
Universit�a degli Studi di BolognaDEISLaboratorio d'Informatica Avanzata
Extensions of Logic Programming asRepresentation Languages for MachineLearning

Fabrizio RiguzziPh.D. Thesis
Tutor: Prof. Maurelio Boari Coordinator: Prof. Fabio FilicoriSupervisors: Prof. Paola Mello, Prof. Evelina LammaDEIS Technical Report no. DEIS-LIA-98-005 LIA Series no. 33





Extensions of Logic Programming as RepresentationLanguages for Machine LearningFabrizio RiguzziLIA - DEIS, Universit�a di BolognaViale Risorgimento, 2 { 40136 Bologna, ItalyAbstract.The representation language of Machine Learning has undergone a substantial evolution, startingfrom numerical descriptions to an attribute-value representations and �nally to �rst order logiclanguages. In particular, Logic Programming has recently been studied as a representation languagefor learning in the research area of Inductive Logic Programming. The contribution of this thesisis twofold. First, we identify two problems of existing Inductive Logic Programming techniques:their limited ability to learn from an incomplete background knowledge and the use of a two-valuedlogic that does not allow to consider some pieces of information as unknown. Second, we overcomethese limits by prosecuting the general trend in Machine Learning of increasing the expressiveness ofthe representation language. Two learning systems have been developed that represent knowledgeusing two extensions of Logic Programming, namely abductive logic programs and extended logicprograms.Abductive logic programs allow abductive reasoning to be performed on the knowledge. Whendealing with an incomplete knowledge, abductive reasoning can be used to explain an observationor a goal by making some assumptions about incompletely speci�ed predicates. The adoption of ab-ductive logic programs as a representation language for learning allows to learn from an incompletebackground knowledge: abductive reasoning is used during learning for completing the availableknowledge. The system ACL (Abductive Concept Learning) for learning abductive logic programshas been implemented and tested on a number of datasets. The experiments show that the perfor-mance of the system when learning from incomplete knowledge are superior or comparable to thoseof ICL-Sat, mFOIL and FOIL.Extended logic programs contain a second form of negation (called explicit negation) besidesnegation by default. They allow the adoption of a three-valued model and the representation of boththe target concept and its opposite. The two-valued setting that is usually adopted in InductiveLogic Programming can be a limitation in some cases, for example in the case of a robot thatautonomously explores the surrounding world and that acts on the basis of the partial knowledgeit posseses. For such a robot is important to distinguish what is true from what is false and whatis unknown and therefore it needs to adopt a three-valued logic. The system LIVE (Learning Ina three-Valued Environment) has been implemented that is able to learn extended logic programscontaining a de�nition for both the concept and its opposite. Moreover, the de�nitions learned mayallow exceptions. In this case, a de�nition for the class of exceptions is learned and for exceptionsto exceptions, if present. In this way, hierarchies of exceptions can be learned.Keywords: Machine Learning, Inductive Logic Programming, Abduction, Explicit NegationDEIS Technical Report no. DEIS-LIA-98-005 LIA Series no. 33





AcknowledgementsFirst, I would like to thank professors Paola Mello and Evelina Lamma for their gentleguidance, keen advice and patience. Their support and incitement have been fundamentalfor overcoming the most di�cult times.I am grateful to professor Maurelio Boari for his uninterrupted encouragement, for cre-ating a fertile environment for doing research and for having o�ered me the opportunity towork in it.I would like to thank professor Antonis Kakas for the stimulating discussions we hadon the topics of the integration of abduction and induction and for the enthusiasm hecommunicated me on the subject. Part of the work was done while I was visiting theUniversity of Cyprus: my stay there was fruitful and enjoyable and I am grateful to AntonisKakas for his hospitality.I would like to thank professor Luis Moniz Pereira for the interest he showed in my workand for many interesting discussions on the topics of knowledge representation in learningthat were very inspiring for me.I would also like to thank all my friends at LIA, for having made more enjoyable my timeat the department: Rosy Barru�, Anna Ciampolini, Enrico Denti, Michela Milano, AndreaOmicini, Cesare Stefanelli and Franco Zambonelli.Lastly, I would like to thank my parents Odette and Lamberto, my sister Daniela, mygrandparents Odilla and Giuseppe for their love, support and faith in me.

i



ii



Contents
Acknowledgments i1 Introduction 11.1 Limits of ILP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Proposed Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 An Overview of Machine Learning 72.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.1.1 Learning Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.1.2 Research Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.2 Inductive Concept Learning from Examples . . . . . . . . . . . . . . . . . . . 102.3 Representation Languages in Inductive Reasoning . . . . . . . . . . . . . . . . 123 Inductive Logic Programming 173.1 Logic Programming Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 173.2 Learning from Entailment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.2.1 Soundness and Completeness . . . . . . . . . . . . . . . . . . . . . . . 233.2.2 Classi�cation of Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 243.2.3 Imperfect Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243.2.4 Hypothesis Space Ordering . . . . . . . . . . . . . . . . . . . . . . . . 253.2.5 Bottom-up methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.2.6 Top-down Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293.2.7 Generality of Learned Solutions . . . . . . . . . . . . . . . . . . . . . . 323.3 Learning from Interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . . 343.4 Examples of ILP Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363.4.1 GOLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363.4.2 FOIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363.4.3 mFOIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383.4.4 ICL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 Abductive Reasoning in Learning 414.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414.2 Abductive Logic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 434.3 Learning with Abduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49iii



4.3.1 Monotonicity and Generality . . . . . . . . . . . . . . . . . . . . . . . 534.4 An Algorithm for ACL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544.4.1 An Algorithm for ACL1 . . . . . . . . . . . . . . . . . . . . . . . . . . 554.4.2 Learning Integrity Constraints . . . . . . . . . . . . . . . . . . . . . . 604.4.3 Properties of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 614.5 ACL for Multiple Predicate Learning . . . . . . . . . . . . . . . . . . . . . . . 624.5.1 Multiple Predicate Learning: Problems and Di�culties . . . . . . . . . 624.5.2 M-ACL: a Multiple Predicate Learning framework . . . . . . . . . . . 644.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684.6.1 Learning from Incomplete Background Knowledge . . . . . . . . . . . 684.6.2 Multiple Predicate Learning . . . . . . . . . . . . . . . . . . . . . . . . 734.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785 Learning in a Three-valued Setting 815.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825.2.1 Three-valuedness, default and explicit negation . . . . . . . . . . . . . 825.2.2 Extended Logic Programs . . . . . . . . . . . . . . . . . . . . . . . . . 845.3 Learning in a Three-valued Setting . . . . . . . . . . . . . . . . . . . . . . . . 875.4 Strategies for Combining Di�erent Generalizations . . . . . . . . . . . . . . . 895.5 Strategies for Eliminating Learned Contradictions . . . . . . . . . . . . . . . 925.5.1 Single Source Contradiction . . . . . . . . . . . . . . . . . . . . . . . . 925.5.2 Multiple Source Contradiction . . . . . . . . . . . . . . . . . . . . . . 965.6 Strategies for Theory Re�nement . . . . . . . . . . . . . . . . . . . . . . . . . 1005.7 An Algorithm for Learning Extended Logic Programs . . . . . . . . . . . . . 1015.8 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1055.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076 Conclusions 109A Appendixes to Chapter 4 113A.1 Proof of Theorem 44 on Equivalence of ACL with ACL1 and ACL2 . . . . . . 113A.2 Proof of Theorem 48 on Soundness of ACL . . . . . . . . . . . . . . . . . . . 114A.3 Abductive Proof Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116A.4 Examples 51 and 52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
iv



Chapter 1IntroductionMachine Learning is a research area whose aim is to build machines that are able to constructor modify representations of what is being experienced. One of the most important tasksin Machine Learning consists in inducing knowledge from examples and data. The currentinterest in Machine Learning is justi�ed from two points of view. On one hand, the increasingdi�usion of knowledge based systems calls for automated methods for the acquisition ofknowledge, since this process has been recognized as one of the main bottlenecks in thedevelopment of knowledge based system. On the other hand, the task of Data Mining, orthe extraction of useful information from large amounts of data, has recently received alot of attention as the amount of data that are stored by organizations in databases anddata warehouses is rapidly increasing. Some of the techniques that are studied in MachineLearning are particularly suitable for Data Mining.Machine Learning has been applied with success to a wide variety of �elds, includingmedical or technical diagnosis, engineering design, industrial process control or banking. Asthe number of �elds where Machine Learning is applied increases, more and more complexdomains are considered and more and more expressive representation languages are usedto represent such domains. They have evolved from numerical descriptions to attribute-value languages and, �nally, to �rst-order logic ones. Increasing the expressiveness of therepresentation language is a general trend in Machine Learning that has allowed to solveproblems that arise in new application domains.Recently, the language of Logic Programming has been extensively used in learning. Theadoption of this language is studied in the �eld of Inductive Logic Programming (ILP hence-forth). The language of logic programs has allowed objects in the domain to be describedin a structured way, i.e., in terms of their components and relations among the compo-nents. The given relations constitute the background knowledge that is given as input tothe learner together with the examples of the target relation. Such an expressive represen-tation language has allowed ILP to tackle complex problems in various domains, includingdynamic systems, molecular biology, mechanical engineering, natural language processingand software engineering.The contribution of this thesis is twofold. First, we identify two problems of existingILP techniques: their limited ability to learn from an incomplete background knowledge andthe use of a two-valued logic that does not allow to consider some pieces of information asunknown. Second, we overcome these limits by prosecuting the general trend of increasing1



the expressiveness of the representation language. Two learning systems have been developedthat represent knowledge using two extensions of Logic Programming, namely abductivelogic programs and extended logic programs.1.1 Limits of ILPIn the following, we brie
y describe the problems that have been considered in this thesis.The �rst problem concerns the fact that the acquisition of data from real world is oftenimperfect. The data acquired from the real world is often noisy and/or incomplete. Wewill consider the problem of learning from incompleteness in the background knowledge.Information about individual instances representing examples is usually expressed by meansof ground facts in the background: if the acquisition of information for some instances wasincomplete, then some background facts will be missing. In this case, some positive examplesmay not be covered due to the absence of some facts related to them in the background.This may require the learning of multiple overspeci�c rules for covering a set of examplesthat could otherwise be covered by a single general one.Various systems have been developed to learn from imperfect data (for example, FOIL[Qui90a], mFOIL [D�ze91], FOIL-I [IKI+96] and LINUS [LDG91b]). However, no systemhas been specially designed for learning from an incomplete background knowledge.Thisproblem can be solved by integrating abductive reasoning into induction: abduction is usedin order to complete the background knowledge by making assumptions about the incompletebackground predicates.Another problem concerns the fact that most work on ILP and inductive concept learningin general has considered a two-valued logical setting. However, in some learning problemsis useful to consider a three-valued logical setting. For example, this is the case of an au-tonomous agent that gathers information from its surrounding world by performing experi-ments and memorizing the results. Such an agent needs to store both positive information,about successful experiments, and negative information, about unsuccessful experiment,and learn from both positive and negative information. For example, consider the case ofan agent that has to learn general rules about the e�ect of actions in a certain domain, withrespect to its goal. The agent will try actions and see whether the action has had a positiveor negative result. It will then use the results, either positive or negative, for learning ageneral description of actions that it will use for planning its behaviour. For such an agent,it is important to learn a description of actions that distinguishes among actions with apositive outcome, actions with a negative outcome and actions with an unknown outcome.In this way, it will be able to make decisions on what actions to perform knowing exactlythe possible consequences. It may thus decide to perform an action with a negative outcomeif it thinks it is necessary or try an action with an unknown outcome in order to furtherexplore its domain.This type of learning requires the adoption of a three-valued logical setting, where sen-tences can have the truth value true, false or unknown. However, most work on inductiveconcept learning considers a two-valued setting, where what is not entailed by the learnedtheory is considered as false, on the basis of the Closed World Assumption [Rei78]. In athree-valued setting one is able to learn and represent a de�nition for both the target con-cept and its opposite and to resolve the contradiction between the de�nitions by assigningthe truth value unknown to con
icting atoms.2



1.2 Proposed SolutionsVarious extensions of the language of logic programs have been proposed in order to improveits expressive power. This thesis proposes the adoption of two extensions of Logic Program-ming as the representation language for learning in order to solve the above mentionedproblems.Abductive logic programs provide an e�ective mechanism for representing and reasoningwith incomplete information. They allow hypothetic reasoning to be performed: assump-tions can be made about a number of predicates, called abducibles, for which a de�nitionis absent or is incomplete. Integrity constraints can be used in order to reduce the numberof assumptions that are allowed. Thus, abductive logic programs consist of a logic pro-gram, a set of abducible predicates and a set of integrity constraints. By representing thebackground knowledge as an abductive logic program, we are able to exploit the reasoningmechanism of abduction for completing the knowledge during learning. We have designedand implemented the system ACL (Abductive Concept Learning) that learns from a back-ground knowledge in the form of an abductive logic program: examples can be covered bymaking assumptions about some missing facts in the background. The system is able tolearn new rules and new constraints: the theory that is learned can thus be used to classifynew unseen examples that are incompletely speci�ed. The system has been tested on anumber of datasets where the knowledge is incomplete and the results obtained have beencompared with those of state of the art systems like ICL-Sat [DRD96c], mFOIL [D�ze91] andFOIL [Qui90a]. The performances of ACL were found to be superior or comparable withthose of these systems on the considered datasets.By means of Extended logic programs we are able to represent and reason with infor-mation in a three-valued logical setting. Extended logic programs contain two kinds ofnegation: default negation plus a second form of negation called explicit, that is used inorder to explicitly represent negative information. By adopting extended logic programs asa representation language for learning we are able to learn a de�nition for both the targetconcept and its opposite. Special techniques have to be adopted to ensure the consistencyamong the de�nitions for the concept and its opposite: in case both the de�nitions cover anunseen example, the example is classi�ed as unknown. Explicit negation is used in order torepresent the opposite concept, while default negation is used in order to represent excep-tions to de�nitions by means of default rules. We have developed the system LIVE (LearningIn a three-Valued Environment) that learns de�nitions for both the concept and its oppositethat may allow exceptions. The system is able to learn a de�nition for the exceptions that,on its turn, may also allow exceptions. In this way hierarchies of exceptions can be learned.The system is parametric in the technique adopted for learning the de�nitions for the con-cept and its opposite: by means of bottom-up techniques we �nd least general de�nitions,while by means of top-down techniques we �nd most general de�nitions. The possibility ofchoosing independently the generality of the two de�nitions is useful in domains where weneed to take into account the risk of making a mistake in classifying erroneously an unseeninstance. Various experiments have been performed to show the ability of the system tocombine solutions of di�erent generality, to show its ability to deal with contradiction andto show how hierarchies of exceptions can be learned.3



1.3 Structure of the ThesisThe thesis is organized as follows. In chapter 2, we will provide an overview of MachineLearning, presenting the various learning strategies and paradigms that have been inves-tigated in the �eld. Then, we concentrate on the learning strategy of inductive learningfrom examples by means of the paradigm of symbolic concept acquisition. The evolution ofrepresentation languages used for this task is described, going from analytical expressions,to attribute-value descriptions to Logic Programming.Chapter 3 is devoted to presenting the problems and techniques that are studied in the�eld of ILP. First, some preliminaries about logic programming are given: the syntax andsemantics of the language is de�ned. Two main learning settings exist in ILP: learningfrom entailment and learning from interpretations. For each of them, the learning problemis de�ned and examples of problems are given. Learning from entailment has been mostextensively studied and is described in more details: we will discuss the properties of sound-ness and completeness for a learning algorithm, the criteria for classifying ILP systems, thevarious types of imperfections that can appear in the data, the structure of the hypothesisspace and, �nally, the techniques that can be adopted for learning. Some of the most repre-sentative ILP systems are then described: GOLEM [MF90], FOIL [Qui90a], mFOIL [D�ze91]and ICL [DRL95].Chapter 4 considers the problem of learning from incomplete information in the back-ground and describes the adoption of abductive logic programs as the representation for-malism. First, abductive logic programs are de�ned, together with a semantics and a proofprocedure for them. A learning problem in this new setting is then presented that is calledAbductive Concept Learning (ACL). The ACL problem can be split into two subproblemsthat consist of learning the program part and learning the constraint part. A system, alsocalled ACL, is proposed that solves the problem by solving the two subproblems in sequence.ACL can be very useful as well for solving problems of multiple predicate learning: the mainissues involved in these types of learning problems are discussed and an extension of ACL,called M-ACL, is presented for performing this task. Two series of experiments are thenpresented, the �rst that show the ability of ACL to learn from datasets with an incom-plete background knowledge and the second to show the ability of ACL to learn multiplepredicates. Finally, other works that integrates abduction and induction are discussed.Chapter 5 discusses the problem of learning in a three-valued setting. First, we showthe usefulness of a three-valued logical setting and of two types of negation for knowledgerepresentation. Then, we provide a de�nition of extended logic programs and recall theWFSX semantic for them together with the sound proof procedure SLX. The utility ofthe introduction of a three-valued logical setting in learning is presented next, togetherwith the de�nition of the new learning problem adopting extended logic programs as therepresentation language. Depending on the technique used to learn a de�nition for theconcept and its opposite, we may learn a least general de�nition or a most general de�nition:we discuss the criteria that should be adopted for choosing the generality levels accordingto the learning conditions. Then, the issue of contradiction is presented and techniquesfor resolving it are described. We consider �rst the case in which contradiction arise in asingle source of information and then the case of multiple con
icting sources. Depending onthe generality of the de�nitions, di�erent types of contradiction can be distinguished anddi�erent approaches for the revision of the de�nitions are described. Finally, the systemLIVE for learning extended logic program is presented and related works are discussed.4



Chapter 6 presents the conclusions of the thesis. We �rst recall the aim of the thesis andthen we summarize the results obtained. We end by presenting directions for future works.

5



6



Chapter 2An Overview of MachineLearningThe research area of Machine Learning includes a wide variety of di�erent approaches. Inthis chapter, a brief overview of the spectrum of learning paradigms will be presented. Thenwe will concentrate on the problem of inductive concept learning from examples, which isthe paradigm adopted in this thesis. Solving this problem by means of symbolic techniquesrequires the adoption of a representation language for the examples and for the conceptsto be learned. In the last section of this chapter we will describe the evolution that therepresentation languages have undergone from early studies in Machine Learning to themore recent research in Inductive Logic Programming.2.1 Machine LearningVarious de�nitions of learning have been proposed in the literature. Two main views exist,which are complementary to each other. The �rst view is due to H. A. Simon that has giventhe following de�nition ([Sim83], pag. 28):Learning denotes changes in the system that are adaptive in the sense that theyenable the system to do the same task or tasks drawn from the same populationmore e�ciently and more e�ectively the next time.However, some learning tasks are only concerned with acquiring new knowledge, withoutimproving the performance of any systems. Therefore, another de�nition was proposed byMichalski [MCM86]:Learning is constructing or modifying representations of what is being experi-enced.The current interest in Machine Learning can be understood in the light of these two def-initions. According to the �rst de�nition, Machine Learning is interesting since it aims atthe engineering task of building machines that are able to modify themselves in order toperform better at a given task, following the de�nition of learning given by Simon.7



According to the second de�nition, Machine Learning can be used to acquire new knowl-edge that can be used by humans, by machines or by both. It has been generally acceptedthat the main bottleneck in building knowledge based systems consists in the acquisition ofknowledge. Therefore, having methods that can simplify this task is very important.Machine Learning is also interesting for another reason. Even if there is no consensus onthe de�nition of intelligence, there is agreement on the fact that the ability to learn is oneof the key features of intelligent behaviour. Therefore Machine Learning is also importantfrom a cognitive science point of view because it can help to improve our understanding ofthe mechanisms underlying learning in humans.Various criteria have been proposed for classifying Machine Learning research [CMM83,Mic86]. We will consider here the learning strategy criterion, as suggested by [Mic86], andthe research paradigm, as suggested by [Car89].The learning strategy refers to the type of inferences performed by the system duringlearning, while the research paradigm refers to the approach and techniques used in theconstruction of the system.2.1.1 Learning StrategiesLearning can be seen as a process where the learner transforms information provided by ateacher (or environment) into an internal form that is stored for future use. The learningstrategy employed by the learner consists in the type of this transformation. Several di�erentstrategies have been identi�ed: rote learning, learning by instruction, learning by deduction,learning by analogy and learning by induction. The latter subdivides into learning fromexamples and learning by observation and discovery. The strategies are listed in order ofincreasing complexity of the transformation performed on the knowledge.In rote learning, the information from the teacher is directly memorized by the learnerwithout undergoing any elaboration. In this type of learning, the issue is how to index storedknowledge for future retrieval. In learning by instruction, the learner acquires knowledgefrom a teacher or another organized source, such as a textbook. The learner has to simplytransform the knowledge from the input language to an internally-usable representation.In deductive learning, the learner performs deductive inferences on the knowledge providedby the teacher and stores useful conclusions in order to obtain a more e�cient and/orcomprehensible theory.Learning by analogy consists in obtaining knowledge applicable in the current situationfrom knowledge about past situations that bears strong similarities with the current sit-uation. The aim of the transformation is to modify the available information so that itbecomes useful in the current situation.Induction is generally understood as reasoning from speci�c to general. In inductivelearning, the learner starts from the facts and observations provided by a teacher or theenvironment and generalizes them, obtaining knowledge that should be valid also for casesnot yet observed. Inductive learning can be subdivided into learning from examples andlearning by observation and discovery. In learning from examples, the teacher provides a setof positive examples that are instances of a concept and a set of negative examples that arenon-instances of the concept. The task of the learner is to build a general description thatdescribes all the positive examples and none of the negative. In learning from observationand discovery, the task of the learner is to �nd regularities and general rules that holdon the observations. The observations may contain instances of multiple concepts and8



the leaner has to discover relations among them, rather than de�nitions for the individualconcepts. Examples of this form of learning are conceptual clustering (grouping objectsthat exhibit similar properties into classes), discovering laws explaining a set of observationsand formulating theories accounting for the behaviour of a system. When the result oflearning must be a theory describing one or more concept in a form that is understandableby humans, we speak about inductive concept learning from examples and inductive conceptlearning from observations.2.1.2 Research ParadigmThe research paradigm refers to the type of techniques used for the construction of learningsystems. The di�erent techniques used in Machine Learning can be broadly classi�ed intofour categories: symbolic concept acquisition, analytic (or deductive) learning, evolution-ary learning (or learning with genetic algorithms) and connectionist learning (learning withneural nets)1.In symbolic concept acquisition, the task of the system consists in building a symbolic rep-resentation of a given set of concepts by processing a set of examples and counter-examples ofthese concepts. The languages used for the representation of the concepts can be �rst orderlogic, decision trees, production rules or semantic networks. Learning is usually performedby searching the space of concept descriptions.In analytic (or deductive) learning, deduction is used in order to generate conclusionsfrom the available knowledge that allow a more e�cient application of domain knowledgein new cases. The aim of analytic methods is not to extend the set of available conceptdescriptions but to improve the e�ciency of the system.Evolutionary learning is inspired to the theory of Darwinian evolution, where a pop-ulation of individuals evolve by means of gene transformation in biological reproduction(cross-over, mutations, etc.) and by survival of the �ttest. In learning, the concept descrip-tions are the individuals and they are combined and modi�ed by means of biological-likeoperators in order to obtain new concept descriptions that are then selected according to a�tness function.In connectionist learning or learning with neural nets, the learning system is composed bya number of interconnected elements, usually neuron-like, that perform some simple logicalfunction, typically a threshold logic function. Each connection between two elements isassigned a weight that represents the strength of the connection. The neural net will havesome input connections, that come from the external world, and some output connections,that go towards the external world. The learning is performed by incrementally modifyingthe connection weights in order to minimize the error on the set of input-output couplesprovided as training examples.Apart from the strategies of rote learning and learning by instruction, that adopt ad-hoclearning techniques, a mapping can be established among learning strategies and the aboveresearch paradigms.Deductive learning can be performed by means of analytic (or deductive) learning tech-niques. Learning by analogy can be performed by combining techniques of symbolic conceptacquisition and deductive learning or by connectionist learning. Inductive learning from1This classi�cation is adapted from the one proposed in [Car89] by substituting the term inductivelearning with symbolic concept acquisition 9



examples or observations can be performed by symbolic concept acquisition, connection-ist learning or evolutionary learning. However, the task of inductive concept learning canbe performed only by means of symbolic concept acquisition techniques or by evolutionarylearning.In this thesis we will consider learning systems that adopt the learning strategy of in-ductive concept learning from examples with the research paradigm of symbolic conceptacquisition.2.2 Inductive Concept Learning from ExamplesIn this section, we will give a de�nition of inductive concept learning from examples. Wewill follow the de�nition provided in [LD94]. Learning is performed on a domain that isdescribed by the universe of all the objects in the domain, represented by the set U . Aconcept C is de�ned as a subset of the universe: C � U . To learn a concept C means tolearn a concept description that allows to recognize if an object belongs to C, i.e. if x 2 Cfor any x 2 U .In order to test the membership of an object to a concept, we need a language fordescribing objects, a language for describing concepts and a procedure that interprets thelanguages and performs the test. When the description of an object satis�es the descriptionof a concept, we say that the concept description covers the object description. Therefore, inorder to de�ne an inductive concept learning problem, we need to de�ne an object descriptionlanguage, Lo, a concept description language, Lc, and a procedure for testing the coverage.We will call fact the description of an object and hypothesis the description of a conceptto be learned. Learning is performed starting from a set of examples that are facts for whichthe concept membership is known. Examples are therefore labeled facts, for which the labelrepresents the concept membership. The set of all the examples is called training set and isdenoted with E.In single concept learning, the labels are � and 	 and they indicate whether the objectbelongs or does not belong to the concept we want to learn. If an object belongs to aconcept, we also say that it is an instance of the concept. Examples from E labeled � arecalled positive examples and form the set E+, while examples labeled 	, are called negativeexamples and form the set E�. Sometimes we will consider sets E+ and E� that containunlabeled facts: positive examples are distinguished implicitly from negative examples fromtheir membership to either E+ or E�. In this case, we will call examples also the unlabeledfacts from E+ and E�.In multiple concept learning, labels denote positive and negative examples relative todi�erent concepts and the training set can be divided into subsets of positive and negativeexamples each corresponding to a concept.The problem of inductive learning of a single concept C from examples can be stated asfollows:De�nition 1 (Inductive Concept Learning) Given a set E of positive and negative ex-amples of a concept C described in a given object description language Lo, �nd a hypothesisH, expressed in a given concept description language Lc, such that� every positive example e+ 2 E+ is covered by H,10



� no negative example e� 2 E� is covered by H.In order to test the coverage of a hypothesis H , a functioncovers(H; e) (2.1)can be de�ned that returns true if the example e is covered by H and returns false otherwise.The implementation of this function depends on the languages Lo and Lc.We also de�ne the function covers(H;E) that returns the set of examples in E that arecovered by H covers(H;E) = fe 2 E j covers(H; e) = trueg (2.2)In order for H to be a solution of a learning problem, it must cover all positive examples andnone of the negative ones. When a hypothesis H covers all the positive examples, we saythat the hypothesis is complete, while when H does not cover any negative example we saythat it is consistent. By means of the function covers(H;E), the notions of completeness andconsistency can be de�ned as follows. A hypothesis H is complete if covers(H;E+) = E+and is consistent if covers(H;E�) = ;.In many cases, it is useful for a learner to exploit, besides examples, available knowledgeon the domain. The knowledge that is available to the learner \a priori" is called backgroundknowledge and it is usually expressed in the language Lc. By using background knowledge,a learner can express more naturally and more concisely the hypothesis to be learned, thussimplifying the learning task. In practice, di�cult learning problems require a substantialamount of background knowledge to be solved e�ectively. When a background knowledge isavailable, the learning problem must be restated. The coverage test has to be modi�ed sothat the background knowledge is taken into account when the membership of an exampleto a concept is veri�ed. Let B denote the background knowledge, the coverage functions 2.1and 2.2 now become covers(H;B; e) (2.3)covers(H;B;E) (2.4)The de�nition of the learning problem can now be restated as follows:De�nition 2 (Inductive Concept Learning with Background Knowledge) Given aset E of positive and negative examples of a concept C described in a given object descriptionlanguage Lo and a background knowledge B expressed in the concept description languageLc, �nd a hypothesis H, expressed in a given concept description language Lc, such that His complete and consistent with respect to the examples E.The de�nition of consistency and completeness must also be restated to take into accountthe background knowledge:De�nition 3 (Completeness) A hypothesis H is complete with respect to backgroundknowledge B and examples E if all the positive examples in E are covered, i.e., if covers(H;B;E+) = E+De�nition 4 (Consistency) A hypothesis H is consistent with respect to background knowl-edge B and examples E if no negative example in E is covered, i.e., if covers(H;B;E�) = ;11



The problem of concept learning can be seen as a problem of search in the space of con-cept descriptions [Mit82], also called hypothesis space. For non trivial concept descriptionlanguages, the search space is extremely large and additional mechanisms are required tomake the search feasible. Any mechanism employed by a learning system to constrain thesearch for hypothesis is called bias. When the bias is a modi�able parameter of the systemthat the user has to explicitly specify for each learning problem it is called declarative bias.There are two types of bias: the search bias, that determines the way the hypothesis spaceis searched, and the language bias, that determines the hypothesis space itself.2.3 Representation Languages in Inductive ReasoningThe representation languages that have been used for performing inductive reasoning haveundergone a substantial evolution from Pattern Recognition to early studies in MachineLearning, to recent works on learning relational concepts. The language has evolved fromconcept descriptions that are essentially numeric, to attribute-value languages, to relationallanguages, to �rst-order logical languages. The main reason for this evolution was to increasethe expressivity of the language in order to be able to represent and to learn more and morecomplex concepts.In the research area of Pattern Recognition the language of examples is represented bythe values that a number of variables assume for each object of the domain. Each variableis usually measured at least on an interval scale. The language of concepts is representedby analytical expressions involving the numerical variables describing the objects and anumber of numeric parameters that, when instantiated, determine the expression. Thetask of inductive learning is, in this case, the �ne-tuning of these numeric parameters. Anexample [BG95] is the problem of �nding the linear discriminant of a set of points in an n-dimensional space belonging to two classes (or to one class and not to the class). The goal isto �nd a linear discriminant of the instances of the two classes, consisting of an hyperplane:the parameters in the hyperplane equation must be determined in the training phase.However, in many cases it is not possible or not convenient to use a set of numericalvariables as the representation language [Mic80]. Often, the relevant object characteristicsare not numerical but categorical. In this case, the use of numerical techniques to treatsymbolic features is ine�cient and inadequate [BG95]. Moreover, representing symbolicfeatures numerically makes the resulting description poorly comprehensible to humans. Inorder to solve these problems, attribute-value languages are used.In attribute-value languages objects are described by a �xed set of variables called at-tributes that can assume values from prede�ned sets. For example, consider the problem ofdeciding whether a Saturday morning is suitable for playing tennis [Mit97] on the basis ofthe weather conditions. This problem can be described by means of four attributes Outlook,Temperature, Humidity and Wind that can assume a value, respectively, in the sets fSunny,Overcast, Raing, fCold, Medium, Hotg, fLow, Highg and fWeak, Strongg. Each Saturdaymorning is described by a list of attribute value pairs, for exampleOutlook = Sunny, Temperature = Hot, Humidity = Normal, Wind = Strongor as a tuple of valueshSunny, Hot, Normal, StrongiOn this particular Saturday morning one would play tennis, therefore this is a positiveexample for the concept PlayTennis. In attribute-value languages, concepts are described12



Figure 2.1: A decision tree for the concept PlayTennis (Taken from [Mit97])by means of rules where the antecedent consists of conjunctions or disjunctions of attribute-value pairs (expressions of the form Attribute = V alue) and the consequent is a conceptname. No variables, quanti�ers and relations among components of examples are allowed inthe description of concepts. For example, a description of the concept of a Saturday can berepresented as the following rule:PlayTennis if Outlook=Sunny ^ Humidity=Normal_ Outlook=Overcast_ Outlook=Rain ^ Wind=WeakConcept descriptions in attribute-value languages may also be described by means of decisiontrees. Each node of a decision tree corresponds to a test on an attribute and each branchcorresponds to one of the possible values for the attribute. The leaves of the tree are labeledwith one of the concepts to be learned (or with the concept and its opposite in single conceptlearning). An instance is classi�ed by starting from the root node of the tree, testing theattribute on that branch and then moving down the branch corresponding to the value of theattribute in the given instance. This process is repeated until one of the leaves is reached:the classi�cation of the instance is given by the label of the leaf. In �gure 2.1 it is shownthe decision tree for the concept PlayTennis corresponding to the rule above.Attribute-value languages are equivalent to propositional logic. Examples of systemsthat adopt an attribute-value representation are AQ [Mic73], CN2 [CB89] and c4.5 [Qui93].Attribute-value languages have two main drawbacks: they have a limited expressivepower and it is di�cult to use the available background information with them. The lack ofpossibility of expressing relations among components of the examples is particularly impor-tant when examples are complex objects that can be decomposed into various componentswith di�erent relations among them. Therefore, relational languages were introduced thatallow the representation of structured objects in terms of their components and relationsamong the components. Such languages are usually equivalent to a subset of �rst-orderlogic.Some authors [Mic80, BGS88] have adopted a relational frame-like language, where an13



object is represented by dividing it into components and, for each component, by giving thelist of values for the attributes of that component. Some attributes may be relevant onlyfor some of the components, therefore the list of attribute-value couples for the componentshas a variable length. For example [BG95], an instance of a family including a grandfathercan be expressed asName = david; Son = mike; Father = ronName = mike; Son = junior; Father = davidName = junior; Father = mikeStructured objects of this kind could be represented as well with a unique list of attribute-value pairs, by indexing the attributes with the component name. However, this list wouldcontain as many attributes as are required by the most complex objects. If the complexityof objects is uneven, this results in a waste of space and lower comprehensibility for humans.The concept descriptions allowed by relational languages of this kind may contain quan-ti�ers and variables. For example, the concept of a family including a grandfather can beexpressed as 9X;Y; Z son(X) = Y ^ son(Y ) = ZAnother language where relations can be expressed is Logic Programming [Llo87]. Theresearch area that studies learning system adopting Logic Programming as a representationlanguage is called Inductive Logic Programming (ILP henceforth). Logic Programming hasthree advantages with respect to the relational languages of the previous form [BG95]. Firstof all, it allows recursion in the de�nition of concepts, thus making possible to express a widerclass of concepts. Second, the notation of logic programming is simpler, more standardizedand interpreters for it are based on sound and well-understood theoretical grounds. Thishas brought a clari�cation and a more rigorous formalization in learning. Third, logicprogramming is also a programming language, therefore the de�nitions that are learned canalso be interpreted as executable programs, thus providing an approach for the automateddevelopment of programs.In Logic Programming, examples are described as ground literals, i.e., predicates appliedto constant arguments, while the knowledge about the relations among the components andtheir attributes is expressed in the background knowledge. The previous example of a familywith a grandfather, is now expressed as the factgrandfather (david;mike) together with a number of facts in the background knowledgefather (ron; david) father (david;mike) father (mike; junior) Moreover, some background knowledge may be available that can be used by the learningsystem. For example, we may know thatchild(X;Y ) father (Y;X)The concept will be represented by a predicate and the concept description will be a logicprogram. For the grandfather example, it is possible to distinguish three di�erent de�nitionsof grandfather [BG95]grandfather  father (X;Z); father (Z; Y )grandfather (X) father (X;Z); father (Z; Y )14



grandfather (X;Y ) father (X;Z); father(Z; Y )The �rst de�nition identi�es the classes of families containing at least one grandfather, thesecond de�nes the requirements for being a grandfather and the last states the conditionsthat a speci�c person X must satisfy in order to be the grandfather of Y . With previousrelational learning languages these concepts were hard to distinguish and have sometimesbeen confused: this example shows the clari�cation issue that has been addressed by LogicProgramming. As regards the issue of increased expressivity thanks to recursion, LogicProgramming allows de�nition of concepts of the formancestor(X;Y ) parent(X;Z); ancestor(Z; Y )that were not allowed by none of the previous approaches in Machine Learning.In the next chapter the concept and techniques from the research �eld of ILP will bepresented in details.

15



16



Chapter 3Inductive Logic ProgrammingInductive Logic Programming (ILP) is the research �eld that studies the problem of induc-tive concept learning from examples when the representation language employed is LogicProgramming. This chapter introduces the terminology of logic and Logic Programmingand provides an overview of the problems and techniques that have been studied in the �eldof Inductive Logic Programming.Two main formalizations of the learning problem have been given: learning from entail-ment and learning from interpretations [DR97]. The two settings di�er in the de�nition ofthe coverage relation and in the form of examples: in learning from entailment examples areground facts, while in learning from interpretations examples are Herbrand interpretations,i.e., sets of ground facts.Learning from entailment is the most widely used problem setting and will be treated inmore details in section 3.2. The problem of learning from interpretations will be describedin section 3.3.3.1 Logic Programming PreliminariesIn this section, we will give some basic notions on �rst order logic languages and LogicProgramming (adapted from [Llo87] and [Fla95]) that will be used throughout the thesis.A �rst order logic language L is de�ned by an alphabet that consists of seven setsof symbols: variables, constants, functions symbols, predicate symbols, logical connectives,quanti�ers and punctuation symbols. The �rst four classes di�er from language to language,while the last three are the same for all the languages. The connectives are � (negation),^ (conjunction), _ (disjunction),  (implication),$ (equivalence); the quanti�ers are theexistential quanti�er 9 and the universal quanti�er 8, and the punctuation symbols are \(",\)", and \,".Well-formed formulas (w�'s) of the language are the syntactically correct clauses ofthe language and are inductively de�ned by combining elementary formulas, called atomicformulas, by means of logical connectives and quanti�ers. On their turn, atomic formulasare obtained by applying the predicates symbols to elementary terms.A term is de�ned recursively as follows: a variable is a term, a constant is a term, if fis a function symbol with arity n and t1; : : : ; tn are terms, then f(t1; : : : ; tn) is a term. An17



atomic formula or atom is the application of a predicate symbol p with arity n to n terms:p(t1; : : : ; tn).A well-formed formula is de�ned recursively as follows:� every atom is a w�;� if A and B are w�'s, then also � A, A^B, A_B, A B, A$ B are w�'s (possiblyenclosed in balanced brackets);� if A is w� and X is a variable, 8X A and 9X A are w�.The scope of a quanti�er 8X (resp. 9X) in 8X F (resp. 9X F ) is F . An occourence ofa variable in a quanti�er is bound if it immediately follows a quanti�er, or if it occours inthe scope of a quanti�er with the same variable. Any other occourence of a variable in aformula is free. A closed formula is a formula without free occourences of any variables,otherwise the formula is open. For any formula, 8(F ) denotes the universal closure of F ,which is the closed formula obtained by adding a universal quanti�er for each variable witha free occourence in F . A variant �0 of a formula � is obtained by renaming all its variables.The class of formulae called clauses has important properties. A clause is a formula ofthe form 8X18X2 : : :8Xs(A1 _ : : : _ An_ � B1 _ : : :_ � Bm)where each Ai; Bi are atoms and X1; X2; : : : ; Xs are all the variables occouring in (A1_ : : :_An_ � B1 _ : : :_ � Bm). The clause above can also be represented as follows:A1; : : : ;An B1; : : : ; BmThe part preceeding the symbol  is called the head of the clause, while the part followingit is called the body. An atom or the negation of an atom is called a literal. A positiveliteral is an atom, a negative literal is the negation of an atom. Sometimes clauses will berepresented by means of a set of literals:fA1; : : : ; An;� B1; : : : ;� BmgA clause is a denial if it has no positive literal, de�nite if it has one positive literal, andinde�nite if it has more than one positive literal. A Horn clause is either a de�nite clause ora denial. A fact is a de�nite clause without negative literals, sometimes the  symbol willbe omitted for facts. A clause C is range-restricted if and only if the variables appearing inthe head are a subset of those in the body. A normal clause is a clause of the formA B1; : : : ; Bi; not Bi+1; : : : ; Bmwhere not denotes a kind of negation that is di�erent with respect to �. A de�nite logic pro-gram is a set (conjunction) of de�nite clauses. A normal logic program is a set (conjunction)of de�nite and normal clauses.The following notation for the symbols will be adopted: predicates, functions and con-stants start with a lowercase letter, while variable symbols start with an uppercase letter (asin the Prolog programming language, see below). A functor is a function symbol occouringin a clause. A substitution � = fX1=t1; : : : ; Xk=tkg is a function mapping variables to terms.18



The application C� of a substitution � to a clause C means replacing all the occourences ofeach variable Xj in C by same term tj .A ground clause (term) is a clause (term) without variables. The Herbrand universe Hof a language or a program is the set of all the ground terms that can be obtained combiningthe symbols in the language or program. The Herbrand base B of a language or a programis the set of ground atoms. Sometimes they will be indicated with H(P ) and B(P ) whereP is the program.The semantics of a set of formulas can be de�ned in terms of interpretations and mod-els.We will here consider the special case of Herbrand interpretations and Herbrand modelsthat are su�cient for giving a semantics to sets of clauses, both de�nite and inde�nite. Fora de�nition of interpretations and models in the general case see [Llo87]. A Herbrand inter-pretation I is a subset of the Herbrand base, i.e., I � B. Given a Herbrand interpretation,it is possible to assign a truth-value to a formula according to the following rules. A groundatom p(t1; t2; : : : ; tn) is true under the interpretation I if and only if p(t1; t2; : : : ; tn) 2 I . Aconjunction of atomic formulas B1; : : : ; Bm is true in I if and only if B1; : : : ; Bm � I . Aground clause fA1; : : : ; An;� B1; : : : ;� Bmg is true in an interpretation I if and only if atleast one of the atoms of the head is true in the case in which the body is true. A clauseC is true in an interpretation I if and only if all its ground instances with terms from Hare true in I . A set of clauses � is true in an interpretation I if and only if all the clausesC 2 � are true.An interpretation I satis�es a set of clauses �, notation I j= �, if � is true in I ; we alsosay that I is amodel of �. A set of clause is satis�able if it is satis�ed by some interpretation,unsatis�able otherwise. If all models of a set of clauses � are also models of a clause C, wesay that � logically entails C or C is a logical consequence of �, and we write � j= C1.Herbrand interpretations and models are su�cient for giving a semantics to sets of clausesin the following sense: a set of clauses is unsatis�able if and only if it does not have aHerbrand model. For sets of de�nite clauses Herbrand models are particularly importantbecause they have the relevant property that the intersection of a set of Herbrand modelsfor a set of de�nite clauses P is still an Herbrand model of P . The intersection of all theHerbrand models of P is called the minimal Herbrand model of P and is represented withlhm(P ). The least Herbrand model of P always exists and is unique. The model-theoreticsemantics of a program P is the set of all ground atoms that are logical consequences of P .The least Herbrand model provides the model theoretic semantics for P : P j= A if and onlyif A 2 lhm(P ) where A is a ground atom.A proof procedure consists of a set of (logical) axioms and a set of inference rules. Givena proof procedure �, we say that � is provable from the set of formulas � and write � `� �if there exist a �nite sequence of formulas �1; �2; : : : ; �n which is obtained by successiveapplications of inference rules to axioms, formulas in �, or previous formulas in the sequence,or combinations of these, while �n is the conclusion �. Such a sequence of formulas, if itexists, is called a proof of � from �. A proof procedure � is sound, with respect to themodel-theoretic semantics, if � j= � whenever � `� �; it is complete if � `� � whenever� j= �.A proof procedure for clausal logic is resolution [Rob65]. In this proof procedure the1We use the same symbol for the entailment relation and for the satisfaction relation between inter-pretations and formulas in order to follow the standard logic practice. In cases where this may causemisunderstanding, the intended meaning will be indicated in words.19



set of axioms is empty since there is no interaction between logical connectives due to thenormal form in which clauses are written. The set of inference rules contains only one rule,resolution, which allows one to infer, from two clauses F1 _ L1 and F2_ � L2, the clause(F1 _F2)�, where � is the most general uni�er of L1 and L2 (the minimal substitution suchthat L1� = L2�). For de�nite clauses, this consists in matching the head of one clausewith a literal in the body of another. The resolution proof procedure is not complete butis refutation-complete, i.e. if a set of clauses is inconsistent, resolution is able to derive theunsatis�able empty clause 2 [Fla95]. Therefore, proofs of � ` � where � is a conjunctionof positive literals, are transformed into refutation proofs � [ f� �g ` 2, where � � is adenial called a query and written ?�B1; : : : ; Bm.Logic Programming is obtained by considering Horn clauses only and by adopting aparticular version of resolution (called SLD resolution [Kow74]) that is e�cient for Hornclauses. In SLD resolution the initial formula is the negated goal �1 =� � and, at each step,the new formula �i+1 is obtained by resolving the previous formula �i with a variant of aclause from the initial set �. SLD resolution was proven to be sound and complete for Hornclauses (the proofs can be found in [Llo87]).A particular Logic Programming language is de�ned by choosing a rule for the selectionof the literals in the current formula to be reduced at each step (computation rule) and bychoosing a search strategy, that can be either depth �rst or breadth �rst. In the Prolog[CKRP73] programming language the computation rule selects the left-most literal in thecurrent goal and the search strategy is depth �rst with chronological backtracking. Moreover,Prolog adopts an extension of SLD resolution called SLDNF resolution that is able to dealwith normal clauses by negation as failure [Cla78].3.2 Learning from EntailmentIn learning from entailment, the training set E is expressed as a set of ground facts, thebackground knowledge and the hypothesis are de�nite programs and the coverage relationis de�ned as follows [LD94]:De�nition 5 (Learning from Entailment - Coverage) Given a background knowledgeB, a hypothesis H and an example set E, the hypothesis H covers example e 2 E withrespect to background knowledge B if B [H j= e, i.e.covers(B;H; e) = true if B [H j= eAs a consequence, the function covers(H;B;E) can be de�ned ascovers(B;H;E) = fe 2 E j B [H j= egWe say that a hypothesis H is complete if covers(B;H;E+) = E+ and that is consistent ifcovers(B;H;E�) = ;.The framework of learning from entailment has been also called normal setting [MDR94]or explanatory setting [DRD96a] for learning because examples have to be explained by thelearned theory.The task of learning from entailment can then be de�ned as follows [BG95].20



De�nition 6 (Learning from Entailment Problem)Given:� a set P of possible programs (language bias)� a set E+ of positive examples (ground facts)� a set E� of negative examples (ground facts)� a logic program B (background knowledge).Find:� a logic program P 2 P such that:� 8e+ 2 E+, B [ P j= e+ (completeness)� 8e� 2 E�, B [ P 6j= e� (consistency)The program P is called target program. Depending on whether the training set containsfacts for one or more predicate, the target program will contain a de�nition for one or morepredicates and we speak, respectively, of single predicate learning or multiple predicate learn-ing. Learning multiple predicates poses a number of problems that are discussed in section4.5.1. The hypothesis space P is de�ned by the language bias and has to be restricted asmuch as possible in order to contain the computational complexity of the learning task. Var-ious forms of restriction have been used in ILP, some of them are hardwired into the systemwhile some other can be user-de�ned (declarative-bias). Examples of hardwired restrictionsare: function-free programs (FOIL [Qui90a]) or determinacy (GOLEM [MF90]). Examplesof user-de�ned restrictions are: types and symmetry of predicates in pairs of arguments[LDG91a], input/output modes [Sha83], program schemata or rule models [Wro88, Mor91],clause sets [BG95], parametrized languages [DR92], integrity constraints [DRBM91] anddeterminations [Rus89].In the following, we will consider only a very simple bias in the form of a set of literalswhich are allowed in the body of the clauses for the target predicates, which corresponds toa simpli�ed version of the clause sets adopted in [BG95].Let us now consider a simple example.Example 7 Suppose we want to learn the concept grandfather from the background knowl-edge:father (X;Y ) parent(X;Y );male(X)parent(john;mary)parent(ann;mary)parent(mary; steve)male(john)female(mary)and the training sets:E+ = fgrandfather (john; steve)gE� = fgrandfather (ann; steve); grandfather (john;mary)g21



Suppose also that the hypothesis space P is described in this way:P is the set of clauses of the type grandfather (X;Y ) � where � is a conjunction of literalschosen among the following:father (X;Y ); father (X;Z); father (Z; Y );parent(X;Y ); parent(X;Z); parent(Z; Y );male(X);male(Y );male(Z);female(X); female(Y ); female(Z)The following program P is a solution to this ILP problem because it covers the positiveexamples and does not cover any of the negative ones:grandfather (X;Y ) father (X;Z); parent(Z; Y )Operationally, the entailment relation is usually tested by means of SLD-resolution,either depth-bounded or unbounded. In depth-bounded SLD-resolution, a limit is placedon the derivation depth in order to avoid loops, as for example in MIS [Sha83] and CIGOL[MB92].The notion of coverage de�ned above is called intensional coverage because the back-ground knowledge B is intensional and can contain both ground facts and non-groundclauses. However, many ILP systems use a di�erent notion of coverage, namely exten-sional coverage, where the background knowledge B is extensional, i.e., it is a set of groundfacts only. Examples of systems employing extensional coverage are FOIL [Qui90a], ICN[MV95b], MULT ICN [MV95a], FOCL [PK92], MIS [Sha83] (with the lazy strategy) andGOLEM [MF90].In the case in which B is intensional, extensional ILP systems have �rst to transformit into a ground model M of B. In section 3.4.1 a technique is described for ensuring thatM is �nite. Given the model M of the background knowledge B, extensional ILP systemsemploy the coverage relation that is de�ned below [DRLD93].De�nition 8 (Learning from Entailment - Extensional Coverage) A hypothesis Hextensionally covers an example e 2 E with respect to a ground model M of the back-ground knowledge if there exists a clause C 2 H, C = T  Q, and a substitution �, suchthat T� = e and Q� = fL1; : : : ; Lmg� � M . In this case the following notation is used:coversext(M;H; e) = true.Operationally, in order to test recursive de�nitions, the modelM must represent not only thebackground knowledge but also the predicates we want to learn, also called target predicates.As the de�nition for the target predicates is unknown at the time of learning, the model ofB [H is approximated by computing the model of B [ E+. Atoms in the training set canthen be used for the resolution of recursive literals in the body of clauses.It is important to note that extensional coverage is not equivalent to intensional coveragedue to the approximations introduced: the use of a h-easy model of B and the use of positiveexamples for representing the de�nitions of target predicates. In particular, for de�nite logicprograms, we can have the following cases [DRLD93]: (i) extensional consistency, intensionalinconsistency; (ii) intensional completeness, extensional incompleteness; (iii) extensionalcompleteness, intensional incompleteness. Let us illustrate each of these cases with anexample.We have the case of extensional consistency, intensional inconsistency when a hypothesisconsistent if tested extensionally but inconsistent if tested intensionally.22



Example 9 (Extensional consistency, intensional inconsistency) Consider the prob-lem of learning the concept father and male ancestor from a background knowledge contain-ing the following facts about parent, male and female:B = fparent(a; b); parent(b; d); parent(c; b);male(a); female(c)gThe training set is speci�ed as follows:E+ = fmale ancestor(a; b);male ancestor(a; d); father (a; b)gE� = fmale ancestor(c; b);male ancestor(c; d); father (b; a)gIn this case, the following hypothesis is extensionally consistent but not intensionally con-sistent:father (X;Y ) parent(X;Y )male ancestor(X;Y ) father (X;Y )male ancestor(X;Y ) male ancestor(X;Z); parent(Z; Y )because negative example male ancestor(c; b) (with female(c) and parent(c; b) in the back-ground) will be covered.We have the case of intensional completeness, extensional incompleteness when a hypothesisintensionally covers all the positive examples but not extensionally because some exampleneeded for covering other examples is missing from the training set.Example 10 (Intensional completeness, extensional incompleteness) Suppose thebackground knowledge and training set are given:B = fparent(john; steve); parent(bill; john); parent(john;mike);parent(mike; sue)gE+ = fancestor(john; steve); ancestor(bill; steve); ancestor(john; sue)gThe theory:ancestor(X;Y ) parent(X;Y )ancestor(X;Y ) ancestor(X;Z); parent(Z; Y )is intensionally complete but extensionally incomplete because it does not cover the exampleancestor(john; sue) since the positive example ancestor(john;mike) is missing.The case of extensional completeness, intensional incompleteness occurs when we learn aprogram with an in�nite recursive chain.Example 11 (Extensional completeness, intensional incompleteness) Consider thetraining set:E+ = feven(0); odd(1)gand the background predicate succ(X;Y ) that expresses that Y is the successor of X. Theprogram:even(X) succ(X;Y ); odd(Y )odd(X) succ(Y;X); even(Y )is extensionally complete but intensionally incomplete, because the intensional derivation ofeven(0) would lead to a loop.3.2.1 Soundness and CompletenessIn this section, we de�ne the properties of soundness and completeness for a learning algo-rithm with respect to the problem de�nition above 6. We adopt the notion of an inductiveinference machine (IIM) that is a formalization of the concept of a learning system. If M is23



an IIM, we write M(P ; E+; E�) = P to indicate that, given a hypothesis space P , positiveand negative examples E+ and E�, and a background knowledge B, the machine outputs aprogram P . We writeM(P ; E+; E�) = ? when M fails in �nding a solution, either becauseit does not terminate or because it stops without having found any program satisfying theproblem conditions. A system is able to solve the ILP problem when it is produces onlyprograms that are complete and consistent and it �nds such a program when it exists. Asystem satisfying the �rst requirement is called sound, while a system satisfying the secondrequirement is called complete. Formally, we have the following de�nitions.De�nition 12 An IIM is sound i�, if M(P ; E+; E�) = P , then P 2 P and P is completeand consistent with respect to E+ and E�.De�nition 13 An IIM is complete i�, if M(P ; E+; E�) = ?, then there is no P 2 P thatis complete and consistent with respect to E+ and E�.It is important to note the di�erence between the notions of completeness of a program withrespect to the examples and the background knowledge and the completeness of an IIM. Acomplete program is one that entails all positive examples, while a complete IIM is an IIMthat is able to �nd a complete and consistent program when there exist such a program inP .3.2.2 Classi�cation of SystemsILP systems adopting learning from entailment can be classi�ed according to a number ofcriteria [LD94]. First, they can be divided into batch learners that require all the trainingexamples to be given before the learning starts or incremental learners that accept examplesone by one. Second, we have interactive and non-interactive learners depending on whetherthey rely or not on an oracle to verify the validity of generalizations and/or classify examplesgenerated by the learner. Third, some systems learn a concept from scratch while othersstart from an initial de�nition of the concept and revise it. The latter class of systems arecalled theory revisors. Finally, some systems are able to learn the de�nition of just onepredicate while others may learn the de�nition of multiple predicates.While in principle these dimensions are orthogonal and systems can be build exhibitingany possible combination of the above features, in practice existing ILP systems are situatedat two extremes of the spectrum. On one side we have batch, non-interactive systems thatlearn the de�nition of one concept from scratch, on the other side we have incremental,interactive systems that learn the de�nition of multiple concepts by revising an initial hy-pothesis. Systems of the �rst type are called empirical ILP systems while systems of thesecond type are called interactive ILP systems or incremental ILP systems [DR92].Examples of empirical ILP systems are FOIL [Qui90a], Progol [Mug95b], mFOIL [D�ze91,DB92], GOLEM [MF90], LINUS [LDG91b] and TRACY [BG94b]. Examples of interactiveILP systems are MIS [Sha83], MARVIN [SB86], CLINT [DRB89, DRB92b], CIGOL [MB92],and FILP [BG93].3.2.3 Imperfect DataReal world data is often imperfect, i.e., the examples and/or the background knowledge maycontain various kinds of errors, either random or sistematic, or may not be complete. In such24



cases, the requirements imposed by the de�nition of the ILP problem that all the positiveexamples and none of the negative are covered, may be relaxed, in order to allow the systemto look for true regularities in the data and to discard speci�c cases due to chance or error.In [LD92] the authors distinguish various types of imperfections of the data when learningde�nitions of relations:� noise, i.e., random errors in the training examples and background knowledge;� insu�ciently covered example space, i.e., too sparse training set;� inexactness, i.e, inappropriate or insu�cient hypothesis space which does not containan exact description of the target concept;� missing values in the training examples.Another type of imperfection must be added to these types: missing information from thebackground knowledge. A ground fact from the background knowledge usually expressinformation about a speci�c example, if the knowledge about that example could not becompletely acquired, some of the facts relative to them may be missing. We call this typeof imperfections incompleteness of the background and we will consider it in chapter 4.3.2.4 Hypothesis Space OrderingIn [Mit82] it is shown that concept learning can be seen as a search problem where thestates of the search space are the possible concept descriptions. In order to search thespace of concept descriptions sistematically, it is necessary to structure it by introducing apartial order. Typically, this partial order is given by a generality relation. Intuitively, aconcept description C1 is more general than a concept description C2, usually representedas C1 � C2, if the set of objects covered by C2 is a strict subset of those covered by C1.Most ILP systems build a target program by repeatedly searching the space of possibleclauses instead of the space of programs. Therefore, a generality ordering for the space ofpossible clauses will be de�ned.The generality relation for program clauses can be de�ned in the following way: a clauseC1 is more general or equally general than a clause C2 with respect to the backgroundknowledge B if B [ fC1g j= fC2g because, in this case, all the examples covered by C2 willbe covered as well by C1. In practice, however, a syntactic relation called �-subsumption[Plo70] is used in place of entailment in the de�nition of generality for two reasons: �rst,�-subsumption can be veri�ed by a simple and fast algorithm, while entailment is non-decidable, and, second, it introduces a lattice in the space of clauses, which provides animportant generalization operator, as will be shown below. In the following de�nition,clauses are represented as sets of literals.De�nition 14 (�-subsumption) Clause C1 �-subsumes C2 if there exist a substitution� such that C1� � C2 [Plo70]. Two clauses C1 and C2 are �-subsumption equivalent ifC1 �-subsumes C2 and C2 �-subsumes C1. A clause is reduced if it is not �-subsumptionequivalent to any proper subset of itself.We now give some examples to illustrate the notion of �-subsumption.25



Example 15 Consider the following clause C1C1 = grandfather (X;Y ) father (X;Z)Clause C1 �-subsumes the clauseC2 = grandfather (X;Y ) father (X;Z); parent(Z; Y )with the empty substitution � = ;. Clause C1 also �-subsumes the clauseC3 = grandfather (john; steve) father (john;mary)with the substitution � = fX=john; Y=steve; Z=maryg. Clause C1 �-subsumes the clauseC4 = grandfather (john; steve) father (john;mary); parent(mary; steve)with the substitution � = fX=john; Y=steve; Z=maryg.The following clause, instead,C5 = grandfather (X;Y ) father (X;Z); father(W;V )is �-subsumption equivalent to C1. Therefore, clause C1 is reduced, while C5 is not.�-subsumption has the important property that if C1 �-subsumes C2, then C1 j= C2. This isthe reason why it can be used to approximate entailment. On the other hand, the converseproperty is not always true, as it is shown by this examples proposed by Flach [Fla92].Example 16 Consider the following two clausesC1 = list([V jW ]) list(W )C2 = list([X;Y jZ]) list(Z)Clearly, C1 j= C2, as can be shown by resolving C1 against itself. However, there is nosubstitution � such that C1� � C2, since it should map W to both Z and [Y jZ]. ThereforeC1 does not �-subsumes C2.Thus generality can be re-de�ned in terms of �-subsumption. Clause C1 is more general orequally general as clause C2 (C1 � C2) if C1 �-subsumes C2. Clause C1 is more generalthan C2 (C1 � C2) if C1 � C2 holds and C2 � C1 does not [LD94]. If C1 � C2 we say thatC2 is a specialization of C1 or that C1 is a generalization of C2.�-subsumption has another important property: the generality relation �� it induces,introduces a lattice in the set of reduced clauses. This means that any two clauses havea least upper bound (lub) and a greatest lower bound (glb). Both the lub and the glb areunique up to renaming of the variables.This property leads to the de�nition of the following notion.De�nition 17 (Least General Generalization) The least general generalization of tworeduced clauses C1 and C2, denoted by lgg(C1; C2), is the least upper bound of C1 and C2in the �-subsumption lattice [Plo70]. 26



The algorithm for computing the lgg of two clauses was given in [Plo70]. In order to computethe lgg of two clauses, we have to compute the lgg of two terms and of two literals.The lgg of two terms f1(s1; : : : ; sn) and f2(t1; : : : ; tn) is de�ned as f1(lgg(s1; t1); : : : ;lgg(sn; tn)) if f1 = f2 and is a new variable V if f1 6= f2. The variable V is used to representthe lgg of f(s1; : : : ; sn); g(t1; : : : ; tn) and it must be used for all the occurrences of the lggof the same subterm. The following are examples of lgg of terms:lgg(f(a; b; c); f(a; c; d)) = f(a;X; Y )lgg(f(a; a); f(b; b)) = f(lgg(a; b); lgg(a; b)) = f(X;X)Note that the same variable X is used in both arguments in the second example because itstands for lgg of the same two terms a and b.The lgg of two literals L1 = (�)p(s1; : : : ; sn) and L2 = (�)q(t1; : : : ; tn) is unde�ned ifL1 and L2 do not have the same predicate symbol and sign; otherwise is de�ned aslgg(L1; L2) = (�)p(lgg(s1; t1); : : : lgg(sn; tn))The following are examples of lgg of literals:lgg(parent(john;mary); parent(john; steve)) = parent(john;X)lgg(parent(john;mary);� parent(john; steve)) = undefinedlgg(parent(john;mary); father(john; steve)) = undefinedThe lgg of two clauses C1 = fL1; : : : ; Lng and C2 = fK1; : : : ;Kmg is de�ned as:lgg(C1; C2) = flgg(Li;Kj) j Li 2 C1; Kj 2 C2 and lgg(Li;Kj) is de�nedgFor example, consider the clauses:C1 = father (john;mary) parent(john;mary);male(john)C2 = father (david; steve) parent(david; steve);male(david)The lgg of these clauses is:lgg(C1; C2) = father (X;Y ) parent(X;Y );male(X)As another example, consider the lgg of the following two clauses [BG95]:C1 = win(conf1 ) occ(place1; x; conf1 ); occ(place2; o; conf1 )C2 = win(conf2 ) occ(place1; x; conf2 ); occ(place2; x; conf2 )that represents two winning con�guration in a two-person game with two places that canbe occupied by an x or an o. The lgg of the two clauses islgg(C1; C2) = win(Conf ) occ(place1; x;Conf ); occ(L; x;Conf );occ(M;Y;Conf ); occ(place2; Y;Conf )This clause is not reduced, some literals are redundant and can be eliminated obtaining thefollowing reduced clause:lgg(C1; C2) = win(Conf ) occ(place1; x;Conf ); occ(place2; Y;Conf )27



expressing that a con�guration is winning if it contains x in the �rst place and anything inthe second.The length of the lgg of two clauses C1 and C2 can be at most jC1j � jC2j, thereforethe repeated application of this operator can produce clauses with an exponential length.However, clauses produced by lgg often contain irrelevant literals and should be reducedin order to get more compact and/or e�cient theories. Plotkin proposed an algorithm forreducing clauses which unfortunately is NP-complete.There are two broad categories of ILP methods which adopt �-subsumption to obtainlearning from entailment: bottom-up methods that search the space of clauses from speci�cto general, and top-down methods, that search the space of clauses from general to speci�c.3.2.5 Bottom-up methodsIn bottom-up methods, clauses are generated by starting with the most speci�c clause thatcovers one or more positive examples and no negative example, and by iteratively applyinggeneralization operators to the clause until it cannot be further generalized without coveringnegative examples. Bottom-up methods are best suited for interactive and incrementallearning from few examples.Examples of bottom-up techniques are: Relative Least General Generalization (RLGG)[Plo70], Inverse Resolution [MB92] and Inverse Implication [LM92]. In the following, Rela-tive Least General Generalization will be presented.Relative Least General GeneralizationThe notion of least general generalization [Plo70] provides a generalization operator. How-ever, this operator can not be used directly in practical systems since it does not take intoaccount the background knowledge, therefore Plotkin introduced the notion of relative leastgeneral generalization. This generalization operator is used, for instance, in GOLEM (seesection 3.4.1).When the background knowledge consists of ground facts, the relative least generalgeneralization (rlgg) of two clauses C1 = H1 B1 and C2 = H2 B2 can be de�nedas rlgg(C1; C2) = lgg((H1 B1;K); (H2 B2;K))where K represents the conjunction of all the background facts.Thus the problem of computing the rlgg of two clauses can be reduced to the problemof computing the lgg of two clauses, for which an algorithm was given by Plotkin [Plo70].In the following, two examples of rlgg of two clauses are given.Example 18 Consider the two positive examples e1 = father (john;mary) ande2 = father (david; steve) and consider a background knowledge B consisting of the conjunc-tion of the following factsparent(john;mary); parent(ann;mary); parent(mary; steve);parent(david; steve);male(john); female(mary);The rlgg of the two example e1 and e2 (that can be interpreted as the clauses e1 ande2 ) is 28



father (X;Y ) parent(X;Y );male(X)Example 19 [BG95] Consider the following two clauses:C1 = uncle(X;Y ) brother(X; father (Y ))C2 = uncle(X;Y ) brother(X;mother(Y ))and a background knowledge containing the two factsparent(father (X); X)parent(mother(X); X)The rlgg of the two clauses with respect to the available background is:rlgg(C1; C2) = uncle(X;Y ) brother(X;Z); parent(Z; Y )If we had computed the lgg of the two clauses without taking into account the backgroundknowledge, we would have obtained the clause:lgg(C1; C2) = uncle(X;Y ) brother(X;Z)which is not very representative of the uncle relation.3.2.6 Top-down MethodsTop-down methods search the space of clauses from general to speci�c. They employ are�nement operator that is based on �-subsumption.De�nition 20 (Re�nement Operator) Given a space of possible clauses C (de�ned bythe language bias), a re�nement operator � maps a clause C into the set of clauses �(C)that are specializations (re�nements) of C:�(C) = fC 0 j C 0 2 C; C � C 0gTypically a re�nement operator generates only the minimal (most general) re�nements of aclause. A re�nement operator applies two basic syntactic operations to a clause:� apply a substitution to a clause, and� add a literal to the body of a clause.Top-down methods share a basic algorithm that is given as follows (adapted from [LD94]):algorithm LearnTopDown(inputs : E : training set,B : background theory,outputs : H : learned theory)Initialize H := ;Initialize Ecur := Erepeat (Covering loop)GenerateClause(Ecur; B;C)Add C to H to obtain the new hypothesis H 0 := H [ C29



Remove positive examples covered by C from Ecur to getE0cur := Ecur � covers(B;H;Ecur)Assign Ecur := E0cur; H := H 0until Su�ciency stopping criterion is satis�edprocedure GenerateClause(inputs : E : training set,B : background theory,outputs : C : clause)Select a predicate p that must be learnedInitialize C to be p(X) :repeat (Specialization loop)Find the re�nement Cbest 2 �(C)according to some heuristic functionAssign C := Cbestuntil Necessity stopping criterion is satis�edreturn CFOIL [Qui90b], mFOIL [D�ze91] and Progol [Mug95a] are examples of systems based on thisalgorithm.The algorithm starts with an empty hypothesis H and a current set of example Ecurthat is initially set to the entire training set. The algorithm is composed of two repeat loops,referred to as covering and specialization loop.At each iteration of the covering loop a clause is generated, it is added to the theory andthe positive examples covered by it are removed from the training set. The loop terminateswhen the su�ciency stopping criterion is met, which typically happens when no more positiveexamples are left in the training set.Each clause is generated by the specialization loop. The loop starts with a clause ofthe form T  and successively re�nes it by means of the � re�nement operator. Given aclause C = T  Q, � builds the set of its re�nements �(C) = fC 0 j C � C 0g by adding aliteral to the body of C. Therefore, every re�nement C 0 has the form C 0 = T  Q;L. Oneof two search strategies are usually employed: hill-climbing (as in the algorithm above) orbeam-search. In hill-climbing the algorithm stores the clause that is best according to someheuristic function and replaces it with the best re�nement at each specialization step, untilthe necessity stopping criterion is satis�ed. In beam-search, a set of clauses is kept insteadof one and the best one of them is chosen for re�nement at each step.The two repeat loops are controlled by two stopping criteria:� a necessity stopping criterion, that decides when to stop the addition of a clause to atheory in the covering loop,� a su�ciency stopping criterion, that decides when to stop adding literals to a clause.The stopping criteria di�er in case of domains where the information is perfect and domainswhere the information is noisy. In domains with perfect data, the necessity stopping criterionrequires consistency, i.e., no negative examples must be covered by the clause, while thesu�ciency criterion requires completeness, i.e., all the positive examples must be covered. Indomains with noisy data, heuristic stopping criteria are employed that relax the consistencyand completeness requirements. 30



HeuristicsDi�erent heuristics can be used for clause evaluation. They can be basically divided into twofamilies, those based on the expected accuracy of a clause and those based on informativity.The expected accuracy of a clause C is de�ned asA(C) = p(�jC)where p(�jC) is the probability that an example covered by C is positive. Informativity isde�ned as I(C) = � log2 p(�jC)that represents the information needed to signal that an example randomly chosen amongthose covered by C is positive.In some systems, clauses are evaluated on the basis of the gain produced by the addi-tion of a literal: we have accuracy gain AG(C;C 0) = A(C 0) � A(C) and information gainIG(C;C 0) = I(C)� I(C 0). Since these heuristics may favour very speci�c clauses with highgain, weights are introduced in these equations in order to take into account the numberof examples covered by each clause. If n�(C) and n�(C 0) are, respectively, the number ofpositive examples covered by C and C 0, the weight is given by n�(C)=n�(C 0). Therefore wehave weighted accuracy gain WAG(C;C 0) = (n�(C)=n�(C 0))�(A(C 0)�A(C)) and weightedinformation gain WIG(C;C 0) = (n�(C)=n�(C 0))� (I(C) � I(C 0)). All the heuristic func-tions previously described are based on the probability p(�jC) that an example covered byclause C is positive. This probability can be estimated from the current training set Ecur byusing various estimating functions the simplest of which is the relative frequency of coveredpositive examples n�(C) with respect to all the examples n(C) covered by the clause C:p(�jC) = n�(C)n(C) . More appropriate probability estimates are the Laplace estimate and them-estimate that will be discussed in section 3.4.3.Example 21 In the following, we show the behaviour of the top-down algorithm in the caseof example 7. The heuristic function adopted is expected accuracy using the relative frequencyas the probability estimate and the stopping criteria are completeness and consistency.The algorithm starts by initializing Ecur tofgrandfather (john; steve)�; grandfather (ann; steve)	; grandfather (john;mary)	gand H to ;. Then the covering loop is entered and the procedure GenerateClause is called.The clause C is initialized to grandfather (X;Y ) and the specialization loop is started.The re�nement operator �(C) that is employed takes the clause C and adds (by set union)one of the following literals to C2:father (X;Y ); father (X;Z); father (Z; Y );parent(X;Y ); parent(X;Z); parent(Z; Y )This operator determines the search space, that is shown in �gure 3.1.In the �rst iteration of the specialization loop, the re�nements shown at the �rst level ofthe search tree are generated. Among those, the clauseC1 = grandfather (X;Y ) father (X;Z)2A simpler language bias with respect to example 7 is considered for simplicity.31



Figure 3.1: The search space for the predicate grandfather (abbreviated gf ).is chosen for further re�nement because it is the one that has the highest accuracy, coveringthe positive examples and only one of the negative.Among the re�nements generated in the second iteration of the specialization loop, theclauseC2 = grandfather (X;Y ) father (X;Z); parent(Z; Y )is chosen since it is the most accurate, covering one positive example and no negative one.At this point, the specialization loop ends since the clause is consistent and control isgiven back to the covering loop. The clause is added to the current hypothesis obtainingH = fgrandfather (X;Y ) father (X;Z); parent(Z; Y )gand the positive examples covered by C2 are removed from Ecur. Since no positive exampleis left, the covering loop terminates and the algorithm ends by returning H.3.2.7 Generality of Learned SolutionsBoth bottom-up and top-down methods �nd clauses that are consistent and cover a subset ofpositive examples. However, depending on the technique adopted, the generality of clausesdi�ers. Suppose a bottom-up method �nds a clause C1 that covers a subset of positiveexamples E+1 , then C1 will be the least general clause in the hypothesis space that coversE+1 and is consistent. Suppose a top-down method �nds a clause C2 that covers a subset ofpositive examples E+2 , then C2 will be the most general clause in the hypothesis space thatcovers E+2 and is consistent.Example 22 Suppose we want to learn the concept growl from the background knowledge:wolf(albert) has four legs(albert) has tail(albert)wolf(virginia) has four legs(virginia) has tail(virginia)coyote(wile) has four legs(wile) has tail(wile)coyote(peter) has four legs(peter) has tail(peter)32



cat(tom) has four legs(fufy) has tail(fufy)cat(krazy) has four legs(krazy) has tail(krazy)and the training sets:E+ = fgrowl(albert); growl(virginia); growl(wile); growl(peter)gE� = fgrowl(tom); growl(krazy)gThe hypothesis space P is given by the set of clauses of the type growl (X) � where � is aconjunction of literals chosen among the following:wolf(X); coyote(X); cat(X); has four legs(X); has tail(X)A bottom-up algorithm would �nd the clauses:Cb;1 = growl(X) wolf(X); has four legs(X); has tail(X)Cb;2 = growl(X) coyote(X); has four legs(X); has tail(X)the �rst covering the example set E+1 = fgrowl(albert); growl(virginia)g and the secondcovering the example set E+2 = fgrowl(wile); growl(peter)g. A top-down algorithm would,instead, �nd the clauses:Ct;1 = growl(X) wolf(X)Ct;2 = growl(X) coyote(X)covering, respectively, the same sets of examples E+1 and E+2 .Given the hypothesis space P, Cb;1 and Cb;2 are the least general clauses covering the setof examples E+1 and E+2 , while Ct;1 and Ct;2 are the most general clauses covering E+1 andE+2 .Let us now consider solutions of the learning problem that consist of the set of clausesP = fC1; : : : ; Cng covering respectively, the sets of examples E+1 ; : : : ; E+n . In this case, abottom-up method will �nd a solution composed of least general clauses, that is the LeastGeneral Solution (LGS for short) among those of the form above. On the other hand, a top-down method will �nd a solution composed of most general clauses, that is the Most GeneralSolution (MGS for short) among those of the form above. In example 22, Pb = fCb;1; Cb;2gis the LGS, while Pt = fCt;1; Ct;2g is the MGS.In general, a bottom-up method and a top-down method may �nd solutions that partitiondi�erently the set of positive examples. In this case, the two solutions may not be directlycomparable in terms of generality. However, with abuse of terminology, we still say that thesolution that is found by a bottom-up method is a LGS, and that the solution that is foundby a top-down method is a MGS. In this case, instead of \the" LGS and \the" MGS wespeak of \a" LGS and \a" MGS because LGSs and MGSs are not unique, since they dependon the way the positive examples set is partitioned.The ILP techniques to be used thus depends on the level of generality that we want tohave for the de�nition of a predicate. In chapter 5 we will discuss various criteria that canbe adopted for choosing the generality of the de�nition of a predicate.33



3.3 Learning from InterpretationsIn learning from interpretations, examples are Herbrand interpretations, i.e., sets of groundfacts, and the theory that is learned is a clausal theory. Each example represents observationsrelative to a particular situation in the world. The coverage relation is de�ned as follows[DR97]:De�nition 23 (Learning from Interpretations) Given a background knowledge B, ahypothesis H and an example set E, the hypothesis H covers example e 2 E with respect tobackground knowledge B if M(B [ e) is a model for H, i.e.covers(B;H; e) = true if M(B [ e) j= HAs a consequence, the function covers(H;B;E) can be de�ned ascovers(B;H;E) = fe 2 E j M(B [ e) j= HgThe test of whether a clause C = A1; : : : ; An B1; : : : ; Bm makes an interpretations trueor not can be performed by using Prolog by asserting both the background knowledge and aninterpretation into the knowledge base, and running the query ?�B1; : : : ; Bm; not A1; : : : ;not An.The task of learning from interpretations can then be de�ned as follows [BG95]:De�nition 24 (Learning from Interpretations Problem)Given� a set H of possible clausal theories (language bias)� a set of positive examples E+ (interpretations),� a set of negative examples E� (interpretations),� a logic program B (background knowledge).Find a clausal theory H such that� for all e+ 2 E+, M(B [ e+) is a true interpretation of H, i.e., M(B [ e+) j= H(Completeness);� for all e� 2 E�, M(B [ e�) is a false interpretation of H, i.e., M(B [ e�) 6j= H(Consistency).As in learning from entailment, the hypothesis space H is de�ned by the language bias andformalisms have been de�ned for restricting the space, as for example the DLAB [DRD96b]formalism.When learning from interpretations, the generality relation is de�ned in the followingway: given two hypothesis H1 and H2, H1 is more general or equally general than H2 if andonly if H2 j= H1. In fact, according to the de�nition of entailment, all the interpretationsthat are models for H2 are also models for H1. Therefore, all the interpretations coveredby H2 will also be covered by H1. Note that the direction of the entailment relation is theopposite with respect to the one for learning from entailment.34



Learning from interpretations was �rst developed for �nding interesting regularities inunclassi�ed data. In this case, no negative example is given and there is the further require-ment that the theory is maximally general. This means that, if C 2 H , then any clausemore general that C should be false under at least one of the positive examples. The task oflearning is the one of �nding a theory that holds in all the observed situations, thus express-ing interesting regularities on data. This learning framework has been studied by di�erentauthors under a number of di�erent names: non-monotonic setting [MDR94], characterizinginduction [DRD96a] or con�rmatory induction [Fla95]. This setting is particularly usefulfor performing data mining or knowledge discovery in databases. An example of a systemthat learns in such a setting is Claudien [DRB93].Let us now consider an example of the above learning problem when no negative exampleis given, taken from [DRB93].Example 25 Suppose we have the following two interpretations containing observationsabout di�erent gorilla colonies:e+1 = ffemale(liz);male(richard)ge+2 = ffemale(ginger);male(fred);male(rudolph)gand we have the background theory B:gorilla(X) female(X)gorilla(X) male(X)Suppose also H be the set of range-restricted, constant-free clauses. A solution is:gorilla(X) female(X)gorilla(X) male(X)male(X); female(X) gorilla(X) male(X); female(X)Note that these clauses express regularities on the given database. All of them are true inthe minimal Herbrand models:M(B [ e+1 ) = ffemale(liz);male(richard); gorilla(liz); gorilla(richard)gM(B [ e+2 ) = ffemale(ginger);male(fred);male(rudolph);gorilla(ginger); gorilla(fred); gorilla(rudolph)gWhen some negative interpretations are also given, the aim of the system is to �nd a the-ory that discriminate positive from negative interpretations, thus expressing regularities onpositive interpretations that are false for negative ones. An example of such a system is ICL[DRL95].The following is an example of learning from interpretations from positive and negativeexamples.Example 26 Suppose we have the same positive observations and background knowledge asexample 25, plus the following two sets of negative observationse�1 = ffemale(liz);male(liz)ge�2 = ffemale(liz);male(liz); fruit(banana)g35



Suppose also H be the set of range-restricted, constant-free clauses. A solution is: male(X); female(X)male(X); female(X) gorilla(X)The �rst clause is necessary to rule out the negative interpretation e�1 , while the secondclause is necessary to rule out the negative interpretation e�2 .3.4 Examples of ILP Systems3.4.1 GOLEMGOLEM [MF90] is a system that learns theories bottom-up by using rlgg. The backgroundknowledge B must contain only ground facts. If B contains some non-ground Horn clauses,it must be transformed into a �nite ground model. To this purpose, h-easy ground modelsof B (Mh(B)) are considered that contains all the ground facts that can be derived from Bby a SLD-proof tree of depth less than h. Note thatMh(B) can be still in�nite: for example,if B = fmember(X; [X;Y ])g there is only one atom derivable from B but there are in�niteground instantiations of it, such as member([]; [[]]), member([]; [[]; []]), . . . . Therefore, anadditional constraint is imposed on B: all the clauses in B must be syntactically generative,i.e., all the variables in their head must be a subset of the variables in the body. This ensuresthat the model Mh(P ) is �nite [MF90].GOLEM generates a single clause by randomly picking couples of examples, by computingtheir rlgg with respect to the background knowledge and by choosing the one with thegreatest coverage of other positive examples. This clause is then generalized by randomlychoosing new uncovered positive examples and by computing the rlgg of the clause and eachof the examples. The resulting clause that covers more examples is chosen and is generalizedagain until the coverage of the clause stops increasing or until a further generalization wouldcover some negative examples. Then a post-processing phase follows where irrelevant literalsare discarded: if the removal of a literal from the body of a clause does not cause the clauseto cover any negative examples, then the literal is irrelevant. In this way the clause is furthergeneralized.In the case in which there is not a single clause that covers all the positive examples,a covering approach is adopted: the positive examples covered by the generated clause areremoved from E+ and the procedure is iterated until no uncovered positive example remains.The rlgg of two clauses can be very large, in the worst case it grows exponentially with thenumber of examples. In order to reduce the complexity of clauses, GOLEM uses a constrainton the literals that can appear in the body of a clause. These literals must contain onlyvariables that are determined, i.e., their values have to be, directly or indirectly, uniquelydetermined by the values of the variables in the head of the clause. In order to furtherreduce the complexity of clauses, GOLEM uses mode declarations (specifying the input andoutput arguments of a predicate) to reduce the size of the clauses (see [MF90] for details).3.4.2 FOILFOIL [Qui90a] is an empirical top-down system that adopts extensional coverage. Thehypothesis language Lc is restricted to functor-free normal program clauses. The language36



bias can not be explicitly de�ned by the user but is encoded in the system: literals in thebody of clauses can have either a predicate from the background knowledge or a targetpredicate. At least one of the variables in the arguments of a body literal must appear inthe head of the clause or in the literals to its left.In FOIL, the background knowledge B is given extensionally. Both background andtraining example facts are represented as tuples of constants. In particular, the training setis represented as a set of tuples labeled by �, corresponding to positive examples, and a setof tuples labeled by 	. Every argument of the target and background predicates is assigneda type, that can be either continuous or discrete. If it is discrete, the set of constants allowedin the type must be speci�ed.The FOIL algorithm is basically the same as the generic top-down ILP algorithm adopt-ing hill-climbing search. The re�nement operator adopted by FOIL re�nes a clause of theform Ci = p(X1; X2; : : : ; Xn) L1; L2; : : : ; Li�1by adding a literal Li to the body. The literal Li can be of the following form: qk(Y1; Y2; : : : ;Ynk ) or not(qk(Y1; Y2; : : : ; Ynk)), where qk is a relation and the Yj are variables appearingin the clause or new variables; Vi = Vj or Vi 6= Vj , where Vi and Vj are variables alreadypresent in Ci and of the same type; Vi = c or Vi 6= c, where Vi is an already existing variableand c is a constant of the appropriate type, and Vi � Vj , Vi > Vj , Vi � t and Vi > t, whereVi and Vj are variables already present, with numerical values and of the same type, with ta threshold value chosen by FOIL.In the specialization loop, FOIL makes use of a local training set which is initially set tothe current training set E1 = Ecur. While Ecur consists of n-tuples, the local training setconsists of m-tuples, wherem is the number of variables in the current clause. Let Ei denotethe local training set of tuples that satisfy the current clause Ci = p(X1; X2; : : : ; Xn) L1;L2; : : : ; Li�1. The local training set Ei can be divided into the set of positive tuples E+i andthe set of negative tuples E�i .At each re�nement step, the clause Ci+1 is obtained by adding a literal Li to the bodyof the clause Ci. Some of the variables Y1; Y2; : : : ; Ynk in Li belong to the `old' variablesalready occurring in Ci, fOV1; : : : ; OVOldg, while some are `new', fNV1; : : : ; NVNewg, i.e.,they are introduced by the literal Li. The set of tuples Ei+1 covered by clause Ci+i is the setof ground (Old + New)-tuples (instantiations of hOV1; OV2; : : : ; OVOld; NV1; : : : ; NVNewi)for which the body L1; L2; : : : ; Li�1; Li is true. In relational algebra terminology, the newtraining set Ei+1 is the natural join of Ei with the relation corresponding to the literal Li.The heuristic function used by FOIL is a form of weighted information gain where theprobability p(�jC) is estimated by using the relative frequency of the positive tuples in thecurrent training set. Let ni be the number of tuples in Ei, of which n�i are positive, andlet ni+1 be the number of tuples in Ei+1, of which n�i+1 are positive. The information gainobtained by adding the literal Li to the clause Ci is therefore given byIGFOIL(Ci; Ci+1) = log2 n�i+1ni+1!� log2�n�ini � :Note that each tuple of E+i may correspond to zero, one or more tuples of Ei+1. The gainfunction is weighted by the number n��i of positive tuples in Ei that correspond to one or37



more tuples in Ei+1. Thus, the heuristic function is given byWIGFOIL(Ci; Ci+1) = n��i � (IGFOIL(Ci; Ci+1))In order to deal with noisy datasets, the stopping criteria used by FOIL are heuristic andare based on the encoding length restriction, that limits the number of bits used to encode aclause to the number of bits needed to explicitly indicate the positive examples covered byit. The number of bits needed to explicitly indicate the n�(C) positive examples coveredby a clause C out of the ncur examples in the current training set isExplicitBits(C;Ecur) = log2(ncur) + log2� ncurn�(C) �The number of bits needed to encode a clause with m literals in the body is computed asClauseBits(C) = �mi=1(1 + log2(l) + log2(Vqi))� log2(m!)where l is the number of di�erent predicates in the background knowledge and Vqi is thenumber of possible variabilizations (choices of variables) of the predicate used in literal Li.The construction of a clause is stopped (the necessity stopping criterion is satis�ed)when no negative example is covered by the clause or when adding any literal with positivegain would cause ClauseBits(C) to exceed ExplicitBits(C;Ecur). If there are no more bitsavailable for adding a literal but the clause is still 85% accurate (a threshold chosen ad hoc),then the clause is retained in the hypothesis, otherwise it is discarded.The construction of a hypothesis stops (the su�ciency stopping criterion is satis�ed)when all the positive examples are covered or when no new clause can be generated underthe encoding length restriction.3.4.3 mFOILmFOIL [D�ze91] extends FOIL approach by adopting specially designed search heuristic andstopping criteria that improve noise-handling. Moreover, it adopts beam-search instead ofhill-climbing, and it uses intensional coverage instead of extensional one. Therefore, thebackground knowledge may contain intensional de�nitions of predicates.In place of the weighted information gain used by FOIL, mFOIL adopts an accuracyestimate as the search heuristic, i.e., a clause is evaluated in terms of its accuracy on thetraining set. The accuracy estimate that is used can be either the Laplace estimate or them-estimate.The Laplace estimate is used in order to improve the reliability of the relative frequencyestimate for small training sets: in the extreme case of only one positive example in Ecur,the estimate of p(�jC) is 1. This estimate is clearly too optimistic even in the absenceof noise. To avoid this problem, the Laplace law of succession was used [NB86]: if in thesample of n trials there were s successes, the probability of the next trial being successful iss+1n+2 , assuming a uniform initial distribution of successes and failures. The Laplace estimateis therefore given by p(�jC) = n�(C) + 1n(C) + 238



In the case in which both n�(C) and n(C) are 0, the probability is 12 , which re
ects the factthat an empty training set can not alter our a priori assumptions that positive and negativeexamples have the same probability.However, this assumption is rarely true in practice. Therefore the m-estimate [Ces90]was introduced that takes into account as well the prior probabilities of the classes:p(�jC) = n�(C) +m� pa(�)n(C) +mwhere the prior probability pa(�) can be estimated by the relative frequency of positiveexamples in the initial training set n�n . The value of m expresses our con�dence in therepresentativeness of the training set. The actual value of m should be set subjectivelyaccording to the amount of noise in the examples (larger m for more noise). As m growstowards in�nity, the m-estimate approaches the prior probability of the positive class. Form = 12 , the m-estimate becomes the Laplace estimate.In the specialization loop, mFOIL keeps a set of the most promising clauses found sofar (the beam) as well as the most signi�cant clause found so far. At each step of theloop, the re�nements of all the clauses in the beam are generated and evaluated using thesearch heuristic. The new beam will contain the best re�nements that satisfy two conditions:they improve the heuristic function with respect to the clause from which they have beengenerated and they are possibly signi�cant. When no such clause exists, the beam becomesempty and the search terminates. In this case, the best signi�cant clause found so far isretained in the hypothesis if its expected accuracy is better than the default accuracy, givenby the probability of the more frequent of the classes � and 	. This probability is estimatedfrom the entire training set by the relative frequency estimate.The signi�cance test is based on the likelihood ratio statistic [Kal79]. Given a clause C,the likelihood ratio of C is given byLikelihoodRatio(C) = 2n(C)��p(�jC) log�p(�jC)pa(�) �+ p(�jC) log�p(	jC)pa(	) ��where n(C) are the examples covered by C, n�(C) of which are positive, pa(�) and pa(	)are the prior probabilities of classes � and 	, estimated by the relative frequency of positiveand negative examples in the entire training set: pa(�) = n�n and pa(	) = n	n . Moreover,p(�jC) = n�(C)n(C) is the probability that an example covered by a clause C is positive, andp(	jC) = 1� p(�jC).The likelihood ratio statistics is distributed approximately as �2 with one degree offreedom. A clause is deemed signi�cant if its likelihood ratio is higher than a certainsigni�cance threshold. The default value for the threshold is 6.64, that corresponds to asigni�cance level of 99%.In the specialization loop, clauses are pruned when they are not possibly signi�cant, i.e.when none of its re�nement can be signi�cant. Consider a clause C that covers n�(C)positive examples. The best we can hope to achieve by re�ning this clause is a clause thatcovers n�(C) positive examples and no negative example. In this case, the likelihood ratiostatistics would be �2n�(C)� log(pa(�)). If this value is less then the signi�cant threshold,no re�nement of this clause can be signi�cant and the clause can be pruned.39



mFOIL stops adding a clause to the theory when too few positive examples remain for aclause to be signi�cant or when no signi�cant clause can be found with expected accuracygreater than the default.3.4.4 ICLInductive Constraints Logic (ICL) [DRL95] is a system that learns from positive and negativeinterpretations. ICL adopts an algorithm similar to the one of mFOIL, where the coverageby entailment is replaced by coverage by interpretations and the covering loop is performedon the set of negative examples instead of the set of positive ones. It starts with an emptyhypothesis H and repeatedly tries to �nd a clause C to add to the hypothesis H . Eachclause found will be true in all positive interpretations and false in some negative ones. Thenegative interpretations that falsify C are removed from the E�. This process is repeateduntil no negative interpretations remains.Each clause is generated by beam search, starting from the clause true false that isthe most speci�c according to the generality relation for interpretations. Besides a Beamof candidate clauses, ICL keeps as well the best clause found so far (BestClause) that isalso statistically signi�cant. At each step of the beam search, all the possible re�nementsRef of the clauses in the beam are generated by means of a �-subsumption operator andare evaluated. Depending on the value of the heuristic function, Ref is added to the Beamand/or it becomes the new current BestClause.The heuristic function used for evaluating clauses is given by the probability that anexample interpretation is negative, given that clause C is false in the interpretation, i.e.p(	jC). Notice the di�erence with the classical accuracy heuristic function of mFOIL wherethe probability p(�jC) is used. The Laplace estimate is used to measure this probabilityHV (C) = p(	jC) = n	((C) + 1)n((C) + 2)ICL adopts the same statistical signi�cancy test used by mFOIL to ensure that the clauserepresents a genuine regularity in the examples and not a regularity due to chance. A clauseis signi�cant if its likelihood ratio is higher than a user de�ned threshold.Two types of pruning are performed by ICL on the basis of these heuristics. First, aclause C can be pruned if no re�nement of C can become better than the best clause atthe moment: the best value we can achieve with further re�nements of a clause is a clausethat is false for the same negative interpretations and true for all the positive. Second, asin mFOIL, ICL stops re�ning a clause when it is not possibly signi�cant.The re�nement operator adopted in ICL takes into account a declarative bias in order torestrict the search space. The declarative bias is expressed using clause models that de�nethe syntax of the clauses that can appear in hypothesis. The re�nement operator adoptsthese models to generate only the clauses that are allowed by the syntax. The formalism isdescribed in details in [ADRB95, VLDDR94].
40



Chapter 4Abductive Reasoning inLearning4.1 IntroductionAs discussed in section 1.1, the problem of learning from an incomplete background knowl-edge is still an open issue in ILP research. In real world problems, the knowledge acquisitionprocess is often imperfect and some relevant pieces of information may be di�cult or im-possible to be acquired. Information about speci�c examples is usually expressed by meansof ground facts in the background, therefore the imperfections of the knowledge acquisitionprocess often results in the absence of some background facts. This type of data imperfec-tion is called incompleteness of the background. In this case, some positive examples maynot be covered due to the absence of some facts related to them in the background. Thismay require the learning of multiple overspeci�c rules for covering a set of examples thatcould otherwise be covered by a single more general one.This problem can be solved by integrating abductive reasoning into induction by meansof a new learning framework called Abductive Concept Learning (ACL). The framework wasinitially de�ned in [DK96] and was successively developed in [ELM+96, LMMR97, LMMR98,KR97, KR98]. The present chapter closely follows the treatment given in [KR98]. AbductiveConcept Learning is an extension of ILP that allows us to represent both the background andtarget theories as abductive logic programs. Indeed abduction is well-suited for representingproblems with incomplete information (see e.g. [PGA87, KM90b, DDS92, Ino94, IS94,KKT97]) able to formulate a variety of such problems in Arti�cial Intelligence and otherareas of Computer Science.Abductive logic programs are composed of a logic program, a set of abducible predicatesand a set of integrity constraints that provide additional information on the abducible pred-icates by limiting the number of assumptions that are allowed. The incomplete backgroundis represented as an abductive logic program and abduction is used in order to completethe background knowledge by making assumptions about the abducibles. In ACL, also thetarget program is an abductive logic program that can contain both new rules for the con-cept(s) to be learned as well as new integrity constraints. Abductive reasoning of abductivelogic programs is then used as the basic coverage relation for learning: assumptions about41



background facts can be made in order to cover examples, thus resulting in more compacttheories that can alleviate the problem of over�tting due to the incompleteness in the data.In this chapter, we will present the basic ACL framework and an algorithm for solvingit. ACL provides a principled way to handle incomplete information in learning based onan underlying theory of abduction for knowledge representation.The central problem of learning abductive theories in ACL contains several useful andinteresting subproblems that are of practical relevance. These problems include: (i) conceptlearning from incomplete background data where some of the background predicates areincompletely speci�ed and (ii) concept learning from incomplete background data togetherwith given integrity constraints that provide some information on the incompleteness of thedata.A speci�c subcase of these two problems and an important third subproblem is that of(iii) multiple predicate learning, where each predicate is required to be learned from theincomplete data for the other predicates. Here the abductive reasoning can be used tosuitably connect and integrate the learning of the di�erent predicates. This can help toovercome some of the non-locality di�culties of multiple predicate learning, such as order-dependence and global consistency of the learned theory.These subproblems of the full ACL task can be captured in a simpler subproblem of ACL,which we will call ACL1. Within ACL1 we learn only the rule part of an abductive theorybut this is su�ciently general in many cases to allow us to address interesting problems asthose described above. Apart from its practical relevance, the identi�cation of the ACL1subproblem is also useful in breaking the full ACL learning task into two separate butstrongly inter-related phases of ACL1 and ACL2. ACL1 together with its rules also providesadditional input, through abducible assumptions (which are related to the learned rules),to the second phase of ACL2 for learning integrity constraints that can con�rm (partly) thecorrectness of these abducible assumptions. In this way, ACL synthesizes together the twomain learning settings of ILP, namely those of learning from entailment [Mug95a, MDR94]and learning from interpretations [DRD94, Fla95].An algorithm for ACL based on this separation into ACL1 and ACL2 is given. WithinACL1, this algorithm adapts the basic top-down method of ILP to deal with the incomplete-ness of information and to take into account the use of integrity constraints. It incorporatesan abductive proof procedure and other abductive reasoning mechanisms from ALP thatare suitably adapted for the context of learning. In the second phase of ACL2, the algo-rithm takes as input the output of ACL1 and calls on the ICL [DRL95] learner to generateappropriate integrity constraints.This algorithm has been implemented in a new ILP system also called ACL and ACL1for its subsystem. Based on these, a separated system for multiple predicate learning, calledM-ACL, has also been developed. Suitably adapted heuristics have been used that takeinto account the incompleteness of information. Several experiments are presented thatdemonstrate the ability of ACL to learn with incomplete information and its usefulness inmultiple predicate learning. ACL has also been applied to problems of analyzing data frommarket research questionnaires where the available data could be incomplete in several ways.The problem of learning under incomplete or missing information in an ILP frameworkhas received relatively little attention. Some recent exceptions to this include ICL-Sat[DRD96c] which learns from incomplete interpretations and FOIL-I [IKI+96] which canlearn from partial training sets. A recent work with an approach similar to ours for learning42



the rules of an abductive theory under incomplete information is that of [KK98]. Thereare also several works [DB92, LDB96] that deal with the related problem of noise in thelearning data but this is a di�erent problem where the methods used can not always beapplied as e�ectively to missing information. Most of the machine learning systems that dealwith incomplete information are attribute-value learners. An ILP system for learning withincomplete information is LINUS [LDG91a] but, again, it essentially relies on an attributevalue representation. In general, these systems adopt di�erent methods to �rst completethe missing information and then learn from the completed data. In contrast, in ACL theincomplete information is handled dynamically within the learning process in a principledway based on an underlying theory of abduction. In this way, ACL combines in a non-trivialway the methods of abduction for dealing with incomplete information with methods of ILPlearning.The chapter is organized as follows. Section 4.2 presents a short review of ALP neededfor the formulation and description of the main properties of ACL which are presentedin section 4.3. Section 4.4 presents the basic algorithm for ACL and its properties for thesingle predicate case, while section 4.5 describes the application of ACL to multiple predicatelearning. Section 4.6 presents our initial experiments with ACL, section 4.7 discusses relatedwork and section 4.8 concludes the chapter.4.2 Abductive Logic ProgrammingIn this section we brie
y review some of the elements of Abductive Logic Programming(ALP) needed for the formulation of the learning framework of Abductive Concept Learning(ACL). For a more detailed presentation of ALP the reader is referred to the survey [KKT93](and its recent update [KKT97]) and references therein.Abductive Logic Programming is an extension of Logic Programming to support ab-ductive reasoning with theories (logic programs) that incompletely describe their problemdomain. In ALP this incomplete knowledge is captured (represented) by an abductive theoryT . We will consider abductive theories of the following form.De�nition 27 (Abductive theory) An abductive theory T in ALP is a triple hP;A; Ii,where P is a de�nite logic program, A is a set of predicates called abducible predicates (orsimply abducibles), and I is a set of range-restricted clauses called integrity constraints.For simplicity of presentation we have assumed that the logic program P of an abductivetheory is a de�nite Horn program with no negation (negation as failure) appearing in thebody of the rules of P . However, this condition is not restrictive since negation as failure ina non de�nite logic program can be treated through abduction in an associated abductivetheory whose program is de�nite [EK89].As a knowledge representation framework, when we represent a problem in ALP via anabductive theory T , we generally assume that the abducible predicates in A carry all theincompleteness of the program P in modelling the external problem domain in the sensethat if we (could) complete the information on the abducible predicates in P then P wouldcompletely describe the problem domain.An abductive theory can support abductive (or hypothetical) reasoning for several pur-poses such as diagnosis, planning or default reasoning. The central notion used for this isthat of an abductive explanation for an observation or a given goal. Informally, an abductive43



explanation consists of a set of ground facts (called abductive assumptions) on some of thepredicates in A which, when added to the program P , make the observation or goal true.The integrity constraints in I must be satis�ed by the extension of the program P with suchabductive assumptions for these to form an allowed abductive explanation.To formalize this we need �rst the notion of generalized model of an abductive theory.Generalized models are inspired to generalized stable models [KM90b]: since no negation isallowed in the program, the stability condition is not required.De�nition 28 (Generalized model) Let T = hP;A; Ii be an abductive theory and � aset of ground abducible facts from A. M(�)1 is a generalized model of T i�� M(�) is the minimal Herbrand model of P [ �, and� M(�) is a model of I, i.e., M(�) j= IWe say that � is an abductive extension of T .Here the semantics of integrity constraints is de�ned by the second condition in the de�nition.Their satisfaction requires that they are true statements in the computed model of theextension of the program with � for this extension to be allowed. In this case, we say that� is consistent with the constraints. We will assume that, for any abductive theory, theempty set of abducible assumptions is consistent.An abductive theory is thus viewed as representing a collection of di�erent allowed statesgiven by the set of its generalized models.De�nition 29 (Abductive explanation) Let T = hP;A; Ii be an abductive theory and �any formula2 called an observation (or a query). An abductive explanation for � in Tis any set � of abducible facts from A such that� M(�) is a generalized model of T , and� M(�) j= �.Based on this we de�ne a credulous form of abductive entailment.De�nition 30 (Abductive entailment) Let T = hP;A; Ii be an abductive theory and �any formula. Then, � is abductively entailed by T , denoted by T j=A �, i� there existsan abductive explanation of � in T . If the explanation is �, we also write T j=A � with �.Note that, although the integrity constraints reduce the number of possible explanations foran observation, it is still possible for several explanations that satisfy (do not violate) theintegrity constraints to exist. This problem is known as the multiple explanations problem.In order to solve this problem, various criteria can be adopted. We will require the one ofminimality (with respect to set inclusion) of the explanations.The following example illustrates the above ideas.Example 31 Consider the following abductive theory hP;A; Ii with P the logic program onfamily relations:1Sometimes we will represent M(�) as MP (�)2In general, � can be any formula but in practice in many cases it su�ces for � to be a conjunction ofground facts. 44



father (X;Y ) parent(X;Y );male(X)mother(X;Y ) parent(X;Y ); female(X)son(X;Y ) parent(Y;X);male(X)daughter(X;Y ) parent(Y;X); female(X)child(X;Y ) son(X;Y )child(X;Y ) daughter(X;Y )loves(X;Y ) parent(X;Y )the integrity constraint I = f male(X); female(X)g, and abducible predicates A = fparent;male; femaleg.Consider now the observation O1 = father (bob; jane) An abductive explanation for O1 isthe set �1 = fparent(bob; jane);male(bob)g. This is the unique minimal explanation. Letnow O2 = child(john;mary) be another observation. This has two possible explanations�2 = fparent(john; mary);male(john)g and �02 = fparent(john;mary); female(john)g.If we also knew that male(john) holds then �02 would be rejected due to the violation of theintegrity constraint. In fact, these two explanations are incompatible with each other.We will now introduce the concept of strong abductive explanation and we will considerboth positive and negative observations. A strong abductive explanations is such that itcontains some extra assumptions, with respect to a minimal explanation, that ensure thatthe addition of further assumptions to it would not result in the violation of the integrityconstraints. Strong abductive explanations have the important property that the union ofthe explanations for two goals is an explanation for the conjunction of them. This property isuseful in learning in order to ensure that explanations for di�erent examples will explain theirconjunction (see section 4.3). Moreover, we will also de�ne strong abductive explanationsfor negative observations that will be required in learning for the explanation of negativeexamples (see section 4.3).In order to obtain the properties of strong abductive explanations, we need to be able tomake explicitly negative assumptions. This is obtained by considering, for each abduciblepredicate abd(X), a new abducible predicate not abd(X) and that is related to abd(X)by means of the constraint  abd(X); not abd(X). The addition of abducible predicatesexpressing falsity allows to de�ne a new semantics for abductive theory, called three-valuedgeneralized model, where abducible atoms can be true, false or unde�ned, di�erently fromgeneralized models where all the abducible facts not in the model are considered as false.This extension is needed since, when dealing from incomplete information, we want torepresent the fact that some abducible atoms are certainly true, some are certainly falseand we can not say anything about the rest, due to lack of information. The addition ofnegative abducibles and of the relative constraints is obtained by means of the followingtheory transformation.De�nition 32 (Three-valued Version of a Theory) Given an abductive theory T =hP;A; Ii, the three-valued version of T is the theory T � = hP;A [ A�; I [ I�i where,for each predicate a 2 A, A� contains the new predicate symbol not a and I� contains thedenial  a( ~X); not a( ~X).We de�ne the complement l of an abducible literal l asl = � not a( ~X) if l = a( ~X)a( ~X) if l = not a( ~X)45



Given the three-valued version T � = hP;A [ A�; I [ I�i of an abductive theory, a set ofassumptions � from predicates of A [ A� is called self-consistent if and only if it does notcontain both a literal and its complement, i.e., i� �� j= I�;The previous de�nition of generalized model is extended to the following.De�nition 33 (Three-valued generalized model) Let T = hP;A; Ii, be an abductivetheory with T � = hP;A [ A�; I [ I�i its three-valued version and let �� be a set of groundabducible facts from A [ A�. M(��) is a three-valued generalized model of T i�� �� is self-consistent;� M(��) is the minimal Herbrand model of P [��;� M(��) j= I.A set �� is an abductive explanation for a formula � if and only if M(��) is a three-valued generalized model and M(��) j= �.In a three-valued generalized model M(��) of T , an abducible fact a(c) is assumed true ifa(c) 2 ��, is assumed false if not a(c) 2 �� and is unde�ned otherwise.From this point onwards, unless otherwise speci�ed, we will consider abductive theoriesin their three-valued version. Therefore, when we write T1 = hP1; A1; I1i, we mean thethree-valued version of a theory T = hP;A; Ii, with P1 = P , A1 = A [ A� and I1 = I [ I�.Also when we refer to a generalized model we will mean a three-valued generalized model.We can now de�ne the notion of strong abductive explanation.De�nition 34 (Strong abductive explanation) Let T = hP;A; Ii be an abductive the-ory, T � = hP;A [ A�; I [ I�i its three-valued version and O a ground atomic fact called anobservation (or a goal). A strong abductive explanation for O in T is any set �� ofabducible facts from A [ A� such that� M(��) is a generalized model of T � such that M(��) j= �, and� for any �0 � A[A�, ifM(�0) j= I and �0[�� is self-consistent, thenM(�0[��) j= I.The latter condition can be intuitively expressed in this way: �� must be such that any otherabductive extension �0 that is self-consistent with �� can be added to �� without violatingthe integrity constraints. We say that M(��) is a strong generalized model for T andthat �� is a strong abductive extension of T 3.In the case of example 31, a strong abductive explanation for O1 = father (bob; jane) wouldbe ��1 = fparent(bob; jane);male(bob); not female(bob)g. Now, the assumption female(bob),that would violate the integrity constraints, can not be self-consistently added to ��1.We will now give the de�nition of a strong abductive explanation for a negative obser-vation not O. In this case we want an explanation that can not be extended in order toexplain O.3Note that under our previous assumption the empty set is always consistent for any abductive theory;this means that it has always a strong abductive extension.46



De�nition 35 (Strong abductive explanation of negative observations) Consideran abductive theory T = hP;A; Ii and let T � = hP;A[A�; I 0[ I�i be its three-valued versionand let a negative observation (or a goal), denoted by not O, be given. A strong abductiveexplanation for not O is any set �� of abducible facts from A [ A� such that� M(��) is a strong generalized model of T and M(��) 6j= O� for any �0 � A [ A�, if �0 is an abductive explanation of O then �0 [ �� is notself-consistent.In this case we say that not O is abductively entailed by T and denote this by T j=A not Owith ��.Hence O 62 M(��) and more importantly �� cannot be consistently extended to deriveO. The strong abductive explanation is thus a set of su�cient assumptions which, whenadopted, ensures that O can not be abductively entailed in a way that would be self-consistent with these assumptions. The second condition in the de�nition of strong ab-ductive explanation corresponds to the admissibility condition introduced by Dung [Dun91]in its de�nition of the preferential semantics for normal logic programs.In order to illustrate this, consider again example 31 and consider the negative ob-servation that not father (jane; john). A strong abductive explanation for this obser-vation is ��1 = fnot parent(jane; john)g or ��2 = fnot male(jane)g since father (jane;john) can not be derived by any self-consistent extension of either of these sets. In con-trast, the empty explanation is an abductive explanation for not father (jane; john) sincefather (jane; john) 62 M(;) but this explanation is not strong since it can be consistentlyextended with �0 = fparent(jane; john);male(jane)g to derive father (jane; john).The strongness of an explanation �� for a negative literal not e means that it invalidatesevery possible explanation for e. This is expressed by the following property, that is a directconsequence of the de�nition of strong abductive explanation.Property 36 Given an abductive theory T and an atom e, it holdsT j=A not e with �� ) 8�+ : T j=A e with �+; 9l 2 �� : l 2 �+In other words, a strong abductive explanation �� for not e contains the complement of (atleast) one assumption from every possible explanation �+ of e.The following example illustrate the above property.Example 37 Consider the following abductive theory T = hP;A; IiP = fsibling(X;Y ) brother(X;Y );sibling(X;Y ) sister(X;Y )gI = fgA = fbrother; sistergand the observation O = sibling(bob; jane). The strong abductive explanations for not Ois �� = fnot sister(bob; jane); not brother(bob; jane)g, while the explanations for O are�+1 = fsister(bob; jane)g and �+2 = fbrother(bob; jane)g: �� contains the complement ofa literal from both �+1 and �+2 . 47



The de�nition of strong abductive explanation can be generalized for a conjunction of pos-itive and negative observations C = O1 ^ : : : ^ Om ^ not O1 ^ : : : ^ not On. A strongabductive explanation for the conjunction is any set �� of abducible facts from A [ A�such that �� is a strong abductive explanation for every conjunct taken singularly.The strong abductive explanation for the conjunction of two observations O1 ^ O2 canbe obtained by taking the union of the strong abductive explanations for O1 and O2.Proposition 38 Let T = hP;A; Ii be an abductive theory in its three-valued version and let�1 and �2 be two strong abductive explanations of, respectively, G1 and G2, where G1 andG2 can be either positive or negative goals. If �1 [�2 is self-consistent, then �1 [�2 is astrong abductive explanation for G1 ^G2.Proof: See appendix A.2. 2This property thus allows us to combine together explanations of di�erent observationse�ectively reducing the consistency requirement with respect to the integrity constraints ofthe theory to the simpler requirement of self-consistency of this union of explanations. Thisis important for computational reasons when we have a collection of di�erent (positive andnegative) observations to consider together.As we will see in the next sections, in the Abductive Concept Learning framework andsystem, deductive entailment is replaced by the abductive entailment as the coverage rela-tion. Thus the deductive SLD (and SLDNF) proof procedures of Logic Programming arereplaced by abductive proof procedures [EK89, KM90a, KM90c, DDS92, SI92] of ALP. Anyabductive procedure satisfying the following notion of abductive derivability is suitable.De�nition 39 (Abductive derivability) Given an abductive theory T = hP;A; Ii, a goalG and an initial strong abductive explanation �i, we say that a procedure abductively derivesG from T if it returns a set of assumptions �G such that �G is a strong abductive explanationof G and �G [�i is consistent, i.e., M(�G [�i) j= I. In this case, we write T `�G�i G.For our study of Abductive Concept Learning we will employ an abductive proof procedurebased on the one in [KM90c] (reported in Appendix A.3). This procedure has been modi�edaccording to the notion of derivability de�ned above to return the full set of assumptions �Grequired to explain G irrespective of the fact that some of these may already be present in �i.The proof procedure interleaves phases of abductive and consistency derivations. Intuitively,an abductive derivation is the standard Logic Programming derivation suitably extended inorder to consider abducibles. When an abducible atom � is encountered, it is added to thecurrent set of assumptions (if it is not already there). The addition of � must not result ina violation of the integrity constraints. To this purpose, a consistency derivation for � isinitiated to check this. Each integrity constraint is resolved against � and it is veri�ed thatevery resulting goal fails. In the consistency derivation, when a new abducible is encounteredin one of these reduced goals, an abductive derivation for its complement is started in orderto ensure the failure of this abducible. This subsidiary abductive derivation will often resultin additional assumptions in the explanation set.The modi�ed version of the procedure which we will use is sound with respect to thenotion of (strong) abductive derivability above for the case in which the integrity constraintsare restricted to be denials with at least one abducible appearing explicitly in the bodyof the denial. This result follows directly from the soundness of the original procedure in48



[KM90c] which computes strong explanations. The more general case of integrity constraintsin the form of range restricted clauses, A1; : : : ;Ak  B1; : : : ; Bm can be dealt with inthe following way. The constraints are �rst transformed into their equivalent denial form B1; : : : ; Bm;� A1; : : : ;� Ak and then classical negation is approximated by negation bydefault obtaining  B1; : : : ; Bm; not A1; : : : ; not Ak that can be processed by the abductiveproof procedure. This transformation is similar to one into the three-valued version of thetheory: the literals not A1; : : : ; not Ak are new positive abducible literals and constraints Ai; not Ai are added to the set of constraints.4.3 Learning with AbductionWe will now restate the problem of learning from entailment for the case in which both thebackground knowledge and the learned theory are abductive theories in their three-valuedversion. The following restrictions on the language of the hypothesis and of the backgroundare considered4.� The background knowledge T = hP;A; Ii does not contain any target predicate(s)neither in the program P nor in the integrity constraints I . The empty set of abducibleassumptions is a consistent abductive extension of T .� The integrity constraints are range-restricted clauses A1; : : : ;Ak  B1; : : : ; Bm, withat least one of B1; : : : ; Bm abducible. Also, for each Aj in the head of the clause itsde�nition, in the program P of the background theory, does not depend on abducibles,namely Aj is not abducible and recursively none of the conditions in the rules of Pfor Aj is abducible.The language of the examples is simply that of atomic ground facts on the target predicate(s).De�nition 40 (Abductive Concept Learning)Given� a hypothesis space T = hP ; Ii consisting of a space of possible programs P and a spaceof possible constraints I satisfying the language restrictions given above except thatnow a possible program can contain the target predicate(s).� a set of positive examples E+,� a set of negative examples E�,� an abductive theory T = hP;A; Ii as background theory,FindA set of rules P 0 2 P and a set of constraints I 0 2 I such that the new abductive theoryT 0 = hP [ P 0; A; I [ I 0i satis�es the following conditions� T 0 j=A E+,� 8e� 2 E�, T 0 6j=A e�.4These language restrictions are not necessary for the de�nition of the ACL problem but rather areneeded for the development of the algorithms to solve this problem.49



where E+ stands for the conjunction of all positive examples.We say that an individual example e is covered by a theory T 0 if and only if T 0 j=A e.In e�ect, we have replaced the deductive entailment in the ILP problem with abductiveentailment to de�ne the ACL learning problem.The fact that the conjunction of positive examples must be entailed means that, for everypositive example, there must exist an abductive explanation and the explanations for all thepositive examples must be consistent with each other. For negative examples, it is requiredthat no abductive explanation exists for any of them. Abductive Concept Learning can beillustrated as follows.Example 41 Suppose we want to learn the concept father . Let the background theory beT = hP;A; ;i where:P = fparent(john;mary);male(john);parent(david; steve);parent(kathy; ellen); female(kathy)gA = fmale; femaleg.Let the training examples be:E+ = ffather(john;mary); father (david; steve)gE� = ffather(kathy; ellen); father(john; steve)gIn this case, a possible hypotheses T 0 = hP [ P 0; A; I 0i learned by ACL would consist ofP 0 = ffather(X;Y ) parent(X;Y );male(X)gI 0 = f male(X); female(X)gThis hypothesis satis�es the de�nition of ACL because:1. T 0 j=A father (john;mary); father (david; steve)with � = fmale(david)g,2. T 0 6j=A father (kathy; ellen),as the only possible explanation for this goal, namely fmale(kathy)g is made incon-sistent by the learned integrity constraint in I 0.3. T 0 6j=A father (john; steve),as this has no possible abductive explanations.Hence, despite the fact that the background theory is incomplete (in its abducible predicates),ACL can �nd an appropriate solution to the learning problem by suitably extending the back-ground theory with abducible assumptions. Note that the learned theory without the integrityconstraint would not satisfy the de�nition of ACL, because there would exist an abductiveexplanation for the negative example father (kathy; ellen), namely �� = fmale(kathy)g.This explanation is prohibited in the complete theory by the learned constraint together withthe fact female(kathy).It is important to note that the treatment of positive and negative examples in ACL isasymmetric with respect to the existence of abductive explanations. For positive examples,it is su�cient that there exists one explanation for the conjunction of all positive examplesthat is consistent with the constraints, whereas, for each negative example, all possibleexplanations must be made inconsistent by the constraints.In order to achieve this, we require the existence of a strong abductive explanation forthe (complement of) negative examples. Adding these strong abductive explanations to the50



background theory then ensures that no negative example can be abductively explained. Inthe example above, the negative example father (kathy; ellen) can be covered by adding thestrong abductive explanation �� = fnot male(kathy)g for not father (kathy; ellen) to thetheory. This is su�cient to ensure that this negative example can no longer be abductivelyentailed even in the absence of any integrity constraints in I 0. Moreover, these strongabductive explanations can suggest what new integrity constraints can be learned in I 0 sothat the negative examples will not be covered.This observation suggests a natural way in which the full ACL problem can be split intotwo subproblems: (1) learning the rules together with appropriate explanations and strongexplanations and (2) learning integrity constraints. We will see that the solutions of the twosubproblems can be combined to obtain a solution for the original problem.The �rst subproblem, called ACL1, has the following de�nition.De�nition 42 (ACL1)Given� a set of positive examples E+,� a set of negative examples E�,� an abductive theory T = hP;A; Ii as background theory,� a hypothesis space of possible programs P.FindA set of rules P 0 2 P such that the new abductive theory TACL1 = hP [P 0; A; Ii satis�esthe following conditions� TACL1 j=A E+ with �+,� TACL1 j=A not E� with ��,� �+ [�� is self-consistent.where not E� stands for the conjunction of the complement of every negative example.We say that a theory T ACL1-covers an individual positive example e+ i� T j=A e+and that T does not ACL1-cover e+ if and only if T 6j=A e+.If T j=A e+ with � = ;, then we say that e+ is ACL1-covered without abduction,otherwise we say that it is ACL1-covered with abduction.For negative examples, we say that a theory T ACL1-uncovers an individual negativeexample e� i� T j=A not e� and that T does not ACL1-uncover e� i� T 6j=A not e�.If T j=A not e� with � = ;, then we say that e� is ACL1-uncovered without ab-duction, otherwise we say that it is ACL1-uncovered with abduction.ACL1 and ACL di�er only in their requirements on negative examples. ACL1 requires thatin the learned theory there must be a strong abductive explanation for the complement ofevery negative example. Indeed, this is weaker than the condition required by the full ACLproblem which is that every negative example is false in all the abductive extensions of thetheory. 51



Nevertheless, the information generated by ACL1 through the strong abductive expla-nations for negative examples can be used to provide a solution of the full ACL problemthrough a second learning phase. From the output of ACL1, i.e., its set of rules and the setsof assumptions �+ and �� for covering positive examples and uncovering negative ones,a solution to ACL can be found by learning constraints that are consistent with �+ andinconsistent with the complement of every abducible in ��. In fact, the strong abductiveexplanation �� will contain, for every negative example e�, a strong abductive explanation�e� for not e�. This explanation, according to property 36, contains assumptions thatwould invalidate directly any possible abductive explanation of e�. Hence by making all thecomplements of assumptions in �� inconsistent, we make all possible explanations of everye� inconsistent.Thus the de�nition of the second subproblem, called ACL2, can be given as follows.De�nition 43 (ACL2)Given� a solution of ACL1{ TACL1 = hP [ P 0; A; Ii,{ �+,{ ��,� a hypothesis space of possible constraints I satisfying the same requirements as in ACL.FindA set of constraints I 0 2 I such that the new abductive theory T 0 = hP [ P 0; A; I [ I 0isatis�es the following condition� MP[P 0(�+) j= I 0,� 8l 2 ��, MP[P 0(flg) 6j= I 0.Note that the third condition of ACL1 requiring �+[�� to be self-consistent helps to avoidthe case of posing an empty ACL2 problem. If this cannot be satis�ed, i.e., �+ [�� is notself-consistent, then the corresponding ACL2 problem cannot have any solutions.The theory T 0 = hP [ P 0; A; I [ I 0i, obtained by combining the solutions of the twosubproblems, gives a solution to the full ACL problem.Theorem 44 Let TACL1 = hP [ P 0; A; Ii, �+ and �� be the solution of ACL1 giventraining sets E+ and E�, background theory T = hP;A; Ii and space of possible programsP. Moreover, let T 0 = hP [P 0; A; I [ I 0i be the solution to ACL2 given the previous solutionof ACL1 and hypothesis space I. Then T 0 is a solution to the ACL problem that has E+and E� as training sets, T as background theory and P and I as spaces of possible programsand constraints.The proof of this theorem is reported in Appendix A.1. Once decomposed into its twosubproblems, it becomes clear that ACL combines the two ILP settings of learning fromentailment and learning from interpretations. In fact, ACL1 can be seen as a problem oflearning from entailment, while ACL2 as a problem of learning from interpretations.52



The algorithm we present in the next section solves the ACL problem by �rst solv-ing ACL1 and then ACL2. In example 41, the solution of ACL1 consists of the rulefather (X;Y ) parent(X;Y ); male(X), together with the explanations�+ = fmale(david);not female(david)g and �� = fnot male(kathy)g. Given this intermediate solution, wecan now apply a second phase where integrity constraints are learned from the backgroundknowledge and the explanations obtained in the �rst phase. We want to make male(kathy)inconsistent while keeping �+ consistent:  male(X); female(X) is a constraint that sat-is�es these conditions.We note that in many cases, ACL1 can be useful on its own merit e.g., when we havesu�cient information in the integrity constraints of the background theory or for problemswhere indeed this weaker requirement on negative examples is su�cient. We will see exam-ples of such cases in the following sections 5 and 6.4.3.1 Monotonicity and GeneralityAbductive Logic Programs are inherently non-monotonic. Given two abductive theories T1 =hP1; A; I1i and T2 = hP2; A; I2i both entailing a goal, their union T = hP1[P2; A; I1[I2i doesnot necessarily entail this goal. Non-monotonicity poses problems in learning as algorithmsbased on the covering approach can not be used. In general, we can not learn a theoryby iteratively adding a clause to a partial hypothesis because the addition of a clause canreduce the number of positive examples covered by the hypothesis by making some of theabductive assumptions inconsistent.By splitting the ACL problem into the two phases of ACL1 and ACL2, we can recover aform of restricted monotonicity. In the �rst phase of ACL1, where the integrity constraintsremain �xed, we have two cases to consider: (i) monotonicity under the addition of a newclause in the program P of the current hypothesis and (ii) monotonicity under the additionof new abductive assumption as we move from one training example to another. The secondcase can be dealt with by employing a suitable abductive proof procedure for ALP based onstrong abductive explanations, as discussed in the previous section, carrying the explanationof the previous examples when testing the abductive coverage (or uncoverage if the exampleis negative) of the next example. The �rst case is in general more di�cult but in theparticular case of interest, since the new (learned) clauses can only a�ect the extension ofthe target(s) predicates, we can satisfy this monotonicity requirement by restricting (as wehave) the language of the integrity constraints and the program of the background theoryto be independent of the target predicate(s).In the second phase of ACL2, where the program of the abductive hypothesis is �xedand we vary the integrity constraints, monotonicity in ensured by the speci�c de�nition ofthe ACL2 problem that we have adopted where, by construction, the new learned integrityconstraints must be consistent with the abductive assumptions �+ required for the coverageof the positive examples. Hence these examples will continue to be abductively entailed bythe theory after the addition of the new integrity constraints generated by ACL2.The non-monotonic nature of the hypothesis space of abductive theories introduces an-other di�culty in the task of solving the ACL problem. It makes it di�cult to have agenerality structure on this space that can be useful in the search for solutions to ourlearning problem. In general, there is no natural generality structure on the full space ofabductive theories but again the separation of the problem into its two phases of ACL1 and53



ACL2 allows us to adopt the separate generality relations for the rule part P and integrityconstraints I of the abductive theories.Let us recall here the de�nitions of the generality relations. For the rule part (see section3.2.4), we have that P1 is more general or equally general as P2 if and only if P1 j= P2,while, for the constraints part (see section 3.3), I1 is more general or equally general as I2if and only if I2 j= I1.The use of these usual generality relations on the separate parts of an abductive theorymeans, as we shall see in the next section, that we can adapt standard ILP techniques,e.g., generalization and specialization operators based on �-subsumption [Plo70, Plo71], indeveloping algorithms for the separate phases of ACL1 and ACL2.4.4 An Algorithm for ACLThe ACL problem can be solved by the following algorithm, also called ACL. The algorithmis composed of two steps, one for each of the subproblems of the full ACL problem.Algorithm ACL:1. Learn rules (ACL1): �nd a set of rules P 0 and two sets of assumptions �+ and ��such that� hP [ P 0; A; Ii `�+; E+,� hP [ P 0; A; Ii `���+ not E�where `�0� denotes an abductive derivability satisfying de�nition 39. The requirementthat �+ is given as input for the abductive derivation of negative examples ensure thethird condition of the ACL1 problem de�nition that requires the consistency among�+ and ��.2. Learn constraints (ACL2): �nd a set of integrity constraints I 0 such that� M(�+) j= I 0,� 8l 2 ��, M(flg) 6j= I 0where M(�+) and M(flg) denote the minimal Herbrand model of P [ P 0 [�+ andP [ P 0 [ flg respectively.ACL1 is solved by an algorithm also called ACL1 that will be presented in section 4.4.1.Note that this algorithm uses strong abductive explanations for the positive examplesE+ (aswell as the negative examples) thus exploiting the property of proposition 38 for combiningseparate explanations and in particular for ensuring that the union �+[�� of the computedassumptions is consistent with the learned theory. ACL2 can be solved by employing asystem that learns from positive and negative interpretations, such as ICL [DRL95]. Wewill explain in more detail how ICL can be applied in section 4.4.2.54



algorithm ACL1(inputs : E+; E� : training sets,T = hP;A; Ii : background abductive theory,outputs : H : learned theory, �+;�� : abduced literals)H := ;�+ := ;�� := ;repeatSpecialize(T;H;E+; E�;�+;��;Rule; E+Rule;�+Rule;��Rule)E+ := E+ nE+RuleH := H [ fRuleg�+ := �+ [�+Rule�� := �� [��Ruleuntil E+ = ; (su�ciency stopping criterion)output H;� Figure 4.1: ACL1, the covering loop4.4.1 An Algorithm for ACL1The algorithm for ACL1 is based on the generic top-down ILP algorithm (see section 3.2.6)and extends the algorithm in [ELM+96]. In this paragraph, we consider only the singlepredicate learning task. We will discuss in section 4.5 the problem of learning multiplepredicates.The top level covering and specialization loops of the algorithm are shown in �gure 4.1and �gure 4.2 respectively. The generic top-down algorithm has been extended in severalways to take into account the abductive coverage relation of ACL1.New clauses are generated by beam search, initialized to a clause with an empty body forthe target predicate, using a specially de�ned heuristic evaluation function. This is adaptedfrom the usual accuracy function to allow for the possibility of missing information on someof the background predicates.The evaluation of a clause is done by starting an abductive derivation for each positiveexample and for the complement of each negative example (see �gure 4.3). The derivationis performed using a procedure based on the abductive procedure outlined in Appendix A.3.For each example e we have a call AbductiveDerivation(e; hP [H [ fRuleg; A; Ii;�in; �e).This returns a strong abductive explanation �e for the goal e (which is either of the form e+or not e�) starting from an initial set of assumptions �in, i.e., hP [H[fRuleg; A; Ii `�e�in e.�in consists of the set of assumptions abduced for earlier examples thus ensuring that theassumptions made during the derivation of the current example are consistent with the onesmade before. Note that �e contains all the assumptions needed to explain e, even thosethat are already contained in �in. This is needed for the evaluation of the heuristic valueof the clause as well as for the second phase (ACL2) of the ACL algorithm, where we learnthe constraints, as the learned constraints must make inconsistent all the assumptions inthe explanations �not e� of any negative example e�.55



procedure Specialize(inputs : T : background theory,H : current hypothesis, E+; E� : training sets,�+;�� : current set of abduced literalsoutputs : Best : rule, E+Best : examples covered by Best,�+Best;��Best : literals abduced when testing Best)Beam := f hp(X) true:; V aluei, where p is a target predicate,V alue is the value of the heuristic function for the rulegSelect and remove the best rule Best from BeamrepeatBestRefinements := set of re�nements of Best allowedby the language biasfor all Rule 2 BestRefinements doV alue := Evaluate(Rule; T;H;E+; E�;�+;��)if Rule covers at least one pos. ex. thenadd hRule; V aluei to BeamendforRemove rules in Beam exceeding the beam sizeSelect and remove the best rule Best from Beamuntil Best uncovers every e� 2 E� (necessity stopping criterion)Test the coverage of Best obtaining:E+Best the set of positive examples covered by Best�+Best and ��Best the sets of literals abduced duringthe derivation of e+ and not e� (e+ 2 E+Best; e� 2 E�)output Best; E+Best;�+Best;��BestFigure 4.2: ACL1, the specialization loop
56



function Evaluate(inputs : Rule: rule, T = hP;A; Ii : background theory,H : current hypothesis, E+; E� : training sets,�+;�� : current sets of abduced literals)returns the value of the heuristic function for Rulen� := 0, number of pos. ex. ACL1-covered by Rule without abductionn�A := 0, number of pos. ex. ACL1-covered by Rule with abductionn	 := 0, number of neg. ex. not ACL1-uncovered by Rulen	A := 0, number of neg. ex. ACL1-uncovered by Rule with abduction�in := �+ [��for each e+ 2 E+ doif AbductiveDerivation(e+; hP [H [ fRuleg; A; Ii;�in; �e+)succeeds thenif �e+ = ; thenincrement n�else increment n�Aendif�in := �in [�e+endifendforfor each e� 2 E� doif AbductiveDerivation(not e�; hP [H [ fRuleg; A; Ii;�in; �e�)succeeds thenif �e� 6= ; thenincrement n	Aendif�in := �in [�e�else increment n	endifendforreturn Heuristic(n�; n�A; n	; n	A)Figure 4.3: ACL1, evaluation of a clause
57



Covered positive and negative examples are counted, distinguishing between examplescovered (uncovered) with or without abduction, and these numbers are used to calculatethe heuristic function. This heuristic function of a clause (or rule) C takes the form of anexpected classi�cation accuracy (see section 3.2.6): A(C) = p(�jC), where p(�jC) is de�nedas the probability that an example covered by C is positive. The probability is estimatedby means of a form of relative frequency that gives di�erent strength to positive examplescovered (negative examples uncovered) with assumptions (i.e. T `��in e with � 6= ;, wheree is either e+ or not e�) or without assumptions (i.e. � = ;).The heuristic function used isA(C) = n� + k� � n�An� + n	 + k� � n�A + k	 � n	Awhere, for any given clause C, n�; n�A; n	; n	A are de�ned as in �gure 4.3 according to theabductive coverage of positive and negative examples by clause C.The coe�cients k� and k	 are introduced in order to take into account the degree ofcon�dence in the assumptions made, respectively, for positive and negative examples. Theyare an estimate of the fraction of assumptions made that are correct. For example, considera clause C of the form:p(X) Body(X)where Body(X) is a conjunction of literals not containing an abducible. Suppose we wantto evaluate the re�nement C 0 obtained by adding to C the abducible literal abd(X). ClauseC covers n�(C) positive examples without abduction: out of these, C 0 will cover n�(C 0)positive examples without abduction (for which a fact of the form abd(~t) is in the backgroundprogram), n�A(C 0) with abduction (a fact of the form abd(~t) is abduced) and it will not covern�(C) � n�(C 0) � n�A(C 0) examples (abd(~t) could not be abduced because of constraints).k�(C 0) expresses an estimate of the fraction of the abd(~t) assumptions that are correct inthe sense that, if the knowledge were complete, abd(~t) would be known to be true. Thispercentage is estimated by assuming that the ratio of true facts over the total number offacts for the unknown atoms is the same for the known atoms. Therefore k�(C 0) is givenby the following formulak�(C 0) = # of true atoms# of known atoms = n�(C 0)n�(C)� n�A(C 0)The true atoms are the facts (in the background program) of the form abd(~t) that correspondsto examples covered by C 0, therefore their number is n�(C 0). The false atoms are the onesfor which the constraints inhibited the assumption of a fact of the form abd(~t). The unknownatoms are those for which it was possible to make an assumption of the form abd(~t), thereforetheir number is n�A(C 0). The number of known atoms is given by the total number of atomsin the sample universe (i.e. of the examples covered by C) minus the number of unknownatoms.In the case in which no constraint is available, n�(C 0) + n�A(C 0) = n�(C) and k�(C 0) isalways 1. In this case, we use following more conservative estimatek�(C 0) = n�(C 0)n�(C)58



with a lower bound, set by default to 0.1, so that k�(C 0) can not drop below this threshold.This estimate turned out to be often more realistic also when constraints are available, dueto the fact that much more positive information (represented by facts of the programs) isusually available rather than negative information (represented by constraints). Therefore,this more conservative estimate was used in most of the experiments.Finally, we must consider the case in which some abducibles were already present inBody(X). We will assume that all the examples covered by C 0 with abduction are coveredwith abduction as well by C. k�(C 0) must then express the probability that both the currentassumptions and those made before are true at the same time. Therefore:k�(C 0) = k�(C)� n�(C 0)n�(C)The formula for k	(C 0) can be derived with a similar reasoning:k	(C 0) = k	(C)� n	(C 0)n	(C)ImplementationProlog was chosen for the implementation of ACL1 because it is particulary suitable for theelaboration of data in the form of Prolog programs, since there is no syntactic di�erencebetween code and data: terms and atomic formulas have the same structure. Prolog o�ersalso a number of built-in meta-level predicates for accessing the program clauses that allowedthe implementation of the abductive proof procedure as a meta-interpreter. Moreover,the availability of lists as primitive data structures is particularly useful for implementingalgorithms that search a state space: a list was used to represent the beam of possible clausesin the procedure Specialize.The ACL1 code is composed of the following main procedures. i(File) is the commandto be given at the Prolog prompt for starting the induction. It reads the �le that containsthe input data, starts the covering loop and writes the output to a �le.covering loop(Eplus,Eminus,RulesIn,RulesOut,DeltaIn,DeltaOut) implementsthe covering loop: it �rst initializes the beam with a clause with an empty body for everytarget predicate and starts the specialization loop. Then it adds the clause generated inthe specialization loop to the current set of rules and updates the training set and theassumption set.specialize(BeamIn,BeamOut,Eplus,Eminus,DeltaIn,N) implements the specializationloop. The recursion is stopped when the �rst clause in BeamIn is consistent or when themaximum number of specialization steps N is reached.The predicate evaluate(Value,Clause,Eplus,Epluscovered,Eminus,Eminuscovered,Eplus,Epluscovered,DeltaIn,DeltaOut,...) is used in order to evaluate clauses. Ittakes as input the clause to be evaluated Clause, the current training set Eplus, Eminus,the current set of assumptions DeltaIn, and returns the values of the heuristic functionValue together with the sets of covered examples Epluscovered, Eminuscovered and thenew set of assumptions DeltaOut.The system has been implemented using SICStus Prolog [Swe97] and is available at thefollowing address http://www-lia.deis.unibo.it/Software/ACL/.59



4.4.2 Learning Integrity ConstraintsThe second subproblem ACL2 of learning integrity constraints can be seen as a problemof learning from interpretations (see section 3.3) where we have to discriminate betweenallowed interpretations (explanations for positive examples) and forbidden interpretations(explanations for negative examples). The ICL system ([DRL95], see also section 3.4.4)solves exactly this problem, and we can therefore use it to solve the ACL2 problem. Werecall here the de�nition of the problem solved by ICL.De�nition 45 (ICL Problem)Given� a de�nite clause background theory B,� a set of positive interpretations P ,� a set of negative interpretations N .Find a clausal theory H such that� for all p 2 P , M(B [ p) is a true interpretation of H, i.e. M(B [ p) j= H (Complete-ness);� for all n 2 N , M(B [ n) is a false interpretation of H, i.e. M(B [ n) 6j= H (Consis-tency);In our case, we have to learn integrity constraints on abducibles by using the informationcontained in the sets �+ and �� generated from ACL1. ICL can be used to solve the ACL2problem with the following inputs:� the program P [ P 0 as the background knowledge B,� one positive interpretation p = �+;� one negative interpretation ni = flig for each li 2 ��.Learned constraints will be true in the model M(�+) and will be false in each modelM(flig). Therefore, when the integrity constraints are added to the �nal abductive theory,they will not allow any of the abductive assumptions li with li 2 ��. This in turn means(see theorem 44) that negative examples cannot be abductively entailed as required for thefull ACL problem.We mention here that another possibility of integrating the two subproblems of ACL1and ACL2 is to record in ACL1 all possible explanations �e� for each negative examplee� in its three-valued version and to give to ICL each one of these explanations �e� as anegative interpretation. In this way, we do not decide a priori in ACL1 how (i.e., on whichassumption) each of the explanations for negative examples must be made inconsistent laterby the constraints produced by ACL2. This decision is taken a-posteriori by ACL2 itselfwhen it produces the constraints. Hence ICL has the freedom to make �e� inconsistent onany of the abducibles in it. Learning constraints is now easier because ICL can choose whichabducible to make inconsistent in each explanation �e� . However, this alternative way ofsplitting the ACL problem is only appropriate when assumptions for positive examplescannot contradict those for negative examples. Otherwise, such an inconsistency will not bedetected until the end of the second phase requiring the (costly) return to the �rst phase.60



4.4.3 Properties of the AlgorithmIn this section, we show the soundness of the ACL algorithm given in the previous sectionand discuss its (lack of) completeness.Let us �rst adapt the properties of soundness and completeness of an inductive algorithmde�ned in section 3.2.1 for the problem de�nition of ACL. Given an algorithm,A, for ACL weshall write A(hP ; Ii; E+; E�; T ) = T 0 to indicate that, given the hypothesis space hP ; Ii,the positive and negative examples E+ and E�, and the background knowledge T , thealgorithm outputs a program T 0. We write A(hP ; Ii; E+; E�; T ) = ? when A does notproduce any output.With respect to the ACL problem de�nition of section 4.3, the de�nitions of soundnessand completeness are given as follows.De�nition 46 (Soundness) An algorithm A is sound if whenever A(hP ; Ii; E+; E�; T ) =T 0, then the theory T 0 = hP [ P 0; A; I [ I 0i that is computed satis�es the conditions ofde�nition 4.3, i.e. P 0 2 P, I 0 2 I and� T 0 j=A E+,� 8e� 2 E�, T 0 6j=A e�.De�nition 47 (Completeness) An algorithm A is complete if whenever A(hP ; Ii; E+;E�; T ) = ? then there is no computed theory T 0 that satis�es the conditions of de�nition4.3.The ACL algorithm is sound but not complete.Theorem 48 (Soundness) The algorithm ACL is sound.The proof of this theorem is given in appendix A.2. 2The ACL algorithm is incomplete because the search space of ACL1 is not completelyexplored. In particular, there are two choice points which are not considered in order toreduce the computational complexity of the algorithm. The �rst choice point is related tothe greedy search in the space of possible programs as in most ILP systems. When no newclause can be added by the specialization loop, no backtracking is performed on previousclauses added. This can prevent the system from �nding a solution when it is learning arecursive predicate because of the interaction among clauses: an overgeneral clause maymake inconsistent a correct clause still to be learned that calls it. This problem is alleviatedin the system M-ACL, (see section 4.5 below) where backtracking on clause addition isperformed.The second choice point concerns the di�erent abductive explanations that may be avail-able for each example: the choice of an explanation for an example can a�ect the coverageof future examples. The algorithm does not perform backtracking on example explanations,it just selects one and commits to it.Finally, we comment that, with respect to the generality of the two separate parts ofthe hypothesis space, the solution found by the ACL algorithm combines a most generalprogram with a most speci�c set of integrity constraints. Finding most speci�c integrityconstraints means that these constraints will restrict as much as possible the number of61



abductive extensions that are allowed by the learned theory. This is desirable since initially,with no constraint, any set of assumptions is allowed: with the learned constraints we wantto maximize the information gained from them by maximizing the collection of assumptionsets that they exclude.4.5 ACL for Multiple Predicate LearningACL �nds a natural application in the problem of multiple predicate learning multiple inILP. In multiple predicate learning we have a learning situation which is similar to theproblem of learning with incompleteness in the background data, since each predicate tobe learned forms part of the background theory for the other predicates and the availablede�nitions for the target predicates are incomplete during learning.Multiple predicate learning is a task that poses a number of problems to most ILPsystems. These problems and di�culties have been exposed in [DRLD93]. In this section wewill discuss these problems and show how they can be addressed within the ACL frameworkby a suitable extension of the ACL1 algorithm and system.4.5.1 Multiple Predicate Learning: Problems and Di�cultiesIn order to learn multiple predicates, it may seem at �rst natural to repeat several times asingle predicate learning task. However, this simple approach su�ers from several problems[DRLD93]. It is sensitive to the order in which predicates are learned, it can produceovergeneral theories and is unable to learn mutually recursive predicates for which it isnecessary to alternatively learn clauses for di�erent predicates. In addition, a top-downcovering algorithm that can interleave the learning of clauses for di�erent predicates facesthe problem that a clause that is consistent with the negative examples for one predicatecan make the theory inconsistent with the negative examples for another predicate.In order to illustrate this central problem of generating inconsistent hypotheses, wedistinguish between two types of consistency of a clause: local and global consistency of anew clause with respect to the theory learned so far (current hypothesis). The de�nitions wegive extend those given in [DRLD93] by relating the consistency of a clause to the currentpartial hypothesis. Intuitively, a clause is locally consistent if it does not cover any negativeexample for its head predicate when it is added to a consistent partial hypothesis. Instead, aclause is globally consistent if it covers no negative example for any target predicate. Beforegiving the de�nitions, let us �rst introduce some terminology.Let the training set be E = E+[E�. We assume that E contains examples for m targetpredicates p1; : : : ; pm and we partitionE+ and E� in E+pi and E�pi for i = 1; : : : ;m, accordingto these predicates. A hypothesis H is a set of clauses for some of the target predicates. Thefunction covers(B;H;E) gives the set of examples in E that are covered by the hypothesisH with background knowledge B, i.e., covers(B;H;E) = fe 2 E j B [H j= eg.De�nition 49 (Local consistency) Let H be a consistent hypothesis and C a clausefor the predicate pi. Then C is locally consistent with respect to H if and only ifcovers(B;H [ fCg; E�pi) = ;.De�nition 50 (Global consistency) Let H be a consistent hypothesis and C a clause forany target predicate. Then C is globally consistent with respect to H if and only if62



covers(B;H [ fCg; E�) = ;.By repeating several times a single predicate learning task, we repeatedly add locally consis-tent clauses to the current partial hypothesis. However, when learning multiple predicates,adding a locally consistent clause to a consistent hypothesis can produce a globally incon-sistent hypothesis as it is shown in the next example adapted from [DRLD93].Example 51 Suppose we want to learn the de�nitions of ancestor and father from theknowledge base:B = fparent(a; b); parent(d; b); parent(b; c);male(a); female(b)gand the training sets:E+ = fancestor(a; b); ancestor(d; c); father (a; b)gE� = fancestor(b; a); ancestor(a; d); father (b; c); father (a; c)gSuppose that the system has �rst generated the rules:ancestor(X;Y ) parent(X;Y )father (X;Y ) ancestor(X;Y );male(X)The second rule is incorrect but the system has no means of discovering it at this stage, sinceit is locally and globally consistent with respect to the partial de�nition for ancestor.Then the system learns the recursive rule for ancestor:ancestor(X;Y ) parent(X;Z); ancestor(Z; Y )This clause is locally consistent with respect to the current hypothesis because none of thenegative examples for ancestor will be covered, but it is globally inconsistent because thenegative example father (a; c) will be covered.In order to address this problem, most top-down ILP learning systems use extensionalcoverage (see section 6). In this way, clauses are learned independently from each other andhence these systems simply avoid considering the problems of global inconsistency duringtheir learning process. However, extensional coverage leads to other problems since thelearned theory can be both inconsistent and incomplete, as it is shown in [DRLD93].Instead of adopting extensional coverage, the system MPL [DRLD93] uses intensionalcoverage and solves the problem of maintaining the global consistency of the current hypoth-esis by re-testing the negative examples for all predicates and by performing backtrackingon clause addition to the theory.Another problem that can arise in multiple predicate learning concerns the case whenscarce training examples, particularly negative examples, are available for a subsidiary pred-icate. In this case, a system could learn an overgeneral de�nition for the subsidiary predicateand this may prevent the system from �nding a consistent de�nition for other predicates.The next example illustrates this.Example 52 Suppose we want to learn the predicates grandfather and father . Let thebackground theory be:P = fparent(john;mary);male(john);parent(david; steve);male(david);male(steve);parent(steve; jim);male(jim);parent(mary; ellen); female(mary); female(ellen)parent(ellen; sue); female(sue)gand let the training data for both concepts be:E+ = fgrandfather (john; ellen); grandfather(david; jim); father (john;mary)g63



E� = fgrandfather (mary; sue); grandfather (mary; john);father (john; ellen); father(david; jim); father (jim; david)gA system that learns �rst the rule for father , may learn the overgeneral rulefather (X;Y ) parent(X;Y )since it is consistent with the negative examples for father . Then, it would not be able toaccept the correct rule for grandfather , sincegrandfather (X;Y ) father (X;Z); parent(Z; Y )would cover as well the negative example grandfather (mary; sue).On the other hand, if the system �rst learns the above correct rule for grandfather , it againneeds to recognize that this implies additional negative examples for father in order to avoidthe same overgeneral rule for father .4.5.2 M-ACL: a Multiple Predicate Learning frameworkThe following quote from [DRLD93] succinctly summarizes the major challenges of multiplepredicate learning. Learning multiple predicates requires an approach that "...discoversa good order of learning the predicates; interleaves the learning of di�erent predicates;recovers from overgeneralization; and takes into account global e�ects". We will show herehow the ACL framework, in particular ACL1, can be suitably employed to provide thesecharacteristics.The basic idea of multiple predicate learning through ACL is to set the target predicatesto be learned as abducible predicates and use the abductive information that ACL1 generateson these to link the learning of the di�erent predicates. This information can be used in twointer-related ways. Firstly, it acts as extra training examples for the target predicates. Afterthe generation of each clause by ACL1, the associated assumptions �+ and �� about othertarget predicates are added to the training set according to their sign. In e�ect, traininginformation for one predicate is transformed into training information for other predicates.At the same time, this abductive information generated by ACL1 is used to give us an extramechanism for ensuring global consistency in the hypothesis in a way similar to abductivetruth maintenance systems [KM90c, GM90]. The multiple predicate learning algorithm andsystem is obtained from ACL1 by encompassing this in a process that uses the abductiveinformation, produced by ACL1, to detect and restore consistency.The M-ACL algorithm is therefore based on a dynamic set of training examples E for thetarget predicates that contains the given training examples together with those generatedthrough abduction. It rests on the important observation that, for de�nite logic programs,we can detect the local or global consistency of a clause by testing the training examples forits head predicate as follows:� a clause is locally consistent if it does not cover any negative example from theoriginal training set, while� a clause is globally consistent if it does not cover any negative example from theabductively extended training set.To illustrate this, consider two predicates p and q, where q depends on p. Suppose that, whentesting a rule for q, a negative example p(~tp) for p is generated for uncovering a negativeexample q(~tq) for q. Afterwards, if we learn a clause for p that does not cover p(~tp), thenalso q(~tq) will not be covered and the clause for p will be globally consistent.64



procedure M-ACL(inputs : E+; E� : training sets,P : background theory,outputs : H : learned theory, EA : abduced examples)H := ;� := ;Ec := E+ [ not E�repeatSpecializeM(P;H;Ec;�; r; E+r ; E�r ;�r)Ec := Ec nE+rH := H [ frgTest(H , ��r ; ��f )while ��f is non-empty:Choose(��f ; Ab)Re�ne(H ,Ab,�; Ec; H;Ec;�)��f := ��f n fAbg)until E+c = ; (covering loop)If E�r 6= ; thenRetractClauses(H;�; E�r ; Ec;H;�; Ec)Update(Ec;�r;Ec)� := � [�rendwhileEA := Ec n (E+ [E�)output H;EAFigure 4.4: The M-ACL algorithmThe M-ACL algorithm extends ACL1 and is shown in �gure 4.4. H , � and Ec represent,respectively, the current hypothesis, the current set of assumptions and the extended set oftraining examples. At �rst, an extension of the ACL1 Specialize procedure (see �gure 4.2)is called, denoted by SpecializeM . This uses extensional coverage and tries to generate anew clause r that is correct with respect to the current extended set of training examplesEc. If this is possible, then the generated clause, r, will cover a set of positive examplesE+r and no negative example (E�r = ;) with the assumptions �r. If no rule consistent withthe current set of negative examples can be found, then SpecializeM looks for a clause thatis consistent only with the original set of examples but covers the subset E�r of negativeexamples generated by abduction. If no such clause can be found, then SpecializeM failsand M-ACL also fails.We then check if the generated clause, that was found extensionally consistent, is alsointensionally consistent. To this purpose, the set of negative assumptions ��r � �r gen-erated by SpecializeM using extensional coverage is tested against the current intensionalhypothesis: the assumptions are considered as negative examples that must not be covered.If some of these assumptions are violated (��f denotes this set of violated assumptions), we65



try to remove these violations by iteratively choosing some assumption(s) Ab from ��f andre�ning the current hypothesis. The re�nement consists in specializing (or retracting andre-learning) the existing rules that currently de�ne the target predicate of the assumption(s)Ab and are causing the violation with Ab.If E�r is not empty, then the clause is locally but not globally consistent and we backtrackon the clauses that generated the covered examples. These rules are deleted from thecurrent hypothesis, positive examples covered by them are re-added to the training set andassumptions and examples generated by them are removed from � and from the trainingset. In order to support the backtracking required at this step, the abductive procedureemployed by ACL1 is extended to record, for every assumption, the clause responsible forgenerating it.These two tests on ��r and E�r , when they are successful (i.e. when both ��f and E�rare empty), ensure that the next candidate hypothesis, i.e. H [frg, is globally intensionallyconsistent. If one of the tests is not successful, this means that there is a possible con
ictbetween the clause just learned and the hypothesis H . There are two types of con
icts. The�rst type (��f 6= ;) appears because the assumptions for the rule r are inconsistent with thecurrent hypothesis, while the second type (E�r 6= ;) appears because the rule r covers someof the negative examples generated by other rules. In the �rst case we re�ne the clausesthat cover the negative assumption Ab, so in e�ect we keep the assumption Ab generatedby r and we reject the clauses that derive its opposite. In the second case, instead, we rejectthe (abductively assumed) negative examples covered by r by retracting the clause that hasgenerated them earlier. In both cases, the clause r is kept and the theory is modi�ed inorder to be in accordance with it.The specialization or re-learning of the Re�ne procedure is carried out using, again, theM-ACL procedure where the agenda of SpecializeM initially contains the rule to be re�nedinstead of rules with an empty body. Therefore, new assumptions may be generated andnew retraction/re�nement of previous rules may be necessary.When the resolution of the violations is completed (sometimes this may not be possible),assumptions about target predicates are moved from �r to the current training set beforereturning back to the �rst step to learn a new rule for covering the remaining positiveexamples of the original training set.We point out that the generation in M-ACL of the candidate clauses by SpecializeM(using extensional coverage) allows the interleaving of learning clauses for di�erent targetpredicates. M-ACL does not require a given order in which to learn the target predicates:the specialization loop in SpecializeM is initialized with an empty body clause for each targetpredicate and the same heuristic function is used in order to select the next clause to re�neand therefore the next predicate to learn.Let us now examine how this algorithm and the M-ACL system that is based on it,behaves in the cases of examples 51 and 52 (see also appendix A.4 for the output behaviourof M-ACL on these examples). In example 51, suppose the system has generated in thecurrent hypothesis the clausesancestor(X;Y ) parent(X;Y )father (X;Y ) ancestor(X;Y );male(X)When testing the above clause for father , the test of the negative example father (a; c) willproduce the assumption fnot ancestor(a; c)g. These assumptions then become additionalnegative examples for ancestor. Their test does not produce a violation and so at this point66



the system tries to �nd a clause covering the remaining positive examples for ancestor. Thecorrect solutionancestor(X;Y ) parent(X;Z); ancestor(Z; Y )is not globally consistent, since it covers the new negative example ancestor(a; c) generatedfrom the rule for father . However, this clause is locally consistent, since it does not cover anyof the negative examples in the original training set of ancestor. It is therefore added to thecurrent hypothesis and the system backtracks to the clause that has generated this violatingassumption, namely to the clause for father . This clause, together with the assumptionsthat it has generated, are retracted and the examples for father are re-added to the trainingset for this concept to be learned again. At this point, the system is able to learn the correctrule for fatherfather (X;Y ) parent(X;Y );male(X)This example shows one way in which the M-ACL system uses the dynamically generatedabductive information on the target predicates to have a focussed mechanism of detectionand repair of global inconsistencies. The system can directly detect previously generatedwrong clauses and re-learn other rules for these predicates. Thus, it can recover from anincorrect rule that was generated from an inappropriate order in the learning of the di�erentpredicates. In this sense the system is less sensitive to the order of learning.In example 52, M-ACL learns �rst the rule for grandfather because more information isavailable about it and the heuristic function prefers it to any of the rules for father . WhenM-ACL generates the rulegrandfather (X;Y ) parent(Z; Y ); father (X;Z)it uses the examples for father as background knowledge making also assumptions about itwhen this is needed.Given the training examples for grandfatherE+gf = fgrandfather (john; ellen); grandfather(david; jim)gE�gf = fgrandfather (mary; sue); grandfather (mary; john)gThe above rule will be learned by M-ACL by making the assumptions fnot father (mary;ellen); father (david; steve)g that become additional training examples for father . From thisnew training set, the system is then able to generate the correct rule for father . Note that,without the new negative example father (mary; ellen), it would have been impossible togenerate the correct rule for father and the overgeneral rule father (X;Y ) parent(X;Y )would have been learned. Thus M-ACL avoids (in this case) the problem of overgeneraliza-tion.M-ACL does not overgeneralize even if the system �rst generates the overgeneral rulefor father . In this case, extensional coverage still allows SpecializeM to generate the correctrule for grandfather and to generate the same negative assumption on father as above. Atthis stage the M-ACL system will recognize that we have a violation on the assumptionAb=fnot father (mary; ellen)g and the Re�ne procedure will lead the system to specialize(or re-learn) the rule for father thus producing at the end the same correct and complete hy-pothesis as above. Hence, independently of the order of learning, the same extra assumptionsare generated and e�ectively used to produce the same �nal result.This is a general pattern of the overall mechanism for global inconsistency detection andrestoration within M-ACL. If a violating assumption is generated �rst then this is taken intoaccount as an extra training example for SpecializeM when learning rules for this predicateand hence the potential violation can be avoided at the stage of generation of candidate67



clauses. On the other hand, if the violating assumption is generated after an overgeneralrule has already been generated, this can be directly detected and the repair of this rule ise�ected. In this way we alleviate the problem of overgeneralization and the system does notdepend crucially on the order in which the predicates are learned.Summarizing, we point out that in e�ect the M-ACL system uses a hybrid of extensionaland intensional coverage: extensional coverage in the generation of candidate clauses usingexamples of other target predicates as background facts together with an intensional testof the theory on the generated negative assumptions. This combination, together with itsoverall mechanism for detecting and repairing inconsistency, allows the system to interleavethe learning of the di�erent target predicates with little dependence on the order of learningand to overcome the problem of overgeneralization. An important characteristic of M-ACL is the fact that its test for global consistency is performed only on a \narrow" subsetof the negative examples, resulting in a focussed handling of global inconsistency with adirect detection and repair of the inconsistency. The M-ACL system tests only the negativeabduced examples for the head predicate of the clause under test. In contrast, the systemMPL [DRLD93] checks the negative examples for all target predicate after the addition ofa clause. In this way M-ACL performs a smaller number of tests with respect to MPL.However, the speedup obtained can be partially counterbalanced by the time and memoryneeded to keep track of the abductive assumptions.4.6 ExperimentsTwo series of experiments have been performed in order to show the ability of ACL to (1)learn from incomplete background knowledge and (2) to perform multiple predicate learning.4.6.1 Learning from Incomplete Background KnowledgeThe main purpose of these experiments was to test how well ACL could learn under in-complete information and to investigate its behaviour under di�erent forms and degrees ofincompleteness. The following three problems have been considered: (1) the multiplexerexample from [dV89], (2) learning family relations from a database with varying degree ofincompleteness and (3) new problems of learning from (real-life) data of market researchquestionnaires which is incomplete due to unanswered questions or \don't care" answers.The same incomplete data was also given to other ILP systems such as FOIL. As ex-pected these produced theories with a larger number of overspeci�c rules. Hence for theseexperiments, the results of ACL have also been compared with those of the system mFOIL[DB92] that has special techniques for handling more generally imperfect data, both noisyand incomplete (see section 3.4.3). Let us brie
y recall here mFOIL's approach for dealingwith incomplete data that consists in relaxing the completeness requirement for the su�-ciency stopping criterion: mFOIL stops adding a clause to the theory when too few positiveexamples remain for a clause to be signi�cant or when no signi�cant clause can be foundwith expected accuracy greater than the default. The signi�cance test is based on the like-lihood ratio statistic [Kal79]: a clause is deemed signi�cant if its likelihood ratio is higherthan a certain signi�cance threshold. The default value for the signi�cance threshold is 6.64corresponding to a signi�cance level of 99%. Unless otherwise speci�ed, mFOIL was run inall the experiments with the parameters set in the following way: the heuristic function is68



the m-estimate with m=2, the beam size is 5, no negation as failure literals are allowed inthe language bias, the minimum number of examples that each rule must cover is 1 and thesigni�cance threshold is 6.64.The major part of these experiments has concentrated on investigating the behaviour ofthe ACL1 subsystem. In all experiments though full abductive theories have been learnedthat include integrity constraints which support the abductive rules generated by ACL1.MultiplexerThe multiplexer example is a well-known benchmark for inductive systems [dV89]. It hasrecently been used in [DRD96c] for showing the performance of the system ICL-Sat onincomplete data. We performed experiments on the same data of [DRD96c] and comparedthe results of ACL1 with those of ICL-Sat and mFOIL [DB92].The problem consists in learning the de�nition of a 6 bits multiplexer, starting from atraining set where each example consists of 6 bits, where the �rst two bits are interpreted asthe address of one of the other four bits. If the bit at the speci�ed address is 1 (regardless ofthe values of the other three bits), the example is considered positive, otherwise is considerednegative. For example, in the tuple 10 0110, the �rst two bits specify that the third bit shouldbe at 1, so this example is positive.For the 6-bit multiplexer problem we have 26 = 64 examples, 32 positive and 32 neg-ative. We perform three experiments as in [DRD96c]: the �rst on the complete dataset,the second on an incomplete dataset and the third on the incomplete dataset plus someintegrity constraints. The incomplete dataset was obtained by considering 12 examples outof 64 and by specifying for them only three bits where both the examples and bits wereselected at random. E.g. the above example 10 0110 could have been replaced by 1? 0?1?.The dataset of the third experiment is obtained by including additional integrity constraintsto this incomplete dataset.In order for ACL to learn from the incomplete datasets, we used a representation for-malism where the incompleteness is contained in the background knowledge. Examples arerepresented as atoms of the form mul(c) where c is a constant that represent a speci�c tupleand background predicates are used to express the bit values for that speci�c tuple. Forexample, the tuple 10 0110 is represented by the atom mul(e1) in the training set and bythe following facts in the background knowledgebit1at1(e1) bit2at0(e1) bit3at0(e1)bit4at1(e1) bit5at1(e1) bit6at0(e1)All the predicates of the form bitNatB are declared as abducibles and integrity constraintsof the form below are added to the background theory bitNat0(X); bitNat1(X)The incomplete tuple 1? 0?1? can now be represented asbit1at1(e1) bit3at0(e1) bit5at1(e1)and assumptions can be made about bits 2, 4 and 6.In the third experiment, the constraints are such that: 1) the value of unknown attributesis still unknown (could still be 1 or 0); 2) some combination of values incompatible with69



Experiments ACL1 ICL-Sat mFOIL1) Complete background 100 % 100 % 100 %2) Incomplete background 98.4 % 82.8 % 96.875 %3) Incomplete background plus constraints 96.875 % 92.2 % 96.875Table 4.1: Performance on the multiplexer datathe known class is now impossible. E.g., for the example ?0 ?1?1 (negative), the followingconstraints were added: bit1at1(e1); bit5at1(e1)bit1at1(e1) bit3at1(e1)The �rst constraint states that bits 1 and 5 can not be both 1, otherwise the example wouldbe positive, while the second constraint states that if the third bit is 1, then also the �rstbit must be at 1.ACL1 and mFOIL were run on all the three dataset. The measure of performancethat was adopted is classi�cation accuracy, de�ned as the number of positive and negativeexamples correctly classi�ed over the total number of examples in the testing set, i.e. thenumber of positive examples covered plus the number of negative examples not covered over64. In order to test the learned theory, the complete background knowledge was used in allthree experiments.The results are reported in table 4.1. In experiment 2), ACL1's accuracy was signi�cantlybetter than ICL-Sat's and slightly better than mFOIL's, while in experiment 3) ACL1'saccuracy was only slightly superior to ICL-Sat's and the same as mFOIL's. The accuracyfor mFOIL was the same in experiment 2) and 3) since mFOIL is not able to exploit theintegrity constraints. The accuracy of ACL1 in the third experiment is lower than in thesecond: this unexpected result is due to the fact that negative examples are tested asT 0 j=A not e� during learning and as T 0 6j=A e� when evaluating the performance. The highaccuracies obtained show that the ACL1 system has in this case solved successfully the fullACL problem.We also tested the theory with incomplete testing data thus showing the ability of thegenerated theories to classify incomplete examples. We tested the theory on the sameincomplete data set used for learning in experiments 2 and 3. The results of this di�erenttesting are reported in table 4.2, where n� is the number of covered positive examples, whilen	ACL is de�ned as the number of negative examples that are (incorrectly) covered accordingto the full ACL problem (i.e. for which T 0 j=A e�). In this case, the accuracy has increasedfrom experiment 2) to 3) as expected. Similar results are obtained with other randomlygenerated incomplete subsets of the complete training examples.Learning Family RelationsIn this experiment we considered the problem of learning family predicates, e.g. that offather, from a database of family relations [BDR96] containing facts about several predicatesparent, son, daughter, grandfather, male and female etc. We performed several experiments70



Experiments n� n	ACL AccuracyExperiment 2 32 5 92.2 %Experiment 3 32 2 96.9 %Table 4.2: Testing with incomplete datawith di�erent degree of incompleteness of the background knowledge and we compared theresults of ACL1 with those of mFOIL.The complete background knowledge contains, amongst its 740 facts, 72 facts aboutparent, 31 facts about male and 24 facts about female. The training set contains 36 positiveexamples of father taken from the family database and 200 negative examples of father thatwere generated randomly. Experiments were performed from datasets containing 100%,90%, 80%, 70%, 60%, 50% and 40% of the facts. The incomplete datasets were generatedby randomly taking out facts from the background knowledge, while the training set wasthe same for all experiments.The experiments with ACL1 were performed �rst by considering a background knowledgewith no constraint and then by adding the following integrity constraints: male(X); female(X) son(X;Y ); female(X) daughter(X;Y );male(X) son(X;Y ); not parent(Y;X) daughter(X;Y ); not parent(Y;X)The results are shown in table 4.3. As regards mFOIL, the experiments were done witha signi�cance threshold of 6.64 and of 10. In both cases, the results of completeness andconsistency are the same for all the incompleteness levels and the number of rules learnedis similar (in some cases slightly lower for signi�cance 10). The table reports the number ofclauses for signi�cance 6.64.ACL1 without constraints was able to learn theories that are simpler (i.e. they containless rules with shorter bodies) than those learned by mFOIL and that are consistent in allbut two case, while the theories learned by mFOIL are always inconsistent for incompletedata. However, mFOIL always learns complete theories, while ACL1 without constraintslearns incomplete theories at 40% and 80%. If integrity constraints are used with ACL1, thesystem is able to learn the simplest complete and consistent theory (i.e. father (X;Y ) parent(X;Y );male(X)) at all levels of incompleteness.ACL1 was able to learn more compact theories because it can exploit abduction forcovering positive examples for which no information is available, while mFOIL is obliged tolearn new rules for covering the examples that are not covered by the correct theory due tothe lack of information. When using abduction to complete the missing data it is sometimespossible to make wrong assumptions especially when the incompleteness is spread over manybackground predicates. This could then result in learning a wrong rule, as it happened withincompleteness 40% and 80% where, respectively, the following two rules were learned:father (X;Y ) parent(X;Y ); parent(X;Z); son(Z;X)father (X;Y ) parent(X;Y ); parent(X;Z); son(Z;X);male(Z)When integrity constraints are used in the background theory, the possibility of makingwrong assumptions is reduced and for all incompleteness levels a complete and consistent71



Data N. of clauses Complete Consistent(1) (2) (3) (1) (2) (3) (1) (2) (3)100% 1 1 1 y y y y y y90% 1 1 4 y y y y y n80% 1 1 6 n y y n y n70% 1 1 7 y y y y y n60% 1 1 8 y y y y y n50% 1 1 8 y y y y y n40% 1 1 10 n y y n y nTable 4.3: Performance on the family data: (1)=ACL1, (2)=ACL1+IC, (3)=mFOILtheory is learned.Other experiments on the same database were also performed, where the incompletenessis isolated only in some of the predicates. For example, an experiment was performed whereonly male and female are incomplete, in order to show that ACL1 still learns the simplesttheory by making abductions on male, instead of generating overcomplex theories where theinformation about the sex is taken from other predicates, for example by using the literalgrandfather (X;Z) to ensure that X is a male. On the same data, mFOIL learns insteadovercomplex theories.Moreover, for these experiments, we have applied the ICL system to solve also the ACL2problem of learning integrity constraints from the associated assumptions generated in the�rst phase by ACL1 and thus solving the full ACL problem. In some cases, this generatedthe constraints that we usually expect from this domain such as male(X); female(X), or parent(X;Y ); parent(Y;X)In other cases, instead, the generated constraints are more speci�c, such asparent(X;Y ) male(X); son(Y;X)parent(X;Y );mother(X;Y ) son(Y;X)This is due to the fact that the purpose of the generated constraints in ACL2 is just tosupport the assumptions of the ACL1 part, without considering other data from the back-ground theory, and therefore ICL selects any set of constraints that is su�cient to achievethis speci�c task.Marketing Research DataACL has been used on several sets of real world data from market research questionnairesaiming to understand the possible success or failure of selling a new product. In this sub-section we report on one such experiment.This case concerns a market research on a new soft drink brand. The research wasconducted by asking 100 people to taste the drink and to �ll a questionnaire regardingthe characteristics of the drink and their personal tastes. The concept we want to learnis buy(X) that expresses whether the person would buy the drink or not. Out of the 100people interviewed, 52 answered that they would buy the product, 32 would not and 16don't know. Therefore we have 52 positive examples and 32 negative ones.72



There are 24 background predicates representing the answers to the questionnaire. Somequestions require an answer chosen among a number of values: for example, the questionabout the aroma of the drink can be answered with low, right or high. These values havebeen represented using the predicates lowaroma(X), higharoma(X) and rightaroma(X).Instead, questions requiring a yes-no answer have been represented using a single predi-cate: for example, whether the person likes natural things is encoded with the predicatelikenatural(X).Some questions are unanswered or have don't care answers and these have been treatedas incomplete information in the background. Out of 24 background predicates, 9 areincomplete with degree of incompleteness from 37% (i.e. 37 people out of 100 have notanswered or have answered don't care) up to 89%. The incomplete background predicateshave been considered as abducibles and integrity constraints have been introduced in orderto avoid the abduction of two di�erent answers for the same question. For example, for thequestion of "overall 
avour" we have the following constraint on the abducible predicatesthat record answers to this question: goodflavouroverall(X); poorflavouroverall(X)ACL1, mFOIL and FOIL were run on this data. All three systems found theories with adominant clause covering the majority of the examples plus other very speci�c rules. BothACL1 and mFOIL found the following dominant clause:buy(X) goodflavouroverall(X); rightsweetness(X)According to ACL1, this clause covers 47 positive examples, 10 of which by abduction, andit does not cover any negative example, while, according to mFOIL, it covers 37 positiveexamples and no negative one. This clause was judged to be very meaningful by experts inthe �eld with the right sweetness as one of the most important factors in the success of asoft drink. FOIL, instead, has found the following general clause:buy(X) goodflavouroverall(X); rightmouthfeel(X)that covers 37 positive examples and no negative one.The second phase of ACL was also run on this data and the following constraint hasbeen found: goodflavouroverall(X); higharoma(X)which, again, was judged to be signi�cant by experts. This constraint can be used in orderto complement the available knowledge on goodflavouroverall.4.6.2 Multiple Predicate LearningIn this section we present some experiments that have been performed with the M-ACLsystem: learning a de�nite clause grammar for simple sentences, learning the de�nitionsof the mutually recursive predicates even and odd and learning multiple family relations.Moreover, as reported earlier in section 5, the M-ACL system was tested on multiple familyrelations (see examples 5.3, 5.4 and appendix A.4 for details of the M-ACL system's be-haviour on these examples) in order to verify its ability to backtrack from a wrong clauseand to use additional examples generated from abduction to avoid overgeneralization.GrammarThe data for this experiment is taken from [DRD96c]. The aim is to learn the followingde�nite clause grammar for parsing very simple English sentences:73



(1) sent(A;B) np(A;C); vp(C;B)(2) np(A;B) det(A;C); noun(C;B)(3) vp(A;B) verb(A;B)(4) vp(A;B) verb(A;C); np(C;B)In [DRD96c] Claudien-Sat is used to solve this task starting from di�erent input interpre-tations.The �rst interpretation corresponds to a complete syntactic analysis of the sentence \thedog eats the cat". Therefore the data set contains all the positive and negative facts mention-ing the following lists: [the,dog,eats,the,cat], [dog,eats,the,cat], [eats,the,cat], [the,cat], [cat]and []. Another interpretation contains some ungrammatical sentences and corresponds toseveral attempts to analyze "the cat the cat". It includes all positive and negative facts men-tioning the following lists: [the,cat,the,cat], [cat,the,cat], [cat,cat], [the,cat], [cat], [cat,the]and []. Similarly, another interpretation contains all positive and negative facts mentioningthe lists [the,cat,eats], [cat,eats], [cat,sings], [the,cat,sings], [dog,cat], [sings], [eats],[the] and[]. M-ACL has learned the above rules in the following order: (2), (3), (1), (4). Note thatthe de�nition for sent was learned at a point where the de�nition for vp was not complete.This was possible because the system used the examples for vp to complete its de�nition, byexploiting the hybrid form of coverage. In this case the training set was such some negativeassumptions about np were necessary in order to avoid the coverage of negative examples.Mutually Recursive PredicatesThe task consists in learning the following mutually recursive de�nition for the predicateseven(X) and odd(X)(1) even(X) zero(X)(2) odd(X) succ(X;Y ); even(Y )(3) even(X) succ(X;Y ); odd(Y )The background knowledge contains the fact zero(0) and the de�nition of the predicatesucc(X;Y ) whose meaning is \X is the successor of Y ". The training set is obtained froma complete training set containing facts for all the numbers from 0 to 9 by removing someof these. For example, we may remove the positive examples odd(1); odd(5); odd(7); even(2);even(6) and the negative examples even(3); even(7); even(9); odd(6); odd(8). The trainingset is therefore given by:E+ = fodd(3); odd(9); even(0); even(4); even(8)gE� = feven(1); even(5); odd(0); odd(2); odd(4)gM-ACL generated the following output:/* Execution time 0.440000 seconds. Generated rules */rule(even(A),[zero(A)],c2)GC: yes, LC: yesCovered positive examples: [even(0)]Covered positive abduced examples: []Covered negative abduced examples: []74



Abduced literals: []rule(even(A),[succ(A,B),odd(B)],c13)GC: yes, LC: yesCovered positive examples: [even(8),even(4)]Covered positive abduced examples: []Covered negative abduced examples: []Abduced literals: [[odd(7),c13]]rule(odd(A),[succ(A,B),even(B)],c21)GC: yes, LC: yesCovered positive examples: [odd(9),odd(3)]Covered positive abduced examples: [odd(7)]Covered negative abduced examples: []Abduced literals: [[not(even(3)),c21]]M-ACL has learned clause (3) by exploiting the examples for odd as background knowl-edge and by abducing the missing example odd(7). This example is then added to thetraining set and is covered by clause (2). The negative abduced assumptions on even alsohelp in preventing the system to subsequently learn an incorrect clause for this predicate.This experiment shows the ability to learn mutually recursive predicates, exploiting bothextensional coverage and abduction.Multiple Family RelationsSeveral experiments to learn multiple family relations were carried out. In one such experi-ment the problem is to learn the predicates brother and sibling from a background knowledgecontaining facts about parent, male and female. The bias allowed the body of the rules forbrother to be any subset offparent(X;Y ); parent(Y;X); sibling(X;Y ); sibling(Y;X);male(X);male(Y ); female(X); female(Y )gwhile the body of the rules for sibling can be any subset offparent(X;Y ); parent(Y;X); parent(X;Z);parent(Z;X); parent(Z; Y ); parent(Y; Z);male(X);male(Y );male(Z); female(X); female(Y ); female(Z)gTherefore, the rules we are looking for arebrother(X;Y ) sibling(X;Y );male(X)sibling(X;Y ) parent(Z;X); parent(Z; Y )The family database considered for these experiments, taken from [DRLD93], contains 16facts about brother, 38 about sibling, 22 about parent, 9 about male and 10 about female.The background knowledge was obtained from this database by considering all the factsabout male and female and only 50 % of the facts about parent (selected randomly). The75



training set contains all the facts about brother and 50 % of the facts about sibling (alsoselected randomly). Negative examples were generated by making the Closed World As-sumption and taking a random sample of the false atoms: 36 negative examples for siblingand 37 for brother. For this problem the abducible predicates are the target predicatesbrother and sibling plus the background predicate parent.From this data, M-ACL has constructed �rst the rulebrother(X;Y ) sibling(Y;X);male(X)It has exploited both the positive examples of sibling to cover positive examples of brotherand negative examples of sibling to avoid covering negative examples for brother. This rulewas constructed �rst because the heuristics preferred it to the rules for sibling, as moreinformation was available for the predicate sibling rather than for parent. When learningthis rule, ACL1 has made a number of assumptions on sibling: it has abduced 3 positivefacts (that become positive examples for sibling) and 33 negative facts (that become negativeexamples for sibling). Then, M-ACL constructs the rule for siblingsibling(X;Y ) parent(Z;X); parent(Z; Y )using this new training set and making assumptions on parent.This experiment shows again how M-ACL is able to learn multiple predicates exploitingthe information available and generating new data for one predicate while learning another.4.7 Related WorkThis chapter basically presents the work discussed in [KR98]. The work builds on earlierproposals in [DK96] and [ELM+96, LMMR97, LMMR98] for learning simpler forms of ab-ductive theories. The use of abduction in learning, either in an implicit or explicit form, hasrecently been examined by several works [Abe98, AD94, AD95, Coh92, DRB92a, Moo98,IS95, KK98, Sak98]. The abductive assumptions generated during learning are then used indi�erent ways depending on the kind of learning task the system is performing.In this thesis, abduction is used explicitly as the basic covering relation for de�ning theconcept learning problem. In many other cases, abduction is used as a useful mechanismthat can support some of the activities of the learning system. For example, in theoryrevision, abduction is used as one of the basic revision operators for the overall learningprocess [AD94, DRB92a, Moo98, Sak98]. For each individual positive example that is notentailed by the theory, abduction is applied to determine the set of assumptions that wouldallow it to be proved. These assumptions are then used to suggest where the current theoryshould be revised. In [DRB92a, AD94] the assumptions are either added as facts to thetheory or new clauses are learned for covering them. In addition, some of these systems useabductive assumptions for revising overspeci�c rules by removing from them the literal(s)that generated the assumption [Moo98]. This type of integration of abduction and inductionhas been studied in a principled way in [AD95] where an integrated framework that combinesAbductive and Inductive Logic Programming is proposed.Abduction is also used as a suitable mechanism for extending Explanation Based Learn-ing [Coh92, O'R94] in cases where the given domain theory is incomplete in the descriptionof some of its predicates. These predicates are then treated as abducible and proofs can becompleted by abduction before they are generalized.The work of [TM94] proposes an approach where abduction is used as the basic coveringrelation for learning in a di�erent way with respect to the ACL approach. Abduction is car-76



ried out on the concept to be learned rather than on the (incomplete) background predicates.A system, called Lab, is presented that uses a simple, propositional form of abduction inthe context of a particular application of learning theories for a diagnostic reasoning model.In this reasoning model, theories are composed of rules of the form symptom ( disorderand the task of abduction is to �nd a (minimum) set of disorders that explains all the symp-toms. Lab is given as input a set of training cases each consisting of a set of symptomstogether with their correct diagnosis (set of disorders) and it produces a theory such that thecorrect diagnosis for each training example is a (minimum) abductive explanation. In Lab,therefore, the explanations themselves are considered as the output of the target theory (thetarget predicates are the abducible disorder predicates) requiring that the learned theoryrespects the input-output couples given in the training cases.Recently, the deeper relationship between abduction and induction has been the topic ofstudy of two workshops [FK96, FK97] where various (preliminary) works on the integrationof abduction in learning have been proposed [Abe98, Sak98, KK98]. Of these, [KK98] isthe closest to this work: the authors present a top-down learning algorithm that employsan abductive proof procedure for testing the coverage of examples. They consider a costfor each explanation by assigning a cost to every abducible literal. The minimum cost forexplaining examples is then taken into account in a FOIL-like clause evaluation function.As ACL, the system can be applied to learn from incomplete background data.Several other proposals for learning with incomplete information exist. In attributed-based or propositional learning one common way to handle incomplete information (i.e.missing attribute values) is to replace each example with a missing value with several exam-ples, one for each of the possible values of the attribute, and to associate with each examplea fractional weight, representing the conditional (with respect to the class of the example)probability of that particular value. The conditional probability of the di�erent values isestimated with the relative frequency from the set of instances. This is the approach fol-lowed by ASSISTANT [CKB87], CN2 [CB89] and C4.5 [Qui93]. Various approaches to thehandling of incomplete information are empirically compared in [Qui91].An early ILP system that is able to deal with missing information is that of LINUS[LDG91a]. This learns �rst order theories by �rst translating an ILP problem into anattribute-value representation and by then employing an attribute-value algorithm that han-dles incomplete information. In this way, it is able to deal both with missing arguments andmissing facts in the background knowledge. The drawbacks of this approach are the largenumber of attributes that may be necessary and the restriction of the language of targetprograms to determinate Datalog clauses.The FOIL-I system [IKI+96] is an ILP system that learns from incomplete information inthe training set but not in the background knowledge, with a particular emphasis on learningrecursive predicates. In [WD95] the authors propose several frameworks for learning frompartial interpretations. A particular framework that can learn form incomplete informationis that of learning from satis�ability [DRD96c]. This framework is more general than ACL asboth the examples and the hypotheses can be clausal theories. On the other hand, theorieslearned by this framework correspond only to the integrity constraints part of an abductivetheory with no (or a trivial default) rule part.A problem that is related to learning from incomplete data is that of learning fromnoisy or in general imperfect data [Qui90a, DB92, LDB96]. This problem is handled byrelaxing the requirements of consistency and completeness in the necessity and su�ciency77



stopping criteria and by adopting special heuristic functions for guiding the search (seesection 3.2.6. Relaxing the su�ciency stopping criterion is particularly useful when learningfrom incomplete data. It e�ectively allows us to avoid the coverage of some of the positiveexamples for which insu�cient background data is given. For example, mFOIL ([DB92], seealso section 3.4.3) stops adding a clause to the theory when too few positive examples areleft for a generated clause to be signi�cant or when no signi�cant clause can be found withexpected accuracy greater than the default. Instead, FOIL ([Qui90a], see also section 3.4.2)FOIL stops generating clauses when all the literals that can be added to the current clauserequire more than the available number of bits.In general, these systems see incompleteness as special case of noise and hence it may bethat methods for handling noise are too coarse for incompleteness. Indeed, when we knowin which predicates the incompleteness lies, then we would expect that we can use morespecialised techniques, like the ACL framework, to get better results than the more generalmethods for noise. This is con�rmed by some of the experiments presented in section 4.6.As we have seen, ACL can use integrity constraints as part of its background knowledge.Learning from integrity constraints was �rst examined in [DRB92a] and [DR92]. Recently,the system Progol [Mug95a] is able to learn from integrity constraints. However, in thesecases, integrity constraints are used to impose conditions on the target predicates that needto be respected by the learned clauses. In ACL, instead, constraints impose conditionson background rather than target predicates and are used to restrict the assumptions ofbackground facts rather than for specializing the clauses.On the other hand, ACL also learns new integrity constraints as part of its �nal learnedtheory. Hence ACL involves a combination of learning from entailment and learning frominterpretations. Although several ILP systems (e.g. [Mug95a, DRL95, DRB93]) can pro-duce theories that combine rules and integrity constraints, all of these use a single form ofinduction to generate both parts of the theory. Finally, we point out that, as abductivetheories are non-monotonic in nature, ACL can provide us with a form of non-monotoniclearning. It can thus be used to address similar learning problems as those tackled in thework of [Hel89, BM91, DK95].4.8 ConclusionsThe chapter presents the new learning framework of Abductive Concept Learning (ACL),setting up its theoretical foundations and developing a �rst system for it. This frameworkintegrates abduction and induction extending the Inductive Logic Programming paradigmin order to learn abductive theories: both the background and target theories are abductivetheories and deductive entailment as the coverage relation in ILP is replaced by an abductiveentailment in the learning problem of ACL. The main application of ACL is learning fromincomplete information.The ACL problem can be decomposed into two subproblems, ACL1 and ACL2, the �rstconsisting of learning the rule part of the abductive theory and the second consisting oflearning the constraint part. ACL1 is a learning from entailment problem, while ACL2 is alearning from interpretations problem. Based on this decomposition, a system for learningin this new framework has been developed that solves the ACL problem by �rst solvingACL1 and then ACL2. These separate problems are solved using and adapting algorithmsand techniques from the existing ILP frameworks of learning from entailment and learning78



from interpretations. In this way, ACL represents a non-trivial and useful integration ofthese two main ILP settings.The ACL framework allows us also to tackle e�ectively the problem of multiple predicatelearning, where each predicate is required to be learned from the incomplete data for theother predicates. By employing abduction we are able to link the learning of the di�erentpredicates and ensure the coherence among the de�nitions learned for them. A separatedsystem for multiple predicate learning, called M-ACL, has been developed by suitably mod-ifying the ACL system.Several experiments were performed, some of which were drawn from real-life problems ofanalyzing market research questionnaires, to test ACL on problems of learning from incom-plete information. The performances of ACL were comparable or superior to those of FOIL,mFOIL and the ICL-Sat system adapted from ICL for learning with partial interpretations.Other experiments were also done that con�rmed the ability of M-ACL to learn multiplepredicates.The development of the ACL algorithm and system in this chapter was heavily basedon the separation of the full ACL problem into the ACL1 and ACL2 subproblems, adaptingtraditional ILP techniques to solve these. Further work is needed to examine other waysof synthesizing these subproblems and more importantly to develop algorithms that wouldsearch directly the full space of abductive theories. This involves the de�nition of generalityorderings for this space and the development of suitable re�nement operators that wouldallow the simultaneous learning of both parts (rules and constraints) of an abductive theory.

79



80



Chapter 5Learning in a Three-valuedSetting5.1 IntroductionMost work on inductive concept learning considers a two-valued setting. In such a setting,what is not entailed by the learned theory is considered false, on the basis of the ClosedWorld Assumption (CWA) [Rei78]. However, in practice, it is more often the case that weare con�dent about the truth or falsity of only a limited number of facts, and are not ableto draw any conclusion about the remaining ones, because the available information is tooscarce. Like it has been pointed out in [DRB90, DR92], this is typically the case of anautonomous agent that, in an incremental way, gathers information from its surroundingworld. Such an agent needs to distinguish between what is true, what is false and what isunknown, and therefore needs to learn within a richer three-valued setting.The class of extended logic programs is particularly suited for representing informationin a three-valued setting. Extended logic programs contain two kinds of negation: de-fault negation plus a second form of negation, called explicit, whose combination has beenrecognized as very useful for knowledge representation. The adoption of extended logicprograms allows one to represent exceptions through default negation, as well as with ver-ily negative information through explicit negation [PA92, AP96, APP98]. For instance, in[AP96, BG94a, DPP97, DP98, LP98] it is shown how extended logic programs are applicableto such diverse domains of knowledge representation as concept hierarchies, reasoning aboutactions, belief revision, counterfactuals, diagnosis, updates and debugging.This chapter is based on the work presented in [LRP88b, LRP88a, LRP88c]. We discussvarious approaches and strategies that can be adopted in ILP for learning with extendedlogic programs. The learning process starts from a set of positive and negative examplesplus some background knowledge in the form of an extended logic programs. Positive andnegative information in the training set are treated equally, by learning a de�nition forboth a positive concept p and its (explicitly) negated concept :p. Coverage of examplesis tested by adopting the SLX interpreter for extended logic programs under the Well-Founded Semantics with explicit negation (WFSX ) de�ned in [AP96, DPP97], and valid forits paraconsistent version [DP98]. 81



Default negation is used in the learning process to handle exceptions to general rules.Exceptions to a positive concept are identi�ed from negative examples, whereas exceptionsto a negative concept are identi�ed from positive examples. A de�nition for the class ofexceptions is then learned which may include new exceptions. The process is then iteratedthus possibly producing a hierarchy of exceptions.We adopt standard ILP techniques to learn one concept and its opposite. Dependingon the technique adopted, one can learn the most general or the least general de�nition foreach concept. Accordingly, four epistemological varieties occur, resulting from the mutualcombination of most and least general solutions for the positive and negative concept. Thesepossibilities are expressed via extended logic programs, and we discuss some of the factorsthat should be taken into account when choosing the level of generality of each, and theircombination, to de�ne a speci�c learning strategy, and how to cope with contradictions.Indeed, separately learned positive and negative concepts may con
ict and, in order tohandle possible contradiction, contradictory learned rules are defused by making the learnedde�nition for a positive concept p depend on the default negation of the negative concept:p, and vice-versa, i.e., each de�nition is introduced as an exception to the other. This wayof coping with contradiction can be generalized for multiple source learning, and modi�edin order to take into account preferences among multiple learning agents or informationsources. Moreover, we discuss how detecting di�erent kinds of uncovered atoms points todi�erent opportunities for theory extension.The chapter is organized as follows. We �rst provide some basic notions on extendedlogic programs in section 5.2 and introduce the new ILP framework in section 5.3. We thenexamine, in section 5.4, factors to be taken into account when choosing the level of generalityof learned theories. Section 5.5 proposes how to avoid inconsistencies on unseen atoms andtheir opposites, through the use of mutually defusing (\non-deterministic") rules, for thecase of single and multiple learning agents, and how to incorporate exceptions throughnegation by default. Section 5.6 discusses how to identify diverse inconsistent or unde�nedcases in order to re�ne or extend learnt de�nitions. A description of the algorithm forlearning extended logic programs hierarchies with exceptions follows next, together with anexample of its behaviour, in section 5.7, and the overall system implementation in section5.8. Finally, we examine related works in section 5.9, and conclude.5.2 PreliminariesIn this section, we �rst discuss the usefulness of three-valuedness and of two types of negationfor knowledge representation and then we provide some basic notions on extended logicprograms and on WFSX.5.2.1 Three-valuedness, default and explicit negationIn order to represent negative information, default negation [EK89, Dun91] was introducedby AI researchers via Logic Programming. The default negation of an atom P , \not P", maybe read, variously, as \P is not provable", or \the falsity of P is assumable", or \the falsityof P is abducible", or \there is no evidence for P", or \there is no argument for P". Defaultnegation allows us to deal with lack of information, a common situation in the real world. Itintroduces non-monotonicity into knowledge representation. Indeed, conclusions might not82



be solid because the rules leading to them may be defeasible. Legal texts, regulations, andcourts employ this form of negation abundantly, as they perforce deal with open worlds.For instance, we don't normally have explicit information about who is or is not the loverof whom, though that kind of information may arrive unexpectedly. Thus we write:faithful(H;K) married(H;K); not lover(H;L)I.e., if we have no evidence to conclude lover(H;L) for some L given H , we can assume itfalse for all L given H .The issue arises because often, particularly in data and knowledge bases, the ClosedWorld Assumption (CWA) is enforced: everything that is not explicitly represented aspositive is considered as negative. However, this introduces an asymmetry in knowledgerepresentation, since negative information is only representable as the negation of positiveone, we are not able to explicitly represent negative information that we may have obtainedfrom the surrounding world. Therefore, a new form of negation, called explicit negation[PA92] and represented with :, is needed in order to restore the symmetry.In some cases, we may have no factual or derivable either positive or negative informationand we'd like to be able to say that both are false epistemically, i.e. from the \knowledgewe possess" point of view. Accordingly, the excluded middle postulate, stating that anypredication is either true or false, is unacceptable because some predication and its explicitnegation may be false simultaneously. Therefore, explicit negation ':' di�ers from classicalnegation because it does not comply with the excluded middle postulate.By means of this form of negation we are also able to adopt the CWA in a symmetricalway, i.e., to assume as true what is not explicitly represented as false.For example, we are able to write:faithful(H;K) married(H;K); not :lover(H;L)to model instead a world where people are unfaithful by default or custom, and where itis required to explicitly prove that someone does not take any lover before concluding thatperson not unfaithful. Here not :lover(H;L) is true by CWA unless :lover(H;L) is proventrue. This can be understood as assuming lover(H;L) true.More precisely, we can state the CWA for just those predicates P or :Q we wish, simplyby writing: :P  not P or Q not :QAlternatively, use of not P or of not :Q assumption literals may be made at just thosepredicate occurrences so requiring it.Let us next examine the need for revising assumptions and of introducing a third truth-value, call it \unde�ned", into our framework.When we combine the viewpoints of the two above worlds we become confused:faithful(H;K) married(H;K); not lover(H;L):faithful(H;K) married(H;K); not :lover(H;L)If we have no evidence for lover(H;L) nor for :lover(H;L), we could assume both of themas false. However, supposing that married(H;K) is true for some H and K, it now appears83



that both faithful(H;K) and :faithful(H;K)are contradictorily true.In this case the assumptions of falsity of lover(H;L) and for :lover(H;L) has led to acontradiction. But when an assumption leads to contradiction one should retract it. It isthe venerable principle of reductio ad absurdum, or \reasoning by contradiction".In our case, the two assumptions that led to the contradiction are on equal footing.Given no other, possibly preferential information, we retract both because we cannot decidebetween them. That is, we assume neither lover(H;L) nor :lover(H;L) false. Since neitheris provably true either, we make each unde�ned, i.e., we introduce a third truth-value tobetter characterize this lack of information about some lovers' situation. This imposition ofunde�nedness can be achieved simply, by adding to our knowledge::lover(H;L) not lover(H;L)lover(H;L) not :lover(H;L)Given no other information, we can prove neither of lover(H;L) nor :lover(H;L) true, orfalse. Any attempt to do it runs into a self-referential circle involving default negation. Thus,lover(H;L) and :lover(H;L) are assigned the truth-value unde�ned and, as a consequence,faithful(H;K) and :faithful(H;K) are unde�ned too.However, if we hypothesize one of lover(H;L) nor :lover(H;L) true, the other ipso factobecomes false, and vice-versa. These two possible situations are thus not ruled out. But thesafest, skeptical, third option is to take no side in this marital dispute, and abstain frombelieving either.Indeed, the WFSX [AP96, DPP97] semantics assigns to the literals in the above twoclauses the truth value unde�ned, in its knowledge skeptical well-founded model, but allowsalso for the other two, non truth-minimal, more credulous models.When dealing with non-provability one really needs a third truth-value to express ourepistemic inability to come up with information.In any case, we are in wont of a third logical value for other reasons. As we buildup our real-world imperfect knowledge base, we may very well create, unwittingly andunawares, circular dependencies as above. For example, the Legislator may well enactcon
icting, circular, laws. Still, we want to be able to carry on reasoning, whether or notsuch circularities legitimately express what they model.5.2.2 Extended Logic ProgramsAn extended logic program is a �nite set of rules of the form:L0 L1; : : : ; Lnwith n � 0, where L0 is an objective literal, L1; : : : ; Ln are literals and each rule stands forthe sets of its ground instances. Objective literals are of the form A or :A, where A is anatom, while a literal is either an objective literal L or its default negation not L. :A is saidthe opposite literal of A (and vice versa), where ::A = A, and not A the complementaryliteral of A (and vice versa). By not fa1; : : : ; ang we mean fnot a1; : : : ; not ang. The set of84



all objective literals of a program P is called its extended Herbrand base and is representedas HE(P ). An interpretation I of an extended program P is denoted by T [ not F , whereT and F are disjoint subsets of HE(P ). Objective literals in T are said to be true in I ,objective literals in F are said to be false in I and inHE(P )�I unde�ned in I . We introducein the language the proposition u that is unde�ned in every interpretation I .The WFSX extends the well founded semantics (WFS ) [VGRS91] for normal logic pro-grams to the case of extended logic programs. WFSX is obtained from WFS by adding thecoherence principle relating the two forms of negation: \if L is an objective literal and :Lbelongs to the model of a program, then also not L belongs to the model".The de�nition of WFSX that follows is taken from [ADP94] and is based on the alter-nating �x points of Gelfond-Lifschitz �-like operators.De�nition 53 (The �-operator) Let P be an extended logic program and let I be aninterpretation. �P (I) is the program obtained from P by performing in the sequence thefollowing four operations:� Remove from P all rules containing a default literal L = not A such that A 2 I.� Remove from P all rules containing in the body an objective literal L such that :L 2 I.� Remove from all remaining rules of P their default literals L = not A such thatnot A 2 I.� Replace all the remaining default literals by proposition u.In order to impose the coherence requirement, we need the following de�nition.De�nition 54 (Seminormal Version of a Program) The seminormal version of a pro-gram P is the program Ps obtained from P by adding to the (possibly empty) Body of eachrule L Body the default literal not:L, where :L is the complement of L with respect toexplicit negation.In the following, we will use the following abbreviations: �(S) for �P (S) and �s(S) for�Ps(S).De�nition 55 (Partial Stable Model) An interpretation T [ not F is called a partialstable model of P i� T = ��sT and F = HE(P )� �sT .Partial stable models are an extension of stable models [GL88] for extended logic programsand a three-valued semantics. Not all programs have a partial stable model (e.g. P =fa;:ag) and programs without a partial stable model are called contradictory.Theorem 56 (WFSX Semantics) Every non-contradictory program P has a least (withrespect to �) partial stable model, the well-founded model of P denoted by WFM(P ).To obtain an iterative \bottom-up" de�nition for WFM(P ) we de�ne the following trans-�nite sequence fI�g: I0 = fg; I�+1 = ��SI�; I� =[fI�j� < �gwhere � is a limit ordinal. There exists a smallest ordinal � for the sequence above, suchthat I� is the smallest �x point of ��S. Then, WFM(P ) = I� [ not (HE(P )� �SI�).85



Let us now show an example of the WFSX semantics in the case of a simple program.Example 57 Consider the following extended logic program::a  : b not b:a  b:A WFSX model of this program is M = f:a; not :b; not ag: :a is true, a is false (i.e., both:a and not a are in the well-founded model), :b is false (there are no rules for :b) and bis unde�ned. Notice that not a is in the model since it is implied by :a via the coherenceprinciple.One of the most important characteristic of WFSX is that it provides a semantics for animportant class of extended logic programs: the set of non-strati�ed programs, i.e., the setof programs that contain recursion through default negation. An extended logic program isnon-strati�ed if its dependency graph does not contain any cycle with an arc labelled with�. The dependency graph of a program P is a labelled graph with a node for each predicateof P and an arc from a predicate p to a predicate q if q appears in the body of clauses withp in the head. The arc is labelled with + if q appears in an objective literal in the body andwith � if it appears in a default literal.Non-strati�ed programs are very useful for knowledge representation because the WFSXsemantics assigns the truth value unde�ned to the literals involved in the recursive cyclethrough negation, as shown above for lover(H;L) and :lover(H;L). In section 5.5 we willemploy non strati�ed programs in order to resolve possible contradictions.WFSX was chosen among the other semantics for extended logic programs, answer-sets[GL90] and three-valued strong negation [APP98], because none of the others enjoys theproperty of relevance [AP96, APP98] for non-strati�ed programs, i.e., they cannot havetop-down querying procedures for non-strati�ed programs. Instead, for WFSX there existsa top-down proof procedure SLX [AP96], which is correct with respect to the semantics1.Cumulativity is also enjoyed by WFSX, i.e., if you add a lemma then the semantics does notchange. This property is important for speeding-up the implementation. By memorizingintermediate lemmas through tabling, the implementation of SLX greatly improves. Answer-set semantics, however, is not cumulative for non-strati�ed programs and thus cannot usetabling.The SLX top-down procedure for WFSX relies on two independent kinds of derivations:T-derivations, proving truth, and TU-derivations proving non-falsity, i.e., truth or unde-�nedness. Shifting from one to the other is required for proving a default literal not L: theT-derivation of not L succeeds if the TU-derivation of L fails; the TU-derivation of not Lsucceeds if the T-derivation of L fails. Moreover, the T-derivation of not L also succeeds ifthe T-derivation of :L succeeds, and the TU-derivation of L fails if the T-derivation of :Lsucceeds (thus taking into account the coherence principle).The SLX procedure is amenable to a simple pre-processing implementation, by map-ping WFSX programs into WFS programs through the T-TU transformation [DP97]. Thistransformation is linear and essentially doubles the number of program clauses. Then, the1Though WFSX is not truth-functional (i.e., the truth-value of any formula does not depend only onthe truth-value of its subformulas as expressed by the truth table of the logical connectives) any extendedlogic program under WFSX can be transformed into an equivalent program under WFS through the T-TUtransformation [DP97, AP96] which is truth-functional. This transformation is used for the implementation.86



transformed program can be executed in XSB [SSW+97], an e�cient Logic Programmingsystem which implements the WFS with tabling, and subsumes Prolog. Tabling in XSBconsists in memorizing intermediate lemmas, and in properly dealing with non-strati�cationaccording to WFS. Tabling is important in learning, where computations are often repeatedfor testing the coverage or otherwise of examples.5.3 Learning in a Three-valued SettingIn real-world problems, complete information about the world is impossible to achieve and itis necessary to reason and act on the basis of the available partial information. In situationsof incomplete knowledge, it is important to distinguish between what is true, what is false,and what is unknown or unde�ned.Such situation occurs, for example, when an agent incrementally gathers informationfrom the surrounding world and has to select its own actions on the basis of such acquiredknowledge. If the agent learns in a two-valued setting, it can encounter the problems thathave been highlighted in [DRB90]. When learning in a speci�c to general way, it will learna cautious de�nition for the target concept and it will not be able to distinguish what isfalse from what is not yet known (see �gure 5.1a). Supposing the target predicate representsthe allowed actions, then the agent will not distinguish forbidden actions from actions withan outcome and this can restrict the agent acting power. If the agent learns in a generalto speci�c way, instead, it will not know the di�erence between what is true and what isunknown (�gure 5.1b) and, therefore, it can try actions with an unknown outcome. Rather,by learning in a three-valued setting, it will be able to distinguish between allowed actions,forbidden actions, and actions with an unknown outcome (�gure 5.1c). In this way, theagent will know which part of the domain needs to be further explored and will not tryactions with an unknown outcome unless it is trying to expand its knowledge.
Figure 5.1: (taken from [DRB90])(a,b): two-valued setting, (c): three-valued settingLearning in a three-valued setting requires the adoption of a more expressive class of pro-grams to be learned. This class can be represented, we have seen, by means of extendedlogic programs under the well-founded semantics extended with explicit negation WFSX[AP96, APP98, PA92].We consider a new learning problem where we want to learn an extended logic programfrom a background knowledge that is itself an extended logic program and from a set ofpositive and a set of negative examples in the form of ground facts for the target predicates.A learning problem for extended logic programs was �rst introduced in [IK97] where thenotion of coverage was de�ned by means of truth in the answer-set semantics. Here theproblem de�nition is modi�ed to consider coverage as truth in the WFSX semantics87



De�nition 58 (Learning Extended Logic Programs)Given:� a set P of possible (extended logic) programs� a set E+ of positive examples (ground facts)� a set E� of negative examples (ground facts)� a consistent extended logic program B (background knowledge)Find:� an extended logic program P 2 P such that{ 8e 2 E+;:E�, B [ P j=WFSX e (completeness){ 8e 2 :E+; E�, B [ P 6j=WFSX e (consistency)where :E = f:eje 2 Eg.The theory that is learned will contain rules of the following form:p( ~X) Body+( ~X):p( ~X) Body�( ~X)for every target predicate p, where ~X stands for a tuple of arguments. In order to satisfythe completeness requirement, the rules for p will entail all positive examples while the rulesfor :p will entail all (explicitly negated) negative examples. The consistency requirement issatis�ed by ensuring that both sets of rules do not entail instances of the opposite elementin either of the training sets.Note that, in the case of extended logic programs, the consistency with respect to thetraining set is equivalent to the requirement that the program is non-contradictory on theexamples. This requirement is enlarged to require that the program be consistent also forunseen atoms, i.e., B [ P 6j= L ^ :L for every atom L of the target predicates.We say that an example e is covered by program P if P j=WFSX e. Since the SLXprocedure is correct with respect to WFSX, even for contradictory programs, coverage ofexamples is tested by verifying whether P `SLX e.Our approach to learning with extended logic programs consists in initially applyingconventional ILP techniques to learn a positive de�nition from E+ and E� and a negativede�nition fromE� and E+. In these techniques, the SLX procedure substitutes the standardproof procedure of Logic Programming to test the coverage of examples.The ILP techniques to be used depend on the level of generality that we want to have forthe two de�nitions: we can look for the Least General Solution (LGS) or the Most GeneralSolution (MGS) of the problem of learning each concept and its complement (see section3.2.7 for a de�nition of LGS and MGS).LGSs can be found by adopting one of the bottom-up methods such as relative leastgeneral generalization (rlgg) [Plo70] (see section 3.2.5) and the GOLEM system [MF90] (seesection 3.4.1), inverse resolution [MB92] or inverse entailment [LM92]. Conversely, MGSscan be found by adopting a top-down re�ning method (see section 3.2.6) and a system suchas FOIL [Qui90b] (see section 3.4.2) or Progol [Mug95a].88



5.4 Strategies for Combining Di�erent GeneralizationsThe generality of concepts to be learned is an important issue when learning in a three-valued setting. In a two-valued setting, once the generality of the de�nition is chosen,the extension (i.e., the generality) of the set of false atoms is, we've seen, undesirablyautomatically decided, because it is the complement of the true atoms set. In a three-valuedsetting, rather, the extension of the set of false atoms depends on the generality of thede�nition learned for the negative concept. Therefore, the corresponding level of generalitymay be chosen independently for the two de�nitions, thus a�ording four epistemologicalcases.Furthermore, the generality of the solutions learned for the positive and negative conceptsclearly in
uences the interaction between the de�nitions. If we learn the MGS for both aconcept and its opposite, the probability that their intersection is non-empty is higher thanif we learn the LGS for both. Accordingly, the decision as to which type of solution to learnshould take into account the possibility of interaction as well: if we want to reduce thispossibility, we have to learn two LGS, if we do not care about interaction, we can learn twoMGS. In general, we may learn di�erent generalizations and combine them in distinct waysfor di�erent strategic purposes within the same application problem.The choice of the level of generality should be made on the basis of available knowledgeabout the domain. Two of the criteria that can be taken into account are the damage orrisk that may arise from an erroneous classi�cation of an unseen object, and the con�dencewe have in the training set as to its correctness and representativeness.When classifying an as yet unseen object as belonging to a concept, we may later discoverthat the object belongs to the opposite concept. The more we generalize a concept, the higheris the number of unseen atoms covered by the de�nition and the higher is the risk of anerroneous classi�cation. Depending on the damage that may derive from such a mistake, wemay decide to take a more cautious or a more con�dent approach. If the possible damagefrom an over extensive concept is high, then one should learn the LGS for that concept, ifthe possible damage is low then one can generalize the most and learn the MGS. The overallrisk will depend too on the use of the learned concepts within other rules.As regards the con�dence in the training set, we can prefer to learn the MGS for a conceptif we are con�dent that examples for the opposite concept are correct and representative ofthe concept. In fact, in top-down methods, negative examples are used in order to delimitthe generality of the solution. Otherwise, if we think that examples for the opposite conceptare not reliable, then we should learn the LGS.In the following, we present a realistic example of the kind of reasoning that can beused to choose and specify the preferred level of generality, and discuss how to strategicallycombine the di�erent levels by employing the extended Logic Programming approach tolearning.Example 59 Consider a person living in a bad neighbourhood in Los Angeles. He is anhonest man and to survive he needs two concepts, one about who is likely to attack him, onthe basis of appearance, gang membership, age, past dealings, etc. Since he wants to take acautious approach, he maximizes attacker and minimizes :attacker, so that his attacker1concept allows him to avoid dangerous situations.attacker1(X) attackerMGS(X) 89



:attacker1(X) :attackerLGS(X)Another concept he needs is the type of beggars he should give money to (he is a good man)that actually seem to deserve it, on the basis of appearance, health, age, etc. Since he is notrich and does not like to be tricked, he learns a beggar1 concept by minimizing beggar andmaximizing :beggar, so that his beggar concept allows him to give money strictly to thoseappearing to need it without faking.beggar1(X) beggarLGS(X):beggar1(X) :beggarMGS(X)However rejected beggars, especially malicious ones, may turn into attackers, in this verybad neighbourhood. Consequently, if he thinks a beggar might attack him he had better bemore permissive about who is a beggar and placate him with money. In other words, heshould maximize beggar and minimize :beggar in a beggar2 concept.beggar2(X) beggarMGS(X):beggar2(X) :beggarLGS(X)These concepts can be used in order to minimize his risk taking when he carries, by hisstandards, a lot of money and meets someone who is likely to be an attacker, with thefollowing kind of reasoning:run(X) lot of money(X);meets(X;Y ); attacker1(Y ); not beggar2(Y ):run(X) lot of money(X); give money(X;Y )give money(X;Y ) meets(X;Y ); beggar1(Y )give money(X;Y ) meets(X;Y ); attacker1(Y ); beggar2(Y )If he does not have a lot of money on him, he may prefer not to run as he risks being beatenup. In this case he has to relax his attacker concept into attacker2, but not relax it so muchthat he would use :attackerMGS .:run(X) little money(X);meets(X;Y ); attacker2(Y )attacker2(X) attackerLGS(X):attacker2(X) :attackerLGS(X)The various notions of attacker and beggar are learnt on the basis of previous experiencethe man has had. In the following, we show, through a simple background knowledge andtraining set, how such concepts can be learned.Example 60 (cont'd) Consider the case in which we have a background knowledge contain-ing the following general rules:animal(X) person(X) person(X) man(X)animal(X) dog(X) person(X) woman(X)in addition to which we know some facts about a number of instances (male or female,person or dog) we have encountered in the past that have been classi�ed as attackers ornon attackers, and as beggars or non beggars.man(1) :good appearance(1) gang member(1)man(2) :good appearance(2) age(2; adult)man(3) :good appearance(3) age(3; old)woman(4) :good appearance(4) age(4; old)man(5) good appearance(5) age(5; adult) :healthy(5)man(6) :good appearance(6) age(6; youth)man(7) good appearance(7) age(7; adult)90



woman(8) good appearance(8) age(8; old)man(9) age(9; youth)woman(10) age(10; youth)dog(11) :good appearance(11) age(11; old)woman(12) :good appearance(12) age(12; adult) :healthy(12)man(13) age(13; old) healthy(13)man(14) good appearance(14) age(14; adolescent)man(15) :good appearance(15) gang member(15)man(16) :good appearance(16) age(16; adult)man(17) good appearance(17) age(17; adult) :healthy(17)man(18) good appearance(18) age(18; adult)dog(19) :good appearance(19) age(19; old)man(20) age(20; old) healthy(20)woman(21) good appearance(21) age(21; adolescent)Let the training set for the attacker and beggar concepts be:E+ = f attacker(1); attacker(2); attacker(15); attacker(16);beggar(3); beggar(4); beggar(5); beggar(17); beggar(12)gE� = f attacker(3); attacker(4); attacker(7); attacker(18); attacker(8);attacker(9); attacker(10); attacker(11); attacker(19);beggar(11); beggar(19); beggar(13); beggar(14); beggar(20); beggar(21)gThen, most general and least general solutions can be computed. By using the systemGOLEM [MF90], we obtained the following results. For the positive and negative conceptsof attacker:attackerMGS(X)  gang member(X)attackerMGS(X)  :good appearance(X); age(X; adult)attackerLGS(X)  gang member(X);man(X); animal(X);person(X);:good appearance(X)attackerLGS(X)  :good appearance(X);man(X); animal(X);person(X); age(X; adult):attackerMGS(X)  good appearance(X):attackerMGS(X)  age(X; youth):attackerMGS(X)  age(X; old):attackerLGS(X)  age(X; adult);man(X); animal(X); person(X);good appearance(X):attackerLGS(X)  age(X; youth); animal(X); person(X):attackerLGS(X)  age(X; old); animal(X)and for those of beggar:beggarMGS(X)  age(X; adult)beggarMGS(X)  person(X);:good appearance(X)91



beggarLGS(X)  age(X; adult);man(X); animal(X); person(X);:healthy(X); good appearance(X)beggarLGS(X)  person(X);:good appearance(X); age(X;B); animal(X):beggarMGS(X)  dog(X):beggarMGS(X)  healthy(X):beggarMGS(X)  age(X; adolescent):beggarLGS(X)  dog(X); age(X; old); animal(X);:good appearance(X):beggarLGS(X)  healthy(X); age(X; old);man(X); animal(X); person(X):beggarLGS(X)  age(X; adolescent); good appearance(X); animal(X); person(X)Notice that the positive and negative versions of a concept (despite the algorithm used tolearn a de�nition for it) never overlap on training set instances, but they might overlap foratoms not belonging to the training set. The latter situation requires program re�ning inorder to eliminate contradictions, as shown next.5.5 Strategies for Eliminating Learned ContradictionsBoth in single and multi-agent learning, we shall see, the de�nitions of the positive andnegative concepts may overlap. Con
icting rules for a predicate and its explicit negationmay originate in the same knowledge source, or in combining rules obtained from distinctknowledge sources or on distinct occasions. In the sequel, we deal with the problem ofremoving contradiction in such cases.5.5.1 Single Source ContradictionEven for a single agent, the de�nitions of the positive and negative concepts may overlap. Inthis case, we have a contradictory classi�cation for the objective literals in the intersection.In order to resolve the con
ict, we must distinguish two types of literals in the intersection:those that belong to the training set and those that do not, also dubbed unseen atoms (see�gure 5.2).Example 61 (cont'd) Let the person living in Los Angeles be now travelling to Brazil, whereyouth gangs are known for attacks on tourists. For the unseen instance:man(22) :good appearance(22) age(22; youth) gang member(22)the person concludes both that instance 22 is an attacker and a non attacker as well,since attackerLGS(22) (alternatively attackerMGS(22)) and :attackerLGS(22) (alternatively:attackerMGS(22)) are true. Thus, contradiction arises for attacker and :attacker.In the following, we discuss how to resolve the con
ict in the case of unseen literals and ofliterals in the training set. We �rst consider the case in which the training sets are disjointand we later extend the scope to the case where there is a non-empty intersection of thetraining sets, when they are less than perfect. From now onwards, ~X stands for a tuple ofarguments. 92



Contradiction on Unseen Literals For unseen literals, the con
ict is resolved by classi-fying them as unde�ned, since the arguments supporting the two classi�cations are equallystrong. Instead, for literals in the training set, the con
ict is resolved by giving priorityto the classi�cation stipulated by the training set. In other words, literals in a trainingset that are covered by the opposite de�nition are made as exceptions to that de�nition.For unseen literals in the intersection, the unde�ned classi�cation is obtained by making

Figure 5.2: Interaction of the positive and negative de�nitions on exceptions.opposite rules mutually defeasible, or \non-deterministic" (see [BG94a, AP96]). The targettheory is consequently expressed in the following way:p( ~X)  p+( ~X); not :p( ~X):p( ~X)  p�( ~X); not p( ~X)where p+( ~X) and p�( ~X) are, respectively, the de�nitions learned for the positive and thenegative concept, obtained by renaming the positive predicate by p+ and its explicit negationby p�. From now onwards, we will indicate with these superscripts the de�nitions learnedseparately for the positive and negative concepts.We want p( ~X) and :p( ~X) each to act as an exception to the other. In case of contra-diction, this will introduce mutual circularity, and hence unde�nedness according to WFSX.For each literal in the intersection of p+ and p�, there are two stable models, one containingthe literal in its three-valued version, the other containing the opposite literal. Accordingto WFSX, there is a third (partial) stable model where both literals are unde�ned, i.e., noliteral p( ~X), :p( ~X), not p( ~X) or not :p( ~X) belongs to the well-founded (or least partialstable) model. The resulting program contains a recursion through negation (i.e., it is non-strati�ed) but the top-down SLX procedure does not go into a loop because it comprisesmechanisms for loop detection and treatment, which are implemented by XSB throughtabling.Example 62 Let us consider the Example of section 5.4. In order to avoid contradictionson unseen atoms, the learned de�nitions must be:attacker1(X)  attacker+MGS(X); not :attacker1(X):attacker1(X)  attacker�LGS(X); not attacker1(X)93



beggar1(X)  beggar+LGS(X); not :beggar1(X):beggar1(X)  beggar�MGS(X); not beggar1(X)beggar2(X)  beggar+MGS(X); not :beggar2(X):beggar2(X)  beggar�LGS(X); not beggar2(X)attacker2(X)  attacker+LGS(X); not :attacker2(X):attacker2(X)  attacker�LGS(X); not attacker2(X)Note that p+( ~X) and p�( ~X) can display as well the unde�ned truth value, either becausethe original background is non-strati�ed or because they rely on some de�nition learned foranother target predicate, which is of the form above and therefore non-strati�ed. In thiscase, three-valued semantics can produce literals with the value \unde�ned", and one orboth of p+( ~X) and p�( ~X) may be unde�ned. If one is unde�ned and the other is true, thenthe rules above make both p and :p unde�ned, since the negation by default of an unde�nedliteral is still unde�ned. However, this is counter-intuitive: a de�ned value should prevailover an unde�ned one.In order to handle this case, we suppose that a system predicate undefined(X) is avail-able2, that succeeds if and only if the literal X is unde�ned. So we add the following tworules to the de�nitions for p and :p:p( ~X)  p+( ~X); undefined(p�( ~X)):p( ~X)  p�( ~X); undefined(p+( ~X))According to these clauses, p( ~X) is true when p+( ~X) is true and p�( ~X) is unde�ned, andconversely.Contradiction on Examples Theories are tested for consistency on all the literals of thetraining set, so we should not have a con
ict on them. However, in some cases, it is usefulto relax the consistency requirement and learn clauses that cover a small amount of counterexamples. This is advantageous when it would be otherwise impossible to learn a de�nitionfor the concept, because no clause is contained in the language bias that is consistent, orwhen an overspeci�c de�nition would be learned, composed of very many speci�c clausesinstead of a few general ones. In such cases, the de�nitions of the positive and negativeconcepts may cover examples of the opposite training set. These must then be consideredexceptions and treated as abnormalities.Exceptions may also be due to noise in the collection of data, or to abnormalities in theopposite concept. In the latter case, if exceptions form a class, it may be possible to learn ade�nition for it, provided that we have data on their common properties and the languagebias so allows.Let us start with the case where some literals covered by a de�nition belong to theopposite training set. We want of course to classify these according to the classi�cationgiven by the training set, by making such literals exceptions. To handle exceptions toclassi�cation rules, we add a negative default literal of the form not abnormp( ~X) (resp.not abnorm:p( ~X)) to the rule for p( ~X) (resp. :p( ~X)), to express possible abnormalities2The unde�ned predicate can be implemented through negation NOT under CWA (NOT P means thatP is false whereas not means that P is false or unde�ned), i.e., undefined(P ) NOT P;NOT (not P ).94



arising from exceptions. Then, for every exception p(~t), an individual fact of the formabnormp(~t) (resp. abnorm:p(~t)) is asserted so that the rule for p( ~X) (resp. :p( ~X)) doesnot cover the exception, while the opposite de�nition still covers it. In this way, exceptionswill �gure in the model of the theory with the correct truth value. The learned theory thustakes the form: p( ~X)  p+( ~X); not abnormp( ~X); not :p( ~X) (5.1):p( ~X)  p�( ~X); not abnorm:p( ~X); not p( ~X) (5.2)p( ~X)  p+( ~X); undefined(p�( ~X)) (5.3):p( ~X)  p�( ~X); undefined(p+( ~X)) (5.4)Abnormality literals have not been added to the rules for the unde�ned case because aliteral which is an exception is also an example, and so must be covered by its respectivede�nition; therefore it cannot be unde�ned.Individual facts of the form abnormp( ~X) are then used as examples for learning a def-inition for abnormp and abnorm:p, as in [IK97, LMMR97]. In turn, exceptions to thede�nitions of abnormp and abnorm:p may be found and so on, thus leading to a hierarchyof exceptions.Example 63 Consider a domain containing entities a; b; c; d; e; f and suppose the targetconcept is flies. Let the background knowledge be:bird(a) has wings(a)jet(b) has wings(b)angel(c) has wings(c) has limbs(c)penguin(d) has wings(d) has limbs(d)dog(e) has limbs(e)cat(f) has limbs(f)and let the training set be:E+ = fflies(a)g E� = fflies(d); f lies(e)gThe learned theory is:flies(X)  flies+(X); not abnormalflies(X); not :flies1(X):flies(X)  flies�(X); not flies1(X)flies(X)  flies+(X); undefined(flies�(X)):flies(X)  flies�(X); undefined(flies+(X))abnormalflies(d)where flies+(X) has wings(X) and flies(X)� has limbs(X) Moreover, the abnor-mality fact abnormalflies(d) can be generalized to obtainabnormalflies(X) penguin(X)The example above and �gure 5.3 show all the various cases for a literal when learning in athree-valued setting. a and e are examples that are consistently covered by the de�nitions. b95



Figure 5.3: Coverage of de�nitions for opposite conceptsand f are unseen literals on which there is no contradiction. c and d are literals where thereis contradiction, but c is classi�ed as unde�ned whereas d is considered as an exception tothe positive de�nition and is classi�ed as negative.extended logic programs can be used as well to represent n disjoint classes p1; : : : ; pn.When one has to learn n disjoint classes, the training set contains a number of facts for anumber of predicates p1; : : : ; pn. Let p+i be a de�nition learned by using, as positive exam-ples, the literals in the training set classi�ed as belonging to pi and, as negative examples,all the literals for the other classes. Then the following rules ensure consistency on unseenliterals and on exceptions:p1( ~X)  p+1 ( ~X); not abnormalp1( ~X); not p2( ~X); : : : ; not pn( ~X)p2( ~X)  p+2 ( ~X); not abnormalp2( ~X); not p1( ~X); not p3( ~X); : : : ; not pn( ~X)� � �  � � �pn( ~X)  p+n ( ~X); not abnormalpn( ~X); not p1( ~X); : : : ; not pn�1( ~X)p1( ~X)  p+1 ( ~X); undefined(p+2 ( ~X)); : : : ; undefined(p+n ( ~X))p2( ~X)  p+2 ( ~X); undefined(p+1 ( ~X)); undefined(p+3 ( ~X)); : : : ; undefined(p+n ( ~X))� � �  � � �pn( ~X)  p+n ( ~X); undefined(p+1 ( ~X)); : : : ; undefined(p+n�1( ~X))regardless of the algorithm used for learning the p+i .Noisy Training Set Consider the case in which the training sets are not disjoint. Then,literals in the intersection of the training sets will be abnormal exceptions for both de�nitions.For an atom p( ~X), both p( ~X) and :p( ~X) will result false in the three-valued model of thetheory. Therefore, these literals di�er from unseen ones, for which the truth value of p( ~X)and :p( ~X) is unde�ned.5.5.2 Multiple Source ContradictionIn the single source case above, we showed how to deal with contradictions arising fromlearning con
icting rules for a predicate and its explicit negation, originating in the sameknowledge source. Here we consider and handle contradictions arising from combining rulesobtained from distinct knowledge sources or on distinct occasions. Let us dub it multiplesource contradiction. This kind of situation may occur in the settings of:96



� multiple, separately learning agents with distinct background knowledge, or multiple,cloned, agents with the same background knowledge;� one agent learning separate rules from heterogenous data sources;� one agent learning rules from uniform but separate data sets, (either because of theirsize, or in order to bene�t from parallelism, or both);� one agent learning separate sets of rules on di�erent occasions;� one agent learning separate sets of rules by employing multiple strategies or systems;� a combination of these settings.Example 64 Consider, for instance, the case of two persons living in Los Angeles (say iand j). Both have an interest in identifying attackers (and non attackers) but each of themhas had di�erent experiences (i.e., di�erent training sets). Let, for instance, the backgroundknowledge and training set of person i be those reported in the example in section 5.4. Letperson j know what is known by person i, but also that youth gangs can attack persons, eversince he visited Brazil:man(22) :good appearance(22) age(22; youth) gang member(22)Let the training set for j be the same of example 60 plus a new positive example attacker(22).Then, the program clauses induced by person j are as follows (here we consider only the mostgeneral solutions learned by GOLEM):attacker+MGS(X)  gang member(X)attacker+MGS(X)  :good appearance(X); age(X; adult)attacker�MGS(9)attacker�MGS(10)attacker�MGS(X)  good appearance(X)attacker�MGS(X)  age(X; old)Then, when these two persons meet one another and exchange experience about their notionsof attacker, a contradiction arises because person i classi�es the unseen instance 22 as anon attacker whereas person j classi�es it as an attacker.Generalizing the Single Source Technique The single source technique of section5.5.1 can be easily generalized to multiple sources for learning p and :p. Let there be ssources for p and :p. We now have clauses 5.1-5.4 previously introduced, and for i from 1to s: p+( ~X)  p+i ( ~X) (5.5)p�( ~X)  p�i ( ~X) (5.6)abnormp( ~X)  abnormp+i ( ~X) (5.7)abnorm:p( ~X)  abnormp�j ( ~X) (5.8)97



This means that whenever any two sources con
ict on p for ~X, both p( ~X) and :p( ~X)become unde�ned. Also, any abnormality found by one source is, ipso facto, an abnormalityfor them all. Note that some sources may provide information only about positive or negativeinformation, thus the de�nition for only one of p+i or p�i may be available.Con
icts and Preferences However, a new situation may now arise which could not doso in the single source case: we may prefer one knowledge source over another, e.g., we maytrust one source all the more because of its learning method, or because it has more recentor more trustworthy information. In example 64, for instance, the preference might be givento the person which has had in his past life the greatest number of experiences (i.e., knowninstances and classi�ed instances).To achieve this, and inspired by the program update method of [ALP+98], we generalizeclause 5.5 and 5.6 above to the combination rules :p+( ~X)  p+i ( ~X); not reject(p+i ( ~X))p�( ~X)  p�i ( ~X); not reject(p�i ( ~X))Predicate reject expresses when one knowledge source, say i, is rejected by another, say j,with respect to p, through the reject rules3:reject(p+i ( ~X))  p�j ( ~X)reject(p�i ( ~X))  p+j ( ~X)It may as well be the case that the positive and negative information provided by source iare rejected by two di�erent sources k and l.reject(p+i ( ~X))  p�k ( ~X)reject(p�i ( ~X))  p+l ( ~X)It can also be the case that only one or even none of these clauses is present for source i, inthe case in which no source is preferred to i.But, naturally, rejection may be made to occur for a variety of reasons, and the bodiesof clauses for reject will then observe the corresponding conditions.As for the case of a single source, two or more knowledge sources may reject one another'scon
icting conclusions. Instead of treating mutually contradictory information as unde�ned,as done by means of clauses 5.1-5.4, we can treat mutually contradictory information asfalse by means of appropriate reject rules, both in the single source case and in the multiplesource case. Preferring false to unde�ned in removing a contradiction amounts to ignoringthe clause instances leading to it, so that the usual CWA is adopted symmetrically withrespect to positive and negative information [APP98].Con
icting conclusions of two knowledge sources i and j can be made mutually falseinstead of unde�ned by means of the following instances of reject rules:reject(p+i ( ~X))  p�j ( ~X) reject(p+j ( ~X))  p�i ( ~X)reject(p�i ( ~X))  p+j ( ~X) reject(p�j ( ~X))  p+i ( ~X)3If we want rejection to be as strong as what is rejected we may qualify these rules by appealing to thenon unde�nedness of the rejector. 98



If symmetry is not desired, one can remove self-contradiction by opting for only some ofthese clauses.Let us now consider an example where a knowledge source is preferred over another.Example 65 Suppose k is the boss of i, and that they may have distinct, separately learnt,opinions about p. We may combine together their knowledge, by addingreject(p+i ( ~X))  p�k ( ~X)reject(p�i ( ~X))  p+k ( ~X)to ensure that a conclusion arrived at by the boss wins over that of a contrary conclusion bythe subordinate.For the case of a colleague j of i, we may choose to eliminate all mutual contradictions,by means of: reject(p+i ( ~X))  p�j ( ~X) reject(p+j ( ~X))  p�i ( ~X)reject(p�i ( ~X))  p+j ( ~X) reject(p�j ( ~X))  p+i ( ~X)Notice that, when learning, an agent as access only to its background knowledge but, whenthe knowledge is combined, it may access as well the de�nitions of background or targetpredicates of other agents. In some cases it may happen that a contradiction arises exactlybecause, after the combination of the learned rules, an agent may use the knowledge learnedby another agent as background knowledge.Example 66 Suppose agent i has non-contradictorily learned from examples thatp+i ( ~X)  a( ~X)p�i ( ~X)  b( ~X)Recall that, before knowledge sources are combined, only access to self knowledge is possible.Further, suppose next that j has learned the rulesaj( ~X)  :c( ~X)bj( ~X)  :c( ~X)and that the background acknowledges the fact:c(golem)When the rules from i and j are combined, i and j may access each conclusion and the back-ground knowledge too. Now a contradiction arises in the knowledge of i regarding p+i (golem)and p�i (golem). If we want to resolve this contradiction by preferring false over unde�ned,we can use the following reject rulesreject(p+i ( ~X))  p�i ( ~X)reject(p�i ( ~X))  p+i ( ~X)99



5.6 Strategies for Theory Re�nementWhen learning a de�nition for a concept p and its opposite :p (separately or not), it can bethe case that some contradiction arises for an unseen literal. Figure 5.4 depicts various caseswhich may occur. Identifying such contradictions is useful in interactive theory revision,where the system can ask an oracle to classify the literal(s) leading to contradiction, andaccordingly revise the least or most general solutions for p and for :p. Detecting uncoveredliterals points to theory extension.

Figure 5.4: Intersection of Learnt SolutionsRe�nement Further information on unseen contradictory literals for the various cases canhelp in improving learnt rules.Area A represents contradictions between the two least general solutions, for a con-cept p and its opposite :p, i.e., it represents unseen literals satisfying the conjunctionp+LGS( ~X); p�LGS( ~X). This is the strongest form of contradiction, and unseen literals in regionA should be given priority when querying the oracle.Example 67 Consider, for instance, examples 59-60, and the unseen literal 22 which be-longs to the intersection of the learned de�nitions for attacker+LGS and attacker�LGS (i.e.,area A in �gure 5.4). Knowing that 22 is an attacker helps in specializing the learned de�-nitions, in this case attacker+LGS and attacker+MGS.Areas B represent contradictions between most general solutions for concept p+ and p�which are outside the least general solution for one concept, but inside the least gen-eral solution for the other. I.e., they represent unseen literals satisfying the conjunc-tion p+MGS( ~X); not p+LGS( ~X); p�LGS( ~X) or the conjunction p�MGS( ~X); not p�LGS( ~X); p+LGS( ~X).Identifying such contradictions can be useful in re�ning knowledge and, in particular, themost and least general solutions for a concept. For literals satisfying the �rst conjunction,the system has to revise most general solution for p+ if the oracle classi�es the literal asnegative and the least and most general solution for p� if the oracle classi�es the literal aspositive, and vice-versa for the literals satisfying the second conjunction.Though less strongly contradictory than area A, areas B are more strongly so than areasC, and so merit attention next when querying the oracle.100



algorithm LIVE(inputs :E+; E�: training sets,B: background theory,outputs : H : learned theory)LearnHierarchy(E+; E�; B;Hp)LearnHierarchy(E�; E+; B;H:p)Obtain H by:transforming Hp, H:p into \non-deterministic" rulesadding the clauses for the unde�ned caseoutput H Figure 5.5: Algorithm LIVEAreas C represent contradictions between most general solutions for concept p and itsopposite which are outside both the least general solutions. I.e., it represents literals sat-isfying the conjunction p+MGS( ~X); not p+LGS( ~X); p�MGS( ~X); not p�LGS( ~X). Identifying suchcontradictions can be useful in re�ning knowledge and bridging the gap between most andleast general solutions for a concept. The system has to revise the most general solution forp if the oracle classi�es the atom as negative and for :p if the oracle classi�es the atom aspositive, and vice-versa.Finally, it is worth mentioning that other regions where a contradiction does not arise,namely D and E, can be useful in guiding knowledge acquisition. New information about anunseen atom always increases knowledge, and thus eventually requires knowledge re�nementor knowledge extension. However, among unseen literals not leading to contradiction, wecan identify class D which can be more useful than E in bridging the gap between the leastand the most general solution. This area represents instances which satisfy the conjunctionp+MGS( ~X); not p+LGS( ~X); not p�MGS( ~X) or p�MGS( ~X); not p�LGS( ~X); not p+MGS( ~X). If a literalsatisfying the former condition is classi�ed as negative by a oracle, then the most generalsolution for p has to be revised, whereas, if a literal satisfying the latter condition is classi�edas positive by an oracle, then the most general solution for :p has to be revised.It may be that learnt rules do not cover atoms and their negations for legitimate argumenttuples. Accordingly, a further area exists (the one outside the areas in �gure 5.4) whichpinpoints cases of interest, leading to theory extension (and subsequent re�nement wherecontradictions emerge).5.7 An Algorithm for Learning Extended Logic Pro-gramsThe algorithm LIVE (Learning In a 3-Valued Environment) learns extended logic programscontaining non-deterministic rules for a concept and its opposite that may allow a hierarchyof exceptions.Figure 5.5 shows the main procedure of the algorithm. It calls a procedure LearnHierar-chy (see �gure 5.6) that, given a set of positive, a set of negative examples and a backgroundknowledge, returns a de�nition for the positive concept, consisting of default rules, together101



procedure LearnHierarchy(inputs : E+: positive examples,E�: negative examples, B: background theory,outputs : H : learned theory)Learn(E+; E�; B;Hp)H := Hpfor each rule r in Hp doFind the sets E+r ; E�r of positive and negative examples covered by rif E�r is not empty thenAdd the literal not abnormalr( ~X) to rObtain E+abnormalr , E�abnormalr from E�r , E+r bytransforming each p(~t) into abnormalr(~t)LearnHierarchy(E+abnormalr; E�abnormalr ; B;Hr)H := H [Hrendifenforoutput H Figure 5.6: Procedure LearnHierarchywith de�nitions for the eventual abnormality literals. The procedure LearnHierarchy is calledtwice, once for the positive concept and once for the negative concept. When it is called forthe negative concept, E� is used as the positive training set and E+ as the negative one.LearnHierarchy �rst calls a procedure Learn(E+; E�; B;Hp) that learns a de�nition Hpfor the target concept p. Learn consists of an ordinary ILP algorithm, either bottom-upor top-down, modi�ed to adopt the SLX interpreter for testing the coverage of examplesand to relax the consistency requirement of the solution. The procedure thus returns atheory that may cover some negative examples. These negative examples are then treatedas exceptions, by adding a default literal to the inconsistent rules and learning a de�nitionfor the abnormality predicate. In particular, for each rule r = p( ~X) Body( ~X) in Hpcovering some negative examples, a new non-abnormality literal not abnormalr( ~X) is addedto r and a de�nition for abnormalr( ~X) is learned by recursively calling LearnHierarchy.Examples for abnormalr are obtained from examples for p by observing that, in order tocover a positive (uncover a negative) example p( ~X) for p, the atom abnormalr( ~X) mustbe false (true). Therefore, positive (negative) examples for abnormalr are obtained fromthe set E�r of negative (E+r of positive) examples covered by the rule. When learning ade�nition for abnormalr, in turn, LearnHierarchy may �nd exceptions to exceptions andcall itself recursively again. In this way, we are able to learn a hierarchy of exceptions.Let us now discuss in more details the algorithm that implements the Learn procedure.Depending on the generality of solution that we want to learn, di�erent algorithms must beemployed: a top-down algorithm for learning the MGS, a bottom-up algorithm for the LGS.In both cases, the algorithm must be such that, if a consistent solution cannot be found, itreturns a theory that covers the least number of negative examples.When learning with a top-down algorithm, the consistency necessity stopping criterionmust be relaxed to allows clauses that are inconsistent with a small number of negative102



examples to be learned, for example by adopting one of the heuristic necessity stoppingcriteria proposed in ILP to handle noise, such as the encoding length restriction [Qui90b]of FOIL (see section 3.4.2) or the signi�cancy test of mFOIL [D�ze91] (see section 3.4.3). Inthis way, we are able to learn de�nitions of concepts with exceptions: when a clause must bespecialized too much in order to make it consistent, we prefer to transform it into a defaultrule and consider the covered negative examples as exceptions.The simplest criterion that can be adopted is to stop specializing the clause when noliteral from the language bias can be added that reduces the coverage of negative examples.When learning with a bottom-up algorithm, we can learn using positive examples onlyby using the rlgg operator: since the clause is not tested on negative examples, it may coversome of them. This approach is realized by using the system GOLEM (see section 3.4.1),as in [IK97].In order to show the behaviour of the algorithmwhen learning exceptions and to compareit with those of the system LELP [IK97], we will consider the learning problem that isdescribed in example 3.4 in [IK97] where the de�nition of the concept flies is learned.Example 68 Consider the following background knowledge and training sets:penguin(1) penguin(2)bird(3) bird(4) bird(5)animal(6) animal(7) animal(8)animal(9) animal(10) animal(11)animal(12)animal(X) bird(X)bird(X) penguin(X)E+ = fflies(3); f lies(4); f lies(5)gE� = fflies(1); f lies(2); f lies(6); f lies(7); flies(8); flies(9); f lies(10); f lies(11); f lies(12)gWe consider the case in which a top-down method is adopted for the procedure Learn. Thestopping criterion used is the simplest, i.e., we stop when no literal can be added to reduce thenumber of covered negative examples (suppose that the language bias allows any literal builton predicates of the background knowledge to appear in the body of clauses). The algorithmlearns the rules(1) flies+(X) bird(X); not abnormal1(X)(2) abnormal1(X) penguin(X)(3) flies�(X) animal(X); not abnormal3(X)(4) abnormal3(X) bird(X); not abnormal4(X)(5) abnormal4(X) penguin(X)Then, the algorithm builds the clauses for flies and :flies and make them non-deterministic,adds the clauses for the unde�ned case and terminates.5.8 ImplementationIn order to learn the most general solutions, a top-down ILP algorithm (cf. section 3.2.6)has been integrated with the procedure SLX for testing the coverage. The specializationloop of the top-down system consists of a beam search in the space of possible clauses. At103



each step of the loop, the system removes the best clause from the beam and generates allits re�nement. They are then evaluated according to an accuracy heuristic function, andtheir re�nements covering at least one positive example are added to the beam. The bestclause found so far is also separately stored: this clause is compared with each re�nementand is replaced if the re�nement is better. The specialization loop stops when either thebest clause in the beam is consistent or the beam becomes empty. Then, the system returnsthe best clause found so far. The beam may become empty before a consistent clause isfound and in this case the system will return an inconsistent clause.In order to �nd least general solutions, the GOLEM ([MF90], also described in section3.4.1) system is employed. The �nite well-founded model is computed, through SLX, and itis transformed by replacing literals of the form :A with new predicate symbols of the formneg A. Then GOLEM is called with the computed model as background knowledge. Theoutput of GOLEM is then parse in order to extract the clauses generated by rlgg beforethey are post-processed by dropping literals. Thus, the clauses that are extracted belong tothe least general solution. In fact, they are obtained by randomly picking couples of exam-ples, computing their rlgg and choosing the consistent one that covers the bigger number ofpositive examples. This clause is further generalized by choosing randomly new positive ex-amples and computing the rlgg of the previously generated clause and each of the examples.The consistent generalization that covers more examples is chosen and further generalizeduntil the clause starts covering some negative examples. An inverse model transformation isthen applied to the rules thus obtained by substituting each literal of the form neg A withthe literal :A.Prolog was chosen for the implementation of LIVE for the same reasons for which itwas chosen for ACL1 that are mentioned in section 4.4.1: Prolog is particularly suitablefor the elaboration of logic programs due to the uniformity of code and data, to meta-levelpredicates for accessing programs and to the availability of lists as primitive data structures.LIVE code is composed of the following main procedures. As for ACL1, i(File) is thecommand to be given at the Prolog prompt for starting the induction. It reads the �les thatcontains the input data, it calls the procedure learn ELP(Rules) and writes the output toa �le.learn ELP(Rules) implements the main procedure of LIVE (see �gure 5.5) and callstwice the procedure learn hierarchy(Eplus,Eminus,Rules,Gen) for learning the positiveand the negative concept. The argument Gen can assume the values lgs or mgs and is usedin order to indicate the generality of the solutions speci�ed by the user.The procedure learn(Eplus,Eminus,Rules,Gen) is called by learn hierarchy and,depending on the value of Gen, either calls a procedure call golem(Eplus,Eminus,Rules),that invokes GOLEM, or calls the procedure covering loop(Eplus,Eminus,[],Rules)that implements the top-down algorithm.covering loop(Eplus,Eminus,RulesIn,RulesOut) �rst initializes the beam by includ-ing in it a clause with an empty body for every target predicate and then starts the special-ization loop by calling specialize(BeamIn,BeamOut,Eplus,Eminus,N). The parameter Nis used in order to put a limit on the maximum number of specialization steps.The predicate evaluate(Value,Clause,Eplus,Epluscovered,Eminus,Eminuscovered,Nplus,Nminus) is used in order to evaluate clauses. It takes as input the clause to beevaluated Clause and the current training set Eplus, Eminus, and returns the values ofthe heuristic function Value together with the sets of covered examples Epluscovered,104



Eminuscovered.LIVE was implemented in XSB Prolog [SSW+97] and the code of the system can befound at the following address:http://www-lia.deis.unibo.it/Software/LIVE/.5.9 Related WorkThe adoption of a three-valued logic in learning has been investigated by many authors.Many propositional learning systems learn a de�nition for both the concept and its opposite.For example, systems that learn decision trees, as c4.5 [Qui93], or decision rules, as the AQfamily of systems [Mic73], are able to solve the problem of learning a de�nition for n classes,that generalizes the problem of learning a concept and its opposite. However, in most casesthe de�nitions learned are assumed to cover the whole universe of discourse: no unde�nedclassi�cation is produced, any instance is always classi�ed as belonging to one of the classes.Instead, we classify as unde�ned the instances for which the learned de�nitions do not givean unanimous response.When learning multiple concepts, it may be the case that the descriptions learned areoverlapping. We have considered this case as non-desirable: this is reasonable when learninga concept and its opposite but it may not be the case when learning more than two concepts.As it has been pointed out by [Mic84], in some cases, it is useful to produce more than oneclassi�cation for an instance: for example if a patient has two diseases, his symptoms shouldsatisfy the descriptions of both diseases. Subject for future work will be to consider classesof paraconsistent logic programs where the overlapping of de�nitions for p and :p (and, ingeneral, multiple concepts) is allowed.The problems raised by negation and uncertainty in concept-learning, and InductiveLogic Programming in particular, were pointed out in some previous work (e.g., [BM92,DRB90, DR92]). For concept learning, the use of the CWA for target predicates is nolonger acceptable because it does not allow to distinguish between what is false and what isunde�ned. De Raedt and Bruynooghe [DRB90] proposed to use a three-valued logic (lateron formally de�ned in [DR92]) and an explicit de�nition of the negated concept in conceptlearning. This technique has been integrated within the CLINT system, an interactiveconcept-learner. In the resulting system, both a positive and a negative de�nition arelearned for a concept (predicate) p, stating, respectively, the conditions under which p istrue and those under which it is false. The de�nitions are learned so that they do notproduce an inconsistency on the examples. Di�erently from this system, we take also carethat the two de�nitions do not produce inconsistency on unseen atoms and we are able tolearn de�nitions for exceptions to both concepts. Furthermore, we are able to cope with twokinds of negation, the explicit one used to state what is false, and the default (defeasible)one used to state what can be assumed false.The system LELP (Learning Extended Logic Programs) [IK97] learns extended logicprograms under answer-set semantics. As our algorithm, LELP is able to learn non-deterministic default rules with a hierarchy of exceptions. From the point of view of thelearning problems that the two algorithms can solve, they are equivalent when the back-ground is a strati�ed extended logic program. All the examples shown in [IK97] are strati�edand therefore they can be learned by our algorithm and, viceversa, example in section 5.5.1can be learned by LELP. However, when the background is a non-strati�ed extended logic105



program, the adoption of a well-founded semantics gives a number of advantages with respectto the answer-set semantics. For non-strati�ed background theories, answer-sets semanticsdoes not enjoy the structural property of relevance [Dix95], like our WFSX does, and sothey cannot employ any top-down proof procedure. Furthermore, answer-set semantics isnot cumulative [Dix95], i.e., if you add a lemma then the semantics can change, and thusthe improvement in e�ciency given by tabling cannot be obtained. Moreover, by meansof WFSX, we have introduced a method to choose one concept when the other is unde-�ned which they cannot replicate because in the answer-set semantics one has to computeeventually all answer-sets to �nd out if a literal is unde�ned.The structure of the two algorithms is similar: LELP �rst generates candidate rulesfrom a concept using an ordinary ILP framework. Then exceptions are identi�ed (as cov-ered examples of the opposite set) and rules specialized through negation as default andabnormality literals, which are then assumed to prevent the coverage of exceptions. Theseassumptions can be, in their turn, generalized to generate hierarchical default rules.One of the di�erences between us and [IK97] is in the level of generality of the de�nitionswe can learn. LELP learn a de�nition for a concept only from positive examples of thatconcept and therefore it can only employ a bottom-up ILP technique and learns the LGS.Instead, we can choose whether to adopt a bottom-up or a top-down algorithm and we canlearn theories of di�erent generality for di�erent target concepts.Another di�erence consists in the fact that LELP learns a de�nition only for the conceptthat has the highest number of examples in the training set. It learns both positive andnegative concepts only when the number of positive examples is close to that of negativeones (in 60 %-40 % range), while we always learn both concepts.LELP also di�ers from our approach because it adds to the theory a clause for thenegative concept given in terms of the abnormality literals for the positive concept. Forexample, in the case of example 63, LELP would produce the following theory:C1 = flies+(X) has wings(X); not abnormal1(X)C2 = abnormal1(X) penguin(X)C3 = flies�(X) has limbs(X)C4 = flies�(X) abnormal1(X)We do not generate clause C4 since, when learning a de�nition for both flies and :flies, theexamples it covers are already covered by clause C3 and therefore such a clause is redundant.Several other authors have also addressed the task of learning rules with exceptions[DK95]. In these frameworks, non monotonicity and exceptions are dealt with by learninglogic programs with negation. In [DK95] the authors rely on a language which uses a limitedform of \classical" (or, better, syntactic) negation together with a priority relation amongthe sentences of the program [KMD94]. The expressive power of this formalism is howevermore restricted than the one of extended logic programs since, theories expressed in thislanguage can be mapped into normal logic program.Non-abnormality literals can also be viewed as new abducible predicates, as done forinstance in [LMMR97, EFL+98, Ino98]. In particular, in [LMMR97, EFL+98] the authorshave considered the integration and cooperation of induction and abduction in order tolearn Abductive Logic Programs (ALP) from (possibly) incomplete background knowledgeexpressed as ALP in its turn. In order to make a rule for a target predicate p consistent,the rule is specialized by adding a new abducible literal not abnormi( ~X) and exceptions areruled out by abducing abnormi( ~X) for them. These assumptions are then used to learn a106



de�nition for abnormi that describes the class of exceptions. In this way, they are able tolearn hierarchies of exceptions. Since there exists an implementation of SLX with abduction(called SLXA [AP98]) this points to future extensions of LIVE with abduction too.5.10 ConclusionsThe two-valued setting that has been considered in most work on ILP and Inductive ConceptLearning in general is not su�cient in many cases where we need to represent real worlddata. This is for example the case of an agent that has to learn the e�ect of the actionsit can perform on the domain by performing experiments. Such an agent needs to learn ade�nition for allowed actions, forbidden actions and actions with an unknown outcome andtherefore it needs to learn in a richer three-valued setting.In order to adopt such a setting in ILP, the class of extended logic programs under thewell-founded semantics with explicit negation (WFSX ) is adopted as the representation lan-guage. This language allows two kinds of negation, default plus a second form of negationcalled explicit, that is used in order to represent explicitly negative information. Adopt-ing extended logic programs in ILP prosecutes the general trend in Machine Learning ofextending the representation language in order to overcome the limits of existing systems.The programs that are learned will contain a de�nition for the concept and its opposite,where the opposite concept is expressed by means of explicit negation. When learningin a three-valued settings, a number of issues have to be taken into account. StandardILP techniques can be adopted to separately learn the de�nitions for the concept and itsopposite. Depending on the adopted technique, one can learn the most general or theleast general de�nition. Accordingly, four epistemological varieties occur, resulting from themutual combination of most general and least general solutions for the positive and negativeconcept. The choice of one of these epistemological variety should be done on the basis ofa number of conditions that hold in the learning situation, such as the damage that canderive from an erroneous classi�cation of an unseen object or the con�dence we have in thetraining set.The two de�nition learned may overlap and the inconsistency is resolved in a di�erentway for atoms in the training set and for unseen atoms: atoms in the training set are consid-ered as exceptions, while unseen atoms are considered as unknown. The di�erent behaviouris obtained by employing negation by default in the de�nitions: default abnormality literalsare used in order to consider exceptions to rules, while non-deterministic rules are usedin order to obtain an unknown value for unseen atoms. Exceptions to a positive conceptare identi�ed from negative examples, whereas exceptions to a negative concept are iden-ti�ed from positive examples. A de�nition for the class of exceptions may then be learnedand may include new exceptions. The process is then iterated thus possibly producing ahierarchy of exceptions. This way of coping with contradiction can be generalized for multi-ple source learning, and modi�ed in order to take into account preferences among multiplelearning agents or information sources. Moreover, we discuss how detecting di�erent kindsof uncovered atoms points to di�erent opportunities for theory extension.The system LIVE (Learning in a three-Valued Environment) has been developed thatimplements the above mentioned techniques. In particular, the system learns a de�nitionfor both the concept and its opposite and is able to identify exceptions and to learn ahierarchical de�nition for them. The system is parametric in the procedure used for learning107



each de�nition: it can adopt either a top-down algorithm, using beam-search and heuristicnecessity stopping criterion, or a bottom-up algorithm, that exploits the GOLEM system.

108



Chapter 6ConclusionsThe aim of this thesis was to demonstrate how some of the limits of existing learningtechniques in ILP can be overcome by adopting extensions of Logic Programming. Increasingthe expressiveness of the representation language in Machine Learning is a general trendthat has allowed to solve more and more complex learning problems. The language usedto represent concepts and examples has gone from analytical expressions to attribute-valueformalisms and �nally to �rst order logic languages and Logic Programming in particular.Adopting extensions of Logic Programming is thus a natural prosecution of this trend.Two problems where current ILP systems perform poorly are presented. The �rst prob-lem consists in learning from an incomplete background knowledge. To this purpose, abduc-tive logic programs are used that allow to perform hypothetical reasoning from incompleteknowledge. A new learning problem is de�ned where both the background and target theo-ries are abductive theories and abductive entailment is used as the coverage relation.The system ACL (Abductive Concept Learning) has been developed that is able to learnin this new framework. An abductive theory is learned by �rst learning the program part,by means of a top-down algorithm (called ACL1) adopting an abductive proof procedure fortesting the coverage, and then learning the constraint part by employing the system ICL.Experiments have been performed in a variety of domains where the knowledge is incomplete.The results have been compared with those of the systems ICL-Sat, mFOIL and FOIL thatadopt special techniques for handling imperfect data. In the multiplexer experiment, theaccuracy of the theory learned by ACL1 has been superior to the one of theories learnedby ICL-Sat and mFOIL. In the father experiment, ACL1 without constraints learned acomplete and consistent theory for all levels of incompleteness apart from 80% and 40%,while mFOIL learned a complete theory for all levels of incompleteness but a consistent oneonly for the case of no incompleteness. When considering as well integrity constraints in thebackground, ACL1 learned a complete and consistent theory for all levels of incompleteness.An experiment has been performed as well on real world data from the domain of marketingwhere the incompleteness occours naturally as unanswered questions and the theory learnedby ACL1 has been judged to be very meaningful by experts. For all three experiments, theconstraint learning phase was also performed, obtaining in all cases constraints that couldbe useful for classifying incompletely speci�ed unseen atoms.The framework of learning abductive logic programs can be very useful as well for learningmultiple predicates. A system for learning multiple predicates called M-ACL has been109



implemented that is able to solve some of the problems of ILP systems when learningmultiplepredicates. The system was able to learn programs containing the de�nitions of multiplepredicates such as a very simple de�nite clause grammar for the English language, themutually recursive predicates even and odd and multiple family relations.The other problem that has been considered consists in learning in a three-valued logi-cal setting. Most work on inductive concept learning has considered a two-valued setting,however this is not su�cient in many learning situations, such as the one of an autonomousagent that has to learn general rules about the outcome of its actions on the surroundingworld. In this case, the agent wants to learn when an action has a positive outcome, whenit has a negative outcome and distinguish them from actions with an unknown outcome. Tothis purpose, the class of extended logic programs under the well founded semantics withexplicit negation WFSX ([AP96]) is used as the representation language. The languageallows two forms of negation, default negation plus explicit negation that is used in orderto explicitly represent negative information, and the semantics allows three logical valuesfor atoms. The programs that are learned will contain a de�nition for the concept and itsopposite.The system LIVE (Learning In a three-Valued Environment) has been developed thatis able to learn extended logic programs containing a de�nition for the concept and itsopposite. The system takes into account a number of issues that arise when learning in athree-valued settings. Contradiction among the de�nitions for the concept and its oppositemay arise. The contradiction is resolved di�erently depending on whether the atom on whichthere is contradiction is an unseen atom or belongs to the training set. In the �rst case, thecontradiction is resolved by assigning the unknown truth value to the atom, in the secondcase by assigning the truth value given by the training set. Contradiction is handled byemploying representation techniques o�ered by extended logic programs. Similar techniquescan also be used in order to handle contradiction among di�erent sources of information.The system is parametric in the learning technique adopted for learning the concept andits opposite: if a bottom-up technique is used, then a least general solution is found, if atop-down technique is used, then a most general solution is found. Various criteria have beenstudied for choosing between the least general solution or the most general solution for theconcepts. The theory learned by LIVE may allow exceptions. A de�nition for exceptionsis then learned that, on its turn, may also allow exceptions. In this way hierarchies ofexceptions can be learned.LIVE is compared with the system LELP that is also able to learn extended logic pro-grams containing a de�nition for the concept and its opposite that allow exceptions. Di�er-ently from LIVE, LELP adopts a two-valued semantics and thus is not able to classify asunknown unseen atoms in the intersection of de�nitions. Moreover, LELP is not parametricin the learning technique employed, thus it can not learn solutions of di�erent generality.The two systems proposed have been tested on a number of arti�cial datasets in variousdomains. ACL was also tested on real world data in the marketing domain. Further testingon real world data is needed in order to provide more evidence of the e�ectiveness of thetechniques in practice. In particular, the system ACL will be applied to performData Miningtasks in domains where incompleteness occours naturally in the data, as in the marketingdomain. LIVE instead will be applied to perform knowledge acquisition by agents that haveto automatically explore the surrounding world. Such agents could be, for example, robotssent to unknown environments to perform a speci�c task.110



The study of the two proposed extension of Logic Programming is a �rst step towards thedevelopment of a system that is able to learn from incomplete information in a three-valuedsettings.In the research �eld of Logic Programming an extension of the language has been studiedthat considers abductive theories containing two kinds of negation, default and explicit. Asemantics for this class of programs was given in [BLMM97] and a proof procedure for itwas given in [AP98]. The learning techniques adopted in the two proposed systems can becombined for obtaining a system that learns using this extended class of programs as therepresentation language. Such a system would be able to learn de�nitions for both a conceptand its opposite starting from an incomplete background knowledge.

111



112



Appendix AAppendixes to Chapter 4A.1 Proof of Theorem 44 on Equivalence of ACL withACL1 and ACL2Theorem 17 Let TACL1 = hP [ P 0; A; Ii, �+ and �� be the solution of ACL1 giventraining sets E+ and E�, background theory T = hP;A; Ii and space of possible programsP. Moreover, let T 0 = hP [P 0; A; I [ I 0i be the solution to ACL2 given the previous solutionof ACL1 and space of possible constraints I. Then T 0 is a solution to the ACL problem thathas E+ and E� as training sets, T as background theory and P and I as spaces of possibleprograms and constraints.Proof: We �rst prove that T 0 j=A E+ and then that 8e� 2 E�, T 0 6j=A e�.Proof of T 0 j=A E+: from ACL1 we have that MP[P 0(�+) j= E+. From ACL1 and ACL2we have, respectively, thatMP[P 0(�+) j= I andMP[P 0(�+) j= I 0, thereforeMP[P 0(�+) j=I [ I 0. This, together with MP[P 0(�+) j= E+, proves that �+ is an abductive explanationfor E+ in T 0.Proof of 8e� 2 E�, T 0 6j=A e�: from ACL1 we have that TACL1 j=A not E� with ��.From the de�nition of strong abductive explanation of a conjunction of goals (de�nition 35)�� is also a strong abductive explanation for not e� for every e� 2 E�. Therefore, fromproperty 36 in section 4.2 we have8�e� : TACL1 j=A e� with �e� ; 9l 2 �e� : l 2 ��Since the integrity constraints in T 0 are a superset of those in TACL1 and the rule part isthe same, the set of explanations for e� in T 0 is a subset of those for e� in TACL1.The constraints I 0 generated by ACL2 make inconsistent each of the complements in�� and hence for every such �e� there exists an l 2 �e� such that flg is inconsistentwith I 0. From the restricted form of the integrity constraints in I 0, any superset of flg,in particular �e� , cannot satisfy the integrity constraints. Therefore, any �e� is not aconsistent extension of T 0 and hence T 0 6j=A e� as required. 2113



A.2 Proof of Theorem 48 on Soundness of ACLLet us �rst give the proof of proposition 38 that will be needed for proving theorem 48.Proposition 11 Let T = hP;A; Ii be an abductive theory in its three-valued version and let�1 and �2 be two strong abductive explanations of, respectively, G1 and G2, where G1 andG2 can be either positive or negative goals. If �1 [�2 is self-consistent, then �1 [�2 is astrong abductive explanation for both G1 and G2.Proof:We �rst consider the case where G1 and G2 are two positive goals. We need to verifythe two conditions of de�nition 34.Let us �rst prove thatM(�1[�2) is a generalizedmodel. Consider �2 as a self-consistentextension of �1. Since �1 is a strong abductive explanation, any self-consistent extension �0of �1 for which M(�0) j= I , is such that M(�1 [�0) j= I . Taking �0 = �2, since �2 is anabductive explanation, M(�2) j= I holds and so M(�1 [�2) j= I . Therefore M(�1 [�2)is a generalized model. Since P [�1[�2 is a de�nite logic program,M(�1[�2) �M(�1)and M(�1[�2) �M(�2) therefore M(�1[�2) j= G1 and M(�1[�2) j= G2, so �1 [�2is an abductive explanation for both G1 and G2.To show that �1 [ �2 satis�es the second condition of de�nition 34 consider a set�0 such that �0 [ �1 [ �2 is self-consistent and M(�0) j= I . We need to prove thatM(�0 [�1 [�2) j= I . Consider the set �00 = �0 [�2. Since �1 is strong and �00 [�1 isself-consistent, if M(�00) j= I then M(�1 [�00) j= I would follow. But M(�00) j= I is truesince �2 is strong, �0 [�2 is self-consistent and M(�0) j= I .Consider now the case where we have two negative goals G1 = not O1 and G2 = not O2.In order for �1[�2 to be a strong abductive explanation forG1 andG2, we need to show thatthe conditions of de�nition 35 are satis�ed. The fact thatM(�1[�2) is a strong generalizedmodel can be proved in the same way as for positive goals. To show that M(�1[�2) 6j= O1(and similarly M(�1 [ �2) 6j= O2) we note that �1 is a strong abductive explanation fornot O1 and hence if �2 were an abductive explanation for O1, then �1 [�2 would not beself-consistent which contradicts the hypothesis of the statement. Next we show the secondcondition of de�nition 35, i.e., that for every �0 that is an abductive explanation for O1 (orO2), then (�1 [ �2) [ �0 is not self-consistent. This follows directly from the fact that if�0 is an explanation for O1 (O2), since �1 (�2) is strong, then �0 [ �1 (�0 [ �2) is notself-consistent and hence �1 [�2 [ �0 is not self-consistent. The other case where one ofthe goals is positive and the other is negative can be shown similarly. 2Theorem 22 (Soundness) The ACL algorithm is sound.Proof: ACL �nds a solution T 0 of ACL by solving the ACL1 and ACL2 subproblems insequence. Theorem 44 states that the combination of the solutions of ACL1 and ACL2gives a solution for ACL. Therefore, to prove the soundness of ACL, it is su�cient to provethat the solutions found by the algorithms for ACL1 and ACL2 satisfy their respectivesubproblem de�nitions.For the second phase of ACL2, this is guaranteed by the correctness of the ICL [DRL95]algorithm or of any other sound method used for discriminating between positive and neg-ative interpretations. It remains therefore to prove that the procedure ACL1 is sound withrespect to the ACL1 de�nition, i.e. that, given the background theory T = hP;A; Ii and114



training sets E+ and E�, the program TACL1 = hP [ P 0; A; Ii and the sets �+ and ��that are generated by the algorithm are such thatTACL1 j=A E+ with �+ (A.1)TACL1 j=A not E� with �� (A.2)�+ [�� is self-consistent (A.3)ACL1 learns the program TACL1 by iteratively adding a new clause to the current hypothesis,initially empty. Each clause is tested by trying an abductive derivation for each positiveand for each (negated) negative example.Suppose that clauses are learned in the following order: C1; : : : ; Cl. Let H1; : : : ; Hl bethe successive partial hypotheses, with H0 = ; and Hk = Hk�1 [ fCkg, and let Tk =hP [ Hk; A; Ii. Let also E+k = fe+k;1; : : : ; e+k;nkg be the set of positive examples whoseconjunction is covered by clause Ck and let E+ = fe+1 ; : : : ; e+n g, E� = fe�1 ; : : : ; e�mg be thecomplete sets of positive and negative examples.For each clause Ck , we de�ne two sets of abductive assumptions �ink and �outk . �ink is theinitial set of assumptions under which the testing of examples with this clause starts. �outkis the �nal set of assumptions produced in the derivations of all the examples in E+k and inE�. The input sets �ink are de�ned recursively via �ink = �ink�1 [ �outk�1 for k = 2; : : : ; l,with �in1 = ;. The output sets �outk are given by �outk = �+k [��k with�+k = [i=1;:::;nk �e+k;i��k = [j=1;:::;m�k;not e�jwhere �e+k;i is the explanation for example e+k;i and �k;not e�J is the explanation for not e�jin the theory Tk = hP [Hk; A; Ii.We will show that each abductive explanation �e+k;i and �k;not e�J is a strong abductiveexplanation in the theory Tk. These explanations are constructed successively with theexplanation for each example forming part of the input for the next example. Therefore,if the input sets �ink are strong, then also the individual explanations are strong, by thecorrectness (with respect to de�nition 39) of the abductive derivation used by the algorithmand the property of proposition 38 that the union of strong explanations is strong. Notealso that the successive test of the examples by the abductive derivation in the algorithmensures that these individual explanations are self-consistent with each other required forthe application of proposition 38.Hence we need to show that �ink are strong abductive extensions in Tk, for k = 1; : : : ; l.We do this by induction on k. For k = 1, �in1 = ; which is a strong abductive extensionbecause, by the assumptions on the hypothesis spaces of the integrity constraints and pro-grams, it always satis�es any set of constraints and it trivially satis�es the strong property inde�nition 34. Suppose that �ink is strong in Tk, we have to prove that �ink+1 is strong in Tk+1.We �rst prove that �ink+1 is strong in Tk. �ink+1 = �ink [�outk is the union of strong abductiveextensions of Tk: �ink is strong by the inductive hypothesis and �outk is strong because is theunion of strong explanations computed successively by the correct abductive derivations of115



the algorithm starting from the strong extension �ink . Also the derivations ensures that allthese explanations are self-consistent with each other. Therefore, by proposition 38, �ink+1is a strong abductive extension of Tk.We still need to show that �ink+1 is a strong extension of Tk+1. This can be done bydirectly verifying the conditions in the de�nition 34 of strong abductive extension. Since theintegrity constraints I and the background program P do not contain any target predicate,their satisfaction is independent from the addition of any clause for the target predicates.Therefore, as �ink+1 satis�es I in Tk, it does so in Tk+1 as well. We also need to show that,for any set �0 such that �ink+1 [�0 is self-consistent and �0 satis�es I in Tk+1, �ink+1 [�0must also do so in Tk+1. From the independence of I and P from the target predicates,�0 satis�es I in Tk+1 implies that �0 satis�es I in Tk. Since �ink+1 is strong in Tk, then�ink+1 [�0 satis�es I in Tk. Again, the independence of I and P from the target predicatesgives that �ink+1 [�0 satis�es I in Tk+1.We can now show the ACL1 conditions with�+ = [k=1;:::;l [i=1;:::;nk �e+k;i�� = [k=1;:::;l j=1;:::;m�k;not e�jwhich by construction are the �nal sets returned by the ACL1 algorithm. We �rst showthat all the explanations for the individual examples are strong abductive explanations inthe �nal theory Tl = TACL1 from the fact that they are strong in their respective theoriesTk. This follows in the same way as we have shown above that �ink+1 is strong in Tk+1 fromthe fact that it is strong in Tk.We also know that all these individual explanations are self-consistent with each other.This follows directly from their successive construction in the algorithm satisfying the ab-ductive derivability of de�nition 39. Hence �+[�� is self-consistent and the third condition(3) of ACL1 is satis�ed. Moreover, by proposition 38, the union �+ is then also a strongabductive explanation of E+1 ; : : : ; E+l in TACL1. From the su�ciency stopping criterion (see�gure 4.1) we have that E+1 [ : : :[E+l = E+, therefore �+ is a strong abductive explanationof E+ in TACL1 and condition A.1 is satis�ed. Similarly, by proposition 38, the union ��is a strong abductive explanation of E� in TACL1 and condition A.2 is satis�ed. 2A.3 Abductive Proof ProcedureIn the following we recall the abductive proof procedure for ALP, taken from [KM90c], usedas a basis for the abductive coverage procedure in the ACL1 algorithm.This ALP procedure is applied to abductive theories T = hP;A; Ii in their three-valuedversion. Thus the abducibles A contain predicates (a 2 A) for positive assumptions andpredicates (not a 2 A) for negative assumptions. The integrity constraints in I are restrictedto have a denial form, :(B1^: : :^Bm^:A1^: : :^:Ak) (written here in Logic Programmingstyle as goals  (B1; : : : ; Bm;:A1; : : : ;:Ak), with at least one abducible with no de�nitionin P appearing in B1; : : : ; Bm. Integrity constraints in the range-restricted clausal form,116



A1 _ : : :_Ak  B1 ^ : : :^Bm, are �rst transformed into the equivalent denial above beforethey are used by the abductive procedure.This procedure also assumes that the program P of T contains no de�nitions for theabducible predicates ie. no rule (or fact) in P has in its head an abducible predicate.When the program contains such de�nitions the abductive theory T = hP;A; Ii can be �rsttransformed so that no such de�nitions exist. For each abducible predicate p that constainsthat has a partial de�nition in P we add a new abducible �p to the set of abducibles A, weremove p from A and we add the rule p( ~X) �p( ~X) to the program P . In this way, if p(~c)can not be derived using the partial de�nition for p, it can be derived by abducing �p(~c)thus e�ectively abducing p.The procedure is composed of two phases: abductive derivation and consistency deriva-tion.Abductive derivationAn abductive derivation from (G1 �1) to (Gn �n) in hP;A; Ii via a safe selection rule R, of aliteral1 from a goal, is a sequence(G1 �1); (G2 �2); : : : ; (Gn �n)such that each Gi has the form  L1; : : : ; Lk, R(Gi) = Lj and (Gi+1 �i+1) is obtained accordingto one of the following rules:(1) If Lj is not abducible, then Gi+1 = C and �i+1 = �i where C is the resolvent of some clausein P with Gi on the selected literal Lj ;(2) If Lj is abducible and Lj 2 �i, then Gi+1 =  L1; : : : ; Lj�1; Lj+1; : : : ; Lk and �i+1 = �i;(3) If Lj is a ground abducible, Lj 62 �i and Lj 62 �i and there exists a consistency derivationfrom (fLjg �i[fLjg) to (fg �0) then Gi+1 =  L1; : : : ; Lj�1; Lj+1; : : : ; Lk and �i+1 = �0.Steps (1) and (2) are SLD-resolution steps with the rules of P and abductive assumptions alreadycomputed, respectively. In step (3) a new abductive assumption is required and it is added to thecurrent set of assumptions provided it is consistent.Consistency derivationA consistency derivation for an abducible � from (�; �1) to (Fn �n) in hP; A; Ii is a sequence(� �1); (F1 �1); (F2 �2); : : : ; (Fn �n)where :(i) F1 is the union of all goals of the form  L1; : : : ; Ln obtained by resolving the abducible �with the denials in I with no such goal been empty;(ii) for each i > 1, Fi has the form f  L1; : : : ; Lkg [F 0i , for some j = 1; : : : ; k Lj is selected and(Fi+1 �i+1) is obtained according to one of the following rules:(C1) If Lj is not abducible, then Fi+1 = C0[F 0i where C0 is the set of all resolvents of clausesin P with  L1; : : : ; Lk on the literal Lj and the empty goal [] 62 C0, and �i+1 = �i;(C2) If Lj is abducible, Lj 2 �i and k > 1, thenFi+1 = f L1; : : : ; Lj�1; Lj+1; : : : ; Lkg [ F 0iand �i+1 = �i;1We use the term literal despite the fact that goals contain only positive conditions due to the presenceof negative abducible conditions of the form not a. 117



(C3) If Lj is abducible, Lj 2 �i then Fi+1 = F 0i and �i+1 = �i;(C4) If Lj is a ground abducible, Lj 62 �i and Lj 62 �i, and there exists an abductivederivation from ( Lj �i) to ([] �0) then Fi+1 = F 0i and �i+1 = �0;(C5) If Lj is equal to :A with A a ground atom and there exists an abductive derivationfrom ( A �i) to ([] �0) then Fi+1 = F 0i and �i+1 = �0.In case (C1) the current branch splits into as many branches as the number of resolventsof  L1; : : : ; Lk with the clauses in P on Lj . If the empty clause is one of such resolventsthe whole consistency check fails. In case (C2) the goal under consideration is made simplerif literal Lj belongs to the current set of assumptions �i. In case (C3) the current branchis already consistent under the assumptions in �i, and this branch is dropped from theconsistency checking In case (C4) the current branch of the consistency search space can bedropped provided  Lj is abductively provable. In case (C5), like (C4) the current branchfails and can be dropped provided that we can show that the atom A holds.Given an initial goal (query) G, the procedure succeeds, and returns the set of abducibles� i� there exists an abductive derivation from (G fg) to ([] �). In this case, we also saythat the abductive derivation succeeds.A.4 Examples 51 and 52M-ACL was tested on examples 51 and 52 in order to verify its ability to backtrack from awrong clause and to use negative examples generated from abduction to avoid overgeneral-ization.For example 51, the following output was generated:/* Execution time 0.940000 seconds. Generated rules */rule(ancestor(A,B),[parent(A,B)],c2)GC: yes, LC: yesCovered positive examples: [ancestor(b,c),ancestor(a,b)]Covered positive abduced examples: []Covered negative abduced examples: []Abduced literals: []rule(father(A,B),[male(A),ancestor(A,B)],c13)GC: yes, LC: yesCovered positive examples: [father(a,b)]Covered positive abduced examples: []Covered negative abduced examples: []Abduced literals: [[not(ancestor(a,c)),c13]]rule(ancestor(A,B),[parent(A,C),ancestor(C,B)],c21)GC: yes, LC: yesCovered positive examples: [ancestor(d,c)]Covered positive abduced examples: []118



Covered negative abduced examples: [ancestor(a,c)]Abduced literals: [[not(ancestor(c,d)),c21],[not(ancestor(b,d)),c21],[not(ancestor(c,a)),c21]]Backtracking: retracting clausesrule(father(A,B),[male(A),ancestor(A,B)],c13,[father(a,b)],[])rule(father(A,B),[male(A),parent(A,B)],c32)GC: yes, LC: yesCovered positive examples: [father(a,b)]Covered positive abduced examples: []Covered negative abduced examples: []Abduced literals: []For example 52, the following output was generated:/* Execution time 0.690000 seconds. Generated rules */rule(grandfather(A,B),[parent(C,B),father(A,C)],c16)GC: yes, LC: yesCovered positive examples: [grandfather(david,jim),grandfather(john,ellen)]Covered positive abduced examples: []Covered negative abduced examples: []Abduced literals: [[not(father(mary,ellen)),c16],[father(david,steve),c16]]rule(father(A,B),[parent(A,B),male(A)],c44)GC: yes, LC: yesCovered positive examples: [father(john,mary)]Covered positive abduced examples: [father(david,steve)]Covered negative abduced examples: []Abduced literals: []

119



120



Bibliography[Abe98] A. Abe. The relation between abductive hypotheses and inductive hypotheses.In Flach and Kakas [FK98].[AD94] H. Ad�e andM. Denecker. RUTH: An ILP theory revision system. In Proceedingsof the 8th International Symposium on Methodologies for Intelligent Systems,1994.[AD95] H. Ad�e and M. Denecker. AILP: Abductive inductive logic programming. InProceedings of the 14th International Joint Conference on Arti�cial Intelli-gence, 1995.[ADP94] J. J. Alferes, C. V. Dam�asio, and L. M. Pereira. SLX - A top-down derivationprocedure for programs with explicit negation. In M. Bruynooghe, editor, Proc.Int. Symp. on Logic Programming. The MIT Press, 1994.[ADRB95] H. Ad�e, L. De Raedt, and M. Bruynooghe. Declarative bias for speci�c-to-general ILP systems. Machine Learning, 20(1/2):119{154, 1995.[ALP+98] J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. C. Przymusin-ski. Dynamic logic programming. In Sixth International Conference on Prin-ciples of Knowledge Representation and Reasoning. Morgan Kau�man, 1998.[AP96] J. J. Alferes and L. M. Pereira. Reasoning with Logic Programming, volume1111 of LNAI. Springer-Verlag, 1996.[AP98] J. J. Alferes and L. M. Pereira. Tabling abduction. In Proceedings of the FirstInternational Workshop on Tabulation in Parsing and Deduction, TAPD98,pages 75{82, Paris, France, April 1998.[APP98] J. J. Alferes, L. M. Pereira, and T. C. Przymusinski. \Classical" negationin non-monotonic reasoning and logic programming. Journal of AutomatedReasoning, 20:107{142, 1998.[BDR96] H. Blockeel and L. De Raedt. Inductive database design. In Proceedings ofthe 10th International Symposium on Methodologies for Intelligent Systems,volume 1079 of Lecture Notes in Arti�cial Intelligence, pages 376{385. Springer-Verlag, 1996. 121



[BG93] F. Bergadano and D. Gunetti. An interactive system to learn functional logicprograms. In R. Bajcsy, editor, Proceedings of the 13th International Joint Con-ference on Arti�cial Intelligence, pages 1044{1049. Morgan Kaufmann, 1993.[BG94a] C. Baral and M. Gelfond. Logic programming and knowledge representation.Journal of Logic Programming, 19/20:73{148, 1994.[BG94b] F. Bergadano and D. Gunetti. Learning clauses by tracing derivations. InS. Wrobel, editor, Proceedings of the 4th International Workshop on InductiveLogic Programming, volume 237 of GMD-Studien, pages 11{30. Gesellschaft f�urMathematik und Datenverarbeitung MBH, 1994.[BG95] F. Bergadano and D. Gunetti. Inductive Logic Programming. MIT press, 1995.[BGS88] A. Bergadano, A. Giordana, and L. Saitta. Automated concept acquisitionin noisy environments. IEEE Transactions on Pattern Analysis and MachineIntelligence, 10(4):555{578, 1988.[BLMM97] A. Brogi, E. Lamma, P. Mancarella, and P. Mello. A unifying view for logicprogramming with non-monotonic reasoning. Theoretical Computer Science,184:1{59, 1997.[BM91] M. Bain and S. Muggleton. Non-monotonic learning. In J.E. Hayes-Michie andE. Tyugu, editors, Machine Intelligence, volume 12. Oxford University Press,1991.[BM92] M. Bain and S. Muggleton. Non-monotonic learning. In S. Muggleton, editor,Inductive Logic Programming, pages 145{161. Academic Press, 1992.[Car89] J. G. Carbonell. Introduction: Paradigms for machine learning. Arti�cialIntelligence, 40(1-3):1{9, 1989.[CB89] P. Clark and R. Boswell. The CN2 induction algorithm. Machine Learning,3(4):261{283, 1989.[Ces90] B. Cestnik. Estimating probabilities: A crucial task in machine learning. InProceedings of the Ninth European Conference on Arti�cial Intelligence, pages147{149, London, 1990. Pitman.[CKB87] B. Cestnik, I. Knononenko, and I. Bratko. ASSISTANT 86: A knowledgeelicitation tool for sophisticated users. In I. Bratko and N. Lavra�c, editors,Progress in Machine Learning, pages 31{45. Sigma Press, Wilmslow, UK, 1987.[CKRP73] A. Colmerauer, H. Kanoui, P. Roussel, and R. Pasero. Un systeme de commu-nication homme-machine en Franc�ais. Technical report, Groupe de Rechercheen Intelligence Arti�cielle, Universit�e d'Aix-Marseille, 1973.[Cla78] K. L. Clark. Negation as failure. In Logic and Databases. Plenum Press, 1978.[CMM83] J. G. Carbonell, R. S. Michalski, and T. M. Mitchell. An overview of machinelearning. In Michalski et al. [MCM83], pages 3{24.122



[Coh92] W. W. Cohen. Abductive explanation-based learning: A solution to the mul-tiple inconsistent explanation problem. Machine Learning, 8:167{219, 1992.[DB92] S. D�zeroski and I. Bratko. Handling noise in inductive logic programming.In S. Muggleton, editor, Proceedings of the 2nd International Workshop onInductive Logic Programming, Report ICOT TM-1182, 1992.[DDS92] M. Denecker and D. De Schreye. SLDNFA: an abductive procedure for normalabductive programs. In K. R. Apt, editor, Proceedings of the InternationalJoint Conference and Symposium on Logic Programming, pages 686{700, 1992.[Dix95] J. Dix. A classi�cation-theory of semantics of normal logic programs: I. & II.Fundamenta Informaticae, XXII(3):227{255 and 257{288, 1995.[DK95] Y. Dimopoulos and A. C. Kakas. Learning non-monotonic logic programs:Learning exceptions. In Proceedings of the 8th European Conference on Ma-chine Learning, 1995.[DK96] Y. Dimopoulos and A. C. Kakas. Abduction and inductive learning. In Ad-vances in Inductive Logic Programming. IOS Press, 1996.[DP97] C. V. Dam�asio and L. M. Pereira. Abduction on 3-valued extended logic pro-grams. In V. W. Marek, A. Nerode, and M. Trusczynski, editors, Logic Pro-gramming and Non-Monotonic Reasoning - Proc. of 3rd International Confer-ence LPNMR'95, volume 925 of LNAI, pages 29{42, Germany, 1997. Springer-Verlag.[DP98] C. V. Dam�asio and L. M. Pereira. A survey on paraconsistent semantics forextended logic programs. In D.M. Gabbay and Ph. Smets, editors, Handbook ofDefeasible Reasoning and Uncertainty Management Systems, volume 2, pages241{320. Kluwer Academic Publishers, 1998.[DPP97] J. Dix, L. M. Pereira, and T. Przymusinski. Prolegomena to logic programmingand non-monotonic reasoning. In J. Dix, L. M. Pereira, and T. Przymusinski,editors, Non-Monotonic Extensions of Logic Programming - Selected papersfrom NMELP'96, number 1216 in LNAI, pages 1{36, Germany, 1997. Springer-Verlag.[DR92] L. De Raedt. Interactive Theory Revision: An Inductive Logic ProgrammingApproach. Academic Press, 1992.[DR97] L. De Raedt. Logical settings for concept learning. Arti�cial Intelligence,95(1):187{201, 1997.[DRB89] L. De Raedt and M. Bruynooghe. Towards friendly concept-learners. In Pro-ceedings of the 11th International Joint Conference on Arti�cial Intelligence,pages 849{856. Morgan Kaufmann, 1989.[DRB90] L. De Raedt and M. Bruynooghe. On negation and three-valued logic in in-teractive concept learning. In Proceedings of the 9th European Conference onArti�cial Intelligence, 1990. 123



[DRB92a] L. De Raedt and M. Bruynooghe. Belief updating from integrity constraintsand queries. Arti�cial Intelligence, 53:291{307, 1992.[DRB92b] L. De Raedt and M. Bruynooghe. Interactive concept learning and constructiveinduction by analogy. Machine Learning, 8(2):107{150, 1992.[DRB93] L. De Raedt and M. Bruynooghe. A theory of clausal discovery. In Proceedingsof the 13th International Joint Conference on Arti�cial Intelligence, 1993.[DRBM91] L. De Raedt, M. Bruynooghe, and B. Martens. Integrity constraints and inter-active concept-learning. In L. Birnbaum and G. Collins, editors, Proceedings ofthe 8th International Workshop on Machine Learning, pages 394{398. MorganKaufmann, 1991.[DRD94] L. De Raedt and S. D�zeroski. First order jk-clausal theories are PAC-learnable.Arti�cial Intelligence, 70:375{392, 1994.[DRD96a] L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 1996. (Toappear).[DRD96b] L. De Raedt and L. Dehaspe. DLAB a declarative language bias for con-cept learning and knowledge discovery engines. Technical Report CW214,Katholieke Universiteit Leuven, 1996.[DRD96c] L. De Raedt and L. Dehaspe. Learning from satis�ability. Technical report,Katholieke Universiteit Leuven, 1996.[DRL95] L. De Raedt and W. Van Lear. Inductive constraint logic. In Proceedings ofthe 5th International Workshop on Algorithmic Learning Theory, 1995.[DRLD93] L. De Raedt, N. Lavra�c, and S. D�zeroski. Multiple predicate learning. InS. Muggleton, editor, Proceedings of the 3rd International Workshop on Induc-tive Logic Programming, pages 221{240. J. Stefan Institute, 1993.[Dun91] P. M. Dung. Negation as hypothesis: An abductive foundation for logic pro-gramming. In Proceedings of the Eigth Int. Conf. on Logic Programming,ICLP91, pages 3{17. The MIT Press, 1991.[dV89] W. Van de Velde. IDL, or taming the multiplexer problem. In Morik K., editor,Proceedings of the 4th European Working Session on Learning. Pittman, 1989.[D�ze91] S. D�zeroski. Handling noise in inductive logic programming. Master's thesis,Faculty of Electrical Engineering and Computer Science, University of Ljubl-jana, 1991.[EFL+98] F. Esposito, S. Ferilli, E. Lamma, P. Mello, M. Milano, F. Riguzzi, and G. Se-meraro. Cooperation of abduction and induction in logic programming. InP. A. Flach and A. C. Kakas, editors, Abductive and Inductive Reasoning, Pureand Applied Logic. Kluwer, 1998. Submitted for publication.[EK89] K. Eshghi and R. A. Kowalski. Abduction compared with Negation by Failure.In Proceedings of the 6th International Conference on Logic Programming, 1989.124



[ELM+96] F. Esposito, E. Lamma, D. Malerba, P. Mello, M. Milano, F. Riguzzi, andG. Semeraro. Learning abductive logic programs. In Flach and Kakas [FK96].Available on-line at http://www.cs.bris.ac.uk/~flach/ECAI96/.[FK96] P. A. Flach and A. C. Kakas, editors. Proceedings of the ECAI'96 Work-shop on Abductive and Inductive Reasoning, 1996. Available on-line athttp://www.cs.bris.ac.uk/~flach/ECAI96/.[FK97] P. A. Flach and A. C. Kakas, editors. Proceedings of the IJCAI'97 Work-shop on Abductive and Inductive Reasoning, 1997. Available on-line athttp://www.cs.bris.ac.uk/~flach/IJCAI97/.[FK98] P. A. Flach and A. C. Kakas, editors. Abductive and Inductive Reasoning. Pureand Applied Logic. Kluwer, 1998.[Fla92] P. A. Flach. Logical approaches to machine learning - An overview. THINK,1(2):25{36, 1992.[Fla95] P. A. Flach. Conjectures: An Inquiry Concerning the Logic of Induction. PhDthesis, Katholieke Universiteit Brabant, 1995.[GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic program-ming. In R. Kowalski and K. A. Bowen, editors, Proceedings of the 5th Int.Conf. on Logic Programming, pages 1070{1080. MIT Press, 1988.[GL90] M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Pro-ceedings of the 7th International Conference on Logic Programming ICLP90,pages 579{597. The MIT Press, 1990.[GM90] L. Giordano and A. Martelli. Generalized stable model semantics, truth main-tenance and con
ict resolution. In Proceedings of the 7th International Con-ference on Logic Programming, pages 427{411, Jerusalem, 1990. MIT Press.[Hel89] N. Helft. Induction as nonmonotonic inference. In Proceedings of the 1st Inter-national Conference on Principles of Knowledge Representation and Reasoning,pages 149{156. Morgan Kaufmann, 1989.[IK97] K. Inoue and Y. Kudoh. Learning extended logic programs. In Proceedings ofthe 15th International Joint Conference on Arti�cial Intelligence, pages 176{181. Morgan Kaufmann, 1997.[IKI+96] N. Inuzuka, M. Kamo, N. Ishii, H. Seki, and H. Itoh. Top-down induction oflogic programs from incomplete samples. In S. Muggleton, editor, Proceedingsof the 6th International Workshop on Inductive Logic Programming, pages 119{136. Stockholm University, Royal Institute of Technology, 1996.[Ino94] K. Inoue. Hypothetical reasoning in logic programs. Journal of Logic Program-ming, 18:191{227, 1994.[Ino98] K. Inoue. Learning abductive and nonmonotonic logic programs. In P. A.Flach and A. C. Kakas, editors, Abductive and Inductive Reasoning, Pure andApplied Logic. Kluwer, 1998. Submitted for publication.125



[IS94] K. Inoue and C. Sakama. On the equivalence between disjunctive and abductivelogic programs. In In proceedings of ICLP94, pages 489{503, 1994.[IS95] K. Inoue and C. Sakama. Abductive framework for nonmonotonic theorychange. In Proceedings of the 14th International Joint Conference on Arti-�cial Intelligence, pages 204{210, 1995.[Kal79] J. Kalb
eish. Probability and Statistical Inference, volume II. Springer, NewYork, 1979.[KK98] T. Kanai and S. Kunifuji. Extending inductive generalization with abduction.In Flach and Kakas [FK98].[KKT93] A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive logic programming.Journal of Logic and Computation, 2:719{770, 1993.[KKT97] A. C. Kakas, R. A. Kowalski, and F. Toni. The role of abduction in logicprogramming. In D. Gabbay, C. Hogger, and J. Robinson, editors, Handbookof Logic in AI and Logic Programming, volume 5, pages 233{306. Oxford Uni-versity Press, 1997.[KM90a] A. C. Kakas and P. Mancarella. Database updates through abduction. InR. Sacks-Davis D. McLeod and H. Schek, editors, Proceedings of the 16th In-ternational Conference on Very Large Databases, VLDB-90, pages 650{661.Morgan Kaufmann, 1990.[KM90b] A. C. Kakas and P. Mancarella. Generalized stable models: a semantics forabduction. In Proceedings of the 9th European Conference on Arti�cial Intel-ligence, 1990.[KM90c] A. C. Kakas and P. Mancarella. On the relation between truth maintenanceand abduction. In Proceedings of the 2nd Paci�c Rim International Conferenceon Arti�cial Intelligence, 1990.[KMD94] A. C. Kakas, P. Mancarella, and P. M. Dung. The acceptability semantics forlogic programs. In Proceedings of the 11th International Conference on LogicProgramming, 1994.[Kow74] R. A. Kowalski. Predicate logic as a programming language. In ProceedingsIFIP74, pages 569{574. North Holland Publishing Co., 1974.[KR97] A. C. Kakas and F. Riguzzi. Learning with abduction. In Proceedings of the7th International Workshop on Inductive Logic Programming, 1997.[KR98] A. C. Kakas and F. Riguzzi. Learning with abduction. submitted for publica-tion, 1998.[LD92] N. Lavra�c and S. D�zeroski. Inductive learning of relations from noisy exam-ples. In S. Muggleton, editor, Inductive Logic Programming, pages 495{516.Academic Press, 1992. 126



[LD94] N. Lavra�c and S. D�zeroski. Inductive Logic Programming: Techniques andApplications. Ellis Horwood, 1994.[LDB96] N. Lavra�c, S. D�zeroski, and I. Bratko. Handling imperfect data in inductivelogic programming. In L. De Raedt, editor, Advances in Inductive Logic Pro-gramming, pages 48{64. IOS Press, 1996.[LDG91a] N. Lavra�c, S. D�zeroski, and M. Grobelnik. Learning nonrecursive de�nitionsof relations with LINUS. In Y. Kodrato�, editor, Proceedings of the 5th Euro-pean Working Session on Learning, volume 482 of Lecture Notes in Arti�cialIntelligence, pages 265{281. Springer-Verlag, 1991.[LDG91b] N. Lavra�c, S. D�zeroski, and M. Grobelnik. Learning nonrecursive de�nitionsof relations with LINUS. In Y. Kodrato�, editor, Proceedings of the 5th Euro-pean Working Session on Learning, volume 482 of Lecture Notes in Arti�cialIntelligence, pages 265{281. Springer-Verlag, 1991.[Llo87] J. Lloyd. Foundations of Logic Programming. Springer Verlag, Berlin, secondedition, 1987.[LM92] S. Lapointe and S. Matwin. Sub-uni�cation: A tool for e�cient induction ofrecursive programs. In D. Sleeman and P. Edwards, editors, Proceedings ofthe 9th International Workshop on Machine Learning, pages 273{281. MorganKaufmann, 1992.[LMMR97] E. Lamma, P. Mello, M. Milano, and F. Riguzzi. Integrating induction andabduction in logic programming. In P. P. Wang, editor, Proceedings of theThird Joint Conference on Information Sciences, volume 2, pages 203{206,1997.[LMMR98] E. Lamma, P. Mello, M. Milano, and F. Riguzzi. Integrating induction andabduction in logic programming. To appear on Information Sciences, 1998.[LP98] J. A. Leite and L. M. Pereira. Generalizing updates: from models to programs.In J. Dix, L. M. Pereira, and T. C. Przymusinski, editors, Collected Papers fromWorkshop on Logic Programming and Knowledge Representation LPKR'97,number 1471 in LNAI. Springer-Verlag, 1998.[LRP88a] E. Lamma, F. Riguzzi, and L. M. Pereira. Learning in a three-valued setting. InProceedings of the Fourth International Workshop on Multistrategy Learning,1988.[LRP88b] E. Lamma, F. Riguzzi, and L. M. Pereira. Learning with extended logic pro-grams. In Proceedings of the Logic Programming track of the Seventh Interna-tional Workshop on Nonmonotonic Reasoning (LP-NMR98), 1988.[LRP88c] E. Lamma, F. Riguzzi, and L. M. Pereira. Strategies in combined learning vialogic programs. Technical report, DEIS - University of Bologna, 1988.[MB92] S. Muggleton and W. Buntine. Machine invention of �rst-order predicates byinverting resolution. In S. Muggleton, editor, Inductive Logic Programming,pages 261{280. Academic Press, 1992.127



[MCM83] R. Michalski, J. G. Carbonell, and T. M. Mitchell, editors. Machine Learning- An Arti�cial Intelligence Approach. Springer-Verlag, 1983.[MCM86] R. Michalski, J. G. Carbonell, and T. M. Mitchell, editors. Machine Learning- An Arti�cial Intelligence Approach Vol. II. Morgan Kaufmann, 1986.[MDR94] S. Muggleton and L. De Raedt. Inductive logic programming: Theory andmethods. Journal of Logic Programming, 19/20:629{679, 1994.[MF90] S. Muggleton and C. Feng. E�cient induction of logic programs. In Proceed-ings of the 1st Conference on Algorithmic Learning Theory, pages 368{381.Ohmsma, Tokyo, Japan, 1990.[Mic73] R. Michalski. Discovery classi�cation rules using variable-valued logic systemVL1. In Proceedings of the Third International Conference on Arti�cial Intel-ligence, pages 162{172. Stanford University, 1973.[Mic80] R.S. Michalski. Pattern recognition as rule-guided inductive inference. In Pro-ceedings of IEEE Transactions on Pattern Analysis and Machine Intelligence,pages 349{361, 1980.[Mic84] R. Michalski. A theory and methodology of inductive learning. In R. Michalski,J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning - An Arti�cialIntelligence Approach, volume 1, pages 83{134. Springer-Verlag, 1984.[Mic86] R. S. Michalski. Understanding the nature of learning: Issues and researchdirections. In Michalski et al. [MCM86], pages 3{26.[Mit82] T. M. Mitchell. Generalization as search. Arti�cial Intelligence, 18(2):203{226,1982.[Mit97] T. M. Mitchell. Machine Learning. McGraw Hill, 1997.[Moo98] R. Mooney. Integrating abduction and induction in machine learning. In Flachand Kakas [FK98].[Mor91] K. Morik. Balanced cooperative modelling. In Proc. First Int. Workshop onMultistrategy Learning, Fairfax, VA, 1991. George Mason University.[Mug95a] S. Muggleton. Inverse entailment and Progol. New Generation Computing,Special issue on Inductive Logic Programming, 13(3-4):245{286, 1995.[Mug95b] S. Muggleton. Inverting entailment and Progol. In Machine Intelligence, vol-ume 14, pages 133{188. Oxford University Press, 1995.[MV95a] L. Martin and C. Vrain. MULT ICN: An empirical multiple predicate learner.In L. De Raedt, editor, Proceedings of the 5th International Workshop on In-ductive Logic Programming, pages 129{144. Department of Computer Science,Katholieke Universiteit Leuven, 1995.128



[MV95b] L. Martin and C. Vrain. A three-valued framework for the induction of generalprogram. In L. De Raedt, editor, Proceedings of the 5th International Workshopon Inductive Logic Programming, pages 109{128. Department of Computer Sci-ence, Katholieke Universiteit Leuven, 1995.[NB86] T. Niblett and I. Bratko. Learning decision rules in noisy domains. InM. Bramer, editor, Research and Development in Expert Systems III, pages24{25. Cambridge University Press, 1986.[O'R94] P. O'Rourke. Abduction and explanation-based learning: Case studies in di-verse domains. Computational Intelligence, 10:295{330, 1994.[PA92] L. M. Pereira and J. J. Alferes. Well founded semantics for logic programswith explicit negation. In Proceedings of the European Conference on Arti�cialIntelligenece ECAI92, pages 102{106. John Wiley and Sons, 1992.[PGA87] D. Poole, R. G. Goebel, and Aleliunas. Theorist: a logical reasoning system fordefault and diagnosis. In Cercone and McCalla, editors, The Knowledge Fron-teer: Essays in the Representation of Knowledge, Lecture Notes in ComputerScience, pages 331{352. Springer-Verlag, 1987.[PK92] M.J. Pazzani and D. Kibler. The utility of knowledge in inductive learning.Machine Learning, 9(1):57{94, 1992.[Plo70] G.D. Plotkin. A note on inductive generalization. In Machine Intelligence,volume 5, pages 153{163. Edinburgh University Press, 1970.[Plo71] G.D. Plotkin. A further note on inductive generalization. In Machine Intelli-gence, volume 6, pages 101{124. Edinburgh University Press, 1971.[Qui90a] J. R. Quinlan. Learning logical de�nitions from relations. Machine Learning,5:239{266, 1990.[Qui90b] J.R. Quinlan. Learning logical de�nitions from relations. Machine Learning,5:239{266, 1990.[Qui91] J. R. Quinlan. Unknown attribute values in induction. In Proceedings of theSixth International Machine Learning Workshop, pages 164{168, San Mateo,CA, 1991. Morgan Kaufmann.[Qui93] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, SanMateo, CA, 1993.[Rei78] R. Reiter. On closed-word data bases. In H. Gallaire and J. Minker, editors,Logic and Data Bases, pages 55{76. Plenum Press, 1978.[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution principle.Journal of the ACM, 12(1):23{41, 1965.[Rus89] S. Russell. The Use of Knowledge in Analogy and Induction. Pitman, London,1989. 129



[Sak98] C. Sakama. Computing induction through abduction. In Flach and Kakas[FK98].[SB86] C. Sammut and R. Banerji. Learning concepts by asking questions. In R.S.Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning: AnArti�cial Intelligence Approach, Volume 2, pages 167{191. Morgan Kaufmann,1986.[Sha83] E. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.[SI92] K. Satoh and N. Iwayama. A query evaluation method for abductive logicprogramming. In In proceedings of the 1992 Joint International Conferenceand Symposium on Logic Programming, pages 671{685, 1992.[Sim83] H. A. Simon. Why should machines learn. In Michalski et al. [MCM83], pages25{37.[SSW+97] K. F. Sagonas, T. Swift, D. S. Warren, J. Freire, and P. Rao. The XSB Pro-grammer's Manual Version 1.7.1, 1997.[Swe97] Swedish Institute of Computer Science, Kista, Sweden. SICStus Prolog User'sManual, 1997.[TM94] C. Thompson and R. Mooney. Inductive learning for abductive diagnosis. InProceedings of the 12th National Conference on Arti�cial Intelligence, 1994.[VGRS91] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics forgeneral logic programs. Journal of the ACM, 38(3):620{650, 1991.[VLDDR94] W. Van Laer, L. Dehaspe, and L. De Raedt. Applications of a logical discoveryengine. In Proceedings of the AAAI Workshop on Knowledge Discovery inDatabases, pages 263{274, 1994.[WD95] S. Wrobel and S. D�zeroski. The ILP description learning problem: Towardsa genearl model-leve de�nition of data mining in ILP. In Proceedings of theFachgruppentre�en Maschinelles Lernen, 1995.[Wro88] S. Wrobel. Automatic representation adjustment in an observational discov-ery system. In D. Sleeman, editor, Proceedings of the 3rd European WorkingSession on Learning, pages 253{262. Pitman, 1988.

130


