
Learning Ground ProbLog Programs from

Interpretations

Fabrizio Riguzzi

ENDIF, Università di Ferrara, Via Saragat 1, 44100 Ferrara, Italy
fabrizio.riguzzi@unife.it

Abstract. The relations between ProbLog and Logic Programs with
Annotated Disjunctions imply that Boolean Bayesian networks can be
represented as ground ProbLog programs and acyclic ground ProbLog
programs can be represented as Boolean Bayesian networks. This pro-
vides a way of learning ground acyclic ProbLog programs from interpre-
tations: first the interpretations are represented in tabular form, then
a Bayesian network learning algorithm is applied and the learned net-
work is translated into a ground ProbLog program. The program is then
further analyzed in order to identify noisy or relations in it. The paper
proposes an algorithm for such identification and presents an experimen-
tal analysis of its computational complexity.

Keywords: Probabilistic Logical Models, ProbLog, LPAD, Noisy Or.

1 Introduction

ProbLog [1] is a recent formalism that combines logic and probability. It is
interesting for the simplicity of its semantics and for the availability of an efficient
top-down interpreter. Logic Programs with Annotated Disjunctions (LPADs) [2]
is another formalism for integrating probability and logic in a clear and elegant
way.

In this paper, the relations between ProbLog and LPADs are investigated.
We show that ground ProbLog programs can be represented as LPADs in a
way that preserves the semantics. This allow us to apply results obtained for
LPADs to ProbLog programs. In particular, we show that a Bayesian network
with binary variables can be represented as a ground ProbLog program and that
a ground acyclic [3] ProbLog program can be translated into a Boolean Bayesian
network. Representing a Bayesian network as a ground ProbLog program has
the advantage of a more compact representation in the case in which noisy or
relations are present.

Ground ProbLog programs that encode a Bayesian network take a special
form that we call Bayesian in which all the bodies of the rules for an atom
contain the same set of atoms and all the possible combinations of signs of
literals in the bodies are present. We present a method for transforming a general



ground ProbLog program into a program in Bayesian form. The method involves
applying the noisy or law to obtain the probability of clauses.

The possibility of representing a Boolean Bayesian network with a ground
ProbLog program provides a method for learning it from interpretations: we first
transform the input interpretations into tabular form, then we apply a Bayesian
network learning algorithm and we translate the learned network into a ground
ProbLog program in Bayesian form. In order to obtain general ground acyclic
ProbLog programs, we propose an algorithm that identifies the noisy or relations
in the program.

The paper is organized as follows. In section 2 we introduce ProbLog and
LPADs. In section 3 we present some properties of ground ProbLog programs.
Section 4 discusses the learning problem and the algorithm. Section 5 presents
experiments and section 6 discusses related works. Finally, section 7 concludes
the paper.

2 Preliminaries

A ProbLog program [1] P is a finite set of clauses of the form

α : h← b1, . . . , bm (1)

where α is a real number between 0 and 1, h and b1, . . . , bm are atoms. We will
call HB(P ) the Herbrand base of P .

In this paper we consider an extension of the original ProbLog language
where b1, . . . , bm are literals.

The semantics of the extended ProbLog is defined in terms of instances:
an instance is a normal logic program obtained by selecting a subset of the
clauses. Its probability is given by the product of the α factor for all the clauses
that are included in the instance and of 1 − α for all the clauses not included.
The probability πP

PB(φ) of a query φ according to program P is given by the
sum of the probabilities of the instances that have the query as a consequence
according to a chosen semantics, e.g. Clark’s completion [4], stable models [5]
or well founded [6]. In this paper we consider only the well founded semantics
because it is the one used by LPADs.

A Logic Program with Annotated Disjunctions (LPAD) P [2] consists of a
set of formulas of the form h1 : α1 ∨ h2 : α2 ∨ . . .∨ hn : αn ← b1, b2, . . . bm called
annotated disjunctive clauses. In such a clause the hi are logical atoms, the bi

are logical literals and the αi are real numbers in the interval [0, 1] such that∑n

i=1 αi = 1.
The semantics of LPADs is given as well in terms of instances: an instance is

a ground normal program obtained by selecting for each clause of the grounding
of P one of the heads. The probability of the instance is given by the product
of the probabilities associated with the heads selected. The probability πP

LP (φ)
of a formula φ according to program P is given by the sum of the probabilities
of the instances that have the formula as a consequence according to the well
founded semantics.

2



3 Properties of ProbLog

A ground ProbLog program P can be syntactically transformed into an LPAD
P ′ by substituting each clause of the form (1) with the LPAD clause

h : α ∨ none : (1− α)← b1, . . . , bm

where none is a special atom that does not appear in the body of any clause.
This is similar to the way in which a CP-logic program [7] can be transformed
into an LPAD.

Theorem 1. Given a ground ProbLog program P and a query φ, πP
PB(φ) =

πP ′

LP (φ).

Proof. (Skecth) There is a one to one correspondence between instances of P
and instances of P ′: the clauses excluded from an instance of P are present in
the corresponding instance of P ′ with none in the head. A query (that does not
involve the special atom none) is true in an instance of P if and only if it is true
in the corresponding instance of P ′.

In fact, for well-founded models, it can be shown that the sequence of in-
terpretations Iα for an instance of P are equal to I ′α \ {none} where I ′α is the
sequence of interpretations for the corresponding instance of P ′.

Therefore a ground program defines the same probability distribution when in-
terpreted as a ProbLog program and as an LPAD. For non ground programs
the semantics differ, because the instances of ProbLog programs are obtained
by selecting clauses from the non-ground program while the instances of LPADs
are selected from a grounding of the program.

From the equivalence between ground ProbLog programs and LPADs follows
that Bayesian networks with binary variables can be translated into ProbLog
programs [2]. For example, the classic burglary Bayesian network (see Figure 2
in [2]) can be translated into the following ProbLog program

0.1 : burglary 0.2 : earthquake
0.1 : alarm← ¬burglary,¬earthquake
0.8 : alarm← ¬burglary, earthquake
0.8 : alarm← burglary,¬earthquake
1.0 : alarm← burglary, earthquake

We will say that a ProbLog program like the one above is in Bayesian form.

Definition 1 (Bayesian form). A ground ProbLog program P is in Bayesian
form if, for every atom a of HB(P ), all the clauses for a have bodies built over
the same set of atoms Da and there is a clause for every possible combination
of signs of literals built over Da.

It was shown in [2] that a ground, finite and acyclic [3] LPAD can be translated
into a Bayesian Logic Program (BLP) preserving the semantics. Since BLP en-
code Bayesian networks, this provide a way of translating such type of LPADs

3



into Bayesian networks. Thus we can translate a ground acyclic ProbLog pro-
gram into a Bayesian network. The class of acyclic programs is an important one
because the ProbLog proof procedure may not terminate for cyclic programs.

We present here the technique. Given a ground acyclic ProbLog program P ,
we build a Bayesian network by associating each atom a in HB(P ) with a binary
variable a with values true and false. Moreover, for each rule r of the form

α : h← b1, . . . , bm,¬c1, . . . ,¬cl

we add to the Bayesian network a new variable Vr that has b1, . . . , bm, c1, . . . , cl

as parents and has the two values h and none, where none is a special atom
that does not appear anywhere in the body of rules. The conditional probability
table (CPT) of Vr is

Vr = h Vr = none
. . . 0.0 1.0

b1 = true, . . . , bm = true, c1 = false, . . . , cl = false α 1− α
. . . 0.0 1.0

Moreover, each variable a with a ∈ HB(P ) has as parents all the variables Vr of
rules r that have a in the head. The CPT for a is the following:

a = true a = false
all the parents equal to none 0.0 1.0

remaining rows 1.0 0.0

We will now show that every ground ProbLog program can be translated into
Bayesian form in a way that preserves the semantics. This is done by collecting,
for each atom a ∈ HB(P ), all the rules Ra with a in the head. From Ra, the
atoms Da that appear in bodies of rules for a are collected. Then a rule c for
each combination of signs of literals built on Da is generated. The probability
αc of c is given by the law of the probability of an or:

αc = 1−
∏

r∈Ra|body(c)|=body(r)

(1− αr)

Thus the bodies of the clauses for the same atom a constitute the causes of a in
a noisy or model. For example the program

0.3 : a← b 0.2 : a← c
can be transformed into

0.0 : a← ¬b,¬c 0.2 : a← ¬b, c
0.3 : a← b,¬c 0.44 : a← b, c

Theorem 2. The transformation into Bayesian form preserves the semantics
for ground acyclic ProbLog programs.

Proof. We will prove the theorem by showing that the Bayesian networks en-
coded by the two programs are equal. Let P and P ′ be the programs before
and after the transformation. Consider an atom a and let Da = {b1, . . . , bn} be
the set of atoms on which a depends. Suppose that P contains k rules for a

4



Ra = {r1, . . . , rk} and that rule ri is annotated with probability αi. Let da be
a vector of values for Da, let VRa

be the vector of variables corresponding to
the rules of Ra and let vRa

be a vector of values for VRa
. The probability for

a = true given da in the network obtained from P is given by

P (a = true|da) = 1− P (a = false|da) = 1−
∑

vRa

P (a = false, vRa
|da) =

= 1−
∑

vRa

P (a = false|vRa
, da)P (vRa

|da) =

= 1−
∑

vRa

P (a = false|vRa
)P (vRa

|da)

Let Vri
be the variable associated to rule ri and let vri

be the value for Vri
in

vRa
, thus

P (a = true|da) = 1−
∑

vRa

P (a = false|vRa
)

k∏

i=1

P (vri
|da)

The only value vRa
of VRa

for which P (a = false|vRa
)
∏k

i=1 P (vri
|da) is different

from 0 is the one where every vri
is equal to none. In fact, if vri

= a, then
P (a = false|vRa

) is 0. Suppose that, given the values of da, the set of rules
Ta ⊆ Ra has the body true. For the case in which every vri

is equal to none,
P (vri

|da) = 1−αi if ri ∈ Ta, P (vri
|da) = 1 if ri 6∈ Ta and P (a = false|vRa

) = 1.
Thus we have

P (a = true|da) = 1−
∏

ri∈Ta

(1− αi)

which is exactly the law for the probability of an or.

4 Learning Ground Acyclic ProbLog Programs

We consider a learning problem of the following form [8]:
Given:

– a set E of examples that are couples (I, π(I)) where I is an interpretation
and π(I) is its associated probability, such that

∑
(I,π(I))∈E π(I) = 1

– a space of possible ground ProbLog programs S (described by a language
bias LB)

Find: a ground ProbLog program P ∈ S such that ∀(I, π(I)) ∈ E πP
PB(I) =

π(I)
Instead of a set of couples (I, π(I)), the input of the learning problem can be

a multiset E′ of interpretations. From this case we can obtain a learning problem

5



of the form above by computing a probability for each interpretation in E′ by
relative frequency.

The approach we propose for learning a ground acyclic ProbLog program
consists in transforming the input data into a table, learning a Bayesian net-
work from the table, converting the learned network into a ground ProbLog in
Bayesian form and then identifying the noisy or relations in order to obtain a
general ground acyclic ProbLog program.

The translation of the input interpretations into a table is done by considering
each atom appearing in them as a binary random variable. Each interpretation
I is then transformed into a binary vector BI where the variable corresponding
to atom a assumes value 1 if a ∈ I and value 0 otherwise.

We obtain the table to be given as input to the Bayesian network learning
algorithm by fixing the number of rows N of the table and replicating the binary
vector BI a number of times equal to N × π(I).

The translation of the learned Bayesian network into a general ground Prob-
Log program is performed by the algorithm Identification that analyzes the CPT
of each atom and tries to identify the noisy or relations in order to apply the
inverse of the transformation into Bayesian form. If it fails in finding such a
relation, it returns the CPT converted into ProbLog rules.

Identification, shown in Figure 1, performs exhaustive search in the space of
possible bodies of rules. It takes as input, besides the learned Bayesian network,
also the parameters MaxBodySize, MaxRules and ǫ that define, respectively,
the maximum number of literals in the body of rules, the maximum number of
rules for an atom and the error allowed. The first two parameters put a limit on
the search space in order to contain the computational cost.

Identification analyzes the CPT of each atom in turn. For an atom a the
algorithm first builds all possible sets of parents of a from cardinality 1 to cardi-
nality MaxBodySize. Then, with function Select (show in Figure 2), it considers
all possible combinations of signs for the atoms in each set, thus generating the
possible bodies PB. In this phase, the possible bodies that appear in a row of
the CPT where the probability of a is close to 0 (smaller than ǫ) are eliminated,
because they cannot be possible causes.

Then the combinations of possible bodies are explored with function Explore
(shown in Figure 3) by performing a depth first search in the space of subsets
of PB. Explore is called with a current set of bodies and the set of bodies not
yet added to the current set: it first check if the current set of bodies contains
all possible parents of a and if the set of bodies respects the noisy or relation.
If so, it returns the current set of bodies. Otherwise, if the current set of bodies
has not yet reached cardinality MaxRules, it performs a cycle in which, at each
iteration, it adds a possible body and calls itself recursively. If no set of bodies
respecting the noisy or relation can be found, the empty set is returned and
Identification translates the CPT directly into rules.

The test that a set of possible bodies respects the noisy or relation is per-
formed by function Check (shown in Figure 4). The function considers only the
rows with P (a|row) > ǫ, because the bodies true in the other rows have already

6



been removed. The function first identifies the probability of each body consid-
ered as a single cause, looking for those rows where a single body is true. The
probability of a body is given by the average of the probabilities of such rows.
Then it checks that for all the rows the or law is respected with an error smaller
than ǫ.

Fig. 1. Algorithm Identification

algorithm Identification(
inputs : B : Bayesian network,

ǫ: maximum error,
MaxBodySize: integer,
MaxRules: integer,

returns : P : ProbLog program)

let B be a set of triples (V ariable, Parents, CPT ) one for each variable
P := ∅
for every triple (V ariable, Parents, CPT ) in B

F := {r|r is a row of CPT such that P (V ariable = true|r) < ǫ}
G := set of all the possible subsets of Parents from dimension 1 to

dimension MaxBodySize

PB :=Select(G, F )
Bodies :=Explore(PB, CPT, ∅, MaxRules, ǫ)
if Bodies 6= ∅ then

convert Bodies into a set of rules R

else
convert CPT into a set of rules R

P := P ∪ R

return P

Let us show the behavior of the algorithm with an example. Consider an
atom a that has b, c and d as parents and that has the conditional probability
table shown below:

row b c d a ¬a
1 false false false 0.00 1.00
2 false false true 0.30 0.70
3 false true false 0.00 1.00
4 false true true 0.30 0.70
5 true false false 0.00 1.00
6 true false true 0.30 0.70
7 true true false 0.40 0.60
8 true true true 0.58 0.42

Suppose that MaxBodySize is 2, MaxRules is 3 and that ǫ is 0.01. The set F
of rows with P (a|row) = 0 is F = {{¬b,¬c,¬d}, {¬b, c,¬d}, {b,¬c,¬d}}

7



Fig. 2. Function Select

function Select(
inputs : G : set of sets of parents,

F : rows with probability of the child variable < ǫ,
returns : PB : set of possible bodies)

PB := ∅
for every parent set Par from G

let B be the set of all possible assignment of signs to variables of Par

for every b ∈ B

if b 6∈ F then
PB := PB ∪ {b}

return PB

Fig. 3. Function Explore

function Explore(
inputs : PB : possible bodies,

CPT : conditional probability table
Bodies: current set of bodies,
MaxRules: maximum number of rules,
ǫ: maximum error,

returns : B : valid set of bodies)

if Bodies contains all possible parents and Check(Bodies, CPT, ǫ) then
return Bodies

else
if |Bodies| = MaxRules then

return ∅
else

let PB be {b1, b2, . . . , bn}
for i := 1 to n

Bodies′ :=Explore({bi+1, . . . , bn}, CPT, Bodies ∪ {bi}, MaxRules)
if Bodies′ 6= ∅ then

return Bodies′

return ∅

8



Fig. 4. Function Check

function Check(
inputs : B : a set of bodies,

CPT : conditional probability table,
ǫ: maximum error,

returns : Satisfy : a Boolean value)

remove from CPT all the rows r with P (V ariable = true|r) < ǫ

for every body b in B

let Rb be the set of rows of CPT that contains only b true

let pb =
∑

r∈Rb

P (V ariable=true|r)
|Rb|

for each row r of CPT

let B′ be the set of bodies of B that are true in r

TP := 1 −
∏

b∈B′
(1 − pb)

if |TP − P (V ariable|r)| > ǫ then
return false

return true

The set G of possible subsets of the set of Parents with maximum size 2 is

G = {{b}, {c}, {d}, {b, c}, {b, d}, {c, d}}

The function Select is called and the set PB of possible bodies is returned

PB = {{d}, {b, c}, {b, d}, {¬b, d}, {c, d}, {¬c, d}}

Then Explore is called with Bodies = ∅. Bodies does not contain all possible
parents of a so Explore is called again with Bodies = {{d}}. Bodies still does
not contain all possible parents of a so Explore is called again with Bodies =
{{d}, {b, c}}. Since all the parents are now present in Bodies, Check is called.

Rows 1, 3 and 5 are removed form CPT . The probabilities pd and pb,c are
computed: pd is obtained from rows 2, 4 and 6 and has value 0.3 while pb,c is
obtained form row 7 and has value 0.4.

Then the probabilities of a in rows 2, 4, 6, 7 and 8 are checked. In row 2, 4 and
6 only d is true, so it is checked that |pd − P (a|row)| < ǫ. This is true so Check
continues. Row 7 has only b, c true and the test of |pb,c−P (a|row7)| < ǫ succeeds.
In row 8, both d and b, c are true, so it is checked that |TP − P (a|row8)| < ǫ.
TP is 1− (1− pd)(1− pb,c) = 1− (1− 0.3)(1− 0.4) = 1− 0.42 = 0.58 so the test
succeeds and Check returns true.

Therefore b, c and d are recognized as valid bodies and the rules
0.4 : a← b, c 0.3 : a← d

are returned.
With this approach, we may have problem when learning ProbLog programs

that are not layered, i.e. when its Herbrand base cannot be divided into subsets
(layers) such that each atom directly depends only on atoms from the previous

9



layer. In fact, in that case the probabilities in the CPT may not be estimated
correctly.

For example, consider a dataset generated from the program
0.6 : c← a 0.7 : c← b
0.2 : d← a, b 0.9 : d← c
The case in which a and b are false and c is true never appears in the data

because if a and b are false then so is c. Therefore the probabilities in the
corresponding row of the CPT for d cannot be estimated. A typical approach
used by Bayesian network learning algorithms is to assign probability 0.5 to d
true and to d false. In this case the CPT of d does not respect the noisy or law
that would assigns probability 0.9 to d true in that row and therefore the rules
for d cannot be identified.

This problem does not appear if the program from which the data is generated
is layered. For the program above the Herbrand base cannot be divided in layers
because d depends on c and on a and b that belong to the layer preceding c.

5 Experiments

A series of experiments were performed for investigating the time complexity
of the algorithm. A number of programs consisting of the definition of a single
atom a have been generated: each program consists of two clauses, the programs
differ for the number of atoms on which a depends that ranges from 4 to 10.
The parents of a are distributed among the two clauses in order to have two
bodies whose lengths differ by at most 1. Programs of this form were considered
because they represent the worst case, since the bodies in PB are ordered from
the shortest to the longest. From the programs, the CPT for a is produced with
the transformation procedure presented in section 3.

Algorithm Identification is applied with the following parameters: MaxRules
is set to 3 and MaxBodySize is set to values ranging from 3 to 10. The execution
times in milliseconds are shown in Figure 5. The experiments were performed
with Sicstus Prolog 3.12.5 on a Windows machine with a 2.00 GHz Pentium M
and 1 Gb of RAM.

The missing points correspond to combinations for which the algorithm ter-
minates because Sicstus gave an insufficient memory error: Sicstus 3.12.5 has a
limitation of 256 Mb for the stack on 32 bit machines. For 10 parents the algo-
rithm has successfully terminated only for MaxBodySize = 3 in 24.5 seconds
while for higher values of MaxBodySize has given an insufficient memory error,

For the points where MaxBodySize < ⌈Parents/2⌉ the algorithm returned
a program in Bayesian form because the solution was outside the search space.

A number of experiments were conducted to test the feasibility of the whole
approach: the aim was to learn back a ground ProbLog program. A few ProbLog
programs were written, all the possible interpretations for them were generated
and assigned a probability according to the semantics. The sets of annotated
interpretations were then translated into tables and given as input to a Bayesian

10



3
4

5
6

7
8

9
10

4

5

6

7

8

9
10

1

10
2

10
3

10
4

10
5

MaxBodySizeParents

E
xe

cu
tio

n 
tim

a 
(m

se
c)

Fig. 5. Execution times

learning algorithm from the suite WEKA. Then the algorithm Identification was
applied to the learned networks.

For example, the approach was tested on a program containing 9 atoms
and 14 rules. From it, a table containing approximately 30,000 rows was gen-
erated and given as input to the implementation of the K2 algorithm available
in WEKA. K2 exploits the ordering of the variables so the correct order was
supplied to it. The other parameters were left at default values except for ini-
tAsNaiveBayes, set to false, and for the maximum number of parents of a node,
set to 8.

K2 learned a Bayesian network in 0.3 seconds. Then Identification was ap-
plied with ǫ = 0.05, MaxBodySize = 3 and MaxRules = 3. In 0.42 seconds
Identification returned the original ProbLog program. None of the other Bayesian
network learning algorithms available in WEKA were able to correctly discover
the dependencies encoded by the original program.

Experiments with programs of similar complexity were performed using K2
and in all cases the original programs were returned.

6 Related Works

In [9] the authors propose an approach for revising ProbLog programs. The
learning problem they consider consists in finding a subsets of clauses from a
given program that maximizes the likelihood of a set of examples in the form of
ground goals. Moreover, they set an upper limit to the cardinality of the program
to be returned. Thus the approach in [9] is complementary to the one given here,
where a set of interpretations is considered as input.

Another related work is [8] where the author proposes the algorithm ALLPAD
for learning ground LPADs from interpretations. However, ALLPAD can only

11



learn LPADs with mutually exclusive bodies and thus it cannot learn ProbLog
programs encoding a noisy or.

7 Conclusions

We have presented an approach for learning ground acyclic ProbLog programs
from interpretations. The approach consists in translating the input interpre-
tations into tabular form, applying a Bayesian network learning algorithm and
then trying to identify noisy or relations in the learned network.

The identification algorithm has been experimentally tested and it was found
feasible for a number of parents up to 8. Experiments of the overall approach
showed that it was possible to perfectly recover ground programs of around 10
atoms and 14 rules.

8 Acknowledgements

This work has been partially supported by the PRIN 2005 project “Specification
and verification of agent interaction protocols”.

References

1. De Raedt, L., Kimmig, A., Toivonen, H.: Problog: A probabilistic prolog and its
application in link discovery. In: Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence. (2007) 2462–2467

2. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated
disjunctions. In: Proc. of the 20th Int. Conf. on Logic Programming. (2004)

3. Apt, K.R., Bezem, M.: Acyclic programs. New Generation Comput. 9(3/4) (1991)
335–364

4. Clark, K.L.: Negation as failure. In: Logic and Databases. Plenum Press (1978)
5. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.

In Kowalski, R., Bowen, K.A., eds.: Proceedings of the 5th Int. Conf. on Logic
Programming, MIT Press (1988) 1070–1080

6. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. Journal of the ACM 38(3) (1991) 620–650

7. Vennekens, J., Denecker, M., Bruynooghe, M.: Representing causal information
about a probabilistic process. In: Proc. of the 10th Eur. Conf. on Logics in Artificial
Intelligence. LNAI, Springer (September 2006)

8. Riguzzi, F.: ALLPAD: Approximate learning of logic programs with annotated
disjunctions. In: Proceedings of the 16th International Conference on Inductive
Logic Programming. Number 4455 in LNAI, Springer (2007)

9. De Raedt, L., Kersting, K., Kimmig, A., Revoredo, K., Toivonen, H.: Revising
probabilistic prolog programs. In: Proceedings of the 16th International Conference
on Inductive Logic Programming. Number 4455 in LNAI, Springer (2007)

12


