
Two Results Regarding Refinement Operators

Fabrizio Riguzzi

Dipartimento di Ingegneria, Università di Ferrara, Via Saragat 1
44100 Ferrara, Italy,

friguzzi@ing.unife.it

Abstract. In this paper we present two results regarding refinement
operators. The first is that it does not exist a refinement operator that is
both complete and optimal for the θ-subsumption ordering and for the
language of full clausal logic.
The second regards the properties of the refinement operator imple-
mented in Aleph’s code by predicate auto refine/2. We think this op-
erator is interesting for its simplicity and because it does not require
the construction of a bottom-clause. In particular, the operator is useful
in the cases where a bottom-clause can not be built, as for example in
learning from interpretations. The properties of this operator are that it
is locally finite, not proper nor complete but weakly complete. Moreover,
the operator is also not optimal. However, it can be made complete by
extending the specification of the language bias and by requiring that
the language does not contain function symbols.

1 Preliminaries

A couple (G, R) of a set G and a relation R over G×G is a quasi-ordered set if R
is reflexive and transitive. We will usually denote a relation R of a quasi-ordered
set as ≥. We will write that A > B iff A ≥ B but B 6≥ A and A ≈ B iff A ≥ B
and B ≥ A.

The most common relation used in ILP is θ-subsumption. A clause C θ-
subsumes a clause D iff there exists a substitution θ such that Cθ ⊆ D and we
write C ≥θ D. We will write that A >θ B iff A ≥θ B but B 6≥θ A and A ≈θ B
iff A ≥θ B and B ≥θ A. θ-subsumption is reflexive and transitive so, if G is a
set of clauses, (G,≥θ) is a quasi-ordered set.

Let us now define the concept of downward refinement operators for quasi-
ordered sets. In the literature there exist two different definitions. The first,
from [3] is: a downward refinement operator for a quasi ordered set (G,≥) is a
function ρ such that ρ(C) ⊆ {D|C ≥ D} for every C ∈ G. The second, from [2],
is: a downward refinement operator for a quasi ordered set (G,≥) is a function ρ
such that ρ(C) ⊆ {D|C ≥ D and D is a maximal specialization of C} for every
C ∈ G, i.e. ρ(C) ⊆ {D|C ≥ D and 6 ∃E ∈ G such that C > E and E > D} for
every C ∈ G. We will use the latter definition.

Let us give also some properties regarding refinement operators. Let (G,≥)
be a quasi-ordered set and let ρ a downward refinement operator for (G,≥) [3]:



– the sets of one-step refinements, n-step refinements, and refinements of some
C ∈ G are respectively:
ρ1(C) = ρ(C)
ρn(C) = {D| there is an E ∈ ρn−1(C) such that D ∈ ρ(E)}, n ≥ 2
ρ∗(C) = ρ1(C) ∪ ρ2(C) ∪ ρ3(C) . . .

– a ρ-chain from C to D is a sequence C = C0, C1, . . . , Cn = D, such that
Ci ∈ ρ(Ci−1) for every 1 ≤ i ≤ n

– ρ is locally finite iff, for every C ∈ G, ρ(C) is finite and computable
– ρ is complete iff, for every C,D ∈ G such that C > D, there is an D′ ∈ ρ∗(C)

such that D′ ≈ D
– ρ is weakly complete iff ρ∗(false) = G [1] (such an operator is called complete

in [2, 6]),
– ρ is proper iff, for every C ∈ G, ρ(C) ⊆ {D|C > D}
– ρ is ideal iff it is locally finite, complete and proper
– ρ is DD-optimal iff ∀D,C1, C2 ∈ G : D ∈ ρ∗(C1) ∩ ρ∗(C2) → C1 ∈

ρ∗(C2) or C2 ∈ ρ∗(C1) (called simply optimal in [2])

We will use here a different definition of an optimal refinement operator. ρ is
R-optimal iff ∀D1, D2, C1, C2 ∈ G : D1 ∈ ρ∗(C1), D2 ∈ ρ∗(C2), D1 ≈ D2 →
(∃C ′

1 ∈ ρ∗(C2) such that C ′
1 ≈ C1) or (∃C ′

2 ∈ ρ∗(C1) such that C ′
2 ≈ C2).

The notions of DD-optimality and R-optimality are not related, i.e., DD-
optimality does not imply R-optimality nor viceversa.

In [5] the non existence of DD-optimal refinement operators was proved for
the (G,≤θ) where G is unrestricted. However this result does not carry over to
R-optimality.

In the following we will use simply optimal in place of R-optimal.

Lemma 1. In a proper and optimal refinement operator, if D ∈ ρ∗(C) then
there do not exist two distinct ρ-chains from C to clauses D1 and D2 respectively
such that D1 ≈ D and D2 ≈ D.

Proof. The proof proceeds by contradiction. Consider a proper and optimal re-
finement operator ρ, suppose D ∈ ρ∗(C) and that there are two different ρ-
chains, one from C to D1 and one from C to D2 such that D1 ≈ D and D2 ≈ D.
Then there exist two clauses C1 and C2 on which the two ρ-chins split. Let us
call E their parent, i.e., C1 ∈ ρ(E) and C2 ∈ ρ(E).

Let us now prove by contradiction that 6 ∃C ′
1 ∈ ρ∗(C2) such that C ′

1 ≈ C1.
If such a C ′

1 existed, then C2 > C1 and thus C1 would not belong to ρ(E)
because it is not a maximal specialization. In the same way we can prove that
6 ∃C ′

2 6∈ ρ∗(C1) such that C ′
2 ≈ C2. This contradicts the assumption that ρ is

optimal.

This means that the refinement graph becomes a tree, with false as root and
with equivalence classes of clauses as nodes.

The following corollary is a simple special case of the previous theorem.

Corollary 1 (A similar theorem is reported, without a proof, in [2]).
In a proper and optimal refinement operator, if D ∈ ρ∗(C) then there do not
exist two distinct ρ-chains from C to D.



2 Non Existence of Optimal and Complete Operators

Theorem 1. There does not exist a proper operator that is both optimal and
complete for (G,≤θ), where G is the language of full clausal logic.

Proof. Consider two clauses D1 and D2 such that there exist a clause E that
is in ρ∗(D1) ∩ ρ∗(D2). It is easy to show that such clauses exist in the G set
considered.

Since θ-subsumption forms a lattice, there exists a clause C that it is the least
general generalization of D1 and D2. Since G contains every possible clause, it
contains C.

Consider a proper, complete and optimal refinement operator ρ. Since C ≥θ

D1 and C ≥θ D2, then there exists clauses D′
1 and D′

2 such that D′
1 ∈ ρ∗(C),

D′
2 ∈ ρ∗(C), D′

1 ≈θ D1 and D′
2 ≈θ D2. For corollary 1 there is a single ρ-chain

from C to D′
1 and a single ρ-chain from C to D′

2.
But D′

1 ≥θ E and D′
2 ≥θ E, thus ∃E1 ∈ ρ∗(D′

1) such that E1 ≈θ E and
∃E2 ∈ ρ∗(D′

2) such that E2 ≈θ E. Therefore there exist a single ρ-chain from
D′

1 to E1 and a single ρ-chain from D′
2 to E2.

As a consequence, there are two distinct ρ-chains from C to clauses that are
equivalent to E, one passing through D′

1 and one passing through D′
2. This leads

to a contradiction for lemma 1.

3 Properties of the Aleph’s auto refine/2 Operator

In this section we will discuss the properties of the refinement operator imple-
mented by predicate auto refine/2 in Aleph’s code [4].

The set G is defined by means of a number of mode declarations that are
assertions of the form:

mode(PredicateMode).

P redicateMode is of the form p(ModeType,ModeType, . . .) where ModeType
is either:

– +a: specifies that, when a literal with predicate symbol p appears in a hy-
pothesized clause, the corresponding argument should be an “input” variable
of type a,

– −a: specifies that the argument should be an “output” variable of type a,
– ]a: specifies that the argument should be a constant of type a

This directives ensures that, for a clause H ← B1, B2, . . . Bn to be in G, there
must be an order of the literals in the body B′

1, B
′
2, . . . B

′
n such that:

– any input variable of type a in a literal B′
i appears as an output variable of

type a in a literal B′
j with j < i, or appears as an input variable of type a

in H
– any argument denoted by ]a in the modes has only ground terms of type a



Besides the mode declarations, a specification of the G set contains also asser-
tions of the following form

determination(q/n, p/m).

This assertion states that clauses can have predicate q/n in the head and that
clauses with q/n in the head can have predicate p/m in the body. Let us call
Gmodes the set of clauses described by these declarations.

Let us now describe the auto refine/2 refinement operator. We will call it
ρA. It is defined in the following way: given a clause C, obtain C ′ ∈ ρA(C) by
adding a literal L to C where

– each argument with mode +a in L is substituted with an input variable in
the head of type a or with an output variable in the literals already in the
body of C of type a,

– each argument with mode −a in L is substituted with an output variable
in the head, with an input variable in the head, with an output variable
in the literals already in C, with an output variable in L that precedes the
argument (all of type a) or with a new variable, and

– each argument with mode ]a in L is replaced with a constant of type a.
Constants of type a can be obtained by running the query a(X).

An equivalent definition of ρA is: given a clause C, obtain C ′ ∈ ρA(C) by
adding a literal L to C where

– each argument with mode +a in L is substituted with any input variable of
type a that appears in the head or with a variable that appears in literals
in C excluding the head,

– each argument with mode −a in L is substituted with any variable of C ′ of
type a that comes before the argument (including the variables preceding
the argument in L) or with a new variable

– each argument with mode ]a in L is replaced with a constant of type a.

For example, consider the bias
mode(q(+a,−a)). mode(p(+a,−a). determination(q/2, p/2).

and consider the clause C = q(X, Y ) ← p(X, Z), the refinement operator adds
the following literals1

p(X, Y ), p(X, X), p(X, Z), p(X, W ), p(Z, Y ), p(Z,X), p(Z,Z), p(Z,W )
Let us now show that ρA is locally finite, not proper nor complete but weakly
complete with respect to the quasi-ordered set (Gmodes,≥θ). Moreover, ρA is
also not optimal.

The local finiteness of ρA is evident from the fact that the number of possible
assignment of variables is finite.

The fact that it is not proper can be seen from the example above: clause
C = q(X, Y )← p(X, Z) is refined into C ′ = q(X, Y )← p(X, Z), p(Z,W ) which
1 The actual refinement operator tests whether the literal to be added is already

literally present in C. If so, it does not add the literal. In this case it will not add
p(X, Z).



is θ-subsumption equivalent to C. This problem can be solved only if the operator
can add more than one literal at a time to the clause.

The fact that ρA is not complete can be seen from this example: consider the
two clauses

D = q(X, Y, Z)← p(X, Y, Z) E = q(X, X, Z)← p(X, X, Z)
then D ≥θ E but it is not possible to obtain a clause E′ equivalent to E from D
by means of the refinement operator ρA because the first and second arguments
of q(X, Y, Z) and p(X, Y, Z) will never be unified.

However, ρA is weakly complete: given any clause C ∈ G containing n literals,
it can be obtained (up to renaming of variables) from the empty clause in n
refinement steps of the ρA operator since at each step all the possible literals
compatible with the type and mode declarations can be added.

That ρA is not optimal can be seen from the following example: consider the
following language bias

mode(q(+a,+a,−a)). mode(p(+a,−a)). determination(q/3, p/2).
and the clauses

C1 = q(X, Y, Z)← p(X, Z)
C2 = q(X, Y, Z)← p(Y, Z)
F = q(X, Y, Z)← p(X, Z), p(Y, Z)

then F ∈ ρA(C1) and F ∈ ρA(C2) but 6 ∃C ′
1 ∈ ρ∗A(C2) such that C ′

1 ≈θ C1 and
6 ∃C ′

2 ∈ ρ∗A(C1) such that C ′
2 ≈θ C2. In other words, if we start refining from the

empty clause, clause F will be visited at least twice, once coming from clause
C1 and once from clause C2.

Note that ρA can be made complete by suitably extending the language bias
and restricting the set G. In particular, if, for every type a, we add the mode
declarations

mode(+a = +a). mode(+a = −a). mode(−a = −a). mode(−a = ]a).
determination(target predicate/n,= /2).

then the problem seen before disappears: clause D can be refined into
D′ = q(X, Y, Z)← p(X, Y, Z), X = Y

that is equivalent to E once the substitution X = Y is performed.
Moreover, for ρA to be made complete, we must also require that the clauses

of G do not contain function symbols.

Lemma 2. The refinement operator ρA with the extended language bias and
without function symbols is complete.

Proof. Let C,D ∈ G such that C >θ D. Then there exist a θ such that Cθ ⊆
D. Let C be {C1, C2, . . . , Cn}, let Cθ be {C ′

1, C
′
2, . . . , C

′
n} and let D \ Cθ be

{M1, . . . ,Mm}.
For each Ck k = 1, . . . , n, let us consider the restriction θk of θ to the variables

of Ck. Then Ckθk = C ′
k.

By theorem 13.41 in [3] there is a finite set of elementary substitutions
θ1, . . . , θp such that Ckθ1 . . . θp = C ′′

k is a variant of C ′
k. Elementary substitutions

for a literal E are substitutions of the following form



1. {Z/f(X1, . . . , Xq)} where Z is a variable occurring in E, f is a functor
symbol from the alphabet and X1, . . . , Xq do not appear in E.

2. {Z/a} where Z is a variable occurring in E and a is a constant.
3. {Z/X} where Z and X are distinct variables occurring in E.

Since we consider only function free alphabets, only elementary substitution 2
and 3 are possible. Substitutions of type 2 can be performed by ρA because of
the presence of −a = ]a. Substitutions of type 3 can be performed by ρA because
of the presence of +a = +a, +a = −a and −a = −a. Thus there exist a finite
ρA-chain from Ck to C ′′

k and, from there, a finite ρA-chain to C ′
k that consists

just in renaming the necessary variables.
Since this is true for all the literals of C, there is a ρA-chain from C to Cθ.
Every input variable X in Mi is such that X appears in Cθ∪{M1, . . . ,Mi−1}

excluding the output variables in the head of Cθ. Therefore, Mi can be added by
ρA and there is a ρA-chain from Cθ to D. As a consequence there is a ρA-chain
from C to D.

ρA is interesting for its simplicity and because it does not require the construction
of a bottom clause. Thus the operator is useful when it is not possible to build
a bottom clause, as in the learning from interpretation setting.

4 Acknowledgements

This work was partially funded by the IST programme of the EC, FET under the
IST-2001-32530 SOCS project, within the Global Computing proactive initiative
and by the Ministero dell’Istruzione, della Ricerca e dell’Università under the
COFIN2003 project “La gestione e la negoziazione automatica dei diritti sulle
opere dell’ingegno digitali: aspetti giuridici e informatici”.

References

1. L. Badea and M. Stanciu. Refinement operators can be (weakly) perfect. In
S. Džeroski and P. Flach, editors, Proceedings of the 9th International Workshop
on Inductive Logic Programming, volume 1634 of Lecture Notes in Artificial Intelli-
gence, pages 21–32. Springer-Verlag, 1999.

2. L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 26(2–3):99–146,
1997.

3. Shan-Hwei Nienhuys-Cheng and Ronald de Wolf. Foundations of Inductive Logic
Programming, volume 1228 of Lecture Notes in Artificial Intelligence. Springer,
Berlin, Germany, 1997.

4. Ashwin Srinivasan. Aleph, 2004. http://web.comlab.ox.ac.uk/oucl/research/areas/
machlearn/Aleph/aleph toc.html.

5. P.R.J. van der Laag. An analysis of refinement operators in inductive logic pro-
gramming. PhD thesis, Erasmus Universiteit, Rotterdam, the Netherlands, 1995.

6. P.R.J. van der Laag and S-H. Nienhuys-Cheng. Existence and nonexistence of com-
plete refinement operators. In F. Bergadano and L. De Raedt, editors, Proceedings
of the 7th European Conference on Machine Learning, volume 784 of Lecture Notes
in Artificial Intelligence, pages 307–322. Springer-Verlag, 1994.


