�, where not E� =

fnot e�je� 2 E�g and E+; not E� stands for the conjunc-

tion of each atom in E+ and not E�.

The algorithm is obtained by extending a basic top-down

covering ILP algorithm [9]. Abduction is used in order to cover

examples: if a positive example can not be covered with the

available information, assumptions are made in order to cover

it. Moreover, assumptions of absence of atoms are made in

order to ensure that negative examples are not covered. To

this purpose, the coverage test of examples is performed by

using the abductive proof procedure de�ned in [6] instead of

the Prolog proof procedure. Each example is tested singularly

but care is taken to ensure that explanations for di�erent

examples are consistent with each other by keeping a global

set of assumptions.

Some of the target predicates can also be considered as

abducible. In this case, after the generation of each clause,

assumptions about target predicates are added to the training

set, so that they become new training examples.

In the specialization loop, the space of clauses is searched

by performing a beam search. The heuristic function has been

specially designed in order to take into account abduction: an

estimated accuracy has been used where example covered by

making assumptions are given a lower weight with respect to

those covered without assumptions.

Note that we have considered a learning problem where

no constraints are learned. In order to learn a full abductive

theory, we learn �rst the rules, using the above algorithm,

c 1998 F. Riguzzi
ECAI 98. 13th European Conference on Arti�cial Intelligence
Young Researcher Paper
Edited by Henri Prade
Published in 1998 by John Wiley & Sons, Ltd.

and then the constraints, using the system ICL [3] that learns

from interpretations. The input interpretations for ICL are

obtained from the set of assumptions generated in the rule

learning phase.

3 Tasks

Let us �rst show an example of learning from incomplete

knowledge. Consider the abductive background theory B =

hP; A; ICi and training set:

P = fparent(john;mary);male(john);

parent(david; steve);

parent(kathy; ellen); female(kathy)g
A = fmale=1; female=1; not male=1; not female=1g
IC = f male(X); not male(X)

 female(X); not female(X)g
E+ = ffather(john;mary); father(david; steve)g
E� = ffather(john; steve); father(kathy; ellen)g

From these data, the system learns the rule

father(X;Y) parent(X;Y);male(X):

that covers the positive examples and the negation of the

negative ones by making the assumptions

� = fmale(david); not male(kathy)g.
At this point, we can either stop or go on and learn the con-

straints. The input to ICL consists of the positive interpreta-

tion fmale(david)g and of the negative one fmale(kathy)g.
From this input, ICL learns the constraint

 male(X); female(X).

In order to learn exceptions to rules, when no literal can

be added to a rule for a target predicate p(~X) in order to

make it consistent, the rule is specialized by adding a new ab-

ducible literal not abnormi(~X). This addition transforms the

rule into a default one that can be applied in all \normal" (or

non-abnormal) cases. The re�ned rule becomes consistent by

abducing abnormi(~t�) for every negative example p(~t�) pre-

viously covered. Positive examples, instead, will be covered by

abducing not abnormi(~t+) for every positive example p(~t+)

previously covered. These assumptions are then added to the

training set, and are used to learn a de�nition for abnormi(~X)

that describes the class of exceptions. If there are exceptions

to exceptions, the system adds a new literal not abnormj(~X)

to the body of the rule for abnormi(~X) and the process is

iterated. In this way, we are able to learn hierarchies of ex-

ceptions, as in [10]. By induction we are able to generalize the

explanations generated by abduction.

The system can be used in order to learn multiple pred-

icates and normal logic programs with minor modi�cations.

When learning multiple predicates, covering top-down algo-

rithms face the problem that adding a consistent clause to

the theory can make previous clauses inconsistent. Therefore,

each time a clause is added to the current hypothesis, the

consistency of the hypothesis with respect to negative exam-

ples for all target predicates must be tested and retraction of

previous clauses may be necessary. By employing abduction,

we can avoid the cost of testing the theory against negative

examples for all target predicates, as in [2]. In fact, by consid-

ering the negation of all target predicates as abducibles, when

a clause is tested for consistency, all the negative literals for

other predicates that are necessary to ensure the consistency

are recorded by the abductive proof procedure in the set of as-

sumptions. They then become new negative examples so that

clauses learned afterwards will not make the previous clause

inconsistent. Therefore, the global set of assumptions is used

to store the information necessary to make the learning pro-

cess monotonic with respect to consistency. The system must

be extended so that it is able to recover from inconsistency

when no clause can be found that is consistent with both the

original and the generated negative examples. In this case,

the system adds a clause that is consistent with the original

negative examples only and retracts the previous clauses that

generated the covered negative examples.

With similar reasoning, we can deal with the problem of

learning normal logic programs, as in [1]. In this case, the

problem of the covering algorithm is that adding a clause to

the current hypothesis can cause the uncoverage of previously

covered positive examples. Also here negated target predicates

are considered as abducibles. Consider a clause that contains

a negative literal in the body for the target predicate p=n.

For each positive example covered by the clause, a negative

example for p=n is generated. Afterwards, rules learned for

p=n will cover none of these negative examples and therefore

the coverage of the previous clause will not be reduced. In

this case the set of assumptions is used to make the process

monotonic with respect to positive example coverage and, as

in the previous case, backtracking must be performed when

the system is not able to �nd a consistent clause.

The system has been implemented in Prolog and is cur-

rently being used on a number of experiments on incomplete

data from a marketing domain and on problems of learning

multiple predicates and logic programs with negation.

REFERENCES

[1] F. Bergadano, D. Gunetti, M. Nicosia, and G. Ru�o, `Learn-
ing logic programs with negation as failure', in Advances in

Inductive Logic Programming, ed., L. De Raedt, 107{123, IOS
Press, (1996).

[2] L. De Raedt, N. Lavra�c, and S. D�zeroski, `Multiple predicate
learning', in Proceedings of the 3rd International Workshop

on Inductive Logic Programming, ed., S. Muggleton, pp. 221{
240. J. Stefan Institute, (1993).

[3] L. De Raedt and W. Van Lear, `Inductive constraint logic', in
Proceedings of the 5th International Workshop on Algorith-

mic Learning Theory, (1995).
[4] Abductive and Inductive Reasoning, eds., Peter Flach and An-

tonis Kakas, Pure and Applied Logic, Kluwer, 1998.
[5] A.C. Kakas, R.A. Kowalski, and F. Toni, `The role of ab-

duction in logic programming', in Handbook of Logic in AI

and Logic Programming, eds., D. Gabbay, C. Hogger, and
J. Robinson, volume 5, 233{306, Oxford University Press,
(1997).

[6] A.C. Kakas and P. Mancarella, `On the relation between truth
maintenance and abduction', in Proceedings of the 2nd Pa-

ci�c Rim International Conference on Arti�cial Intelligence,
(1990).

[7] A.C. Kakas and F. Riguzzi, `Learning with abduction', in Pro-
ceedings of the 7th International Workshop on ILP, (1997).

[8] E. Lamma, P. Mello, M. Milano, and F. Riguzzi, `Integrating
induction and abduction in logic programming'. To appear
on Information Sciences.

[9] N. Lavra�c and S. D�zeroski, Inductive Logic Programming:

Techniques and Applications, Ellis Horwood, 1994.
[10] A. Srinivasan, S. Muggleton, and M. Bain, `Distinguishing ex-

ceptions from noise in non-monotonic learning', in Proceeding

of the 2nd Internation Workshop on ILP, (1992).

Machine Learning and Data Mining 476 F. Riguzzi

