3 @
5

G

@ _BONGS
e NI g e S

5

N 4.
O dlre opmran

Universita degli Studi di Bologna
DEIS

Laboratorio d’Informatica Avanzata

Extensions of Logic Programming as
Representation Languages for Machine
Learning

Fabrizio Riguzzi

Ph.D. Thesis

Tutor: Prof. Maurelio Boari Coordinator: Prof. Fabio Filicori

Supervisors: Prof. Paola Mello, Prof. Evelina Lamma
LIA Series no. 33

DEIS Technical Report no. DEIS-LIA-98-005

Extensions of Logic Programming as Representation
Languages for Machine Learning

Fabrizio Riguzzi

LIA - DEIS, Universita di Bologna
Viale Risorgimento, 2 — 40136 Bologna, Italy

Abstract.

The representation language of Machine Learning has undergone a substantial evolution, starting
from numerical descriptions to an attribute-value representations and finally to first order logic
languages. In particular, Logic Programming has recently been studied as a representation language
for learning in the research area of Inductive Logic Programming. The contribution of this thesis
is twofold. First, we identify two problems of existing Inductive Logic Programming techniques:
their limited ability to learn from an incomplete background knowledge and the use of a two-valued
logic that does not allow to consider some pieces of information as unknown. Second, we overcome
these limits by prosecuting the general trend in Machine Learning of increasing the expressiveness of
the representation language. Two learning systems have been developed that represent knowledge
using two extensions of Logic Programming, namely abductive logic programs and extended logic
programs.

Abductive logic programs allow abductive reasoning to be performed on the knowledge. When
dealing with an incomplete knowledge, abductive reasoning can be used to explain an observation
or a goal by making some assumptions about incompletely specified predicates. The adoption of ab-
ductive logic programs as a representation language for learning allows to learn from an incomplete
background knowledge: abductive reasoning is used during learning for completing the available
knowledge. The system ACL (Abductive Concept Learning) for learning abductive logic programs
has been implemented and tested on a number of datasets. The experiments show that the perfor-
mance of the system when learning from incomplete knowledge are superior or comparable to those
of ICL-Sat, mFOIL and FOIL.

Extended logic programs contain a second form of negation (called explicit negation) besides
negation by default. They allow the adoption of a three-valued model and the representation of both
the target concept and its opposite. The two-valued setting that is usually adopted in Inductive
Logic Programming can be a limitation in some cases, for example in the case of a robot that
autonomously explores the surrounding world and that acts on the basis of the partial knowledge
it posseses. For such a robot is important to distinguish what is true from what is false and what
is unknown and therefore it needs to adopt a three-valued logic. The system LIVE (Learning In
a three-Valued Environment) has been implemented that is able to learn extended logic programs
containing a definition for both the concept and its opposite. Moreover, the definitions learned may
allow exceptions. In this case, a definition for the class of exceptions is learned and for exceptions
to exceptions, if present. In this way, hierarchies of exceptions can be learned.

Keywords: Machine Learning, Inductive Logic Programming, Abduction, Ezplicit Negation

DEIS Technical Report no. DEIS-LIA-98-005 LIA Series no. 33

Acknowledgements

First, I would like to thank professors Paola Mello and Evelina Lamma for their gentle
guidance, keen advice and patience. Their support and incitement have been fundamental
for overcoming the most difficult times.

I am grateful to professor Maurelio Boari for his uninterrupted encouragement, for cre-
ating a fertile environment for doing research and for having offered me the opportunity to
work in it.

I would like to thank professor Antonis Kakas for the stimulating discussions we had
on the topics of the integration of abduction and induction and for the enthusiasm he
communicated me on the subject. Part of the work was done while I was visiting the
University of Cyprus: my stay there was fruitful and enjoyable and I am grateful to Antonis
Kakas for his hospitality.

I would like to thank professor Luis Moniz Pereira for the interest he showed in my work
and for many interesting discussions on the topics of knowledge representation in learning
that were very inspiring for me.

I would also like to thank all my friends at LIA, for having made more enjoyable my time
at the department: Rosy Barruffi, Anna Ciampolini, Enrico Denti, Michela Milano, Andrea
Omicini, Cesare Stefanelli and Franco Zambonelli.

Lastly, I would like to thank my parents Odette and Lamberto, my sister Daniela, my
grandparents Odilla and Giuseppe for their love, support and faith in me.

ii

Contents

Acknowledgments

1 Introduction
1.1 Limitsof ILP o . . e
1.2 Proposed Solutions L e
1.3 Structure of the Thesis L oo

2 An Overview of Machine Learning

2.1 Machine Learning L o e
2.1.1 Learning Strategies oL
2.1.2 Research Paradigm,

2.2 Inductive Concept Learning from Examples

2.3 Representation Languages in Inductive Reasoning

Inductive Logic Programming

3.1 Logic Programming Preliminaries
3.2 Learning from Entailment o000
3.2.1 Soundness and Completeness
3.2.2 Classification of Systems
3.2.3 Imperfect Data L
3.2.4 Hypothesis Space Ordering
3.2.5 Bottom-upmethods
3.2.6 Top-down Methods
3.2.7 Generality of Learned Solutions
3.3 Learning from Interpretations
3.4 Examples of ILP Systems
341 GOLEM e
342 FOIL . .. e
343 mFOIL e
344 ICL
Abductive Reasoning in Learning
4.1 Imtroduction.
4.2 Abductive Logic Programming,
4.3 Learning with Abduction

iii

4.3.1 Monotonicity and Generality 53

44 An Algorithm for ACL 54
4.4.1 An Algorithm for ACL1 55
4.4.2 Learning Integrity Constraints 60
4.4.3 Properties of the Algorithm 61

4.5 ACL for Multiple Predicate Learning 62
4.5.1 Multiple Predicate Learning: Problems and Difficulties. 62
4.5.2 M-ACL: a Multiple Predicate Learning framework 64

4.6 Experiments. 68
4.6.1 Learning from Incomplete Background Knowledge 68
4.6.2 Multiple Predicate Learning 73

4.7 Related Work e 76

4.8 Conclusions e e 78

Learning in a Three-valued Setting 81

5.1 Introduction. 81

5.2 Preliminaries 82
5.2.1 Three-valuedness, default and explicit negation 82
5.2.2 Extended Logic Programs 84

5.3 Learning in a Three-valued Setting 87

5.4 Strategies for Combining Different Generalizations 89

5.5 Strategies for Eliminating Learned Contradictions 92
5.5.1 Single Source Contradiction 92
5.5.2 Multiple Source Contradiction 96

5.6 Strategies for Theory Refinement 100

5.7 An Algorithm for Learning Extended Logic Programs 101

5.8 Implementation 103

5.9 Related Work 105

5.10 Conclusions L 107

Conclusions 109

Appendixes to Chapter 4 113

A.1 Proof of Theorem 44 on Equivalence of ACL with ACL1 and ACL2. 113

A.2 Proof of Theorem 48 on Soundness of ACL 114

A.3 Abductive Proof Procedure 116

A4 Examples 5l and 52 118

iv

Chapter 1

Introduction

Machine Learning is a research area whose aim is to build machines that are able to construct
or modify representations of what is being experienced. One of the most important tasks
in Machine Learning consists in inducing knowledge from examples and data. The current
interest in Machine Learning is justified from two points of view. On one hand, the increasing
diffusion of knowledge based systems calls for automated methods for the acquisition of
knowledge, since this process has been recognized as one of the main bottlenecks in the
development of knowledge based system. On the other hand, the task of Data Mining, or
the extraction of useful information from large amounts of data, has recently received a
lot of attention as the amount of data that are stored by organizations in databases and
data warehouses is rapidly increasing. Some of the techniques that are studied in Machine
Learning are particularly suitable for Data Mining.

Machine Learning has been applied with success to a wide variety of fields, including
medical or technical diagnosis, engineering design, industrial process control or banking. As
the number of fields where Machine Learning is applied increases, more and more complex
domains are considered and more and more expressive representation languages are used
to represent such domains. They have evolved from numerical descriptions to attribute-
value languages and, finally, to first-order logic ones. Increasing the expressiveness of the
representation language is a general trend in Machine Learning that has allowed to solve
problems that arise in new application domains.

Recently, the language of Logic Programming has been extensively used in learning. The
adoption of this language is studied in the field of Inductive Logic Programming (ILP hence-
forth). The language of logic programs has allowed objects in the domain to be described
in a structured way, i.e., in terms of their components and relations among the compo-
nents. The given relations constitute the background knowledge that is given as input to
the learner together with the examples of the target relation. Such an expressive represen-
tation language has allowed ILP to tackle complex problems in various domains, including
dynamic systems, molecular biology, mechanical engineering, natural language processing
and software engineering.

The contribution of this thesis is twofold. First, we identify two problems of existing
ILP techniques: their limited ability to learn from an incomplete background knowledge and
the use of a two-valued logic that does not allow to consider some pieces of information as
unknown. Second, we overcome these limits by prosecuting the general trend of increasing

the expressiveness of the representation language. Two learning systems have been developed
that represent knowledge using two extensions of Logic Programming, namely abductive
logic programs and extended logic programs.

1.1 Limits of ILP

In the following, we briefly describe the problems that have been considered in this thesis.

The first problem concerns the fact that the acquisition of data from real world is often
imperfect. The data acquired from the real world is often noisy and/or incomplete. We
will consider the problem of learning from incompleteness in the background knowledge.
Information about individual instances representing examples is usually expressed by means
of ground facts in the background: if the acquisition of information for some instances was
incomplete, then some background facts will be missing. In this case, some positive examples
may not be covered due to the absence of some facts related to them in the background.
This may require the learning of multiple overspecific rules for covering a set of examples
that could otherwise be covered by a single general one.

Various systems have been developed to learn from imperfect data (for example, FOIL
[Qui90a], mFOIL [Dze91], FOIL-I [IKI*96] and LINUS [LDG91b]). However, no system
has been specially designed for learning from an incomplete background knowledge.This
problem can be solved by integrating abductive reasoning into induction: abduction is used
in order to complete the background knowledge by making assumptions about the incomplete
background predicates.

Another problem concerns the fact that most work on ILP and inductive concept learning
in general has considered a two-valued logical setting. However, in some learning problems
is useful to consider a three-valued logical setting. For example, this is the case of an au-
tonomous agent that gathers information from its surrounding world by performing experi-
ments and memorizing the results. Such an agent needs to store both positive information,
about successful experiments, and negative information, about unsuccessful experiment,
and learn from both positive and negative information. For example, consider the case of
an agent that has to learn general rules about the effect of actions in a certain domain, with
respect to its goal. The agent will try actions and see whether the action has had a positive
or negative result. It will then use the results, either positive or negative, for learning a
general description of actions that it will use for planning its behaviour. For such an agent,
it is important to learn a description of actions that distinguishes among actions with a
positive outcome, actions with a negative outcome and actions with an unknown outcome.
In this way, it will be able to make decisions on what actions to perform knowing exactly
the possible consequences. It may thus decide to perform an action with a negative outcome
if it thinks it is necessary or try an action with an unknown outcome in order to further
explore its domain.

This type of learning requires the adoption of a three-valued logical setting, where sen-
tences can have the truth value true, false or unknown. However, most work on inductive
concept learning considers a two-valued setting, where what is not entailed by the learned
theory is considered as false, on the basis of the Closed World Assumption [Rei78]. In a
three-valued setting one is able to learn and represent a definition for both the target con-
cept and its opposite and to resolve the contradiction between the definitions by assigning
the truth value unknown to conflicting atoms.

1.2 Proposed Solutions

Various extensions of the language of logic programs have been proposed in order to improve
its expressive power. This thesis proposes the adoption of two extensions of Logic Program-
ming as the representation language for learning in order to solve the above mentioned
problems.

Abductive logic programs provide an effective mechanism for representing and reasoning
with incomplete information. They allow hypothetic reasoning to be performed: assump-
tions can be made about a number of predicates, called abducibles, for which a definition
is absent or is incomplete. Integrity constraints can be used in order to reduce the number
of assumptions that are allowed. Thus, abductive logic programs consist of a logic pro-
gram, a set of abducible predicates and a set of integrity constraints. By representing the
background knowledge as an abductive logic program, we are able to exploit the reasoning
mechanism of abduction for completing the knowledge during learning. We have designed
and implemented the system ACL (Abductive Concept Learning) that learns from a back-
ground knowledge in the form of an abductive logic program: examples can be covered by
making assumptions about some missing facts in the background. The system is able to
learn new rules and new constraints: the theory that is learned can thus be used to classify
new unseen examples that are incompletely specified. The system has been tested on a
number of datasets where the knowledge is incomplete and the results obtained have been
compared with those of state of the art systems like ICL-Sat [DRD96¢], mFOIL [Dze91] and
FOIL [Qui90a]. The performances of ACL were found to be superior or comparable with
those of these systems on the considered datasets.

By means of Extended logic programs we are able to represent and reason with infor-
mation in a three-valued logical setting. Extended logic programs contain two kinds of
negation: default negation plus a second form of negation called explicit, that is used in
order to explicitly represent negative information. By adopting extended logic programs as
a representation language for learning we are able to learn a definition for both the target
concept and its opposite. Special techniques have to be adopted to ensure the consistency
among the definitions for the concept and its opposite: in case both the definitions cover an
unseen example, the example is classified as unknown. Explicit negation is used in order to
represent the opposite concept, while default negation is used in order to represent excep-
tions to definitions by means of default rules. We have developed the system LIVE (Learning
In a three-Valued Environment) that learns definitions for both the concept and its opposite
that may allow exceptions. The system is able to learn a definition for the exceptions that,
on its turn, may also allow exceptions. In this way hierarchies of exceptions can be learned.
The system is parametric in the technique adopted for learning the definitions for the con-
cept and its opposite: by means of bottom-up techniques we find least general definitions,
while by means of top-down techniques we find most general definitions. The possibility of
choosing independently the generality of the two definitions is useful in domains where we
need to take into account the risk of making a mistake in classifying erroneously an unseen
instance. Various experiments have been performed to show the ability of the system to
combine solutions of different generality, to show its ability to deal with contradiction and
to show how hierarchies of exceptions can be learned.

1.3 Structure of the Thesis

The thesis is organized as follows. In chapter 2, we will provide an overview of Machine
Learning, presenting the various learning strategies and paradigms that have been inves-
tigated in the field. Then, we concentrate on the learning strategy of inductive learning
from examples by means of the paradigm of symbolic concept acquisition. The evolution of
representation languages used for this task is described, going from analytical expressions,
to attribute-value descriptions to Logic Programming.

Chapter 3 is devoted to presenting the problems and techniques that are studied in the
field of ILP. First, some preliminaries about logic programming are given: the syntax and
semantics of the language is defined. Two main learning settings exist in ILP: learning
from entailment and learning from interpretations. For each of them, the learning problem
is defined and examples of problems are given. Learning from entailment has been most
extensively studied and is described in more details: we will discuss the properties of sound-
ness and completeness for a learning algorithm, the criteria for classifying ILP systems, the
various types of imperfections that can appear in the data, the structure of the hypothesis
space and, finally, the techniques that can be adopted for learning. Some of the most repre-
sentative ILP systems are then described: GOLEM [MF90], FOIL [Qui90a], mFOIL [Dze91]
and ICL [DRL95].

Chapter 4 considers the problem of learning from incomplete information in the back-
ground and describes the adoption of abductive logic programs as the representation for-
malism. First, abductive logic programs are defined, together with a semantics and a proof
procedure for them. A learning problem in this new setting is then presented that is called
Abductive Concept Learning (ACL). The ACL problem can be split into two subproblems
that consist of learning the program part and learning the constraint part. A system, also
called ACL, is proposed that solves the problem by solving the two subproblems in sequence.
ACL can be very useful as well for solving problems of multiple predicate learning: the main
issues involved in these types of learning problems are discussed and an extension of ACL,
called M-ACL, is presented for performing this task. Two series of experiments are then
presented, the first that show the ability of ACL to learn from datasets with an incom-
plete background knowledge and the second to show the ability of ACL to learn multiple
predicates. Finally, other works that integrates abduction and induction are discussed.

Chapter 5 discusses the problem of learning in a three-valued setting. First, we show
the usefulness of a three-valued logical setting and of two types of negation for knowledge
representation. Then, we provide a definition of extended logic programs and recall the
WFSX semantic for them together with the sound proof procedure SLX. The utility of
the introduction of a three-valued logical setting in learning is presented next, together
with the definition of the new learning problem adopting extended logic programs as the
representation language. Depending on the technique used to learn a definition for the
concept and its opposite, we may learn a least general definition or a most general definition:
we discuss the criteria that should be adopted for choosing the generality levels according
to the learning conditions. Then, the issue of contradiction is presented and techniques
for resolving it are described. We consider first the case in which contradiction arise in a
single source of information and then the case of multiple conflicting sources. Depending on
the generality of the definitions, different types of contradiction can be distinguished and
different approaches for the revision of the definitions are described. Finally, the system
LIVE for learning extended logic program is presented and related works are discussed.

4

Chapter 6 presents the conclusions of the thesis. We first recall the aim of the thesis and
then we summarize the results obtained. We end by presenting directions for future works.

Chapter 2

An Overview of Machine
Learning

The research area of Machine Learning includes a wide variety of different approaches. In
this chapter, a brief overview of the spectrum of learning paradigms will be presented. Then
we will concentrate on the problem of inductive concept learning from examples, which is
the paradigm adopted in this thesis. Solving this problem by means of symbolic techniques
requires the adoption of a representation language for the examples and for the concepts
to be learned. In the last section of this chapter we will describe the evolution that the
representation languages have undergone from early studies in Machine Learning to the
more recent research in Inductive Logic Programming.

2.1 Machine Learning

Various definitions of learning have been proposed in the literature. Two main views exist,
which are complementary to each other. The first view is due to H. A. Simon that has given
the following definition ([Sim83], pag. 28):

Learning denotes changes in the system that are adaptive in the sense that they
enable the system to do the same task or tasks drawn from the same population
more efficiently and more effectively the next time.

However, some learning tasks are only concerned with acquiring new knowledge, without
improving the performance of any systems. Therefore, another definition was proposed by
Michalski [MCMS86]:

Learning is constructing or modifying representations of what is being experi-
enced.

The current interest in Machine Learning can be understood in the light of these two def-
initions. According to the first definition, Machine Learning is interesting since it aims at
the engineering task of building machines that are able to modify themselves in order to
perform better at a given task, following the definition of learning given by Simon.

7

According to the second definition, Machine Learning can be used to acquire new knowl-
edge that can be used by humans, by machines or by both. It has been generally accepted
that the main bottleneck in building knowledge based systems consists in the acquisition of
knowledge. Therefore, having methods that can simplify this task is very important.

Machine Learning is also interesting for another reason. Even if there is no consensus on
the definition of intelligence, there is agreement on the fact that the ability to learn is one
of the key features of intelligent behaviour. Therefore Machine Learning is also important
from a cognitive science point of view because it can help to improve our understanding of
the mechanisms underlying learning in humans.

Various criteria have been proposed for classifying Machine Learning research [CMMS83,
Mic86]. We will consider here the learning strategy criterion, as suggested by [Mic86], and
the research paradigm, as suggested by [Car89].

The learning strategy refers to the type of inferences performed by the system during
learning, while the research paradigm refers to the approach and techniques used in the
construction of the system.

2.1.1 Learning Strategies

Learning can be seen as a process where the learner transforms information provided by a
teacher (or environment) into an internal form that is stored for future use. The learning
strategy employed by the learner consists in the type of this transformation. Several different
strategies have been identified: rote learning, learning by instruction, learning by deduction,
learning by analogy and learning by induction. The latter subdivides into learning from
examples and learning by observation and discovery. The strategies are listed in order of
increasing complexity of the transformation performed on the knowledge.

In rote learning, the information from the teacher is directly memorized by the learner
without undergoing any elaboration. In this type of learning, the issue is how to index stored
knowledge for future retrieval. In learning by instruction, the learner acquires knowledge
from a teacher or another organized source, such as a textbook. The learner has to simply
transform the knowledge from the input language to an internally-usable representation.
In deductive learning, the learner performs deductive inferences on the knowledge provided
by the teacher and stores useful conclusions in order to obtain a more efficient and/or
comprehensible theory.

Learning by analogy consists in obtaining knowledge applicable in the current situation
from knowledge about past situations that bears strong similarities with the current sit-
uvation. The aim of the transformation is to modify the available information so that it
becomes useful in the current situation.

Induction is generally understood as reasoning from specific to general. In inductive
learning, the learner starts from the facts and observations provided by a teacher or the
environment and generalizes them, obtaining knowledge that should be valid also for cases
not yet observed. Inductive learning can be subdivided into learning from examples and
learning by observation and discovery. In learning from examples, the teacher provides a set
of positive examples that are instances of a concept and a set of negative examples that are
non-instances of the concept. The task of the learner is to build a general description that
describes all the positive examples and none of the negative. In learning from observation
and discovery, the task of the learner is to find regularities and general rules that hold
on the observations. The observations may contain instances of multiple concepts and

8

the leaner has to discover relations among them, rather than definitions for the individual
concepts. Examples of this form of learning are conceptual clustering (grouping objects
that exhibit similar properties into classes), discovering laws explaining a set of observations
and formulating theories accounting for the behaviour of a system. When the result of
learning must be a theory describing one or more concept in a form that is understandable
by humans, we speak about inductive concept learning from examples and inductive concept
learning from observations.

2.1.2 Research Paradigm

The research paradigm refers to the type of techniques used for the construction of learning
systems. The different techniques used in Machine Learning can be broadly classified into
four categories: symbolic concept acquisition, analytic (or deductive) learning, evolution-
ary learning (or learning with genetic algorithms) and connectionist learning (learning with
neural nets)*.

In symbolic concept acquisition, the task of the system consists in building a symbolic rep-
resentation of a given set of concepts by processing a set of examples and counter-examples of
these concepts. The languages used for the representation of the concepts can be first order
logic, decision trees, production rules or semantic networks. Learning is usually performed
by searching the space of concept descriptions.

In analytic (or deductive) learning, deduction is used in order to generate conclusions
from the available knowledge that allow a more efficient application of domain knowledge
in new cases. The aim of analytic methods is not to extend the set of available concept
descriptions but to improve the efficiency of the system.

Evolutionary learning is inspired to the theory of Darwinian evolution, where a pop-
ulation of individuals evolve by means of gene transformation in biological reproduction
(cross-over, mutations, etc.) and by survival of the fittest. In learning, the concept descrip-
tions are the individuals and they are combined and modified by means of biological-like
operators in order to obtain new concept descriptions that are then selected according to a
fitness function.

In connectionist learning or learning with neural nets, the learning system is composed by
a number of interconnected elements, usually neuron-like, that perform some simple logical
function, typically a threshold logic function. Each connection between two elements is
assigned a weight that represents the strength of the connection. The neural net will have
some input connections, that come from the external world, and some output connections,
that go towards the external world. The learning is performed by incrementally modifying
the connection weights in order to minimize the error on the set of input-output couples
provided as training examples.

Apart from the strategies of rote learning and learning by instruction, that adopt ad-hoc
learning techniques, a mapping can be established among learning strategies and the above
research paradigms.

Deductive learning can be performed by means of analytic (or deductive) learning tech-
niques. Learning by analogy can be performed by combining techniques of symbolic concept
acquisition and deductive learning or by connectionist learning. Inductive learning from

1This classification is adapted from the one proposed in [Car89] by substituting the term inductive
learning with symbolic concept acquisition

examples or observations can be performed by symbolic concept acquisition, connection-
ist learning or evolutionary learning. However, the task of inductive concept learning can
be performed only by means of symbolic concept acquisition techniques or by evolutionary
learning.

In this thesis we will consider learning systems that adopt the learning strategy of in-
ductive concept learning from examples with the research paradigm of symbolic concept
acquisition.

2.2 Inductive Concept Learning from Examples

In this section, we will give a definition of inductive concept learning from examples. We
will follow the definition provided in [LD94]. Learning is performed on a domain that is
described by the universe of all the objects in the domain, represented by the set U. A
concept C is defined as a subset of the universe: C' C U. To learn a concept C' means to
learn a concept description that allows to recognize if an object belongs to C, i.e. if z € C
for any z € U.

In order to test the membership of an object to a concept, we need a language for
describing objects, a language for describing concepts and a procedure that interprets the
languages and performs the test. When the description of an object satisfies the description
of a concept, we say that the concept description covers the object description. Therefore, in
order to define an inductive concept learning problem, we need to define an object description
language, L,, a concept description language, L., and a procedure for testing the coverage.

We will call fact the description of an object and hypothesis the description of a concept
to be learned. Learning is performed starting from a set of examples that are facts for which
the concept membership is known. Examples are therefore labeled facts, for which the label
represents the concept membership. The set of all the examples is called training set and is
denoted with E.

In single concept learning, the labels are & and © and they indicate whether the object
belongs or does not belong to the concept we want to learn. If an object belongs to a
concept, we also say that it is an instance of the concept. Examples from E labeled & are
called positive ezamples and form the set ET, while examples labeled ©, are called negative
eramples and form the set E~. Sometimes we will consider sets ET and E~ that contain
unlabeled facts: positive examples are distinguished implicitly from negative examples from
their membership to either E* or E~. In this case, we will call examples also the unlabeled
facts from ET and E~.

In multiple concept learning, labels denote positive and negative examples relative to
different concepts and the training set can be divided into subsets of positive and negative
examples each corresponding to a concept.

The problem of inductive learning of a single concept C from examples can be stated as
follows:

Definition 1 (Inductive Concept Learning) Given a set E of positive and negative ex-
amples of a concept C described in a given object description language L,, find a hypothesis
H, expressed in a given concept description language L., such that

e cvery positive ezample eT € E1 is covered by H,

10

e no negative ezample e~ € E~ is covered by H.

In order to test the coverage of a hypothesis H, a function
covers(H,e) (2.1)

can be defined that returns true if the example e is covered by H and returns false otherwise.
The implementation of this function depends on the languages L, and L..
We also define the function covers(H, E) that returns the set of examples in E that are
covered by H
covers(H,E) = {e € E | covers(H,e) = true} (2.2)

In order for H to be a solution of a learning problem, it must cover all positive examples and
none of the negative ones. When a hypothesis H covers all the positive examples, we say
that the hypothesis is complete, while when H does not cover any negative example we say
that it is consistent. By means of the function covers(H, E), the notions of completeness and
consistency can be defined as follows. A hypothesis H is complete if covers(H,E*) = E*
and is consistent if covers(H,E~) = 0.

In many cases, it is useful for a learner to exploit, besides examples, available knowledge
on the domain. The knowledge that is available to the learner “a priori” is called background
knowledge and it is usually expressed in the language L.. By using background knowledge,
a learner can express more naturally and more concisely the hypothesis to be learned, thus
simplifying the learning task. In practice, difficult learning problems require a substantial
amount of background knowledge to be solved effectively. When a background knowledge is
available, the learning problem must be restated. The coverage test has to be modified so
that the background knowledge is taken into account when the membership of an example
to a concept is verified. Let B denote the background knowledge, the coverage functions 2.1
and 2.2 now become

covers(H, B, e) (2.3)
covers(H, B, E)

The definition of the learning problem can now be restated as follows:

Definition 2 (Inductive Concept Learning with Background Knowledge) Given a
set E of positive and negative ezamples of a concept C described in a given object description
language L, and a background knowledge B expressed in the concept description language
L., find a hypothesis H, expressed in a given concept description language L., such that H
is complete and consistent with respect to the examples E.

The definition of consistency and completeness must also be restated to take into account
the background knowledge:

Definition 3 (Completeness) A hypothesis H is complete with respect to background
knowledge B and examples E if all the positive examples in E are covered, i.e., if covers(H, B,
E+) = E*

Definition 4 (Consistency) A hypothesis H is consistent with respect to background knowl-
edge B and examples E if no negative example in E is covered, i.e., if covers(H,B,E~) =0

11

The problem of concept learning can be seen as a problem of search in the space of con-
cept descriptions [Mit82], also called hypothesis space. For non trivial concept description
languages, the search space is extremely large and additional mechanisms are required to
make the search feasible. Any mechanism employed by a learning system to constrain the
search for hypothesis is called bias. When the bias is a modifiable parameter of the system
that the user has to explicitly specify for each learning problem it is called declarative bias.
There are two types of bias: the search bias, that determines the way the hypothesis space
is searched, and the language bias, that determines the hypothesis space itself.

2.3 Representation Languages in Inductive Reasoning

The representation languages that have been used for performing inductive reasoning have
undergone a substantial evolution from Pattern Recognition to early studies in Machine
Learning, to recent works on learning relational concepts. The language has evolved from
concept descriptions that are essentially numeric, to attribute-value languages, to relational
languages, to first-order logical languages. The main reason for this evolution was to increase
the expressivity of the language in order to be able to represent and to learn more and more
complex concepts.

In the research area of Pattern Recognition the language of examples is represented by
the values that a number of variables assume for each object of the domain. Each variable
is usually measured at least on an interval scale. The language of concepts is represented
by analytical expressions involving the numerical variables describing the objects and a
number of numeric parameters that, when instantiated, determine the expression. The
task of inductive learning is, in this case, the fine-tuning of these numeric parameters. An
example [BG95] is the problem of finding the linear discriminant of a set of points in an n-
dimensional space belonging to two classes (or to one class and not to the class). The goal is
to find a linear discriminant of the instances of the two classes, consisting of an hyperplane:
the parameters in the hyperplane equation must be determined in the training phase.

However, in many cases it is not possible or not convenient to use a set of numerical
variables as the representation language [Mic80]. Often, the relevant object characteristics
are not numerical but categorical. In this case, the use of numerical techniques to treat
symbolic features is inefficient and inadequate [BG95]. Moreover, representing symbolic
features numerically makes the resulting description poorly comprehensible to humans. In
order to solve these problems, attribute-value languages are used.

In attribute-value languages objects are described by a fixed set of variables called at-
tributes that can assume values from predefined sets. For example, consider the problem of
deciding whether a Saturday morning is suitable for playing tennis [Mit97] on the basis of
the weather conditions. This problem can be described by means of four attributes Outlook,
Temperature, Humidity and Wind that can assume a value, respectively, in the sets {Sunny,
Overcast, Rain}, {Cold, Medium, Hot}, {Low, High} and { Weak, Strong}. Each Saturday
morning is described by a list of attribute value pairs, for example

Outlook = Sunny, Temperature = Hot, Humidity = Normal, Wind = Strong
or as a tuple of values

(Sunny, Hot, Normal, Strong)

On this particular Saturday morning one would play tennis, therefore this is a positive
example for the concept PlayTennis. In attribute-value languages, concepts are described

12

Sunny Overcast Rain

High Normal Strong Weak
DontPlayTennis PlayTennis DontPlayTennis PlayTennis

Figure 2.1: A decision tree for the concept PlayTennis (Taken from [Mit97])

by means of rules where the antecedent consists of conjunctions or disjunctions of attribute-
value pairs (expressions of the form Attribute = Value) and the consequent is a concept
name. No variables, quantifiers and relations among components of examples are allowed in
the description of concepts. For example, a description of the concept of a Saturday can be
represented as the following rule:

PlayTennis if ~ Outlook=Sunny A Humidity=Normal
V Outlook=Qwvercast
V OQutlook=Rain N Wind=Weak

Concept descriptions in attribute-value languages may also be described by means of decision
trees. Each node of a decision tree corresponds to a test on an attribute and each branch
corresponds to one of the possible values for the attribute. The leaves of the tree are labeled
with one of the concepts to be learned (or with the concept and its opposite in single concept
learning). An instance is classified by starting from the root node of the tree, testing the
attribute on that branch and then moving down the branch corresponding to the value of the
attribute in the given instance. This process is repeated until one of the leaves is reached:
the classification of the instance is given by the label of the leaf. In figure 2.1 it is shown
the decision tree for the concept PlayTennis corresponding to the rule above.

Attribute-value languages are equivalent to propositional logic. Examples of systems
that adopt an attribute-value representation are AQ [Mic73], CN2 [CB89] and c4.5 [Qui93].

Attribute-value languages have two main drawbacks: they have a limited expressive
power and it is difficult to use the available background information with them. The lack of
possibility of expressing relations among components of the examples is particularly impor-
tant when examples are complex objects that can be decomposed into various components
with different relations among them. Therefore, relational languages were introduced that
allow the representation of structured objects in terms of their components and relations
among the components. Such languages are usually equivalent to a subset of first-order
logic.

Some authors [Mic80, BGS88] have adopted a relational frame-like language, where an

13

object is represented by dividing it into components and, for each component, by giving the
list of values for the attributes of that component. Some attributes may be relevant only
for some of the components, therefore the list of attribute-value couples for the components
has a variable length. For example [BG95], an instance of a family including a grandfather
can be expressed as

Name = david, Son = mike, Father = ron
Name = mike, Son = junior, Father = david
Name = junior, Father = mike

Structured objects of this kind could be represented as well with a unique list of attribute-
value pairs, by indexing the attributes with the component name. However, this list would
contain as many attributes as are required by the most complex objects. If the complexity
of objects is uneven, this results in a waste of space and lower comprehensibility for humans.

The concept descriptions allowed by relational languages of this kind may contain quan-
tifiers and variables. For example, the concept of a family including a grandfather can be
expressed as

3X,Y,Z son(X) =Y Ason(Y) =27

Another language where relations can be expressed is Logic Programming [L1o87]. The
research area that studies learning system adopting Logic Programming as a representation
language is called Inductive Logic Programming (ILP henceforth). Logic Programming has
three advantages with respect to the relational languages of the previous form [BG95]. First
of all, it allows recursion in the definition of concepts, thus making possible to express a wider
class of concepts. Second, the notation of logic programming is simpler, more standardized
and interpreters for it are based on sound and well-understood theoretical grounds. This
has brought a clarification and a more rigorous formalization in learning. Third, logic
programming is also a programming language, therefore the definitions that are learned can
also be interpreted as executable programs, thus providing an approach for the automated
development of programs.

In Logic Programming, examples are described as ground literals, i.e., predicates applied
to constant arguments, while the knowledge about the relations among the components and
their attributes is expressed in the background knowledge. The previous example of a family
with a grandfather, is now expressed as the fact

grandfather (david, mike) <
together with a number of facts in the background knowledge

father(ron, david) +

father(david, mike) +

father(mike, junior) «

Moreover, some background knowledge may be available that can be used by the learning
system. For example, we may know that

child(X,Y) « father(Y, X)

The concept will be represented by a predicate and the concept description will be a logic
program. For the grandfather example, it is possible to distinguish three different definitions
of grandfather [BG95]

grandfather < father(X, Z), father(Z,Y)

grandfather (X) < father(X, Z), father(Z,Y)

14

grandfather (X,Y) « father(X, Z), father(Z,Y)
The first definition identifies the classes of families containing at least one grandfather, the
second defines the requirements for being a grandfather and the last states the conditions
that a specific person X must satisfy in order to be the grandfather of Y. With previous
relational learning languages these concepts were hard to distinguish and have sometimes
been confused: this example shows the clarification issue that has been addressed by Logic
Programming. As regards the issue of increased expressivity thanks to recursion, Logic
Programming allows definition of concepts of the form

ancestor(X,Y) < parent(X, Z), ancestor(Z,Y)
that were not allowed by none of the previous approaches in Machine Learning.

In the next chapter the concept and techniques from the research field of ILP will be
presented in details.

15

16

Chapter 3

Inductive Logic Programming

Inductive Logic Programming (ILP) is the research field that studies the problem of induc-
tive concept learning from examples when the representation language employed is Logic
Programming. This chapter introduces the terminology of logic and Logic Programming
and provides an overview of the problems and techniques that have been studied in the field
of Inductive Logic Programming.

Two main formalizations of the learning problem have been given: learning from entail-
ment and learning from interpretations [DR97]. The two settings differ in the definition of
the coverage relation and in the form of examples: in learning from entailment examples are
ground facts, while in learning from interpretations examples are Herbrand interpretations,
i.e., sets of ground facts.

Learning from entailment is the most widely used problem setting and will be treated in
more details in section 3.2. The problem of learning from interpretations will be described
in section 3.3.

3.1 Logic Programming Preliminaries

In this section, we will give some basic notions on first order logic languages and Logic
Programming (adapted from [L1087] and [Fla95]) that will be used throughout the thesis.

A first order logic language L is defined by an alphabet that consists of seven sets
of symbols: variables, constants, functions symbols, predicate symbols, logical connectives,
quantifiers and punctuation symbols. The first four classes differ from language to language,
while the last three are the same for all the languages. The connectives are ~ (negation),
A (conjunction), V (disjunction), < (implication), <+ (equivalence); the quantifiers are the
existential quantifier 3 and the universal quantifier ¥, and the punctuation symbols are “(”,
“)777 and “’77'

Well-formed formulas (wfl’s) of the language are the syntactically correct clauses of
the language and are inductively defined by combining elementary formulas, called atomic
formulas, by means of logical connectives and quantifiers. On their turn, atomic formulas
are obtained by applying the predicates symbols to elementary terms.

A term is defined recursively as follows: a variable is a term, a constant is a term, if f
is a function symbol with arity n and t4,...,t, are terms, then f(¢1,...,¢,) is a term. An

17

atomic formula or atom is the application of a predicate symbol p with arity n to n terms:

p(tl, ey tn)
A well-formed formula is defined recursively as follows:

e every atom is a wif;

e if A and B are wil’s, then also ~ A, AANB, AV B, A< B, A <+ B are wil’s (possibly
enclosed in balanced brackets);

e if A is wif and X is a variable, VX A and 3X A are wif.

The scope of a quantifier VX (resp. 3X) in VX F (resp. 3X F) is F. An occourence of
a variable in a quantifier is bound if it immediately follows a quantifier, or if it occours in
the scope of a quantifier with the same variable. Any other occourence of a variable in a
formula is free. A closed formula is a formula without free occourences of any variables,
otherwise the formula is open. For any formula, V(F') denotes the universal closure of F,
which is the closed formula obtained by adding a universal quantifier for each variable with
a free occourence in F'. A variant ¢' of a formula ¢ is obtained by renaming all its variables.

The class of formulae called clauses has important properties. A clause is a formula of
the form

VXiVXs .. VX (A1 V...VANV ~ B V...V~ By)

where each A;, B; are atoms and X1, Xo,..., X, are all the variables occouring in (4; V...V
A,V ~ By V...V~ B,,). The clause above can also be represented as follows:

Al;...;An(—Bl,...,Bm

The part preceeding the symbol < is called the head of the clause, while the part following
it is called the body. An atom or the negation of an atom is called a literal. A positive
literal is an atom, a negative literal is the negation of an atom. Sometimes clauses will be
represented by means of a set of literals:

{41,...,Ap,~ B1,...,~ By}

A clause is a denial if it has no positive literal, definite if it has one positive literal, and
indefinite if it has more than one positive literal. A Horn clause is either a definite clause or
a denial. A fact is a definite clause without negative literals, sometimes the < symbol will
be omitted for facts. A clause C' is range-restricted if and only if the variables appearing in
the head are a subset of those in the body. A normal clause is a clause of the form

A(—Bl,...,Bi,TLOt Bi+17---7Bm

where not denotes a kind of negation that is different with respect to ~. A definite logic pro-
gram is a set (conjunction) of definite clauses. A normal logic program is a set (conjunction)
of definite and normal clauses.

The following notation for the symbols will be adopted: predicates, functions and con-
stants start with a lowercase letter, while variable symbols start with an uppercase letter (as
in the Prolog programming language, see below). A functor is a function symbol occouring
in a clause. A substitution 8 = {X1/t1,...,Xy/tr} is a function mapping variables to terms.

18

The application C0 of a substitution € to a clause C' means replacing all the occourences of
each variable X; in C' by same term ¢;.

A ground clause (term) is a clause (term) without variables. The Herbrand universe H
of a language or a program is the set of all the ground terms that can be obtained combining
the symbols in the language or program. The Herbrand base B of a language or a program
is the set of ground atoms. Sometimes they will be indicated with H(P) and B(P) where
P is the program.

The semantics of a set of formulas can be defined in terms of interpretations and mod-
els.We will here consider the special case of Herbrand interpretations and Herbrand models
that are sufficient for giving a semantics to sets of clauses, both definite and indefinite. For
a definition of interpretations and models in the general case see [L1087]. A Herbrand inter-
pretation I is a subset of the Herbrand base, i.e., I C B. Given a Herbrand interpretation,
it is possible to assign a truth-value to a formula according to the following rules. A ground
atom p(ty1,ts,...,t,) is true under the interpretation I if and only if p(t1,t2,...,t,) € I. A
conjunction of atomic formulas By,..., B, is true in [if and only if By,...,B,, C I. A
ground clause {A1,...,A,,~ Bi,...,~ By} is true in an interpretation I if and only if at
least one of the atoms of the head is true in the case in which the body is true. A clause
C' is true in an interpretation I if and only if all its ground instances with terms from H
are true in /. A set of clauses X is true in an interpretation I if and only if all the clauses
C € ¥ are true.

An interpretation I satisfies a set of clauses ¥, notation I |= X, if ¥ is true in I; we also
say that I is a model of X.. A set of clause is satisfiable if it is satisfied by some interpretation,
unsatisfiable otherwise. If all models of a set of clauses X are also models of a clause C, we
say that ¥ logically entails C or C is a logical consequence of X, and we write ¥ |= C1.

Herbrand interpretations and models are sufficient for giving a semantics to sets of clauses
in the following sense: a set of clauses is unsatisfiable if and only if it does not have a
Herbrand model. For sets of definite clauses Herbrand models are particularly important
because they have the relevant property that the intersection of a set of Herbrand models
for a set of definite clauses P is still an Herbrand model of P. The intersection of all the
Herbrand models of P is called the minimal Herbrand model of P and is represented with
lhm(P). The least Herbrand model of P always exists and is unique. The model-theoretic
semantics of a program P is the set of all ground atoms that are logical consequences of P.
The least Herbrand model provides the model theoretic semantics for P: P |= A if and only
if A € lhm(P) where A is a ground atom.

A proof procedure consists of a set of (logical) axioms and a set of inference rules. Given
a proof procedure w, we say that ¢ is provable from the set of formulas ¥ and write X -, ¢
if there exist a finite sequence of formulas ¢1, ¢2,..., ¢, which is obtained by successive
applications of inference rules to axioms, formulas in X, or previous formulas in the sequence,
or combinations of these, while ¢,, is the conclusion ¢. Such a sequence of formulas, if it
exists, is called a proof of ¢ from Y. A proof procedure 7 is sound, with respect to the
model-theoretic semantics, if ¥ = ¢ whenever X . ¢; it is complete if ¥ F, ¢ whenever
Y Eo¢.

A proof procedure for clausal logic is resolution [Rob65]. In this proof procedure the

1We use the same symbol for the entailment relation and for the satisfaction relation between inter-
pretations and formulas in order to follow the standard logic practice. In cases where this may cause
misunderstanding, the intended meaning will be indicated in words.

19

set of axioms is empty since there is no interaction between logical connectives due to the
normal form in which clauses are written. The set of inference rules contains only one rule,
resolution, which allows one to infer, from two clauses F1 V Ly and F»V ~ Lo, the clause
(F1 V F»)0, where 6 is the most general unifier of L1 and Ly (the minimal substitution such
that L160 = Lo6). For definite clauses, this consists in matching the head of one clause
with a literal in the body of another. The resolution proof procedure is not complete but
is refutation-complete, i.e. if a set of clauses is inconsistent, resolution is able to derive the
unsatisfiable empty clause O [Fla95]. Therefore, proofs of ¥ F ¢ where ¢ is a conjunction
of positive literals, are transformed into refutation proofs ¥ U {~ ¢} O, where ~ ¢ is a
denial called a query and written 7 — By, ..., By,.

Logic Programming is obtained by considering Horn clauses only and by adopting a
particular version of resolution (called SLD resolution [Kow74]) that is efficient for Horn
clauses. In SLD resolution the initial formula is the negated goal ¢; =~ ¢ and, at each step,
the new formula ¢;; is obtained by resolving the previous formula ¢; with a variant of a
clause from the initial set X. SLD resolution was proven to be sound and complete for Horn
clauses (the proofs can be found in [L1087]).

A particular Logic Programming language is defined by choosing a rule for the selection
of the literals in the current formula to be reduced at each step (computation rule) and by
choosing a search strategy, that can be either depth first or breadth first. In the Prolog
[CKRP73] programming language the computation rule selects the left-most literal in the
current goal and the search strategy is depth first with chronological backtracking. Moreover,
Prolog adopts an extension of SLD resolution called SLDNF' resolution that is able to deal
with normal clauses by negation as failure [Cla78].

3.2 Learning from Entailment

In learning from entailment, the training set F is expressed as a set of ground facts, the
background knowledge and the hypothesis are definite programs and the coverage relation
is defined as follows [LD94]:

Definition 5 (Learning from Entailment - Coverage) Given a background knowledge
B, a hypothesis H and an example set E, the hypothesis H covers example e € E with
respect to background knowledge B if BU H = e, i.e.

covers(B,H,e) =true if BUH = e
As a consequence, the function covers(H, B, E) can be defined as
covers(B,H,E) ={e€ E | BUH |=e}

We say that a hypothesis H is complete if covers(B, H,ET) = ET and that is consistent if
covers(B,H,E~) = {.

The framework of learning from entailment has been also called normal setting [MDR94]
or ezplanatory setting [DRD96a] for learning because examples have to be explained by the
learned theory.

The task of learning from entailment can then be defined as follows [BG95].

20

Definition 6 (Learning from Entailment Problem)
Given:

e a set P of possible programs (language bias)

e a set ET of positive ezamples (ground facts)

e a set E~ of negative examples (ground facts)

e a logic program B (background knowledge).
Find:

e a logic program P € P such that:

e Vet € EY, BUP [= et (completeness)

e Ve € E-, BUP [~ e (consistency)

The program P is called target program. Depending on whether the training set contains
facts for one or more predicate, the target program will contain a definition for one or more
predicates and we speak, respectively, of single predicate learning or multiple predicate learn-
ing. Learning multiple predicates poses a number of problems that are discussed in section
4.5.1. The hypothesis space P is defined by the language bias and has to be restricted as
much as possible in order to contain the computational complexity of the learning task. Var-
ious forms of restriction have been used in ILP, some of them are hardwired into the system
while some other can be user-defined (declarative-bias). Examples of hardwired restrictions
are: function-free programs (FOIL [Qui90a]) or determinacy (GOLEM [MF90]). Examples
of user-defined restrictions are: types and symmetry of predicates in pairs of arguments
[LDGY1al, input/output modes [Sha83], program schemata or rule models [Wro88, Mor91],
clause sets [BG95], parametrized languages [DR92], integrity constraints [DRBM91] and
determinations [Rus89].

In the following, we will consider only a very simple bias in the form of a set of literals
which are allowed in the body of the clauses for the target predicates, which corresponds to
a simplified version of the clause sets adopted in [BG95].

Let us now consider a simple example.

Example 7 Suppose we want to learn the concept grandfather from the background knowl-
edge:

father(X,Y) « parent(X,Y), male(X)

parent(john, mary)

parent(ann, mary)

parent(mary, steve)

male(john)

female(mary)

and the training sets:

Et = {grandfather(john, steve)}
E~ = {grandfather (ann, steve), grandfather (john, mary)}

21

Suppose also that the hypothesis space P is described in this way:
P is the set of clauses of the type grandfather(X,Y) < o where a is a congunction of literals
chosen among the following:

father(X,Y), father(X, Z), father(Z,Y),
parent(X,Y), parent(X, Z), parent(Z,Y),
male(X), male(Y), male(Z),

female(X), female(Y), female(Z)

The following program P is a solution to this ILP problem because it covers the positive
examples and does not cover any of the negative ones:

grandfather (X,Y) < father(X, Z),parent(Z,Y)

Operationally, the entailment relation is usually tested by means of SLD-resolution,
either depth-bounded or unbounded. In depth-bounded SLD-resolution, a limit is placed
on the derivation depth in order to avoid loops, as for example in MIS [Sha83] and CIGOL
[MB92].

The notion of coverage defined above is called intensional coverage because the back-
ground knowledge B is intensional and can contain both ground facts and non-ground
clauses. However, many ILP systems use a different notion of coverage, namely exten-
stonal coverage, where the background knowledge B is extensional, i.e., it is a set of ground
facts only. Examples of systems employing extensional coverage are FOIL [Qui90a], ICN
[MV95b], MULT_ICN [MV95a], FOCL [PK92], MIS [Sha83] (with the lazy strategy) and
GOLEM [MF90].

In the case in which B is intensional, extensional ILP systems have first to transform
it into a ground model M of B. In section 3.4.1 a technique is described for ensuring that
M is finite. Given the model M of the background knowledge B, extensional ILP systems
employ the coverage relation that is defined below [DRLD93].

Definition 8 (Learning from Entailment - Extensional Coverage) A hypothesis H
extensionally covers an erxample e € E with respect to a ground model M of the back-
ground knowledge if there exists a clause C € H, C =T < Q, and a substitution 0, such
that TO = e and Q8 = {L1,...,Lyp}0 C M. In this case the following notation is used:
coverseyt (M, H,e) = true.

Operationally, in order to test recursive definitions, the model M must represent not only the
background knowledge but also the predicates we want to learn, also called target predicates.
As the definition for the target predicates is unknown at the time of learning, the model of
B U H is approximated by computing the model of B U ET. Atoms in the training set can
then be used for the resolution of recursive literals in the body of clauses.

It is important to note that extensional coverage is not equivalent to intensional coverage
due to the approximations introduced: the use of a h-easy model of B and the use of positive
examples for representing the definitions of target predicates. In particular, for definite logic
programs, we can have the following cases [DRLD93]: (i) extensional consistency, intensional
inconsistency; (ii) intensional completeness, extensional incompleteness; (iii) extensional
completeness, intensional incompleteness. Let us illustrate each of these cases with an
example.

We have the case of extensional consistency, intensional inconsistency when a hypothesis
consistent if tested extensionally but inconsistent if tested intensionally.

22

Example 9 (Extensional consistency, intensional inconsistency) Consider the prob-
lem of learning the concept father and male_ancestor from a background knowledge contain-
ing the following facts about parent, male and female:

B = {parent(a,b), parent(b, d), parent(c, b), male(a), female(c)}
The training set is specified as follows:

Et = {male_ancestor(a, b), male_ancestor(a,d), father(a,b)}

E~ = {male_ancestor(c,b), male_ancestor(c, d), father(b,a)}
In this case, the following hypothesis is extensionally comsistent but not intensionally con-
sistent:

father(X,Y) < parent(X,Y)

male_ancestor(X,Y) < father(X,Y)

male_ancestor(X,Y) < male_ancestor(X, Z), parent(Z,Y)
because negative example male_ancestor(c,b) (with female(c) and parent(c,b) in the back-
ground) will be covered.

We have the case of intensional completeness, extensional incompleteness when a hypothesis
intensionally covers all the positive examples but not extensionally because some example
needed for covering other examples is missing from the training set.

Example 10 (Intensional completeness, extensional incompleteness) Suppose the
background knowledge and training set are given:

B = {parent(john, steve), parent(bill, john), parent(john, mike),

parent(mike, sue)}

Et = {ancestor(john, steve), ancestor (bill, steve), ancestor(john, sue)}
The theory:

ancestor(X,Y) < parent(X,Y)

ancestor(X,Y) < ancestor(X, Z), parent(Z,Y)
is intensionally complete but extensionally incomplete because it does not cover the example
ancestor(john, sue) since the positive example ancestor(john, mike) is missing.

The case of extensional completeness, intensional incompleteness occurs when we learn a
program with an infinite recursive chain.

Example 11 (Extensional completeness, intensional incompleteness) Consider the
training set:

Et ={even(0),0dd(1)}
and the background predicate succ(X,Y) that expresses that 'Y is the successor of X. The
program:

even(X) < succ(X,Y),0dd(Y)

odd(X) « succ(Y, X), even(Y)
s extensionally complete but intensionally incomplete, because the intensional derivation of
even(0) would lead to a loop.

3.2.1 Soundness and Completeness

In this section, we define the properties of soundness and completeness for a learning algo-
rithm with respect to the problem definition above 6. We adopt the notion of an inductive
inference machine (IIM) that is a formalization of the concept of a learning system. If M is

23

an IIM, we write M (P, ET, E~) = P to indicate that, given a hypothesis space P, positive
and negative examples E* and E—, and a background knowledge B, the machine outputs a
program P. We write M (P, E*,E~) = L when M fails in finding a solution, either because
it does not terminate or because it stops without having found any program satisfying the
problem conditions. A system is able to solve the ILP problem when it is produces only
programs that are complete and consistent and it finds such a program when it exists. A
system satisfying the first requirement is called sound, while a system satisfying the second
requirement is called complete. Formally, we have the following definitions.

Definition 12 An IIM is sound iff, if M(P,ET,E~) = P, then P € P and P is complete
and consistent with respect to ET and E~.

Definition 13 An IIM is complete iff, if M (P, EY, E~) = L, then there is no P € P that
is complete and consistent with respect to ET and E~.

It is important to note the difference between the notions of completeness of a program with
respect to the examples and the background knowledge and the completeness of an IIM. A
complete program is one that entails all positive examples, while a complete IIM is an IIM
that is able to find a complete and consistent program when there exist such a program in

P.

3.2.2 Classification of Systems

ILP systems adopting learning from entailment can be classified according to a number of
criteria [LD94]. First, they can be divided into batch learners that require all the training
examples to be given before the learning starts or incremental learners that accept examples
one by one. Second, we have interactive and non-interactive learners depending on whether
they rely or not on an oracle to verify the validity of generalizations and/or classify examples
generated by the learner. Third, some systems learn a concept from scratch while others
start from an initial definition of the concept and revise it. The latter class of systems are
called theory revisors. Finally, some systems are able to learn the definition of just one
predicate while others may learn the definition of multiple predicates.

While in principle these dimensions are orthogonal and systems can be build exhibiting
any possible combination of the above features, in practice existing ILP systems are situated
at two extremes of the spectrum. On one side we have batch, non-interactive systems that
learn the definition of one concept from scratch, on the other side we have incremental,
interactive systems that learn the definition of multiple concepts by revising an initial hy-
pothesis. Systems of the first type are called empirical ILP systems while systems of the
second type are called interactive ILP systems or incremental ILP systems [DR92].

Examples of empirical ILP systems are FOIL [Qui90a], Progol [Mug95b], mFOIL [Dze91,
DB92], GOLEM [MF90], LINUS [LDG91b] and TRACY [BG94b]. Examples of interactive
ILP systems are MIS [Sha83], MARVIN [SB&6], CLINT [DRB89, DRB92b], CIGOL [MB92],
and FILP [BG93].

3.2.3 Imperfect Data

Real world data is often imperfect, i.e., the examples and/or the background knowledge may
contain various kinds of errors, either random or sistematic, or may not be complete. In such

24

cases, the requirements imposed by the definition of the ILP problem that all the positive
examples and none of the negative are covered, may be relaxed, in order to allow the system
to look for true regularities in the data and to discard specific cases due to chance or error.

In [LD92] the authors distinguish various types of imperfections of the data when learning
definitions of relations:

e noise, i.e., random errors in the training examples and background knowledge;
e insufficiently covered example space, i.e., too sparse training set;

e inexactness, i.e, inappropriate or insufficient hypothesis space which does not contain
an exact description of the target concept;

e missing values in the training examples.

Another type of imperfection must be added to these types: missing information from the
background knowledge. A ground fact from the background knowledge usually express
information about a specific example, if the knowledge about that example could not be
completely acquired, some of the facts relative to them may be missing. We call this type
of imperfections incompleteness of the background and we will consider it in chapter 4.

3.2.4 Hypothesis Space Ordering

In [Mit82] it is shown that concept learning can be seen as a search problem where the
states of the search space are the possible concept descriptions. In order to search the
space of concept descriptions sistematically, it is necessary to structure it by introducing a
partial order. Typically, this partial order is given by a generality relation. Intuitively, a
concept description C; is more general than a concept description C5, usually represented
as C7 < Oy, if the set of objects covered by C> is a strict subset of those covered by C;.

Most ILP systems build a target program by repeatedly searching the space of possible
clauses instead of the space of programs. Therefore, a generality ordering for the space of
possible clauses will be defined.

The generality relation for program clauses can be defined in the following way: a clause
C1 is more general or equally general than a clause C3 with respect to the background
knowledge B if BU {C1} |= {C2} because, in this case, all the examples covered by C; will
be covered as well by C;. In practice, however, a syntactic relation called 8-subsumption
[Plo70] is used in place of entailment in the definition of generality for two reasons: first,
f-subsumption can be verified by a simple and fast algorithm, while entailment is non-
decidable, and, second, it introduces a lattice in the space of clauses, which provides an
important generalization operator, as will be shown below. In the following definition,
clauses are represented as sets of literals.

Definition 14 (f-subsumption) Clause C; f-subsumes Cy if there exist a substitution
0 such that C10 C Cy [Plo70]. Two clauses Ci and Cy are f-subsumption equivalent if
C; O-subsumes Cs and Cy #-subsumes C;. A clause is reduced if it is not 0-subsumption
equivalent to any proper subset of itself.

We now give some examples to illustrate the notion of §-subsumption.

25

Example 15 Consider the following clause C
Cy = grandfather(X,Y) < father(X, Z)
Clause C 0-subsumes the clause
Cy = grandfather(X,Y) < father(X, Z), parent(Z,Y)
with the empty substitution @ = 0. Clause C1 also f-subsumes the clause
Cs = grandfather(john, steve) < father(john, mary)
with the substitution @ = {X/john,Y/steve, Z/mary}. Clause Cy 6-subsumes the clause
C4 = grandfather(john, steve) < father(john, mary), parent(mary, steve)

with the substitution 8 = {X/john,Y/steve, Z/mary}.
The following clause, instead,

Cs = grandfather (X,Y) < father(X, Z), father (W, V)
is B-subsumption equivalent to C1. Therefore, clause Cy is reduced, while Cy is not.

f-subsumption has the important property that if C; #-subsumes C5, then C; |= C2. This is
the reason why it can be used to approximate entailment. On the other hand, the converse
property is not always true, as it is shown by this examples proposed by Flach [Fla92].

Example 16 Consider the following two clauses

Cy = list([V|W]) « list(W)
Cy = list([X, Y| 2]) + list(Z)

Clearly, C1 = Cs, as can be shown by resolving Cy against itself. However, there is no
substitution 6 such that C160 C C2, since it should map W to both Z and [Y|Z]. Therefore
C1 does not 0-subsumes Cs.

Thus generality can be re-defined in terms of §-subsumption. Clause C; is more general or
equally general as clause Cy (C; =< C3) if €y #-subsumes C5. Clause C; is more general
than Cy (Cy1 < C2) if C; = Cs holds and Cy < C; does not [LD94]. If C; < C2 we say that
Cs is a specialization of C or that C; is a generalization of Cs.

f-subsumption has another important property: the generality relation <y it induces,
introduces a lattice in the set of reduced clauses. This means that any two clauses have
a least upper bound (lub) and a greatest lower bound (glb). Both the {ub and the glb are
unique up to renaming of the variables.

This property leads to the definition of the following notion.

Definition 17 (Least General Generalization) The least general generalization of two
reduced clauses Cy and C2, denoted by lgg(Cy,C2), is the least upper bound of Cy and Cs
in the 0-subsumption lattice [Plo70].

26

The algorithm for computing the lgg of two clauses was given in [Plo70]. In order to compute
the lgg of two clauses, we have to compute the [gg of two terms and of two literals.

The lgg of two terms fi(s1,...,5,) and fa(t1,...,t,) is defined as fi(lgg(s1,t1),-..,
lgg(sn,tyn)) if f1 = fo and is a new variable V if f; # fo. The variable V is used to represent
the lgg of f(s1,--.,8n),9(t1,...,t,) and it must be used for all the occurrences of the lgg
of the same subterm. The following are examples of [gg of terms:

lgg(f(a,b,¢), f(a,c,d)) = f(a,X,Y)
lgg(f(a,a), f(b,b)) = f(lgg(a,b),lgg(a,b)) = f(X,X)

Note that the same variable X is used in both arguments in the second example because it
stands for [gg of the same two terms a and b.

The lgg of two literals L; = (~)p(s1,...,8n) and Ly = (~)q(t1,...,t,) is undefined if
L, and L» do not have the same predicate symbol and sign; otherwise is defined as

lgg(Ly, L2) = (~)p(lgg(s1,t1), .- 1g9g(sn, tn))
The following are examples of lgg of literals:

lgg(parent(john, mary), parent(john, steve)) = parent(john, X)
lgg(parent(john, mary), ~ parent(john, steve)) = unde fined
lgg(parent(john, mary), father(john, steve)) = undefined

The lgg of two clauses C; = {L1,...,L,} and C2 = {K1,..., K} is defined as:
lgg(C’l,C’g) = {lgg(Li,Kj) | L; € Ch, K; e Cs and lgg(Li,Kj) is deﬁned}
For example, consider the clauses:

Cy = father(john,mary) < parent(john, mary), male(john)
Cs = father(david, steve) « parent(david, steve), male(david)

The lgg of these clauses is:
lgg(Cr, C3) = father(X,Y) < parent(X,Y), male(X)
As another example, consider the lgg of the following two clauses [BG95]:

Cy = win(confl) < occ(placel, z, conf1), occ(place2, o, conf!)
Cy = win(conf?2) < occ(placel, z, conf?2), occ(place2, z, conf2)

that represents two winning configuration in a two-person game with two places that can
be occupied by an z or an o. The lgg of the two clauses is

lgg(Cy,C3) = win(Conf) < occ(placel, z, Conf), occ(L, z, Conf),
occ(M,Y, Conf), occ(place2,Y, Conf)

This clause is not reduced, some literals are redundant and can be eliminated obtaining the
following reduced clause:

lgg(Cy,C3) = win(Conf) < occ(placel, z, Conf), occ(place2,Y, Conf)

27

expressing that a configuration is winning if it contains z in the first place and anything in
the second.

The length of the lgg of two clauses C; and C3 can be at most |Cy| x |C2|, therefore
the repeated application of this operator can produce clauses with an exponential length.
However, clauses produced by lgg often contain irrelevant literals and should be reduced
in order to get more compact and/or efficient theories. Plotkin proposed an algorithm for
reducing clauses which unfortunately is NP-complete.

There are two broad categories of ILP methods which adopt #-subsumption to obtain
learning from entailment: bottom-up methods that search the space of clauses from specific
to general, and top-down methods, that search the space of clauses from general to specific.

3.2.5 Bottom-up methods

In bottom-up methods, clauses are generated by starting with the most specific clause that
covers one or more positive examples and no negative example, and by iteratively applying
generalization operators to the clause until it cannot be further generalized without covering
negative examples. Bottom-up methods are best suited for interactive and incremental
learning from few examples.

Examples of bottom-up techniques are: Relative Least General Generalization (RLGG)
[Plo70], Inverse Resolution [MB92] and Inverse Implication [LM92]. In the following, Rela-
tive Least General Generalization will be presented.

Relative Least General Generalization

The notion of least general generalization [Plo70] provides a generalization operator. How-
ever, this operator can not be used directly in practical systems since it does not take into
account the background knowledge, therefore Plotkin introduced the notion of relative least
general generalization. This generalization operator is used, for instance, in GOLEM (see
section 3.4.1).

When the background knowledge consists of ground facts, the relative least general
generalization (rlgg) of two clauses Cy = H; < B; and Cy; = H < B can be defined
as

rigg(Cr, C2) = lgg((Hy ¢ By, K), (H> + Bz, K))

where K represents the conjunction of all the background facts.
Thus the problem of computing the rlgg of two clauses can be reduced to the problem
of computing the [gg of two clauses, for which an algorithm was given by Plotkin [Plo70].
In the following, two examples of rlgg of two clauses are given.

Example 18 Consider the two positive examples ey = father(john, mary) and
e2 = father(david, steve) and consider a background knowledge B consisting of the conjunc-
tion of the following facts

parent(john, mary), parent(ann, mary), parent(mary, steve),
parent(david, steve), male(john), female(mary),

The rlgg of the two example e; and ey (that can be interpreted as the clauses ey < and
€2+) is

28

father(X,Y) « parent(X,Y), male(X)
Example 19 [BG95] Consider the following two clauses:

Cy = uncle(X,Y) « brother(X, father(Y))
Cy = uncle(X,Y) « brother(X, mother(Y))

and a background knowledge containing the two facts

parent(father(X), X)
parent(mother(X), X)

The rlgg of the two clauses with respect to the available background is:
rlgg(C1,C2) = uncle(X,Y) « brother(X, Z), parent(Z,Y)

If we had computed the lgg of the two clauses without taking into account the background
knowledge, we would have obtained the clause:

lgg(C1,C2) = uncle(X,Y) « brother(X, Z)

which is not very representative of the uncle relation.

3.2.6 Top-down Methods

Top-down methods search the space of clauses from general to specific. They employ a
refinement operator that is based on #-subsumption.

Definition 20 (Refinement Operator) Given a space of possible clauses C (defined by
the language bias), a refinement operator p maps a clause C into the set of clauses p(C)
that are specializations (refinements) of C':

p(C)={C"|C" ecC, C <C"}

Typically a refinement operator generates only the minimal (most general) refinements of a
clause. A refinement operator applies two basic syntactic operations to a clause:

e apply a substitution to a clause, and
e add a literal to the body of a clause.
Top-down methods share a basic algorithm that is given as follows (adapted from [LD94]):

algorithm LearnTopDown(
inputs : FE : training set,
B : background theory,
outputs : H : learned theory)
Initialize H :=)
Initialize E.,, := F
repeat (Covering loop)
GenerateClause(E.;., B; C)
Add C to H to obtain the new hypothesis H' := HUC

29

Remove positive examples covered by C from E,,, to get
E!.. = Ecur — covers(B, H, E.,y,)
Assign E.,. :=E.,,., H:=H'
until Sufficiency stopping criterion is satisfied
procedure GenerateClause(
inputs : F : training set,
B : background theory,
outputs : C : clause)
Select a predicate p that must be learned
Initialize C to be p(X) + .
repeat (Specialization loop)
Find the refinement Chest € p(C)
according to some heuristic function
Assign C := Chest
until Necessity stopping criterion is satisfied
return C

FOIL [Qui90b], mFOIL [Dze91] and Progol [Mug95a] are examples of systems based on this
algorithm.

The algorithm starts with an empty hypothesis H and a current set of example E..,.
that is initially set to the entire training set. The algorithm is composed of two repeat loops,
referred to as covering and specialization loop.

At each iteration of the covering loop a clause is generated, it is added to the theory and
the positive examples covered by it are removed from the training set. The loop terminates
when the sufficiency stopping criterion is met, which typically happens when no more positive
examples are left in the training set.

Each clause is generated by the specialization loop. The loop starts with a clause of
the form T < and successively refines it by means of the p refinement operator. Given a
clause C = T + @, p builds the set of its refinements p(C) = {C' | C < C'} by adding a
literal to the body of C. Therefore, every refinement C' has the form C' =T + @, L. One
of two search strategies are usually employed: hill-climbing (as in the algorithm above) or
beam-search. In hill-climbing the algorithm stores the clause that is best according to some
heuristic function and replaces it with the best refinement at each specialization step, until
the necessity stopping criterion is satisfied. In beam-search, a set of clauses is kept instead
of one and the best one of them is chosen for refinement at each step.

The two repeat loops are controlled by two stopping criteria:

e a necessity stopping criterion, that decides when to stop the addition of a clause to a
theory in the covering loop,

e a sufficiency stopping criterion, that decides when to stop adding literals to a clause.

The stopping criteria differ in case of domains where the information is perfect and domains
where the information is noisy. In domains with perfect data, the necessity stopping criterion
requires consistency, i.e., no negative examples must be covered by the clause, while the
sufficiency criterion requires completeness, i.e., all the positive examples must be covered. In
domains with noisy data, heuristic stopping criteria are employed that relax the consistency
and completeness requirements.

30

Heuristics

Different heuristics can be used for clause evaluation. They can be basically divided into two
families, those based on the expected accuracy of a clause and those based on informativity.
The expected accuracy of a clause C' is defined as

A(C) = p(8]C)

where p(®|C) is the probability that an example covered by C is positive. Informativity is
defined as
I(C) = —log, p(8|C)

that represents the information needed to signal that an example randomly chosen among
those covered by C is positive.

In some systems, clauses are evaluated on the basis of the gain produced by the addi-
tion of a literal: we have accuracy gain AG(C,C") = A(C") — A(C) and information gain
IG(C,C") = I(C) —I(C"). Since these heuristics may favour very specific clauses with high
gain, weights are introduced in these equations in order to take into account the number
of examples covered by each clause. If n®(C) and n®(C') are, respectively, the number of
positive examples covered by C' and C’, the weight is given by n®(C)/n®(C"). Therefore we
have weighted accuracy gain WAG(C,C') = (n®(C)/n®(C")) x (A(C")—A(C)) and weighted
information gain WIG(C,C") = (n®(C)/n®(C")) x (I(C) — I(C")). All the heuristic func-
tions previously described are based on the probability p(#|C) that an example covered by
clause C is positive. This probability can be estimated from the current training set ., by
using various estimating functions the simplest of which is the relative frequency of covered
positive examples n®(C) with respect to all the examples n(C) covered by the clause C:

p(®|C) = ”:1(6?;). More appropriate probability estimates are the Laplace estimate and the
m-estimate that will be discussed in section 3.4.3.

Example 21 In the following, we show the behaviour of the top-down algorithm in the case
of example 7. The heuristic function adopted is expected accuracy using the relative frequency
as the probability estimate and the stopping criteria are completeness and consistency.

The algorithm starts by initializing E,y, to

{grandfather (john, steve)®, grandfather (ann, steve)®, grandfather (john, mary)®}

and H to (). Then the covering loop is entered and the procedure GenerateClause is called.
The clause C is initialized to grandfather(X,Y) « and the specialization loop is started.
The refinement operator p(C) that is employed takes the clause C' and adds (by set union)
one of the following literals to C?:

father(X,Y), father (X, Z), father(Z,Y),
parent(X,Y), parent(X, Z), parent(Z,Y)

This operator determines the search space, that is shown in figure 3.1.
In the first iteration of the specialization loop, the refinements shown at the first level of
the search tree are generated. Among those, the clause

C, = grandfather(X,Y) < father(X, Z)

2 A simpler language bias with respect to example 7 is considered for simplicity.

31

gf (XY)«

X Y)«father(X,Y). f(X, Y)«father(Z,Y). (X, Y)<parent(X,Y). gf(X,Y)«<parent(X,Z). (X, Y)«parent(Z,Y).

X, V) father(X,Z).

/(X Y)«father(X,Z), gf(X,Y)«father(X,Z), gf(X,Y)«father(X,Z), gf(X,Y)«father(X,Z), gf(X,Y)«father(X,Z),
Jfather(X.Y) Jfather(Z,Y) parent(X,Y) parent(X,7) parent(Z,Y)

Figure 3.1: The search space for the predicate grandfather (abbreviated gf).

is chosen for further refinement because it is the one that has the highest accuracy, covering
the positive examples and only one of the negative.

Among the refinements generated in the second iteration of the specialization loop, the
clause

Cy = grandfather(X,Y) < father(X, Z), parent(Z,Y)

1s chosen since it is the most accurate, covering one positive example and no negative one.
At this point, the specialization loop ends since the clause is consistent and control is
given back to the covering loop. The clause is added to the current hypothesis obtaining

H = {grandfather(X,Y) « father(X, Z),parent(Z,Y)}

and the positive examples covered by Co are removed from E.,,.. Since no positive example
is left, the covering loop terminates and the algorithm ends by returning H .

3.2.7 Generality of Learned Solutions

Both bottom-up and top-down methods find clauses that are consistent and cover a subset of
positive examples. However, depending on the technique adopted, the generality of clauses
differs. Suppose a bottom-up method finds a clause C; that covers a subset of positive
examples Ef' , then C; will be the least general clause in the hypothesis space that covers
E; and is consistent. Suppose a top-down method finds a clause C> that covers a subset of
positive examples E, , then C> will be the most general clause in the hypothesis space that
covers E5 and is consistent.

Example 22 Suppose we want to learn the concept growl from the background knowledge:

wol f (albert) has_four_legs(albert) has_tail(albert)
wol f (virginia) has_four_legs(virginia) has_tail(virginia)
coyote(wile) has_four_legs(wile) has_tail(wile)
coyote(peter) has_four_legs(peter) has_tail (peter)

32

cat(tom) has_four_legs(fufy) has_tail(fufy)
cat(krazy) has_four_legs(krazy) has_tail(krazy)

and the training sets:

E* = {growl(albert), growl(virginia), growl(wile), growl (peter)}
E~ = {growl(tom), growl(krazy)}

The hypothesis space P is given by the set of clauses of the type growl(X) < a where a is a
congunction of literals chosen among the following:

wol f(X), coyote(X), cat(X), has_four_legs(X), has_tail (X)

A bottom-up algorithm would find the clauses:

Cp1 = growl(X) < wol f(X), has_four_legs(X), has_tail (X)
Ch 2 = growl(X) < coyote(X), has_four_legs(X), has_tail (X)

the first covering the ezample set Ef = {growl(albert), growl(virginia)} and the second
covering the ezample set Ef = {growl(wile), growl(peter)}. A top-down algorithm would,
instead, find the clauses:

Ci1 = growl(X) + wol f(X)
Ct2 = growl(X) « coyote(X)

covering, respectively, the same sets of examples Ef‘ and E;'

Given the hypothesis space P, Cyp1 and Cy 2 are the least general clauses covering the set
of examples Ef and Ef, while Cy1 and Cy > are the most general clauses covering Ei" and
Ef

Let us now consider solutions of the learning problem that consist of the set of clauses
P = {C,...,C,} covering respectively, the sets of examples E; ,..., ;. In this case, a
bottom-up method will find a solution composed of least general clauses, that is the Least
General Solution (LGS for short) among those of the form above. On the other hand, a top-
down method will find a solution composed of most general clauses, that is the Most General
Solution (MGS for short) among those of the form above. In example 22, P, = {Cy1,Cp2}
is the LGS, while P, = {C}1,C} 2} is the MGS.

In general, a bottom-up method and a top-down method may find solutions that partition
differently the set of positive examples. In this case, the two solutions may not be directly
comparable in terms of generality. However, with abuse of terminology, we still say that the
solution that is found by a bottom-up method is a LGS, and that the solution that is found
by a top-down method is a MGS. In this case, instead of “the” LGS and “the” MGS we
speak of “a” LGS and “a” MGS because LGSs and MGSs are not unique, since they depend
on the way the positive examples set is partitioned.

The ILP techniques to be used thus depends on the level of generality that we want to
have for the definition of a predicate. In chapter 5 we will discuss various criteria that can
be adopted for choosing the generality of the definition of a predicate.

33

3.3 Learning from Interpretations

In learning from interpretations, examples are Herbrand interpretations, i.e., sets of ground
facts, and the theory that is learned is a clausal theory. Each example represents observations
relative to a particular situation in the world. The coverage relation is defined as follows
[DRI7]:

Definition 23 (Learning from Interpretations) Given a background knowledge B, a
hypothesis H and an ezample set E, the hypothesis H covers example e € E with respect to
background knowledge B if M (B Ue) is a model for H, i.e.

covers(B, H,e) =true if M(BUe) = H
As a consequence, the function covers(H, B, E) can be defined as
covers(B,H,E) ={ec E | M(BUe) |= H}

The test of whether a clause C = A,,..., A, < Bi,..., B,, makes an interpretations true
or not can be performed by using Prolog by asserting both the background knowledge and an
interpretation into the knowledge base, and running the query ? — By, ..., By,,not Ay,...,
not A,,.

The task of learning from interpretations can then be defined as follows [BG95]:

Definition 24 (Learning from Interpretations Problem)
Given

e a set H of possible clausal theories (language bias)
e a set of positive ezamples ET (interpretations),
e a set of negative examples E~ (interpretations),

e a logic program B (background knowledge).
Find a clausal theory H such that

o for all et € ET, M(B Ue") is a true interpretation of H, i.e., M(BUe%) E H
(Completeness);

o for alle” € E-, M(BUe™) is a false interpretation of H, i.e., M(BUe™) £ H
(Consistency).

As in learning from entailment, the hypothesis space H is defined by the language bias and
formalisms have been defined for restricting the space, as for example the DLAB [DRD96b]
formalism.

When learning from interpretations, the generality relation is defined in the following
way: given two hypothesis H; and H», H; is more general or equally general than Hs if and
only if Hy |= H;. In fact, according to the definition of entailment, all the interpretations
that are models for Hs are also models for H;. Therefore, all the interpretations covered
by Hs will also be covered by H;. Note that the direction of the entailment relation is the
opposite with respect to the one for learning from entailment.

34

Learning from interpretations was first developed for finding interesting regularities in
unclassified data. In this case, no negative example is given and there is the further require-
ment that the theory is mazimally general. This means that, if C € H, then any clause
more general that C' should be false under at least one of the positive examples. The task of
learning is the one of finding a theory that holds in all the observed situations, thus express-
ing interesting regularities on data. This learning framework has been studied by different
authors under a number of different names: non-monotonic setting [MDR94], characterizing
induction [DRD96a] or confirmatory induction [Fla95]. This setting is particularly useful
for performing data mining or knowledge discovery in databases. An example of a system
that learns in such a setting is Claudien [DRB93].

Let us now consider an example of the above learning problem when no negative example
is given, taken from [DRB93].

Example 25 Suppose we have the following two interpretations containing observations
about different gorilla colonies:

e] = {female(liz), male(richard)}
es = {female(ginger), male(fred), male(rudolph)}

and we have the background theory B:

gorilla(X) < female(X)
gorilla(X) < male(X)

Suppose also H be the set of range-restricted, constant-free clauses. A solution is:

gorilla(X) < female(X)
gorilla(X) < male(X)

male(X), female(X) + gorilla(X)
+— male(X), female(X)

Note that these clauses express regularities on the given database. All of them are true in
the minimal Herbrand models:

M (B U e}) = {female(liz), male(richard), gorilla(liz), gorilla(richard)}
M (B U ef) = {female(ginger), male(fred), male(rudolph),
gorilla(ginger), gorilla(fred), gorilla(rudolph)}

When some negative interpretations are also given, the aim of the system is to find a the-
ory that discriminate positive from negative interpretations, thus expressing regularities on
positive interpretations that are false for negative ones. An example of such a system is ICL
[DRL95].

The following is an example of learning from interpretations from positive and negative
examples.

Example 26 Suppose we have the same positive observations and background knowledge as
example 25, plus the following two sets of negative observations

e; = {female(liz), male(liz)}
e; = {female(liz), male(liz), fruit(banana)}

35

Suppose also H be the set of range-restricted, constant-free clauses. A solution is:

< male(X), female(X)
male(X), female(X) < gorilla(X)

The first clause is necessary to rule out the negative interpretation e, while the second
clause is necessary to rule out the negative interpretation e, .

3.4 Examples of ILP Systems

3.4.1 GOLEM

GOLEM [MF90] is a system that learns theories bottom-up by using rlgg. The background
knowledge B must contain only ground facts. If B contains some non-ground Horn clauses,
it must be transformed into a finite ground model. To this purpose, h-easy ground models
of B (Mp(B)) are considered that contains all the ground facts that can be derived from B
by a SLD-proof tree of depth less than h. Note that M}, (B) can be still infinite: for example,
if B = {member(X,[X,Y])} there is only one atom derivable from B but there are infinite
ground instantiations of it, such as member([], [[]]), member([],[[],[]]), --.- Therefore, an
additional constraint is imposed on B: all the clauses in B must be syntactically generative,
i.e., all the variables in their head must be a subset of the variables in the body. This ensures
that the model M}, (P) is finite [MF90].

GOLEM generates a single clause by randomly picking couples of examples, by computing
their rlgg with respect to the background knowledge and by choosing the one with the
greatest coverage of other positive examples. This clause is then generalized by randomly
choosing new uncovered positive examples and by computing the rlgg of the clause and each
of the examples. The resulting clause that covers more examples is chosen and is generalized
again until the coverage of the clause stops increasing or until a further generalization would
cover some negative examples. Then a post-processing phase follows where irrelevant literals
are discarded: if the removal of a literal from the body of a clause does not cause the clause
to cover any negative examples, then the literal is irrelevant. In this way the clause is further
generalized.

In the case in which there is not a single clause that covers all the positive examples,
a covering approach is adopted: the positive examples covered by the generated clause are
removed from ET and the procedure is iterated until no uncovered positive example remains.

The rlgg of two clauses can be very large, in the worst case it grows exponentially with the
number of examples. In order to reduce the complexity of clauses, GOLEM uses a constraint
on the literals that can appear in the body of a clause. These literals must contain only
variables that are determined, i.e., their values have to be, directly or indirectly, uniquely
determined by the values of the variables in the head of the clause. In order to further
reduce the complexity of clauses, GOLEM uses mode declarations (specifying the input and
output arguments of a predicate) to reduce the size of the clauses (see [MF90] for details).

3.4.2 FOIL

FOIL [Qui90a] is an empirical top-down system that adopts extensional coverage. The
hypothesis language L. is restricted to functor-free normal program clauses. The language

36

bias can not be explicitly defined by the user but is encoded in the system: literals in the
body of clauses can have either a predicate from the background knowledge or a target
predicate. At least one of the variables in the arguments of a body literal must appear in
the head of the clause or in the literals to its left.

In FOIL, the background knowledge B is given extensionally. Both background and
training example facts are represented as tuples of constants. In particular, the training set
is represented as a set of tuples labeled by @, corresponding to positive examples, and a set
of tuples labeled by ©. Every argument of the target and background predicates is assigned
a type, that can be either continuous or discrete. If it is discrete, the set of constants allowed
in the type must be specified.

The FOIL algorithm is basically the same as the generic top-down ILP algorithm adopt-
ing hill-climbing search. The refinement operator adopted by FOIL refines a clause of the
form

Ci :p(X]_,X2,...,Xn) (—Ll,LQ,...,Li,1

by adding a literal L; to the body. The literal L; can be of the following form: g (Y1, Ys,...,
Y.,) or not(qy(Y1,Y2,...,Yy,)), where g is a relation and the Y; are variables appearing
in the clause or new variables; V; = V; or V; # V;, where V; and V; are variables already
present in C; and of the same type; V; = c or V; # ¢, where V; is an already existing variable
and c is a constant of the appropriate type, and V; < V;, V; > V;, V; <t and V; > t, where
Vi and V; are variables already present, with numerical values and of the same type, with ¢
a threshold value chosen by FOIL.

In the specialization loop, FOIL makes use of a local training set which is initially set to
the current training set Ey = E.,,.. While E,,, consists of n-tuples, the local training set
consists of m-tuples, where m is the number of variables in the current clause. Let E; denote
the local training set of tuples that satisfy the current clause C; = p(X1, Xs,...,X,) < L1,
Lo, ...,L;_1. The local training set E; can be divided into the set of positive tuples EZ+ and
the set of negative tuples E; .

At each refinement step, the clause C;11 is obtained by adding a literal L; to the body
of the clause C;. Some of the variables Y7,Y5,...,Y,, in L; belong to the ‘old’ variables
already occurring in C;, {OV1,...,0Vp4}, while some are ‘new’, {NVi,..., NVNey}, i-€.,
they are introduced by the literal L;. The set of tuples E;; covered by clause C;; is the set
of ground (Old + New)-tuples (instantiations of (OV1,0Va,...,0Vo1a, NVi,..., NVNew))
for which the body Ly, Lo, ..., L; 1, L; is true. In relational algebra terminology, the new
training set E;; is the natural join of E; with the relation corresponding to the literal L;.

The heuristic function used by FOIL is a form of weighted information gain where the
probability p(@|C) is estimated by using the relative frequency of the positive tuples in the
current training set. Let n; be the number of tuples in F;, of which n? are positive, and
let n;11 be the number of tuples in E;;, of which ”2—1 are positive. The information gain
obtained by adding the literal L; to the clause C; is therefore given by

nd n$
IGrorL(Ci, Ciy1) = log, — log, el K

Nit1 i

Note that each tuple of E:r may correspond to zero, one or more tuples of F;;;. The gain
function is weighted by the number n® of positive tuples in E; that correspond to one or

37

more tuples in F;;1. Thus, the heuristic function is given by
WIGrorL(Cs, Ciy1) = nP® x (IGrorL(Ci, Cit1))

In order to deal with noisy datasets, the stopping criteria used by FOIL are heuristic and
are based on the encoding length restriction, that limits the number of bits used to encode a
clause to the number of bits needed to explicitly indicate the positive examples covered by
it. The number of bits needed to explicitly indicate the n®(C) positive examples covered
by a clause C out of the n.,, examples in the current training set is

Egplicit Bits(C, Eeur) = 10g5(ncur) + 10g; (ngc(ué))

The number of bits needed to encode a clause with m literals in the body is computed as
ClauseBits(C) = E% 1 (1 + log, (1) + log, (Vy,)) — logs (m!)

where [is the number of different predicates in the background knowledge and V,, is the
number of possible variabilizations (choices of variables) of the predicate used in literal L;.

The construction of a clause is stopped (the necessity stopping criterion is satisfied)
when no negative example is covered by the clause or when adding any literal with positive
gain would cause ClauseBits(C) to exceed Explicit Bits(C, E¢y,). If there are no more bits
available for adding a literal but the clause is still 85% accurate (a threshold chosen ad hoc),
then the clause is retained in the hypothesis, otherwise it is discarded.

The construction of a hypothesis stops (the sufficiency stopping criterion is satisfied)
when all the positive examples are covered or when no new clause can be generated under
the encoding length restriction.

3.4.3 mFOIL

mFOIL [Dze91] extends FOIL approach by adopting specially designed search heuristic and
stopping criteria that improve noise-handling. Moreover, it adopts beam-search instead of
hill-climbing, and it uses intensional coverage instead of extensional one. Therefore, the
background knowledge may contain intensional definitions of predicates.

In place of the weighted information gain used by FOIL, mFOIL adopts an accuracy
estimate as the search heuristic, i.e., a clause is evaluated in terms of its accuracy on the
training set. The accuracy estimate that is used can be either the Laplace estimate or the
m-estimate.

The Laplace estimate is used in order to improve the reliability of the relative frequency
estimate for small training sets: in the extreme case of only one positive example in E,,.,
the estimate of p(®|C) is 1. This estimate is clearly too optimistic even in the absence
of noise. To avoid this problem, the Laplace law of succession was used [NB86]: if in the
sample of n trials there were s successes, the probability of the next trial being successful is

2112, assuming a uniform initial distribution of successes and failures. The Laplace estimate
is therefore given by
n®(C)+1
p(®|0) = —=——
n(C) +2

38

In the case in which both n®(C) and n(C) are 0, the probability is %, which reflects the fact
that an empty training set can not alter our a priori assumptions that positive and negative
examples have the same probability.

However, this assumption is rarely true in practice. Therefore the m-estimate [Ces90]
was introduced that takes into account as well the prior probabilities of the classes:

n®(C) +m x pa(®)
n(C) +m

p(®|C) =

where the prior probability p,(®) can be estimated by the relative frequency of positive
examples in the initial training set %. The value of m expresses our confidence in the
representativeness of the training set. The actual value of m should be set subjectively
according to the amount of noise in the examples (larger m for more noise). As m grows
towards infinity, the m-estimate approaches the prior probability of the positive class. For
m = %, the m-estimate becomes the Laplace estimate.

In the specialization loop, mFOIL keeps a set of the most promising clauses found so
far (the beam) as well as the most significant clause found so far. At each step of the
loop, the refinements of all the clauses in the beam are generated and evaluated using the
search heuristic. The new beam will contain the best refinements that satisfy two conditions:
they improve the heuristic function with respect to the clause from which they have been
generated and they are possibly significant. When no such clause exists, the beam becomes
empty and the search terminates. In this case, the best significant clause found so far is
retained in the hypothesis if its expected accuracy is better than the default accuracy, given
by the probability of the more frequent of the classes @ and ©. This probability is estimated
from the entire training set by the relative frequency estimate.

The significance test is based on the likelihood ratio statistic [Kal79]. Given a clause C,
the likelihood ratio of C' is given by

LikelihoodRatio(C) = 2n(C) x (p(69|0) log (ifig) +p(®|C) log (p;jg)»

where n(C') are the examples covered by C', n®(C) of which are positive, p,(®) and p,(©)

are the prior probabilities of classes @ and 6, estimated by the relative frequency of positive

and negative examples in the entire training set: p,(®) = % and p,(9) = %. Moreover,

p(®|C) = nTi(C(’;) is the probability that an example covered by a clause C' is positive, and
p(8C) = 1 - p(&]C).

The likelihood ratio statistics is distributed approximately as x? with one degree of
freedom. A clause is deemed significant if its likelihood ratio is higher than a certain
significance threshold. The default value for the threshold is 6.64, that corresponds to a
significance level of 99%.

In the specialization loop, clauses are pruned when they are not possibly significant, i.e.
when none of its refinement can be significant. Consider a clause C' that covers n®(C)
positive examples. The best we can hope to achieve by refining this clause is a clause that
covers n®(C) positive examples and no negative example. In this case, the likelihood ratio
statistics would be —2n®(C) x log(p,(®)). If this value is less then the significant threshold,
no refinement of this clause can be significant and the clause can be pruned.

39

mFOIL stops adding a clause to the theory when too few positive examples remain for a
clause to be significant or when no significant clause can be found with expected accuracy
greater than the default.

3.4.4 ICL

Inductive Constraints Logic (ICL) [DRL95] is a system that learns from positive and negative
interpretations. ICL adopts an algorithm similar to the one of mFOIL, where the coverage
by entailment is replaced by coverage by interpretations and the covering loop is performed
on the set of negative examples instead of the set of positive ones. It starts with an empty
hypothesis H and repeatedly tries to find a clause C' to add to the hypothesis H. Each
clause found will be true in all positive interpretations and false in some negative ones. The
negative interpretations that falsify C' are removed from the E~. This process is repeated
until no negative interpretations remains.

Each clause is generated by beam search, starting from the clause true < false that is
the most specific according to the generality relation for interpretations. Besides a Beam
of candidate clauses, ICL keeps as well the best clause found so far (BestClause) that is
also statistically significant. At each step of the beam search, all the possible refinements
Ref of the clauses in the beam are generated by means of a f-subsumption operator and
are evaluated. Depending on the value of the heuristic function, Ref is added to the Beam
and/or it becomes the new current BestClause.

The heuristic function used for evaluating clauses is given by the probability that an
example interpretation is negative, given that clause C' is false in the interpretation, i.e.
p(6|C). Notice the difference with the classical accuracy heuristic function of mFOIL where
the probability p(#|C) is used. The Laplace estimate is used to measure this probability

= nP((0) +1)
HV(C) = p(el0) = o

ICL adopts the same statistical significancy test used by mFOIL to ensure that the clause
represents a genuine regularity in the examples and not a regularity due to chance. A clause
is significant if its likelihood ratio is higher than a user defined threshold.

Two types of pruning are performed by ICL on the basis of these heuristics. First, a
clause C' can be pruned if no refinement of C' can become better than the best clause at
the moment: the best value we can achieve with further refinements of a clause is a clause
that is false for the same negative interpretations and true for all the positive. Second, as
in mFOIL, ICL stops refining a clause when it is not possibly significant.

The refinement operator adopted in ICL takes into account a declarative bias in order to
restrict the search space. The declarative bias is expressed using clause models that define
the syntax of the clauses that can appear in hypothesis. The refinement operator adopts
these models to generate only the clauses that are allowed by the syntax. The formalism is
described in details in [ADRB95, VLDDR94].

40

Chapter 4

Abductive Reasoning in
Learning

4.1 Introduction

As discussed in section 1.1, the problem of learning from an incomplete background knowl-
edge is still an open issue in ILP research. In real world problems, the knowledge acquisition
process is often imperfect and some relevant pieces of information may be difficult or im-
possible to be acquired. Information about specific examples is usually expressed by means
of ground facts in the background, therefore the imperfections of the knowledge acquisition
process often results in the absence of some background facts. This type of data imperfec-
tion is called incompleteness of the background. In this case, some positive examples may
not be covered due to the absence of some facts related to them in the background. This
may require the learning of multiple overspecific rules for covering a set of examples that
could otherwise be covered by a single more general one.

This problem can be solved by integrating abductive reasoning into induction by means
of a new learning framework called Abductive Concept Learning (ACL). The framework was
initially defined in [DK96] and was successively developed in [ELM*™96, LMMR97, LMMRY8,
KR97, KR98]. The present chapter closely follows the treatment given in [KR98]. Abductive
Concept Learning is an extension of ILP that allows us to represent both the background and
target theories as abductive logic programs. Indeed abduction is well-suited for representing
problems with incomplete information (see e.g. [PGA87, KM90b, DDS92, Ino94, 1S94,
KKT97]) able to formulate a variety of such problems in Artificial Intelligence and other
areas of Computer Science.

Abductive logic programs are composed of a logic program, a set of abducible predicates
and a set of integrity constraints that provide additional information on the abducible pred-
icates by limiting the number of assumptions that are allowed. The incomplete background
is represented as an abductive logic program and abduction is used in order to complete
the background knowledge by making assumptions about the abducibles. In ACL, also the
target program is an abductive logic program that can contain both new rules for the con-
cept(s) to be learned as well as new integrity constraints. Abductive reasoning of abductive
logic programs is then used as the basic coverage relation for learning: assumptions about

41

background facts can be made in order to cover examples, thus resulting in more compact
theories that can alleviate the problem of overfitting due to the incompleteness in the data.

In this chapter, we will present the basic ACL framework and an algorithm for solving
it. ACL provides a principled way to handle incomplete information in learning based on
an underlying theory of abduction for knowledge representation.

The central problem of learning abductive theories in ACL contains several useful and
interesting subproblems that are of practical relevance. These problems include: (i) concept
learning from incomplete background data where some of the background predicates are
incompletely specified and (ii) concept learning from incomplete background data together
with given integrity constraints that provide some information on the incompleteness of the
data.

A specific subcase of these two problems and an important third subproblem is that of
(iii) multiple predicate learning, where each predicate is required to be learned from the
incomplete data for the other predicates. Here the abductive reasoning can be used to
suitably connect and integrate the learning of the different predicates. This can help to
overcome some of the non-locality difficulties of multiple predicate learning, such as order-
dependence and global consistency of the learned theory.

These subproblems of the full ACL task can be captured in a simpler subproblem of ACL,
which we will call ACL1. Within ACL1 we learn only the rule part of an abductive theory
but this is sufficiently general in many cases to allow us to address interesting problems as
those described above. Apart from its practical relevance, the identification of the ACL1
subproblem is also useful in breaking the full ACL learning task into two separate but
strongly inter-related phases of ACL1 and ACL2. ACL1 together with its rules also provides
additional input, through abducible assumptions (which are related to the learned rules),
to the second phase of ACL2 for learning integrity constraints that can confirm (partly) the
correctness of these abducible assumptions. In this way, ACL synthesizes together the two
main learning settings of ILP, namely those of learning from entailment [Mug95a, MDR94|
and learning from interpretations [DRD94, Fla95].

An algorithm for ACL based on this separation into ACL1 and ACL2 is given. Within
ACL1, this algorithm adapts the basic top-down method of ILP to deal with the incomplete-
ness of information and to take into account the use of integrity constraints. It incorporates
an abductive proof procedure and other abductive reasoning mechanisms from ALP that
are suitably adapted for the context of learning. In the second phase of ACL2, the algo-
rithm takes as input the output of ACL1 and calls on the ICL [DRL95] learner to generate
appropriate integrity constraints.

This algorithm has been implemented in a new ILP system also called ACL and ACL1
for its subsystem. Based on these, a separated system for multiple predicate learning, called
M-ACL, has also been developed. Suitably adapted heuristics have been used that take
into account the incompleteness of information. Several experiments are presented that
demonstrate the ability of ACL to learn with incomplete information and its usefulness in
multiple predicate learning. ACL has also been applied to problems of analyzing data from
market research questionnaires where the available data could be incomplete in several ways.

The problem of learning under incomplete or missing information in an ILP framework
has received relatively little attention. Some recent exceptions to this include ICL-Sat
[DRD96c] which learns from incomplete interpretations and FOIL-I [IKI*96] which can
learn from partial training sets. A recent work with an approach similar to ours for learning

42

the rules of an abductive theory under incomplete information is that of [KK98]. There
are also several works [DB92, LDB96] that deal with the related problem of noise in the
learning data but this is a different problem where the methods used can not always be
applied as effectively to missing information. Most of the machine learning systems that deal
with incomplete information are attribute-value learners. An ILP system for learning with
incomplete information is LINUS [LDG91a] but, again, it essentially relies on an attribute
value representation. In general, these systems adopt different methods to first complete
the missing information and then learn from the completed data. In contrast, in ACL the
incomplete information is handled dynamically within the learning process in a principled
way based on an underlying theory of abduction. In this way, ACL combines in a non-trivial
way the methods of abduction for dealing with incomplete information with methods of ILP
learning.

The chapter is organized as follows. Section 4.2 presents a short review of ALP needed
for the formulation and description of the main properties of ACL which are presented
in section 4.3. Section 4.4 presents the basic algorithm for ACL and its properties for the
single predicate case, while section 4.5 describes the application of ACL to multiple predicate
learning. Section 4.6 presents our initial experiments with ACL, section 4.7 discusses related
work and section 4.8 concludes the chapter.

4.2 Abductive Logic Programming

In this section we briefly review some of the elements of Abductive Logic Programming
(ALP) needed for the formulation of the learning framework of Abductive Concept Learning
(ACL). For a more detailed presentation of ALP the reader is referred to the survey [KKT93]
(and its recent update [KKT97]) and references therein.

Abductive Logic Programming is an extension of Logic Programming to support ab-
ductive reasoning with theories (logic programs) that incompletely describe their problem
domain. In ALP this incomplete knowledge is captured (represented) by an abductive theory
T. We will consider abductive theories of the following form.

Definition 27 (Abductive theory) Anabductive theory T in ALP is a triple (P, A, I),
where P is a definite logic program, A is a set of predicates called abducible predicates (or
simply abducibles), and I is a set of range-restricted clauses called integrity constraints.

For simplicity of presentation we have assumed that the logic program P of an abductive
theory is a definite Horn program with no negation (negation as failure) appearing in the
body of the rules of P. However, this condition is not restrictive since negation as failure in
a non definite logic program can be treated through abduction in an associated abductive
theory whose program is definite [EK89].

As a knowledge representation framework, when we represent a problem in ALP via an
abductive theory T, we generally assume that the abducible predicates in A carry all the
incompleteness of the program P in modelling the external problem domain in the sense
that if we (could) complete the information on the abducible predicates in P then P would
completely describe the problem domain.

An abductive theory can support abductive (or hypothetical) reasoning for several pur-
poses such as diagnosis, planning or default reasoning. The central notion used for this is
that of an abductive explanation for an observation or a given goal. Informally, an abductive

43

explanation consists of a set of ground facts (called abductive assumptions) on some of the
predicates in A which, when added to the program P, make the observation or goal true.
The integrity constraints in I must be satisfied by the extension of the program P with such
abductive assumptions for these to form an allowed abductive explanation.

To formalize this we need first the notion of generalized model of an abductive theory.
Generalized models are inspired to generalized stable models [KM90b]: since no negation is
allowed in the program, the stability condition is not required.

Definition 28 (Generalized model) Let T = (P, A,I) be an abductive theory and A a
set of ground abducible facts from A. M(A)! is a generalized model of T iff

e M(A) is the minimal Herbrand model of P U A, and
e M(A) is a model of I, i.e., M(A) = I
We say that A is an abductive extension of T'.

Here the semantics of integrity constraints is defined by the second condition in the definition.
Their satisfaction requires that they are true statements in the computed model of the
extension of the program with A for this extension to be allowed. In this case, we say that
A is consistent with the constraints. We will assume that, for any abductive theory, the
empty set of abducible assumptions is consistent.

An abductive theory is thus viewed as representing a collection of different allowed states
given by the set of its generalized models.

Definition 29 (Abductive explanation) Let T = (P, A,I) be an abductive theory and ¢
any formula® called an observation (or a query). An abductive explanation for ¢ in T
is any set A of abducible facts from A such that

e M(A) is a generalized model of T, and
e M(A) E ¢.
Based on this we define a credulous form of abductive entailment.

Definition 30 (Abductive entailment) Let T = (P, A, I) be an abductive theory and ¢
any formula. Then, ¢ is abductively entailed by T, denoted by T |=4 ¢, iff there exists
an abductive explanation of ¢ in T. If the explanation is A, we also write T =4 ¢ with A.

Note that, although the integrity constraints reduce the number of possible explanations for
an observation, it is still possible for several explanations that satisfy (do not violate) the
integrity constraints to exist. This problem is known as the multiple explanations problem.
In order to solve this problem, various criteria can be adopted. We will require the one of
minimality (with respect to set inclusion) of the explanations.

The following example illustrates the above ideas.

Example 31 Consider the following abductive theory (P, A, I) with P the logic program on
family relations:

!Sometimes we will represent M(A) as Mp(A)
2In general, ¢ can be any formula but in practice in many cases it suffices for ¢ to be a conjunction of
ground facts.

44

father(X,Y) < parent(X,Y), male(X)
mother(X,Y) < parent(X,Y), female(X)
son(X,Y) < parent(Y, X), male(X)
daughter(X,Y) + parent(Y, X), female(X)
child(X,Y) < son(X,Y)

child(X,Y) < daughter(X,Y)

loves(X,Y) < parent(X,Y)

the integrity constraint I = {+ male(X), female(X)}, and abducible predicates A = {parent,
male, female}.

Consider now the observation Oy = father(bob, jane) An abductive explanation for O is
the set A1 = {parent(bob, jane), male(bob)}. This is the unique minimal explanation. Let
now Oy = child(john, mary) be another observation. This has two possible explanations
A, = {parent(john, mary), male(john)} and A, = {parent(john, mary), female(john)}.
If we also knew that male(john) holds then A’2 would be rejected due to the violation of the
integrity constraint. In fact, these two explanations are incompatible with each other.

We will now introduce the concept of strong abductive explanation and we will consider
both positive and negative observations. A strong abductive explanations is such that it
contains some extra assumptions, with respect to a minimal explanation, that ensure that
the addition of further assumptions to it would not result in the violation of the integrity
constraints. Strong abductive explanations have the important property that the union of
the explanations for two goals is an explanation for the conjunction of them. This property is
useful in learning in order to ensure that explanations for different examples will explain their
conjunction (see section 4.3). Moreover, we will also define strong abductive explanations
for negative observations that will be required in learning for the explanation of negative
examples (see section 4.3).

In order to obtain the properties of strong abductive explanations, we need to be able to
make explicitly negative assumptions. This is obtained by considering, for each abducible
predicate abd(X), a new abducible predicate not_abd(X) and that is related to abd(X)
by means of the constraint < abd(X),not_abd(X). The addition of abducible predicates
expressing falsity allows to define a new semantics for abductive theory, called three-valued
generalized model, where abducible atoms can be true, false or undefined, differently from
generalized models where all the abducible facts not in the model are considered as false.
This extension is needed since, when dealing from incomplete information, we want to
represent the fact that some abducible atoms are certainly true, some are certainly false
and we can not say anything about the rest, due to lack of information. The addition of
negative abducibles and of the relative constraints is obtained by means of the following
theory transformation.

Definition 32 (Three-valued Version of a Theory) Given an abductive theory T =
(P,A,I), the three-valued version of T is the theory T* = (P,AU A*, I U I*) where,
for each predicate a € A, A* contains the new predicate symbol not_a and I'* contains the

— —

denial < a(X),not_a(X).

We define the complement I of an abducible literal as

7 { not_a(X) if | = a(X)
| a(X) if | = not_a(X)

45

Given the three-valued version T* = (P, AU A*, I U I*) of an abductive theory, a set of
assumptions A from predicates of A U A* is called self-consistent if and only if it does not
contain both a literal and its complement, i.e., iff A* = I*;

The previous definition of generalized model is extended to the following.

Definition 33 (Three-valued generalized model) Let T = (P, A,I), be an abductive
theory with T* = (P, AU A*, I U I*) its three-valued version and let A* be a set of ground
abducible facts from AU A*. M(A*) is a three-valued generalized model of T' iff

o A* is self-consistent;
o M(A*) is the minimal Herbrand model of P U A*;
e M(A*) 1.

A set A* is an abductive explanation for a formula ¢ if and only if M(A*) is a three-
valued generalized model and M(A*) |= ¢.

In a three-valued generalized model M (A*) of T, an abducible fact a(c) is assumed true if
a(c) € A*, is assumed false if not_a(c) € A* and is undefined otherwise.

From this point onwards, unless otherwise specified, we will consider abductive theories
in their three-valued version. Therefore, when we write 77 = (P, A;,I1), we mean the
three-valued version of a theory T'= (P, A,I), with P, = P, Ay = AUA* and [, = T U I*.
Also when we refer to a generalized model we will mean a three-valued generalized model.

We can now define the notion of strong abductive explanation.

Definition 34 (Strong abductive explanation) Let T = (P, A,I) be an abductive the-
ory, T* = (P,AU A* I U I*) its three-valued version and O a ground atomic fact called an
observation (or a goal). A strong abductive explanation for O in T is any set A* of
abducible facts from AU A* such that

o M(A*) is a generalized model of T* such that M(A*) = ¢, and
o forany A" C AUA*, if M(A') = T and A'UA* is self-consistent, then M (A UA*) = 1.

The latter condition can be intuitively expressed in this way: A* must be such that any other
abductive extension A' that is self-consistent with A* can be added to A* without violating
the integrity constraints. We say that M (A*) is a strong generalized model for T and
that A* is a strong abductive extension of T3.

In the case of example 31, a strong abductive explanation for O; = father(bob, jane) would
be A; = {parent(bobd, jane), male(bob), not_female(bob)}. Now, the assumption female(bob),
that would violate the integrity constraints, can not be self-consistently added to Aj.

We will now give the definition of a strong abductive explanation for a negative obser-
vation not_O. In this case we want an explanation that can not be extended in order to
explain O.

3Note that under our previous assumption the empty set is always consistent for any abductive theory;
this means that it has always a strong abductive extension.

46

Definition 35 (Strong abductive explanation of negative observations) Consider
an abductive theory T = (P, A, I) and let T* = (P, AUA*,I' UI*) be its three-valued version
and let a negative observation (or a goal), denoted by not_O, be given. A strong abductive
explanation for not_O is any set A* of abducible facts from AU A* such that

o M(A*) is a strong generalized model of T and M (A*) £ O

e for any A" Cc AU A*, if A’ is an abductive explanation of O then A" U A* is not
self-consistent.

In this case we say that not_O is abductively entailed by T and denote this by T =4 not_O
with A*.

Hence O ¢ M(A*) and more importantly A* cannot be consistently extended to derive
O. The strong abductive explanation is thus a set of sufficient assumptions which, when
adopted, ensures that O can not be abductively entailed in a way that would be self-
consistent with these assumptions. The second condition in the definition of strong ab-
ductive explanation corresponds to the admissibility condition introduced by Dung [Dun91]
in its definition of the preferential semantics for normal logic programs.

In order to illustrate this, consider again example 31 and consider the negative ob-
servation that not_father(jane, john). A strong abductive explanation for this obser-
vation is AT = {not_parent(jane,john)} or Ay = {not_male(jane)} since father(jane,
john) can not be derived by any self-consistent extension of either of these sets. In con-
trast, the empty explanation is an abductive explanation for not_father(jane, john) since
father(jane, john) ¢ M (D) but this explanation is not strong since it can be consistently
extended with A’ = {parent(jane, john), male(jane)} to derive father(jane, john).

The strongness of an explanation A* for a negative literal not_e means that it invalidates
every possible explanation for e. This is expressed by the following property, that is a direct
consequence of the definition of strong abductive explanation.

Property 36 Given an abductive theory T and an atom e, it holds
T =4 not_e with A* = VA" : T |Ege with AT, Je€A*:le A"

In other words, a strong abductive explanation A* for not_e contains the complement of (at
least) one assumption from every possible explanation AT of e.

The following example illustrate the above property.
Example 37 Consider the following abductive theory T = (P, A, I)
P = {sibling(X,Y) < brother(X,Y),

sibling(X,Y) « sister(X,Y)}

I={}
A = {brother, sister}

and the observation O = sibling(bob, jane). The strong abductive explanations for not_O
is A* = {not_sister(bob, jane), not_brother(bob, jane)}, while the explanations for O are
A = {sister(bob, jane)} and AJ = {brother(bob, jane)}: A* contains the complement of
a literal from both AT and Aj .

47

The definition of strong abductive explanation can be generalized for a conjunction of pos-
itive and negative observations C' = Oy A ... A O, Anot_Oy A ... Anot_O,. A strong
abductive explanation for the conjunction is any set A* of abducible facts from A U A*
such that A* is a strong abductive explanation for every conjunct taken singularly.

The strong abductive explanation for the conjunction of two observations O; A Oz can
be obtained by taking the union of the strong abductive explanations for O; and Os.

Proposition 38 Let T = (P, A, I) be an abductive theory in its three-valued version and let
A1 and As be two strong abductive explanations of, respectively, G1 and G2, where G1 and
G can be either positive or negative goals. If Ay U As is self-consistent, then Ay U As is a
strong abductive explanation for G1 A Gs.

Proof: See appendix A.2. a

This property thus allows us to combine together explanations of different observations
effectively reducing the consistency requirement with respect to the integrity constraints of
the theory to the simpler requirement of self-consistency of this union of explanations. This
is important for computational reasons when we have a collection of different (positive and
negative) observations to consider together.

As we will see in the next sections, in the Abductive Concept Learning framework and
system, deductive entailment is replaced by the abductive entailment as the coverage rela-
tion. Thus the deductive SLD (and SLDNF) proof procedures of Logic Programming are
replaced by abductive proof procedures [EK89, KM90a, KM90c, DDS92, SI92] of ALP. Any
abductive procedure satisfying the following notion of abductive derivability is suitable.

Definition 39 (Abductive derivability) Given an abductive theory T = (P, A, I), a goal
G and an initial strong abductive explanation A;, we say that a procedure abductively derives

G from T if it returns a set of assumptions Ag such that Ag is a strong abductive explanation
of G and Ag U A; is consistent, i.e., M(Ag UA;) |E I. In this case, we write T I—ﬁf G.

For our study of Abductive Concept Learning we will employ an abductive proof procedure
based on the one in [KM90c] (reported in Appendix A.3). This procedure has been modified
according to the notion of derivability defined above to return the full set of assumptions Ag
required to explain G irrespective of the fact that some of these may already be present in A;.
The proof procedure interleaves phases of abductive and consistency derivations. Intuitively,
an abductive derivation is the standard Logic Programming derivation suitably extended in
order to consider abducibles. When an abducible atom ¢ is encountered, it is added to the
current set of assumptions (if it is not already there). The addition of é must not result in
a violation of the integrity constraints. To this purpose, a consistency derivation for § is
initiated to check this. Each integrity constraint is resolved against § and it is verified that
every resulting goal fails. In the consistency derivation, when a new abducible is encountered
in one of these reduced goals, an abductive derivation for its complement is started in order
to ensure the failure of this abducible. This subsidiary abductive derivation will often result
in additional assumptions in the explanation set.

The modified version of the procedure which we will use is sound with respect to the
notion of (strong) abductive derivability above for the case in which the integrity constraints
are restricted to be denials with at least one abducible appearing explicitly in the body
of the denial. This result follows directly from the soundness of the original procedure in

48

[KM90c] which computes strong explanations. The more general case of integrity constraints
in the form of range restricted clauses, Aj;...; Ay < Bi,...,B, can be dealt with in
the following way. The constraints are first transformed into their equivalent denial form
< By,...,B,,,~ A1,...,~ A and then classical negation is approximated by negation by
default obtaining <+ By,..., By,,not_Ay,...,not_A; that can be processed by the abductive
proof procedure. This transformation is similar to one into the three-valued version of the
theory: the literals not_A;,...,not_Ay are new positive abducible literals and constraints
+ A;,not_A; are added to the set of constraints.

4.3 Learning with Abduction

We will now restate the problem of learning from entailment for the case in which both the
background knowledge and the learned theory are abductive theories in their three-valued
version. The following restrictions on the language of the hypothesis and of the background
are considered?.

e The background knowledge T' = (P, A,I) does not contain any target predicate(s)
neither in the program P nor in the integrity constraints I. The empty set of abducible
assumptions is a consistent abductive extension of T'.

e The integrity constraints are range-restricted clauses Ag;...; Ay < Bi,..., By, with
at least one of Bi,..., By, abducible. Also, for each A; in the head of the clause its
definition, in the program P of the background theory, does not depend on abducibles,
namely A; is not abducible and recursively none of the conditions in the rules of P
for A; is abducible.

The language of the examples is simply that of atomic ground facts on the target predicate(s).

Definition 40 (Abductive Concept Learning)
Given

e a hypothesis space T = (P,Z) consisting of a space of possible programs P and a space
of possible constraints I satisfying the language restrictions given above except that
now a possible program can contain the target predicate(s).

e a set of positive examples ET,
e q set of negative examples E—,
e an abductive theory T = (P, A, I) as background theory,

Find
A set of rules P' € P and a set of constraints I' € T such that the new abductive theory
T'=(PUP' A TUT'Y satisfies the following conditions

o T =4 ET,
eVe e E-, T fpe .

4These language restrictions are not necessary for the definition of the ACL problem but rather are
needed for the development of the algorithms to solve this problem.

49

where E1 stands for the conjunction of all positive ezamples.
We say that an individual example e is covered by a theory T' if and only if T' |=4 e.

In effect, we have replaced the deductive entailment in the ILP problem with abductive
entailment to define the ACL learning problem.

The fact that the conjunction of positive examples must be entailed means that, for every
positive example, there must exist an abductive explanation and the explanations for all the
positive examples must be consistent with each other. For negative examples, it is required
that no abductive explanation exists for any of them. Abductive Concept Learning can be
illustrated as follows.

Example 41 Suppose we want to learn the concept father. Let the background theory be
T = (P, A, D) where:
P = {parent(john, mary), male(john),
parent(david, steve),
parent(kathy, ellen), female(kathy)}
A = {male, female}.
Let the training examples be:
Et* = {father(john, mary), father (david, steve) }
E~ = {father(kathy, ellen), father(john, steve)}
In this case, a possible hypotheses T' = (P U P'; A, I') learned by ACL would consist of
P' = {father(X,Y) < parent(X,Y), male(X)}
I' = { < male(X), female(X)}
This hypothesis satisfies the definition of ACL because:

1. T'" \=4 father(john,mary), father (david, steve)
with A = {male(david)},

2. T'" W4 father(kathy, ellen),
as the only possible explanation for this goal, namely {male(kathy)} is made incon-
sistent by the learned integrity constraint in I'.

3. T'" V£ 4 father(john, steve),
as this has no possible abductive explanations.

Hence, despite the fact that the background theory is incomplete (in its abducible predicates),
ACL can find an appropriate solution to the learning problem by suitably extending the back-
ground theory with abducible assumptions. Note that the learned theory without the integrity
constraint would not satisfy the definition of ACL, because there would exist an abductive
explanation for the negative example father(kathy,ellen), namely A~ = {male(kathy)}.
This explanation is prohibited in the complete theory by the learned constraint together with
the fact female(kathy).

It is important to note that the treatment of positive and negative examples in ACL is
asymmetric with respect to the existence of abductive explanations. For positive examples,
it is sufficient that there exists one explanation for the conjunction of all positive examples
that is consistent with the constraints, whereas, for each negative example, all possible
explanations must be made inconsistent by the constraints.

In order to achieve this, we require the existence of a strong abductive explanation for
the (complement of) negative examples. Adding these strong abductive explanations to the

50

background theory then ensures that no negative example can be abductively explained. In
the example above, the negative example father(kathy, ellen) can be covered by adding the
strong abductive explanation A* = {not_male(kathy)} for not_father(kathy,ellen) to the
theory. This is sufficient to ensure that this negative example can no longer be abductively
entailed even in the absence of any integrity constraints in I’. Moreover, these strong
abductive explanations can suggest what new integrity constraints can be learned in I’ so
that the negative examples will not be covered.

This observation suggests a natural way in which the full ACL problem can be split into
two subproblems: (1) learning the rules together with appropriate explanations and strong
explanations and (2) learning integrity constraints. We will see that the solutions of the two
subproblems can be combined to obtain a solution for the original problem.

The first subproblem, called ACL1, has the following definition.

Definition 42 (ACL1)
Given

e a set of positive examples ET,

e a set of negative examples E—,

e an abductive theory T = (P, A, I) as background theory,
e a hypothesis space of possible programs P.

Find
A set of rules P' € P such that the new abductive theory Tacr1 = (PUP’, A, I) satisfies
the following conditions

e Tacr1 Fa E* with AT,
e Tycr1 Ea not_E~ with A,

o AT UA™ is self-consistent.

where not_E~ stands for the conjunction of the complement of every negative example.

We say that a theory T ACL1-covers an indiwidual positive example et iff T =4 et
and that T does not ACL1-cover et if and only if T [£4 ™.

If T =4 et with A =0, then we say that e™ is ACL1-covered without abduction,
otherwise we say that it is ACL1-covered with abduction.

For negative examples, we say that a theory T ACLl-uncovers an individual negative
example e~ iff T =4 not_e~ and that T does not ACL1-uncover e~ iff T [£4 not_e™.

If T =4 not_e” with A = 0, then we say that e~ is ACL1-uncovered without ab-
duction, otherwise we say that it is ACL1-uncovered with abduction.

ACL1 and ACL differ only in their requirements on negative examples. ACL1 requires that
in the learned theory there must be a strong abductive explanation for the complement of
every negative example. Indeed, this is weaker than the condition required by the full ACL
problem which is that every negative example is false in all the abductive extensions of the
theory.

51

Nevertheless, the information generated by ACL1 through the strong abductive expla-
nations for negative examples can be used to provide a solution of the full ACL problem
through a second learning phase. From the output of ACLL, i.e., its set of rules and the sets
of assumptions AT and A~ for covering positive examples and uncovering negative ones,
a solution to ACL can be found by learning constraints that are consistent with AT and
inconsistent with the complement of every abducible in A~. In fact, the strong abductive
explanation A~ will contain, for every negative example e, a strong abductive explanation
A.- for not_e~. This explanation, according to property 36, contains assumptions that
would invalidate directly any possible abductive explanation of e~. Hence by making all the
complements of assumptions in A~ inconsistent, we make all possible explanations of every
e~ inconsistent.

Thus the definition of the second subproblem, called ACL2, can be given as follows.

Definition 43 (ACL2)
Given

e a solution of ACL1
- TACLl = <PUP’,A7[>7
NS
- A,
e a hypothesis space of possible constraints I satisfying the same requirements as in ACL.

Find
A set of constraints I' € T such that the new abductive theory T' = (PUP', A, T UI')
satisfies the following condition

o Mpup (A1) E T,
e Vi€ A, Mpop ({T}) £ T

Note that the third condition of ACL1 requiring AT UA™ to be self-consistent helps to avoid
the case of posing an empty ACL2 problem. If this cannot be satisfied, i.e., AT U A~ is not
self-consistent, then the corresponding ACL2 problem cannot have any solutions.

The theory 77 = (P U P', A, I U I'), obtained by combining the solutions of the two
subproblems, gives a solution to the full ACL problem.

Theorem 44 Let Tacr1 = (P U P, A, I), AT and A~ be the solution of ACLI given
training sets ET and E~, background theory T = (P, A,I) and space of possible programs
P. Moreover, let T' = (PUP', A, TUI") be the solution to ACL2 given the previous solution
of ACL1 and hypothesis space . Then T' is a solution to the ACL problem that has E*
and E~ as training sets, T as background theory and P and T as spaces of possible programs
and constraints.

The proof of this theorem is reported in Appendix A.l. Once decomposed into its two
subproblems, it becomes clear that ACL combines the two ILP settings of learning from
entailment and learning from interpretations. In fact, ACL1 can be seen as a problem of
learning from entailment, while ACL2 as a problem of learning from interpretations.

52

The algorithm we present in the next section solves the ACL problem by first solv-
ing ACL1 and then ACL2. In example 41, the solution of ACL1 consists of the rule
father(X,Y) < parent(X,Y), male(X), together with the explanations A*™ = {male(david),
not_female(david)} and A~ = {not_male(kathy)}. Given this intermediate solution, we
can now apply a second phase where integrity constraints are learned from the background
knowledge and the explanations obtained in the first phase. We want to make male(kathy)
inconsistent while keeping AT consistent: ¢« male(X), female(X) is a constraint that sat-
isfies these conditions.

We note that in many cases, ACL1 can be useful on its own merit e.g., when we have
sufficient information in the integrity constraints of the background theory or for problems
where indeed this weaker requirement on negative examples is sufficient. We will see exam-
ples of such cases in the following sections 5 and 6.

4.3.1 Monotonicity and Generality

Abductive Logic Programs are inherently non-monotonic. Given two abductive theories 77 =
(P1, A, I) and Ty = (P», A, I,) both entailing a goal, their union ' = (P,UP,, A, I; Ul5) does
not necessarily entail this goal. Non-monotonicity poses problems in learning as algorithms
based on the covering approach can not be used. In general, we can not learn a theory
by iteratively adding a clause to a partial hypothesis because the addition of a clause can
reduce the number of positive examples covered by the hypothesis by making some of the
abductive assumptions inconsistent.

By splitting the ACL problem into the two phases of ACL1 and ACL2, we can recover a
form of restricted monotonicity. In the first phase of ACL1, where the integrity constraints
remain fixed, we have two cases to consider: (i) monotonicity under the addition of a new
clause in the program P of the current hypothesis and (ii) monotonicity under the addition
of new abductive assumption as we move from one training example to another. The second
case can be dealt with by employing a suitable abductive proof procedure for ALP based on
strong abductive explanations, as discussed in the previous section, carrying the explanation
of the previous examples when testing the abductive coverage (or uncoverage if the example
is negative) of the next example. The first case is in general more difficult but in the
particular case of interest, since the new (learned) clauses can only affect the extension of
the target(s) predicates, we can satisfy this monotonicity requirement by restricting (as we
have) the language of the integrity constraints and the program of the background theory
to be independent of the target predicate(s).

In the second phase of ACL2, where the program of the abductive hypothesis is fixed
and we vary the integrity constraints, monotonicity in ensured by the specific definition of
the ACL2 problem that we have adopted where, by construction, the new learned integrity
constraints must be consistent with the abductive assumptions AT required for the coverage
of the positive examples. Hence these examples will continue to be abductively entailed by
the theory after the addition of the new integrity constraints generated by ACL2.

The non-monotonic nature of the hypothesis space of abductive theories introduces an-
other difficulty in the task of solving the ACL problem. It makes it difficult to have a
generality structure on this space that can be useful in the search for solutions to our
learning problem. In general, there is no natural generality structure on the full space of
abductive theories but again the separation of the problem into its two phases of ACL1 and

53

ACL2 allows us to adopt the separate generality relations for the rule part P and integrity
constraints I of the abductive theories.

Let us recall here the definitions of the generality relations. For the rule part (see section
3.2.4), we have that P; is more general or equally general as P if and only if P, = P,
while, for the constraints part (see section 3.3), I; is more general or equally general as I
if and only if I» |=I;.

The use of these usual generality relations on the separate parts of an abductive theory
means, as we shall see in the next section, that we can adapt standard ILP techniques,
e.g., generalization and specialization operators based on #-subsumption [Plo70, Plo71], in
developing algorithms for the separate phases of ACL1 and ACL2.

4.4 An Algorithm for ACL

The ACL problem can be solved by the following algorithm, also called ACL. The algorithm
is composed of two steps, one for each of the subproblems of the full ACL problem.

Algorithm ACL:

1. Learn rules (ACL1): find a set of rules P’ and two sets of assumptions A" and A~
such that

o (PUP, ALY EY,

e (PUP' A I)FR, not E~

where I—ﬁ’ denotes an abductive derivability satisfying definition 39. The requirement
that AT is given as input for the abductive derivation of negative examples ensure the
third condition of the ACL1 problem definition that requires the consistency among
AT and A~.

2. Learn constraints (ACL2): find a set of integrity constraints I’ such that

o« M(AT)E T,
eVie A, M{I}) I

where M(A™) and M({l}) denote the minimal Herbrand model of P U P’ U A" and
P U P'U{l} respectively.

ACL1 is solved by an algorithm also called ACL1 that will be presented in section 4.4.1.
Note that this algorithm uses strong abductive explanations for the positive examples £+ (as
well as the negative examples) thus exploiting the property of proposition 38 for combining
separate explanations and in particular for ensuring that the union At UA™ of the computed
assumptions is consistent with the learned theory. ACL2 can be solved by employing a
system that learns from positive and negative interpretations, such as ICL [DRL95]. We
will explain in more detail how ICL can be applied in section 4.4.2.

54

algorithm ACLI(
inputs : Et, E~ : training sets,
T = (P, A, I) : background abductive theory,
outputs : H : learned theory, At A~ : abduced literals)

H:=0
AT =0
A==
repeat

Specialize(T, H,E*, E~, A", A~;Rule, Ef ., Af e DRure)
E+ = E+ \E;tgule
H := H U{Rule}
At = ATUAL .
A=A UARu.
until Et = 0 (sufficiency stopping criterion)
output H,A

Figure 4.1: ACL1, the covering loop

4.4.1 An Algorithm for ACL1

The algorithm for ACL1 is based on the generic top-down ILP algorithm (see section 3.2.6)
and extends the algorithm in [ELM*96]. In this paragraph, we consider only the single
predicate learning task. We will discuss in section 4.5 the problem of learning multiple
predicates.

The top level covering and specialization loops of the algorithm are shown in figure 4.1
and figure 4.2 respectively. The generic top-down algorithm has been extended in several
ways to take into account the abductive coverage relation of ACLI.

New clauses are generated by beam search, initialized to a clause with an empty body for
the target predicate, using a specially defined heuristic evaluation function. This is adapted
from the usual accuracy function to allow for the possibility of missing information on some
of the background predicates.

The evaluation of a clause is done by starting an abductive derivation for each positive
example and for the complement of each negative example (see figure 4.3). The derivation
is performed using a procedure based on the abductive procedure outlined in Appendix A.3.
For each example e we have a call AbductiveDerivation(e, (P U H U{Rule}, A, I), Ajn; Ae).
This returns a strong abductive explanation A, for the goal e (which is either of the form e*
or not_e ") starting from an initial set of assumptions A;y, i.e., (PUH U{Rule}, A, I) I—ﬁ:ﬂ e.
Ay, consists of the set of assumptions abduced for earlier examples thus ensuring that the
assumptions made during the derivation of the current example are consistent with the ones
made before. Note that A. contains all the assumptions needed to explain e, even those
that are already contained in Aj;,. This is needed for the evaluation of the heuristic value
of the clause as well as for the second phase (ACL2) of the ACL algorithm, where we learn
the constraints, as the learned constraints must make inconsistent all the assumptions in
the explanations A,,,; .- of any negative example e™.

95

procedure Specialize(
inputs : T : background theory,
H : current hypothesis, ET, E~ : training sets,
AT A~ : current set of abduced literals
outputs : Best : rule, Egest : examples covered by Best,
ALt Apess ¢ literals abduced when testing Best)

Beam := { (p(X) « true.,Value), where p is a target predicate,
Value is the value of the heuristic function for the rule}
Select and remove the best rule Best from Beam
repeat
BestRe finements := set of refinements of Best allowed
by the language bias
for all Rule € BestRefinements do
Value := Evaluate(Rule, T, H, ET, E—, AT A7)
if Rule covers at least one pos. ex. then
add (Rule, Value) to Beamn
endfor
Remove rules in Beam exceeding the beam size
Select and remove the best rule Best from Beam
until Best uncovers every e~ € E~ (necessity stopping criterion)
Test the coverage of Best obtaining:
Ege s the set of positive examples covered by Best
A%, and A, the sets of literals abduced during
the derivation of e and not_e~ (et € Ef,,,e” € E7)

output Best, Egest) Ajgest, Agest

Figure 4.2: ACL1, the specialization loop

56

function Evaluate(
inputs : Rule: rule, T'= (P, A, I) : background theory,
H : current hypothesis, ET, E~ : training sets,
AT, A~ : current sets of abduced literals)
returns the value of the heuristic function for Rule

n® := 0, number of pos. ex. ACL1-covered by Rule without abduction

nf := 0, number of pos. ex. ACL1-covered by Rule with abduction
n® := 0, number of neg. ex. not ACLl-uncovered by Rule
ng := 0, number of neg. ex. ACL1-uncovered by Rule with abduction
N = ATUA™
for each et € ET do
if AbductiveDerivation(e™, (P U H U {Rule}, A, I), Ajpn; Ap+)
succeeds then
if A,y =0 then
increment n®
else
increment n%
endif
Aip = A U Ae"’
endif
endfor
for each e~ € F~ do
if AbductiveDerivation(not.e~, (P U H U {Rule}, A, I), Ajp; Ac-)
succeeds then
if A,- # 0 then
increment ng
endif
Ain = Azn U Ae‘
else
increment n®
endif
endfor
return Heuristic(n®,n%,n® n9)

Figure 4.3: ACL1, evaluation of a clause

57

Covered positive and negative examples are counted, distinguishing between examples
covered (uncovered) with or without abduction, and these numbers are used to calculate
the heuristic function. This heuristic function of a clause (or rule) C takes the form of an
expected classification accuracy (see section 3.2.6): A(C) = p(®|C), where p(®|C) is defined
as the probability that an example covered by C is positive. The probability is estimated
by means of a form of relative frequency that gives different strength to positive examples
covered (negative examples uncovered) with assumptions (i.e. T 2 e with A # (), where
e is either e™ or not_e™) or without assumptions (i.e. A = ().

The heuristic function used is

A(C) = n® + k® x n§

n® +n® + k® x n% + kS x nG
where, for any given clause C, ne),nf,ne,ni are defined as in figure 4.3 according to the
abductive coverage of positive and negative examples by clause C.

The coefficients k® and k® are introduced in order to take into account the degree of
confidence in the assumptions made, respectively, for positive and negative examples. They
are an estimate of the fraction of assumptions made that are correct. For example, consider
a clause C of the form:

p(X) & Body(X)
where Body(X) is a conjunction of literals not containing an abducible. Suppose we want
to evaluate the refinement C' obtained by adding to C' the abducible literal abd(X). Clause
C covers n®(C') positive examples without abduction: out of these, C' will cover n®(C")
positive examples without abduction (for which a fact of the form abd(%) is in the background
program), n% (C') with abduction (a fact of the form abd(t) is abduced) and it will not cover
n®(C) —n®(C") — n%(C") examples (abd(f) could not be abduced because of constraints).
k®(C") expresses an estimate of the fraction of the abd(f) assumptions that are correct in
the sense that, if the knowledge were complete, abd(t_) would be known to be true. This
percentage is estimated by assuming that the ratio of true facts over the total number of
facts for the unknown atoms is the same for the known atoms. Therefore k®(C’) is given
by the following formula

K®(C') = # of true atoms n®(C")
"~ # of known atoms n®(C) —nl(C")

The true atoms are the facts (in the background program) of the form abd(f) that corresponds
to examples covered by C’, therefore their number is n®(C"). The false atoms are the ones
for which the constraints inhibited the assumption of a fact of the form abd(). The unknown
atoms are those for which it was possible to make an assumption of the form abd(), therefore
their number is n§(C’). The number of known atoms is given by the total number of atoms
in the sample universe (i.e. of the examples covered by C) minus the number of unknown
atoms.

In the case in which no constraint is available, n®(C") + n%(C") = n®(C) and k®(C") is
always 1. In this case, we use following more conservative estimate

with a lower bound, set by default to 0.1, so that £®(C’) can not drop below this threshold.
This estimate turned out to be often more realistic also when constraints are available, due
to the fact that much more positive information (represented by facts of the programs) is
usually available rather than negative information (represented by constraints). Therefore,
this more conservative estimate was used in most of the experiments.

Finally, we must consider the case in which some abducibles were already present in
Body(X). We will assume that all the examples covered by C' with abduction are covered
with abduction as well by C. k¥®(C") must then express the probability that both the current
assumptions and those made before are true at the same time. Therefore:

n®(C")
n®(C)

K®(C") = k®(C) x

The formula for k°(C') can be derived with a similar reasoning:

n®(C")
n®(C)

kS (C") = k°(C) x

Implementation

Prolog was chosen for the implementation of ACL1 because it is particulary suitable for the
elaboration of data in the form of Prolog programs, since there is no syntactic difference
between code and data: terms and atomic formulas have the same structure. Prolog offers
also a number of built-in meta-level predicates for accessing the program clauses that allowed
the implementation of the abductive proof procedure as a meta-interpreter. Moreover,
the availability of lists as primitive data structures is particularly useful for implementing
algorithms that search a state space: a list was used to represent the beam of possible clauses
in the procedure Specialize.

The ACL1 code is composed of the following main procedures. i (File) is the command
to be given at the Prolog prompt for starting the induction. It reads the file that contains
the input data, starts the covering loop and writes the output to a file.

covering loop(Eplus,Eminus,RulesIn,RulesOut,Deltaln,Deltalut) implements
the covering loop: it first initializes the beam with a clause with an empty body for every
target predicate and starts the specialization loop. Then it adds the clause generated in
the specialization loop to the current set of rules and updates the training set and the
assumption set.

specialize(BeamIn,BeamOut,Eplus,Eminus,Deltaln,N) implementsthe specialization
loop. The recursion is stopped when the first clause in BeamIn is consistent or when the
maximum number of specialization steps N is reached.

The predicate evaluate (Value,Clause,Eplus,Epluscovered,Eminus,Eminuscovered,
Eplus,Epluscovered,Deltaln,Deltalut,...) is used in order to evaluate clauses. It
takes as input the clause to be evaluated Clause, the current training set Eplus, Eminus,
the current set of assumptions Deltaln, and returns the values of the heuristic function
Value together with the sets of covered examples Epluscovered, Eminuscovered and the
new set of assumptions DeltaOut.

The system has been implemented using SICStus Prolog [Swe97] and is available at the
following address http://www-1lia.deis.unibo.it/Software/ACL/.

59

4.4.2 Learning Integrity Constraints

The second subproblem ACL2 of learning integrity constraints can be seen as a problem
of learning from interpretations (see section 3.3) where we have to discriminate between
allowed interpretations (explanations for positive examples) and forbidden interpretations
(explanations for negative examples). The ICL system ([DRL95], see also section 3.4.4)
solves exactly this problem, and we can therefore use it to solve the ACL2 problem. We
recall here the definition of the problem solved by ICL.

Definition 45 (ICL Problem)
Given

e q definite clause background theory B,

e a set of positive interpretations P,

e q set of negative interpretations N.
Find a clausal theory H such that

e for allp € P, M(BUp) is a true interpretation of H, i.e. M(BUp) = H (Complete-
ness);

e for allm € N, M(BUn) is a false interpretation of H, i.e. M(BUn) [£ H (Consis-
tency);

In our case, we have to learn integrity constraints on abducibles by using the information
contained in the sets A* and A~ generated from ACL1. ICL can be used to solve the ACL2
problem with the following inputs:

e the program P U P’ as the background knowledge B,
e one positive interpretation p = A™T;
e one negative interpretation n; = {I;} for each [; € A~.

Learned constraints will be true in the model M(A™) and will be false in each model
M ({l;}). Therefore, when the integrity constraints are added to the final abductive theory,
they will not allow any of the abductive assumptions /; with I; € A~. This in turn means
(see theorem 44) that negative examples cannot be abductively entailed as required for the
full ACL problem.

We mention here that another possibility of integrating the two subproblems of ACL1
and ACL2 is to record in ACL1 all possible explanations A,- for each negative example
e~ in its three-valued version and to give to ICL each one of these explanations A,- as a
negative interpretation. In this way, we do not decide a priori in ACL1 how (i.e., on which
assumption) each of the explanations for negative examples must be made inconsistent later
by the constraints produced by ACL2. This decision is taken a-posteriori by ACL2 itself
when it produces the constraints. Hence ICL has the freedom to make A.- inconsistent on
any of the abducibles in it. Learning constraints is now easier because ICL can choose which
abducible to make inconsistent in each explanation A,-. However, this alternative way of
splitting the ACL problem is only appropriate when assumptions for positive examples
cannot contradict those for negative examples. Otherwise, such an inconsistency will not be
detected until the end of the second phase requiring the (costly) return to the first phase.

60

4.4.3 Properties of the Algorithm

In this section, we show the soundness of the ACL algorithm given in the previous section
and discuss its (lack of) completeness.

Let us first adapt the properties of soundness and completeness of an inductive algorithm
defined in section 3.2.1 for the problem definition of ACL. Given an algorithm, A, for ACL we
shall write A((P,Z), ET,E~,T) = T' to indicate that, given the hypothesis space (P,Z),
the positive and negative examples ET and E—, and the background knowledge T, the
algorithm outputs a program 7. We write A((P,Z), EY,E~,T) = 1 when A does not
produce any output.

With respect to the ACL problem definition of section 4.3, the definitions of soundness
and completeness are given as follows.

Definition 46 (Soundness) An algorithm A is sound if whenever A((P,Z),E*, E=,T) =
T', then the theory T' = (P U P', A, I U I') that is computed satisfies the conditions of
definition 4.3, i.e. P' € P, I' € T and

o T'=4 ET,
eVe € B, T [fFse .

Definition 47 (Completeness) An algorithm A is complete if whenever A((P,ZI),E™,
E~—,T) = L then there is no computed theory T' that satisfies the conditions of definition
4.3.

The ACL algorithm is sound but not complete.
Theorem 48 (Soundness) The algorithm ACL is sound.

The proof of this theorem is given in appendix A.2. a

The ACL algorithm is incomplete because the search space of ACL1 is not completely
explored. In particular, there are two choice points which are not considered in order to
reduce the computational complexity of the algorithm. The first choice point is related to
the greedy search in the space of possible programs as in most ILP systems. When no new
clause can be added by the specialization loop, no backtracking is performed on previous
clauses added. This can prevent the system from finding a solution when it is learning a
recursive predicate because of the interaction among clauses: an overgeneral clause may
make inconsistent a correct clause still to be learned that calls it. This problem is alleviated
in the system M-ACL, (see section 4.5 below) where backtracking on clause addition is
performed.

The second choice point concerns the different abductive explanations that may be avail-
able for each example: the choice of an explanation for an example can affect the coverage
of future examples. The algorithm does not perform backtracking on example explanations,
it just selects one and commits to it.

Finally, we comment that, with respect to the generality of the two separate parts of
the hypothesis space, the solution found by the ACL algorithm combines a most general
program with a most specific set of integrity constraints. Finding most specific integrity
constraints means that these constraints will restrict as much as possible the number of

61

abductive extensions that are allowed by the learned theory. This is desirable since initially,
with no constraint, any set of assumptions is allowed: with the learned constraints we want
to maximize the information gained from them by maximizing the collection of assumption
sets that they exclude.

4.5 ACL for Multiple Predicate Learning

ACL finds a natural application in the problem of multiple predicate learning multiple in
ILP. In multiple predicate learning we have a learning situation which is similar to the
problem of learning with incompleteness in the background data, since each predicate to
be learned forms part of the background theory for the other predicates and the available
definitions for the target predicates are incomplete during learning.

Multiple predicate learning is a task that poses a number of problems to most ILP
systems. These problems and difficulties have been exposed in [DRLD93]. In this section we
will discuss these problems and show how they can be addressed within the ACL framework
by a suitable extension of the ACL1 algorithm and system.

4.5.1 Multiple Predicate Learning: Problems and Difficulties

In order to learn multiple predicates, it may seem at first natural to repeat several times a
single predicate learning task. However, this simple approach suffers from several problems
[DRLD93]. It is sensitive to the order in which predicates are learned, it can produce
overgeneral theories and is unable to learn mutually recursive predicates for which it is
necessary to alternatively learn clauses for different predicates. In addition, a top-down
covering algorithm that can interleave the learning of clauses for different predicates faces
the problem that a clause that is consistent with the negative examples for one predicate
can make the theory inconsistent with the negative examples for another predicate.

In order to illustrate this central problem of generating inconsistent hypotheses, we
distinguish between two types of consistency of a clause: local and global consistency of a
new clause with respect to the theory learned so far (current hypothesis). The definitions we
give extend those given in [DRLD93] by relating the consistency of a clause to the current
partial hypothesis. Intuitively, a clause is locally consistent if it does not cover any negative
example for its head predicate when it is added to a consistent partial hypothesis. Instead, a
clause is globally consistent if it covers no negative example for any target predicate. Before
giving the definitions, let us first introduce some terminology.

Let the training set be £ = ETUE~. We assume that E contains examples for m target
predicates p1, . .., p, and we partition Et and E~ in EJr and £ for: =1,...,m, according
to these predicates. A hypothesis H is a set of clauses for some of the target predicates. The
function covers(B, H, E) gives the set of examples in E that are covered by the hypothesis
H with background knowledge B, i.e., covers(B,H,E) ={e€ E| BUH k= e}.

Definition 49 (Local consistency) Let H be a consistent hypothesis and C a clause
for the predicate p;. Then C is locally consistent with respect to H if and only if
covers(B,H U{C},E,) = 0.

Definition 50 (Global consistency) Let H be a consistent hypothesis and C' a clause for
any target predicate. Then C is globally consistent with respect to H if and only if

62

covers(B,HU{C},E~) = 0.

By repeating several times a single predicate learning task, we repeatedly add locally consis-
tent clauses to the current partial hypothesis. However, when learning multiple predicates,
adding a locally consistent clause to a consistent hypothesis can produce a globally incon-
sistent hypothesis as it is shown in the next example adapted from [DRLD93].

Example 51 Suppose we want to learn the definitions of ancestor and father from the
knowledge base:

B = {parent(a,b), parent(d,b), parent(b, c), male(a), female(b) }
and the training sets:

E* = {ancestor(a, b), ancestor(d, c), father(a,b)}

E~ = {ancestor(b, a), ancestor(a, d), father (b, c), father(a, c)}
Suppose that the system has first generated the rules:

ancestor(X,Y) < parent(X,Y)

father(X,Y) < ancestor(X,Y), male(X)
The second rule is incorrect but the system has no means of discovering it at this stage, since
it is locally and globally comsistent with respect to the partial definition for ancestor.
Then the system learns the recursive rule for ancestor:

ancestor(X,Y) < parent(X, Z), ancestor(Z,Y)
This clause is locally consistent with respect to the current hypothesis because none of the
negative examples for ancestor will be covered, but it is globally inconsistent because the
negative example father(a,c) will be covered.

In order to address this problem, most top-down ILP learning systems use extensional
coverage (see section 6). In this way, clauses are learned independently from each other and
hence these systems simply avoid considering the problems of global inconsistency during
their learning process. However, extensional coverage leads to other problems since the
learned theory can be both inconsistent and incomplete, as it is shown in [DRLD93].

Instead of adopting extensional coverage, the system MPL [DRLD93| uses intensional
coverage and solves the problem of maintaining the global consistency of the current hypoth-
esis by re-testing the negative examples for all predicates and by performing backtracking
on clause addition to the theory.

Another problem that can arise in multiple predicate learning concerns the case when
scarce training examples, particularly negative examples, are available for a subsidiary pred-
icate. In this case, a system could learn an overgeneral definition for the subsidiary predicate
and this may prevent the system from finding a consistent definition for other predicates.
The next example illustrates this.

Example 52 Suppose we want to learn the predicates grandfather and father. Let the
background theory be:

P = {parent(john, mary), male(john),

parent(david, steve), male(david), male(steve),

parent(steve, jim), male(jim),

parent(mary, ellen), female(mary), female(ellen)

parent(ellen, sue), female(sue)}
and let the training data for both concepts be:

Et+ = {grandfather(john, ellen), grandfather(david, jim), father(john, mary)}

63

E~ = {grandfather(mary, sue), grandfather (mary, john),

father(john, ellen), father(david, jim), father(jim, david)}
A system that learns first the rule for father, may learn the overgeneral rule

father(X,Y) < parent(X,Y)
since it is consistent with the negative examples for father. Then, it would not be able to
accept the correct rule for grandfather, since

grandfather(X,Y) « father(X, Z), parent(Z,Y)
would cover as well the negative example grandfather(mary, sue).
On the other hand, if the system first learns the above correct rule for grandfather, it again
needs to recognize that this implies additional negative examples for father in order to avoid
the same overgeneral rule for father.

4.5.2 M-ACL: a Multiple Predicate Learning framework

The following quote from [DRLD93] succinctly summarizes the major challenges of multiple
predicate learning. Learning multiple predicates requires an approach that ”...discovers
a good order of learning the predicates; interleaves the learning of different predicates;
recovers from overgeneralization; and takes into account global effects”. We will show here
how the ACL framework, in particular ACL1, can be suitably employed to provide these
characteristics.

The basic idea of multiple predicate learning through ACL is to set the target predicates
to be learned as abducible predicates and use the abductive information that ACL1 generates
on these to link the learning of the different predicates. This information can be used in two
inter-related ways. Firstly, it acts as extra training examples for the target predicates. After
the generation of each clause by ACL1, the associated assumptions AT and A~ about other
target predicates are added to the training set according to their sign. In effect, training
information for one predicate is transformed into training information for other predicates.
At the same time, this abductive information generated by ACL1 is used to give us an extra
mechanism for ensuring global consistency in the hypothesis in a way similar to abductive
truth maintenance systems [KM90c, GM90]. The multiple predicate learning algorithm and
system is obtained from ACL1 by encompassing this in a process that uses the abductive
information, produced by ACL1, to detect and restore consistency.

The M-ACL algorithm is therefore based on a dynamic set of training examples E for the
target predicates that contains the given training examples together with those generated
through abduction. It rests on the important observation that, for definite logic programs,
we can detect the local or global consistency of a clause by testing the training examples for
its head predicate as follows:

e a clause is locally consistent if it does not cover any negative example from the
original training set, while

e a clause is globally comnsistent if it does not cover any negative example from the
abductively extended training set.

To illustrate this, consider two predicates p and ¢q, where ¢ depends on p. Suppose that, when
testing a rule for ¢, a negative example p(f;,) for p is generated for uncovering a negative
example q(t_;) for q. Afterwards, if we learn a clause for p that does not cover p(t_;,), then
also g(f;) will not be covered and the clause for p will be globally consistent.

64

procedure M-ACL(
inputs : ET, E~ : training sets,
P : background theory,
outputs : H : learned theory, E4 : abduced examples)

H:=0
A:=10
E,:=Et Unot_.E~
repeat
Specializey (P, H, E.,A; r,EY E_, A,)
E.:=E.\Ef
H:=Hu{r}
Test(H, A3 AY)
while A; is non-empty:
Choose(A}; Ab)
Refine(H,Ab,A,E.; H,E.,A)
Ay = A7\ {Ab})
until £ = 0 (covering loop)
If E, # (0 then
RetractClauses(H, A, E.~, E.; H, A, E,)
Update(E,, A,; E.)
A:=AUA,
endwhile
Es:=E.\(ETUE™)
output H,E4

Figure 4.4: The M-ACL algorithm

The M-ACL algorithm extends ACL1 and is shown in figure 4.4. H, A and E. represent,
respectively, the current hypothesis, the current set of assumptions and the extended set of
training examples. At first, an extension of the ACL1 Specialize procedure (see figure 4.2)
is called, denoted by Specializey;. This uses extensional coverage and tries to generate a
new clause r that is correct with respect to the current extended set of training examples
E.. If this is possible, then the generated clause, r, will cover a set of positive examples
E;' and no negative example (E;” = () with the assumptions A,. If no rule consistent with
the current set of negative examples can be found, then Specializey; looks for a clause that
is consistent only with the original set of examples but covers the subset E_ of negative
examples generated by abduction. If no such clause can be found, then Specializey, fails
and M-ACL also fails.

We then check if the generated clause, that was found extensionally consistent, is also
intensionally consistent. To this purpose, the set of negative assumptions A, C A, gen-
erated by Specialize)s using extensional coverage is tested against the current intensional
hypothesis: the assumptions are considered as negative examples that must not be covered.
If some of these assumptions are violated (A; denotes this set of violated assumptions), we

65

try to remove these violations by iteratively choosing some assumption(s) Ab from A]? and
refining the current hypothesis. The refinement consists in specializing (or retracting and
re-learning) the existing rules that currently define the target predicate of the assumption(s)
Ab and are causing the violation with Ab.

If £ is not empty, then the clause is locally but not globally consistent and we backtrack
on the clauses that generated the covered examples. These rules are deleted from the
current hypothesis, positive examples covered by them are re-added to the training set and
assumptions and examples generated by them are removed from A and from the training
set. In order to support the backtracking required at this step, the abductive procedure
employed by ACL1 is extended to record, for every assumption, the clause responsible for
generating it.

These two tests on A, and E, , when they are successful (i.e. when both A, and E,
are empty), ensure that the next candidate hypothesis, i.e. HU{r}, is globally intensionally
consistent. If one of the tests is not successful, this means that there is a possible conflict
between the clause just learned and the hypothesis H. There are two types of conflicts. The
first type (AJT # () appears because the assumptions for the rule r are inconsistent with the
current hypothesis, while the second type (E;~ # () appears because the rule r covers some
of the negative examples generated by other rules. In the first case we refine the clauses
that cover the negative assumption Ab, so in effect we keep the assumption Ab generated
by r and we reject the clauses that derive its opposite. In the second case, instead, we reject
the (abductively assumed) negative examples covered by r by retracting the clause that has
generated them earlier. In both cases, the clause r is kept and the theory is modified in
order to be in accordance with it.

The specialization or re-learning of the Refine procedure is carried out using, again, the
M-ACL procedure where the agenda of Specializey, initially contains the rule to be refined
instead of rules with an empty body. Therefore, new assumptions may be generated and
new retraction/refinement of previous rules may be necessary.

When the resolution of the violations is completed (sometimes this may not be possible),
assumptions about target predicates are moved from A, to the current training set before
returning back to the first step to learn a new rule for covering the remaining positive
examples of the original training set.

We point out that the generation in M-ACL of the candidate clauses by Specializey,
(using extensional coverage) allows the interleaving of learning clauses for different target
predicates. M-ACL does not require a given order in which to learn the target predicates:
the specialization loop in Specialize), is initialized with an empty body clause for each target
predicate and the same heuristic function is used in order to select the next clause to refine
and therefore the next predicate to learn.

Let us now examine how this algorithm and the M-ACL system that is based on it,
behaves in the cases of examples 51 and 52 (see also appendix A.4 for the output behaviour
of M-ACL on these examples). In example 51, suppose the system has generated in the
current hypothesis the clauses

ancestor(X,Y) < parent(X,Y)

father(X,Y) < ancestor(X,Y), male(X)

When testing the above clause for father, the test of the negative example father(a,c) will
produce the assumption {not_ancestor(a,c)}. These assumptions then become additional
negative examples for ancestor. Their test does not produce a violation and so at this point

66

the system tries to find a clause covering the remaining positive examples for ancestor. The
correct solution

ancestor(X,Y) < parent(X, Z), ancestor(Z,Y)
is not globally consistent, since it covers the new negative example ancestor(a, c) generated
from the rule for father. However, this clause is locally consistent, since it does not cover any
of the negative examples in the original training set of ancestor. It is therefore added to the
current hypothesis and the system backtracks to the clause that has generated this violating
assumption, namely to the clause for father. This clause, together with the assumptions
that it has generated, are retracted and the examples for father are re-added to the training
set for this concept to be learned again. At this point, the system is able to learn the correct
rule for father

father(X,Y) < parent(X,Y), male(X)

This example shows one way in which the M-ACL system uses the dynamically generated
abductive information on the target predicates to have a focussed mechanism of detection
and repair of global inconsistencies. The system can directly detect previously generated
wrong clauses and re-learn other rules for these predicates. Thus, it can recover from an
incorrect rule that was generated from an inappropriate order in the learning of the different
predicates. In this sense the system is less sensitive to the order of learning.

In example 52, M-ACL learns first the rule for grandfather because more information is
available about it and the heuristic function prefers it to any of the rules for father. When
M-ACL generates the rule

grandfather(X,Y) < parent(Z,Y), father (X, Z)
it uses the examples for father as background knowledge making also assumptions about it
when this is needed.

Given the training examples for grandfather

E;'f = {grandfather(john, ellen), grandfather(david, jim)}

E ., = {grandfather (mary, sue), grandfather (mary, john)}
The above rule will be learned by M-ACL by making the assumptions {not_father(mary,
ellen), father(david, steve)} that become additional training examples for father. From this
new training set, the system is then able to generate the correct rule for father. Note that,
without the new negative example father(mary,ellen), it would have been impossible to
generate the correct rule for father and the overgeneral rule father(X,Y) + parent(X,Y)
would have been learned. Thus M-ACL avoids (in this case) the problem of overgeneraliza-
tion.

M-ACL does not overgeneralize even if the system first generates the overgeneral rule
for father. In this case, extensional coverage still allows Specializes to generate the correct
rule for grandfather and to generate the same negative assumption on father as above. At
this stage the M-ACL system will recognize that we have a violation on the assumption
Ab={not_father (mary, ellen)} and the Refine procedure will lead the system to specialize
(or re-learn) the rule for father thus producing at the end the same correct and complete hy-
pothesis as above. Hence, independently of the order of learning, the same extra assumptions
are generated and effectively used to produce the same final result.

This is a general pattern of the overall mechanism for global inconsistency detection and
restoration within M-ACL. If a violating assumption is generated first then this is taken into
account as an extra training example for Specialize); when learning rules for this predicate
and hence the potential violation can be avoided at the stage of generation of candidate

67

clauses. On the other hand, if the violating assumption is generated after an overgeneral
rule has already been generated, this can be directly detected and the repair of this rule is
effected. In this way we alleviate the problem of overgeneralization and the system does not
depend crucially on the order in which the predicates are learned.

Summarizing, we point out that in effect the M-ACL system uses a hybrid of extensional
and intensional coverage: extensional coverage in the generation of candidate clauses using
examples of other target predicates as background facts together with an intensional test
of the theory on the generated negative assumptions. This combination, together with its
overall mechanism for detecting and repairing inconsistency, allows the system to interleave
the learning of the different target predicates with little dependence on the order of learning
and to overcome the problem of overgeneralization. An important characteristic of M-
ACL is the fact that its test for global consistency is performed only on a “narrow” subset
of the negative examples, resulting in a focussed handling of global inconsistency with a
direct detection and repair of the inconsistency. The M-ACL system tests only the negative
abduced examples for the head predicate of the clause under test. In contrast, the system
MPL [DRLD93] checks the negative examples for all target predicate after the addition of
a clause. In this way M-ACL performs a smaller number of tests with respect to MPL.
However, the speedup obtained can be partially counterbalanced by the time and memory
needed to keep track of the abductive assumptions.

4.6 Experiments

Two series of experiments have been performed in order to show the ability of ACL to (1)
learn from incomplete background knowledge and (2) to perform multiple predicate learning,.

4.6.1 Learning from Incomplete Background Knowledge

The main purpose of these experiments was to test how well ACL could learn under in-
complete information and to investigate its behaviour under different forms and degrees of
incompleteness. The following three problems have been considered: (1) the multiplexer
example from [dV89], (2) learning family relations from a database with varying degree of
incompleteness and (3) new problems of learning from (real-life) data of market research
questionnaires which is incomplete due to unanswered questions or “don’t care” answers.
The same incomplete data was also given to other ILP systems such as FOIL. As ex-
pected these produced theories with a larger number of overspecific rules. Hence for these
experiments, the results of ACL have also been compared with those of the system mFOIL
[DB92] that has special techniques for handling more generally imperfect data, both noisy
and incomplete (see section 3.4.3). Let us briefly recall here mFOIL’s approach for dealing
with incomplete data that consists in relaxing the completeness requirement for the suffi-
ciency stopping criterion: mFOIL stops adding a clause to the theory when too few positive
examples remain for a clause to be significant or when no significant clause can be found
with expected accuracy greater than the default. The significance test is based on the like-
lihood ratio statistic [Kal79]: a clause is deemed significant if its likelihood ratio is higher
than a certain significance threshold. The default value for the significance threshold is 6.64
corresponding to a significance level of 99%. Unless otherwise specified, mFOIL was run in
all the experiments with the parameters set in the following way: the heuristic function is

68

the m-estimate with m=2, the beam size is 5, no negation as failure literals are allowed in
the language bias, the minimum number of examples that each rule must cover is 1 and the
significance threshold is 6.64.

The major part of these experiments has concentrated on investigating the behaviour of
the ACL1 subsystem. In all experiments though full abductive theories have been learned
that include integrity constraints which support the abductive rules generated by ACLI.

Multiplexer

The multiplexer example is a well-known benchmark for inductive systems [dV89]. It has
recently been used in [DRD96¢]| for showing the performance of the system ICL-Sat on
incomplete data. We performed experiments on the same data of [DRD96¢] and compared
the results of ACL1 with those of ICL-Sat and mFOIL [DB92].

The problem consists in learning the definition of a 6 bits multiplexer, starting from a
training set where each example consists of 6 bits, where the first two bits are interpreted as
the address of one of the other four bits. If the bit at the specified address is 1 (regardless of
the values of the other three bits), the example is considered positive, otherwise is considered
negative. For example, in the tuple 10 0110, the first two bits specify that the third bit should
be at 1, so this example is positive.

For the 6-bit multiplexer problem we have 26 = 64 examples, 32 positive and 32 neg-
ative. We perform three experiments as in [DRD96c]: the first on the complete dataset,
the second on an incomplete dataset and the third on the incomplete dataset plus some
integrity constraints. The incomplete dataset was obtained by considering 12 examples out
of 64 and by specifying for them only three bits where both the examples and bits were
selected at random. E.g. the above example 10 0110 could have been replaced by 17 0717.
The dataset of the third experiment is obtained by including additional integrity constraints
to this incomplete dataset.

In order for ACL to learn from the incomplete datasets, we used a representation for-
malism where the incompleteness is contained in the background knowledge. Examples are
represented as atoms of the form mul(c) where c is a constant that represent a specific tuple
and background predicates are used to express the bit values for that specific tuple. For
example, the tuple 10 0110 is represented by the atom mul(el) in the training set and by
the following facts in the background knowledge

bitlatl(el) bit2at0(el) bit3atO(el)
bitdatl(el) bitbatl(el) bit6atO(el)

All the predicates of the form bitNatB are declared as abducibles and integrity constraints
of the form below are added to the background theory

+— bitNat0(X), bitNatl(X)
The incomplete tuple 17 0717 can now be represented as
bitlatl(el) bit3at0(el) bitbatl(el)

and assumptions can be made about bits 2, 4 and 6.
In the third experiment, the constraints are such that: 1) the value of unknown attributes
is still unknown (could still be 1 or 0); 2) some combination of values incompatible with

69

Experiments ACL1 ICL-Sat | mFOIL
1) Complete background 100 % 100 % 100 %
2) Incomplete background 98.4 % 82.8 % | 96.875 %
3) Incomplete background plus constraints | 96.875 % | 92.2 % 96.875

Table 4.1: Performance on the multiplexer data

the known class is now impossible. E.g., for the example 70 71?1 (negative), the following
constraints were added:

« bitlatl(el), bitbatl(el)
bitlatl(el) « bit3atl(el)

The first constraint states that bits 1 and 5 can not be both 1, otherwise the example would
be positive, while the second constraint states that if the third bit is 1, then also the first
bit must be at 1.

ACL1 and mFOIL were run on all the three dataset. The measure of performance
that was adopted is classification accuracy, defined as the number of positive and negative
examples correctly classified over the total number of examples in the testing set, i.e. the
number of positive examples covered plus the number of negative examples not covered over
64. In order to test the learned theory, the complete background knowledge was used in all
three experiments.

The results are reported in table 4.1. In experiment 2), ACL1’s accuracy was significantly
better than ICL-Sat’s and slightly better than mFOIL’s, while in experiment 3) ACL1’s
accuracy was only slightly superior to ICL-Sat’s and the same as mFOIL’s. The accuracy
for mFOIL was the same in experiment 2) and 3) since mFOIL is not able to exploit the
integrity constraints. The accuracy of ACL1 in the third experiment is lower than in the
second: this unexpected result is due to the fact that negative examples are tested as
T' =4 not_e™ during learning and as T [~£4 e~ when evaluating the performance. The high
accuracies obtained show that the ACL1 system has in this case solved successfully the full
ACL problem.

We also tested the theory with incomplete testing data thus showing the ability of the
generated theories to classify incomplete examples. We tested the theory on the same
incomplete data set used for learning in experiments 2 and 3. The results of this different
testing are reported in table 4.2, where n® is the number of covered positive examples, while
ngc 1, is defined as the number of negative examples that are (incorrectly) covered according
to the full ACL problem (i.e. for which T’ |=4 e~). In this case, the accuracy has increased
from experiment 2) to 3) as expected. Similar results are obtained with other randomly
generated incomplete subsets of the complete training examples.

Learning Family Relations

In this experiment we considered the problem of learning family predicates, e.g. that of
father, from a database of family relations [BDR96] containing facts about several predicates
parent, son, daughter, grandfather, male and female etc. We performed several experiments

70

Experiments | n® n§., Accuracy
Experiment 2 | 32 5 92.2 %
Experiment 3 | 32 2 96.9 %

Table 4.2: Testing with incomplete data

with different degree of incompleteness of the background knowledge and we compared the
results of ACL1 with those of mFOIL.

The complete background knowledge contains, amongst its 740 facts, 72 facts about
parent, 31 facts about male and 24 facts about female. The training set contains 36 positive
examples of father taken from the family database and 200 negative examples of father that
were generated randomly. Experiments were performed from datasets containing 100%,
90%, 80%, 70%, 60%, 50% and 40% of the facts. The incomplete datasets were generated
by randomly taking out facts from the background knowledge, while the training set was
the same for all experiments.

The experiments with ACL1 were performed first by considering a background knowledge
with no constraint and then by adding the following integrity constraints:

+— male(X), female(X)

+— son(X,Y), female(X)

+ daughter(X,Y), male(X)

+— son(X,Y),not parent(Y, X)

+ daughter(X,Y), not parent(Y, X)

The results are shown in table 4.3. As regards mFOIL, the experiments were done with
a significance threshold of 6.64 and of 10. In both cases, the results of completeness and
consistency are the same for all the incompleteness levels and the number of rules learned
is similar (in some cases slightly lower for significance 10). The table reports the number of
clauses for significance 6.64.

ACL1 without constraints was able to learn theories that are simpler (i.e. they contain
less rules with shorter bodies) than those learned by mFOIL and that are consistent in all
but two case, while the theories learned by mFOIL are always inconsistent for incomplete
data. However, mFOIL always learns complete theories, while ACL1 without constraints
learns incomplete theories at 40% and 80%. If integrity constraints are used with ACL1, the
system is able to learn the simplest complete and consistent theory (i.e. father(X,Y) +
parent(X,Y), male(X)) at all levels of incompleteness.

ACL1 was able to learn more compact theories because it can exploit abduction for
covering positive examples for which no information is available, while mFOIL is obliged to
learn new rules for covering the examples that are not covered by the correct theory due to
the lack of information. When using abduction to complete the missing data it is sometimes
possible to make wrong assumptions especially when the incompleteness is spread over many
background predicates. This could then result in learning a wrong rule, as it happened with
incompleteness 40% and 80% where, respectively, the following two rules were learned:

father(X,Y) < parent(X,Y), parent(X, Z), son(Z, X)

father(X,Y) < parent(X,Y), parent(X, Z), son(Z, X), male(Z)

When integrity constraints are used in the background theory, the possibility of making
wrong assumptions is reduced and for all incompleteness levels a complete and consistent

71

Data | N. of clauses Complete Consistent

DOe O[]0 0] @] 6
100% | 1 1 1 y y y y y y
90% 1 1 4 y y y y y n
80% 1 1 6 n y y n y n
70% 1 1 7 y y y y y n
60% 1 1 8 y y y y y n
50% 1 1 8 y y y y y n
40% 1 1 10| n y y n y n

Table 4.3: Performance on the family data: (1)=ACL1, (2)=ACL1+IC, (3)=mFOIL

theory is learned.

Other experiments on the same database were also performed, where the incompleteness
is isolated only in some of the predicates. For example, an experiment was performed where
only male and female are incomplete, in order to show that ACLI still learns the simplest
theory by making abductions on male, instead of generating overcomplex theories where the
information about the sex is taken from other predicates, for example by using the literal
grandfather (X, Z) to ensure that X is a male. On the same data, mFOIL learns instead
overcomplex theories.

Moreover, for these experiments, we have applied the ICL system to solve also the ACL2
problem of learning integrity constraints from the associated assumptions generated in the
first phase by ACL1 and thus solving the full ACL problem. In some cases, this generated
the constraints that we usually expect from this domain such as

+— male(X), female(X), or

+— parent(X,Y), parent(Y, X)

In other cases, instead, the generated constraints are more specific, such as

parent(X,Y) < male(X), son(Y, X)

parent(X,Y);mother(X,Y) < son(Y, X)

This is due to the fact that the purpose of the generated constraints in ACL2 is just to
support the assumptions of the ACL1 part, without considering other data from the back-
ground theory, and therefore ICL selects any set of constraints that is sufficient to achieve
this specific task.

Marketing Research Data

ACL has been used on several sets of real world data from market research questionnaires
aiming to understand the possible success or failure of selling a new product. In this sub-
section we report on one such experiment.

This case concerns a market research on a new soft drink brand. The research was
conducted by asking 100 people to taste the drink and to fill a questionnaire regarding
the characteristics of the drink and their personal tastes. The concept we want to learn
is buy(X) that expresses whether the person would buy the drink or not. Out of the 100
people interviewed, 52 answered that they would buy the product, 32 would not and 16
don’t know. Therefore we have 52 positive examples and 32 negative ones.

72

There are 24 background predicates representing the answers to the questionnaire. Some
questions require an answer chosen among a number of values: for example, the question
about the aroma of the drink can be answered with low, right or high. These values have
been represented using the predicates lowaroma(X), higharoma(X) and rightaroma(X).
Instead, questions requiring a yes-no answer have been represented using a single predi-
cate: for example, whether the person likes natural things is encoded with the predicate
likenatural(X).

Some questions are unanswered or have don’t care answers and these have been treated
as incomplete information in the background. Out of 24 background predicates, 9 are
incomplete with degree of incompleteness from 37% (i.e. 37 people out of 100 have not
answered or have answered don’t care) up to 89%. The incomplete background predicates
have been considered as abducibles and integrity constraints have been introduced in order
to avoid the abduction of two different answers for the same question. For example, for the
question of "overall flavour” we have the following constraint on the abducible predicates
that record answers to this question:

+ goodflavouroverall(X), poor flavouroverall(X)

ACL1, mFOIL and FOIL were run on this data. All three systems found theories with a
dominant clause covering the majority of the examples plus other very specific rules. Both
ACL1 and mFOIL found the following dominant clause:

buy(X) « goodflavouroverall(X), rightsweetness(X)

According to ACL1, this clause covers 47 positive examples, 10 of which by abduction, and
it does not cover any negative example, while, according to mFOIL, it covers 37 positive
examples and no negative one. This clause was judged to be very meaningful by experts in
the field with the right sweetness as one of the most important factors in the success of a
soft drink. FOIL, instead, has found the following general clause:

buy(X) « goodflavouroverall(X), rightmouth feel (X)
that covers 37 positive examples and no negative one.

The second phase of ACL was also run on this data and the following constraint has
been found:

+ goodflavouroverall(X), higharoma(X)
which, again, was judged to be significant by experts. This constraint can be used in order
to complement the available knowledge on goodflavouroverall.

4.6.2 Multiple Predicate Learning

In this section we present some experiments that have been performed with the M-ACL
system: learning a definite clause grammar for simple sentences, learning the definitions
of the mutually recursive predicates even and odd and learning multiple family relations.
Moreover, as reported earlier in section 5, the M-ACL system was tested on multiple family
relations (see examples 5.3, 5.4 and appendix A.4 for details of the M-ACL system’s be-
haviour on these examples) in order to verify its ability to backtrack from a wrong clause
and to use additional examples generated from abduction to avoid overgeneralization.

Grammar

The data for this experiment is taken from [DRD96¢c]. The aim is to learn the following
definite clause grammar for parsing very simple English sentences:

73

(1) sent(A, B) < np(A,C),vp(C, B)
(2) np(A, B) + det(A, C),noun(C, B)
(3) vp(A, B) + verb(A, B)

(4) vp(4, B) - verb(4,C), np(C, B)

In [DRD96¢] Claudien-Sat is used to solve this task starting from different input interpre-
tations.

The first interpretation corresponds to a complete syntactic analysis of the sentence “the
dog eats the cat”. Therefore the data set contains all the positive and negative facts mention-
ing the following lists: [the,dog,eats,the,cat], [dog,eats,the,cat], [eats,the,cat], [the,cat], [cat]
and []. Another interpretation contains some ungrammatical sentences and corresponds to
several attempts to analyze ”the cat the cat”. It includes all positive and negative facts men-
tioning the following lists: [the,cat,the,cat], [cat,the,cat], [cat,cat], [the,cat], [cat], [cat,the]
and [|. Similarly, another interpretation contains all positive and negative facts mentioning
the lists [the,cat,eats], [cat,eats], [cat,sings], [the,cat,sings], [dog,cat], [sings], [eats],[the] and
[

M-ACL has learned the above rules in the following order: (2), (3), (1), (4). Note that
the definition for sent was learned at a point where the definition for vp was not complete.
This was possible because the system used the examples for vp to complete its definition, by
exploiting the hybrid form of coverage. In this case the training set was such some negative
assumptions about np were necessary in order to avoid the coverage of negative examples.

Mutually Recursive Predicates

The task consists in learning the following mutually recursive definition for the predicates
even(X) and odd(X)

(1) even(X) + zero(X)

(2) odd(X) + succ(X,Y),even(Y)

(3) even(X) ¢ succe(X,Y),o0dd(Y)
The background knowledge contains the fact zero(0) and the definition of the predicate
suce(X,Y) whose meaning is “X is the successor of Y”. The training set is obtained from
a complete training set containing facts for all the numbers from 0 to 9 by removing some
of these. For example, we may remove the positive examples odd(1), odd(5), odd(7), even(2),
even(6) and the negative examples even(3), even(7), even(9), odd(6), odd(8). The training
set is therefore given by:
Et ={odd(3),0dd(9), even(0), even(4), even(8)}
E— = {even(1), even(5), odd(0), odd(2), odd(4) }

M-ACL generated the following output:

/* Execution time 0.440000 seconds. Generated rules */

rule(even(A), [zero(A)],c2)

GC: yes, LC: yes

Covered positive examples: [even(0)]
Covered positive abduced examples: []
Covered negative abduced examples: []

74

Abduced literals: []

rule(even(A), [succ(A,B),0dd(B)],c13)

GC: yes, LC: yes

Covered positive examples: [even(8),even(4)]
Covered positive abduced examples: []
Covered negative abduced examples: []
Abduced literals: [[0odd(7),c13]]

rule(odd(A), [succ(A,B),even(B)],c21)

GC: yes, LC: yes

Covered positive examples: [0dd(9),0dd(3)]
Covered positive abduced examples: [0dd(7)]
Covered negative abduced examples: []
Abduced literals: [[not(even(3)),c21]]

M-ACL has learned clause (3) by exploiting the examples for odd as background knowl-
edge and by abducing the missing example odd(7). This example is then added to the
training set and is covered by clause (2). The negative abduced assumptions on even also
help in preventing the system to subsequently learn an incorrect clause for this predicate.
This experiment shows the ability to learn mutually recursive predicates, exploiting both
extensional coverage and abduction.

Multiple Family Relations

Several experiments to learn multiple family relations were carried out. In one such experi-
ment the problem is to learn the predicates brother and sibling from a background knowledge
containing facts about parent, male and female. The bias allowed the body of the rules for
brother to be any subset of

{parent(X,Y), parent(Y, X), sibling(X,Y), sibling(Y, X),
male(X), male(Y), female(X), female(Y)}

while the body of the rules for sibling can be any subset of

{parent(X,Y), parent(Y, X), parent(X, Z),
parent(Z, X), parent(Z,Y), parent(Y, Z),
male(X), male(Y), male(Z), female(X), female(Y'), female(Z)}

Therefore, the rules we are looking for are

brother(X,Y) < sibling(X,Y), male(X)
sibling(X,Y) < parent(Z, X), parent(Z,Y)

The family database considered for these experiments, taken from [DRLD93], contains 16
facts about brother, 38 about sibling, 22 about parent, 9 about male and 10 about female.
The background knowledge was obtained from this database by considering all the facts
about male and female and only 50 % of the facts about parent (selected randomly). The

75

training set contains all the facts about brother and 50 % of the facts about sibling (also
selected randomly). Negative examples were generated by making the Closed World As-
sumption and taking a random sample of the false atoms: 36 negative examples for sibling
and 37 for brother. For this problem the abducible predicates are the target predicates
brother and sibling plus the background predicate parent.
From this data, M-ACL has constructed first the rule

brother(X,Y) + sibling(Y, X), male(X)
It has exploited both the positive examples of sibling to cover positive examples of brother
and negative examples of sibling to avoid covering negative examples for brother. This rule
was constructed first because the heuristics preferred it to the rules for sibling, as more
information was available for the predicate sibling rather than for parent. When learning
this rule, ACL1 has made a number of assumptions on sibling: it has abduced 3 positive
facts (that become positive examples for sibling) and 33 negative facts (that become negative
examples for sibling). Then, M-ACL constructs the rule for sibling

sibling(X,Y) < parent(Z, X), parent(Z,Y)
using this new training set and making assumptions on parent.

This experiment shows again how M-ACL is able to learn multiple predicates exploiting
the information available and generating new data for one predicate while learning another.

4.7 Related Work

This chapter basically presents the work discussed in [KR98]. The work builds on earlier
proposals in [DK96] and [ELM ™96, LMMR97, LMMRO8] for learning simpler forms of ab-
ductive theories. The use of abduction in learning, either in an implicit or explicit form, has
recently been examined by several works [Abe98, AD94, AD95, Coh92, DRB92a, M0098,
1595, KK98, Sak98]. The abductive assumptions generated during learning are then used in
different ways depending on the kind of learning task the system is performing.

In this thesis, abduction is used explicitly as the basic covering relation for defining the
concept learning problem. In many other cases, abduction is used as a useful mechanism
that can support some of the activities of the learning system. For example, in theory
revision, abduction is used as one of the basic revision operators for the overall learning
process [AD94, DRB92a, Moo098, Sak98]. For each individual positive example that is not
entailed by the theory, abduction is applied to determine the set of assumptions that would
allow it to be proved. These assumptions are then used to suggest where the current theory
should be revised. In [DRB92a, AD94] the assumptions are either added as facts to the
theory or new clauses are learned for covering them. In addition, some of these systems use
abductive assumptions for revising overspecific rules by removing from them the literal(s)
that generated the assumption [M0098]. This type of integration of abduction and induction
has been studied in a principled way in [AD95] where an integrated framework that combines
Abductive and Inductive Logic Programming is proposed.

Abduction is also used as a suitable mechanism for extending Explanation Based Learn-
ing [Coh92, O’R94] in cases where the given domain theory is incomplete in the description
of some of its predicates. These predicates are then treated as abducible and proofs can be
completed by abduction before they are generalized.

The work of [TM94] proposes an approach where abduction is used as the basic covering
relation for learning in a different way with respect to the ACL approach. Abduction is car-

76

ried out on the concept to be learned rather than on the (incomplete) background predicates.
A system, called LAB, is presented that uses a simple, propositional form of abduction in
the context of a particular application of learning theories for a diagnostic reasoning model.
In this reasoning model, theories are composed of rules of the form symptom <« disorder
and the task of abduction is to find a (minimum) set of disorders that explains all the symp-
toms. LAB is given as input a set of training cases each consisting of a set of symptoms
together with their correct diagnosis (set of disorders) and it produces a theory such that the
correct diagnosis for each training example is a (minimum) abductive explanation. In LAB,
therefore, the explanations themselves are considered as the output of the target theory (the
target predicates are the abducible disorder predicates) requiring that the learned theory
respects the input-output couples given in the training cases.

Recently, the deeper relationship between abduction and induction has been the topic of
study of two workshops [FK96, FK97] where various (preliminary) works on the integration
of abduction in learning have been proposed [Abe98, Sak98, KK98]. Of these, [KK98] is
the closest to this work: the authors present a top-down learning algorithm that employs
an abductive proof procedure for testing the coverage of examples. They consider a cost
for each explanation by assigning a cost to every abducible literal. The minimum cost for
explaining examples is then taken into account in a FOIL-like clause evaluation function.
As ACL, the system can be applied to learn from incomplete background data.

Several other proposals for learning with incomplete information exist. In attributed-
based or propositional learning one common way to handle incomplete information (i.e.
missing attribute values) is to replace each example with a missing value with several exam-
ples, one for each of the possible values of the attribute, and to associate with each example
a fractional weight, representing the conditional (with respect to the class of the example)
probability of that particular value. The conditional probability of the different values is
estimated with the relative frequency from the set of instances. This is the approach fol-
lowed by ASSISTANT [CKB87], CN2 [CB89] and C4.5 [Qui93]. Various approaches to the
handling of incomplete information are empirically compared in [Qui91].

An early ILP system that is able to deal with missing information is that of LINUS
[LDGY91a]. This learns first order theories by first translating an ILP problem into an
attribute-value representation and by then employing an attribute-value algorithm that han-
dles incomplete information. In this way, it is able to deal both with missing arguments and
missing facts in the background knowledge. The drawbacks of this approach are the large
number of attributes that may be necessary and the restriction of the language of target
programs to determinate Datalog clauses.

The FOIL-I system [IKIT96] is an ILP system that learns from incomplete information in
the training set but not in the background knowledge, with a particular emphasis on learning
recursive predicates. In [WD95] the authors propose several frameworks for learning from
partial interpretations. A particular framework that can learn form incomplete information
is that of learning from satisfiability [DRD96c]. This framework is more general than ACL as
both the examples and the hypotheses can be clausal theories. On the other hand, theories
learned by this framework correspond only to the integrity constraints part of an abductive
theory with no (or a trivial default) rule part.

A problem that is related to learning from incomplete data is that of learning from
noisy or in general imperfect data [Qui90a, DB92, LDB96]. This problem is handled by
relaxing the requirements of consistency and completeness in the necessity and sufficiency

77

stopping criteria and by adopting special heuristic functions for guiding the search (see
section 3.2.6. Relaxing the sufficiency stopping criterion is particularly useful when learning
from incomplete data. It effectively allows us to avoid the coverage of some of the positive
examples for which insufficient background data is given. For example, mFOIL ([DB92], see
also section 3.4.3) stops adding a clause to the theory when too few positive examples are
left for a generated clause to be significant or when no significant clause can be found with
expected accuracy greater than the default. Instead, FOIL ([Qui90a], see also section 3.4.2)
FOIL stops generating clauses when all the literals that can be added to the current clause
require more than the available number of bits.

In general, these systems see incompleteness as special case of noise and hence it may be
that methods for handling noise are too coarse for incompleteness. Indeed, when we know
in which predicates the incompleteness lies, then we would expect that we can use more
specialised techniques, like the ACL framework, to get better results than the more general
methods for noise. This is confirmed by some of the experiments presented in section 4.6.

As we have seen, ACL can use integrity constraints as part of its background knowledge.
Learning from integrity constraints was first examined in [DRB92a] and [DR92]. Recently,
the system Progol [Mug95a] is able to learn from integrity constraints. However, in these
cases, integrity constraints are used to impose conditions on the target predicates that need
to be respected by the learned clauses. In ACL, instead, constraints impose conditions
on background rather than target predicates and are used to restrict the assumptions of
background facts rather than for specializing the clauses.

On the other hand, ACL also learns new integrity constraints as part of its final learned
theory. Hence ACL involves a combination of learning from entailment and learning from
interpretations. Although several ILP systems (e.g. [Mug95a, DRL95, DRB93]) can pro-
duce theories that combine rules and integrity constraints, all of these use a single form of
induction to generate both parts of the theory. Finally, we point out that, as abductive
theories are non-monotonic in nature, ACL can provide us with a form of non-monotonic
learning. It can thus be used to address similar learning problems as those tackled in the
work of [Hel89, BM91, DK95].

4.8 Conclusions

The chapter presents the new learning framework of Abductive Concept Learning (ACL),
setting up its theoretical foundations and developing a first system for it. This framework
integrates abduction and induction extending the Inductive Logic Programming paradigm
in order to learn abductive theories: both the background and target theories are abductive
theories and deductive entailment as the coverage relation in ILP is replaced by an abductive
entailment in the learning problem of ACL. The main application of ACL is learning from
incomplete information.

The ACL problem can be decomposed into two subproblems, ACL1 and ACL2, the first
consisting of learning the rule part of the abductive theory and the second consisting of
learning the constraint part. ACL1 is a learning from entailment problem, while ACL2 is a
learning from interpretations problem. Based on this decomposition, a system for learning
in this new framework has been developed that solves the ACL problem by first solving
ACL1 and then ACL2. These separate problems are solved using and adapting algorithms
and techniques from the existing ILP frameworks of learning from entailment and learning

78

from interpretations. In this way, ACL represents a non-trivial and useful integration of
these two main ILP settings.

The ACL framework allows us also to tackle effectively the problem of multiple predicate
learning, where each predicate is required to be learned from the incomplete data for the
other predicates. By employing abduction we are able to link the learning of the different
predicates and ensure the coherence among the definitions learned for them. A separated
system for multiple predicate learning, called M-ACL, has been developed by suitably mod-
ifying the ACL system.

Several experiments were performed, some of which were drawn from real-life problems of
analyzing market research questionnaires, to test ACL on problems of learning from incom-
plete information. The performances of ACL were comparable or superior to those of FOIL,
mFOIL and the ICL-Sat system adapted from ICL for learning with partial interpretations.
Other experiments were also done that confirmed the ability of M-ACL to learn multiple
predicates.

The development of the ACL algorithm and system in this chapter was heavily based
on the separation of the full ACL problem into the ACL1 and ACL2 subproblems, adapting
traditional ILP techniques to solve these. Further work is needed to examine other ways
of synthesizing these subproblems and more importantly to develop algorithms that would
search directly the full space of abductive theories. This involves the definition of generality
orderings for this space and the development of suitable refinement operators that would
allow the simultaneous learning of both parts (rules and constraints) of an abductive theory.

79

80

Chapter 5

Learning in a Three-valued
Setting

5.1 Introduction

Most work on inductive concept learning considers a two-valued setting. In such a setting,
what is not entailed by the learned theory is considered false, on the basis of the Closed
World Assumption (CWA) [Rei78]. However, in practice, it is more often the case that we
are confident about the truth or falsity of only a limited number of facts, and are not able
to draw any conclusion about the remaining ones, because the available information is too
scarce. Like it has been pointed out in [DRB90, DR92], this is typically the case of an
autonomous agent that, in an incremental way, gathers information from its surrounding
world. Such an agent needs to distinguish between what is true, what is false and what is
unknown, and therefore needs to learn within a richer three-valued setting.

The class of extended logic programs is particularly suited for representing information
in a three-valued setting. Extended logic programs contain two kinds of negation: de-
fault negation plus a second form of negation, called ezplicit, whose combination has been
recognized as very useful for knowledge representation. The adoption of extended logic
programs allows one to represent exceptions through default negation, as well as with ver-
ily negative information through explicit negation [PA92, AP96, APP98]. For instance, in
[AP96, BG94a, DPP97, DP98, LP98] it is shown how extended logic programs are applicable
to such diverse domains of knowledge representation as concept hierarchies, reasoning about
actions, belief revision, counterfactuals, diagnosis, updates and debugging.

This chapter is based on the work presented in [LRP88b, LRP88a, LRP88c]. We discuss
various approaches and strategies that can be adopted in ILP for learning with extended
logic programs. The learning process starts from a set of positive and negative examples
plus some background knowledge in the form of an extended logic programs. Positive and
negative information in the training set are treated equally, by learning a definition for
both a positive concept p and its (explicitly) negated concept —p. Coverage of examples
is tested by adopting the SLX interpreter for extended logic programs under the Well-
Founded Semantics with explicit negation (IWFSX) defined in [AP96, DPP97], and valid for
its paraconsistent version [DP98].

81

Default negation is used in the learning process to handle exceptions to general rules.
Exceptions to a positive concept are identified from negative examples, whereas exceptions
to a negative concept are identified from positive examples. A definition for the class of
exceptions is then learned which may include new exceptions. The process is then iterated
thus possibly producing a hierarchy of exceptions.

We adopt standard ILP techniques to learn one concept and its opposite. Depending
on the technique adopted, one can learn the most general or the least general definition for
each concept. Accordingly, four epistemological varieties occur, resulting from the mutual
combination of most and least general solutions for the positive and negative concept. These
possibilities are expressed via extended logic programs, and we discuss some of the factors
that should be taken into account when choosing the level of generality of each, and their
combination, to define a specific learning strategy, and how to cope with contradictions.

Indeed, separately learned positive and negative concepts may conflict and, in order to
handle possible contradiction, contradictory learned rules are defused by making the learned
definition for a positive concept p depend on the default negation of the negative concept
—p, and vice-versa, i.e., each definition is introduced as an exception to the other. This way
of coping with contradiction can be generalized for multiple source learning, and modified
in order to take into account preferences among multiple learning agents or information
sources. Moreover, we discuss how detecting different kinds of uncovered atoms points to
different opportunities for theory extension.

The chapter is organized as follows. We first provide some basic notions on extended
logic programs in section 5.2 and introduce the new ILP framework in section 5.3. We then
examine, in section 5.4, factors to be taken into account when choosing the level of generality
of learned theories. Section 5.5 proposes how to avoid inconsistencies on unseen atoms and
their opposites, through the use of mutually defusing (“non-deterministic”) rules, for the
case of single and multiple learning agents, and how to incorporate exceptions through
negation by default. Section 5.6 discusses how to identify diverse inconsistent or undefined
cases in order to refine or extend learnt definitions. A description of the algorithm for
learning extended logic programs hierarchies with exceptions follows next, together with an
example of its behaviour, in section 5.7, and the overall system implementation in section
5.8. Finally, we examine related works in section 5.9, and conclude.

5.2 Preliminaries

In this section, we first discuss the usefulness of three-valuedness and of two types of negation
for knowledge representation and then we provide some basic notions on extended logic
programs and on WFSX.

5.2.1 Three-valuedness, default and explicit negation

In order to represent negative information, default negation [EK89, Dun91]| was introduced
by Al researchers via Logic Programming. The default negation of an atom P, “not P”, may
be read, variously, as “P is not provable”, or “the falsity of P is assumable”, or “the falsity
of P is abducible”, or “there is no evidence for P”, or “there is no argument for P”. Default
negation allows us to deal with lack of information, a common situation in the real world. It
introduces non-monotonicity into knowledge representation. Indeed, conclusions might not

82

be solid because the rules leading to them may be defeasible. Legal texts, regulations, and
courts employ this form of negation abundantly, as they perforce deal with open worlds.

For instance, we don’t normally have explicit information about who is or is not the lover
of whom, though that kind of information may arrive unexpectedly. Thus we write:

faithful(H, K) < married(H, K),not lover(H, L)

Le., if we have no evidence to conclude lover(H, L) for some L given H , we can assume it
false for all L given H.

The issue arises because often, particularly in data and knowledge bases, the Closed
World Assumption (CWA) is enforced: everything that is not explicitly represented as
positive is considered as negative. However, this introduces an asymmetry in knowledge
representation, since negative information is only representable as the negation of positive
one, we are not able to explicitly represent negative information that we may have obtained
from the surrounding world. Therefore, a new form of negation, called explicit negation
[PA92] and represented with —, is needed in order to restore the symmetry.

In some cases, we may have no factual or derivable either positive or negative information
and we’d like to be able to say that both are false epistemically, i.e. from the “knowledge
we possess” point of view. Accordingly, the excluded middle postulate, stating that any
predication is either true or false, is unacceptable because some predication and its explicit
negation may be false simultaneously. Therefore, explicit negation =’ differs from classical
negation because it does not comply with the excluded middle postulate.

By means of this form of negation we are also able to adopt the CWA in a symmetrical
way, i.e., to assume as true what is not explicitly represented as false.

For example, we are able to write

~faithful(H, K) < married(H, K),not —lover(H, L)

to model instead a world where people are unfaithful by default or custom, and where it
is required to explicitly prove that someone does not take any lover before concluding that
person not unfaithful. Here not —lover(H, L) is true by CWA unless —lover(H, L) is proven
true. This can be understood as assuming lover(H, L) true.
More precisely, we can state the CWA for just those predicates P or =@ we wish, simply
by writing:
P+ notP or Q<+ not-—Q

Alternatively, use of not P or of not —() assumption literals may be made at just those
predicate occurrences so requiring it.

Let us next examine the need for revising assumptions and of introducing a third truth-
value, call it “undefined”, into our framework.

When we combine the viewpoints of the two above worlds we become confused:

faithful(H, K) < married(H, K),not lover(H, L)

—faithful(H, K) < married(H, K),not —lover(H, L)

If we have no evidence for lover(H, L) nor for —lover(H, L), we could assume both of them
as false. However, supposing that married(H, K) is true for some H and K, it now appears

83

that both

faithful(H,K) and —faithful(H,K)

are contradictorily true.

In this case the assumptions of falsity of lover(H, L) and for —lover(H, L) has led to a
contradiction. But when an assumption leads to contradiction one should retract it. It is
the venerable principle of reductio ad absurdum, or “reasoning by contradiction”.

In our case, the two assumptions that led to the contradiction are on equal footing.
Given no other, possibly preferential information, we retract both because we cannot decide
between them. That is, we assume neither lover(H, L) nor —lover(H, L) false. Since neither
is provably true either, we make each undefined, i.e., we introduce a third truth-value to
better characterize this lack of information about some lovers’ situation. This imposition of
undefinedness can be achieved simply, by adding to our knowledge:

—lover(H, L) < not lover(H, L)

lover(H, L) < not —lover(H, L)

Given no other information, we can prove neither of lover(H, L) nor —lover(H, L) true, or
false. Any attempt to do it runs into a self-referential circle involving default negation. Thus,
lover(H, L) and —lover(H, L) are assigned the truth-value undefined and, as a consequence,
faithful(H, K) and —faithful(H, K) are undefined too.

However, if we hypothesize one of lover(H, L) nor —lover(H, L) true, the other ipso facto
becomes false, and vice-versa. These two possible situations are thus not ruled out. But the
safest, skeptical, third option is to take no side in this marital dispute, and abstain from
believing either.

Indeed, the WFSX [AP96, DPP97] semantics assigns to the literals in the above two
clauses the truth value undefined, in its knowledge skeptical well-founded model, but allows
also for the other two, non truth-minimal, more credulous models.

When dealing with non-provability one really needs a third truth-value to express our
epistemic inability to come up with information.

In any case, we are in wont of a third logical value for other reasons. As we build
up our real-world imperfect knowledge base, we may very well create, unwittingly and
unawares, circular dependencies as above. For example, the Legislator may well enact
conflicting, circular, laws. Still, we want to be able to carry on reasoning, whether or not
such circularities legitimately express what they model.

5.2.2 Extended Logic Programs
An extended logic program is a finite set of rules of the form:
Lo(—Ll,...,Ln

with n > 0, where L is an objective literal, Lq,..., L, are literals and each rule stands for
the sets of its ground instances. Objective literals are of the form A or —A, where A is an
atom, while a literal is either an objective literal L or its default negation not L. —A is said
the opposite literal of A (and vice versa), where =—A = A, and not A the complementary
literal of A (and vice versa). By not {ai,...,a,} we mean {not ay,...,not a,}. The set of

84

all objective literals of a program P is called its extended Herbrand base and is represented
as HY(P). An interpretation I of an extended program P is denoted by 7' U not F, where
T and F are disjoint subsets of HZ(P). Objective literals in T are said to be true in I,
objective literals in F' are said to be false in I and in HZ (P)—I undefined in I. We introduce
in the language the proposition u that is undefined in every interpretation I.

The WFSX extends the well founded semantics (WFS) [VGRS91] for normal logic pro-
grams to the case of extended logic programs. WFSX is obtained from WFS by adding the
coherence principle relating the two forms of negation: “if L is an objective literal and —L
belongs to the model of a program, then also not L belongs to the model”.

The definition of WFSX that follows is taken from [ADP94] and is based on the alter-
nating fix points of Gelfond-Lifschitz I'-like operators.

Definition 53 (The I'-operator) Let P be an extended logic program and let I be an
interpretation. Tp(I) is the program obtained from P by performing in the sequence the
following four operations:

e Remove from P all rules containing a default literal L = not A such that A € I.
e Remove from P all rules containing in the body an objective literal L such that =L € I.

e Remove from all remaining rules of P their default literals L = not A such that
not A€ I.

e Replace all the remaining default literals by proposition u.
In order to impose the coherence requirement, we need the following definition.

Definition 54 (Seminormal Version of a Program) The seminormal version of a pro-
gram P is the program P obtained from P by adding to the (possibly empty) Body of each
rule L < Body the default literal not—L, where =L is the complement of L with respect to
explicit negation.

In the following, we will use the following abbreviations: I'(S) for I'p(S) and ['s(S) for
L'p,(5).

Definition 55 (Partial Stable Model) An interpretation T U not F is called o partial
stable model of P iff T = I'T'sT and F = HE(P) — T,T.

Partial stable models are an extension of stable models [GL88] for extended logic programs
and a three-valued semantics. Not all programs have a partial stable model (e.g. P =
{a,—a}) and programs without a partial stable model are called contradictory.

Theorem 56 (WFSX Semantics) Every non-contradictory program P has a least (with
respect to C) partial stable model, the well-founded model of P denoted by W F M (P).

To obtain an iterative “bottom-up” definition for W F M (P) we define the following trans-
finite sequence {I,}:

Ip=A{}; Int1 =TTsly; Ir = | J{lala <6}

where § is a limit ordinal. There exists a smallest ordinal \ for the sequence above, such
that Iy is the smallest fiz point of I'T's. Then, W FM (P) = I, Unot (HE(P) — T'sl,).

85

Let us now show an example of the WFSX semantics in the case of a simple program.
Example 57 Consider the following extended logic program:

—a . b+ not b.
a +— b

A WFSX model of this program is M = {—a,not —b,not a}: —a is true, a is false (i.e., both
—a and not a are in the well-founded model), —b is false (there are no rules for —b) and b
is undefined. Notice that not a is in the model since it is implied by —a via the coherence
principle.

One of the most important characteristic of WFSX is that it provides a semantics for an
important class of extended logic programs: the set of non-stratified programs, i.e., the set
of programs that contain recursion through default negation. An extended logic program is
non-stratified if its dependency graph does not contain any cycle with an arc labelled with
—. The dependency graph of a program P is a labelled graph with a node for each predicate
of P and an arc from a predicate p to a predicate g if ¢ appears in the body of clauses with
p in the head. The arc is labelled with + if ¢ appears in an objective literal in the body and
with — if it appears in a default literal.

Non-stratified programs are very useful for knowledge representation because the WFSX
semantics assigns the truth value undefined to the literals involved in the recursive cycle
through negation, as shown above for lover(H, L) and —lover(H, L). In section 5.5 we will
employ non stratified programs in order to resolve possible contradictions.

WFSX was chosen among the other semantics for extended logic programs, answer-sets
[GLI0] and three-valued strong negation [APP98], because none of the others enjoys the
property of relevance [AP96, APP98] for non-stratified programs, i.e., they cannot have
top-down querying procedures for non-stratified programs. Instead, for WFSX there exists
a top-down proof procedure SLX [AP96], which is correct with respect to the semantics!.
Cumulativity is also enjoyed by WFSX, i.e., if you add a lemma then the semantics does not
change. This property is important for speeding-up the implementation. By memorizing
intermediate lemmas through tabling, the implementation of SLX greatly improves. Answer-
set semantics, however, is not cumulative for non-stratified programs and thus cannot use
tabling.

The SLX top-down procedure for WFSX relies on two independent kinds of derivations:
T-derivations, proving truth, and TU-derivations proving non-falsity, i.e., truth or unde-
finedness. Shifting from one to the other is required for proving a default literal not L: the
T-derivation of not L succeeds if the TU-derivation of L fails; the TU-derivation of not L
succeeds if the T-derivation of L fails. Moreover, the T-derivation of not L also succeeds if
the T-derivation of =L succeeds, and the TU-derivation of L fails if the T-derivation of - L
succeeds (thus taking into account the coherence principle).

The SLX procedure is amenable to a simple pre-processing implementation, by map-
ping WFSX programs into WFS programs through the T-TU transformation [DP97]. This
transformation is linear and essentially doubles the number of program clauses. Then, the

!Though WFSX is not truth-functional (i.e., the truth-value of any formula does not depend only on
the truth-value of its subformulas as expressed by the truth table of the logical connectives) any extended
logic program under WFSX can be transformed into an equivalent program under W F'S through the T-TU
transformation [DP97, AP96] which is truth-functional. This transformation is used for the implementation.

86

transformed program can be executed in XSB [SSW197], an efficient Logic Programming
system which implements the WFS with tabling, and subsumes Prolog. Tabling in XSB
consists in memorizing intermediate lemmas, and in properly dealing with non-stratification
according to WFS. Tabling is important in learning, where computations are often repeated
for testing the coverage or otherwise of examples.

5.3 Learning in a Three-valued Setting

In real-world problems, complete information about the world is impossible to achieve and it
is necessary to reason and act on the basis of the available partial information. In situations
of incomplete knowledge, it is important to distinguish between what is true, what is false,
and what is unknown or undefined.

Such situation occurs, for example, when an agent incrementally gathers information
from the surrounding world and has to select its own actions on the basis of such acquired
knowledge. If the agent learns in a two-valued setting, it can encounter the problems that
have been highlighted in [DRB90]. When learning in a specific to general way, it will learn
a cautious definition for the target concept and it will not be able to distinguish what is
false from what is not yet known (see figure 5.1a). Supposing the target predicate represents
the allowed actions, then the agent will not distinguish forbidden actions from actions with
an outcome and this can restrict the agent acting power. If the agent learns in a general
to specific way, instead, it will not know the difference between what is true and what is
unknown (figure 5.1b) and, therefore, it can try actions with an unknown outcome. Rather,
by learning in a three-valued setting, it will be able to distinguish between allowed actions,
forbidden actions, and actions with an unknown outcome (figure 5.1c). In this way, the
agent will know which part of the domain needs to be further explored and will not try
actions with an unknown outcome unless it is trying to expand its knowledge.

A%

Figure 5.1: (taken from [DRB90])(a,b): two-valued setting, (c): three-valued setting

Learning in a three-valued setting requires the adoption of a more expressive class of pro-
grams to be learned. This class can be represented, we have seen, by means of extended
logic programs under the well-founded semantics extended with explicit negation WFSX
[AP96, APP98, PA92].

We consider a new learning problem where we want to learn an extended logic program
from a background knowledge that is itself an extended logic program and from a set of
positive and a set of negative examples in the form of ground facts for the target predicates.
A learning problem for extended logic programs was first introduced in [IK97] where the
notion of coverage was defined by means of truth in the answer-set semantics. Here the
problem definition is modified to consider coverage as truth in the WFSX semantics

87

Definition 58 (Learning Extended Logic Programs)
Given:

e a set P of possible (extended logic) programs

e a set ET of positive examples (ground facts)

e a set E~ of negative examples (ground facts)

e a consistent extended logic program B (background knowledge)
Find:

e an extended logic program P € P such that

— Yee EY,—E~, BUP Ewrsx e (completeness)
— VYee ~ET,E~, BUP £wrsx e (consistency)

where -E = {—el|e € E}.
The theory that is learned will contain rules of the following form:
p(X) Body™ (X)
—p(X) « Body~ (X)

for every target predicate p, where X stands for a tuple of arguments. In order to satisfy
the completeness requirement, the rules for p will entail all positive examples while the rules
for —p will entail all (explicitly negated) negative examples. The consistency requirement is
satisfied by ensuring that both sets of rules do not entail instances of the opposite element
in either of the training sets.

Note that, in the case of extended logic programs, the consistency with respect to the
training set is equivalent to the requirement that the program is non-contradictory on the
examples. This requirement is enlarged to require that the program be consistent also for
unseen atoms, i.e., BU P [~ L A —L for every atom L of the target predicates.

We say that an example e is covered by program P if P |=wpsx e. Since the SLX
procedure is correct with respect to WFSX, even for contradictory programs, coverage of
examples is tested by verifying whether P g1 x e.

Our approach to learning with extended logic programs consists in initially applying
conventional ILP techniques to learn a positive definition from ET and E~ and a negative
definition from £~ and ET. In these techniques, the SLX procedure substitutes the standard
proof procedure of Logic Programming to test the coverage of examples.

The ILP techniques to be used depend on the level of generality that we want to have for
the two definitions: we can look for the Least General Solution (LGS) or the Most General
Solution (MGS) of the problem of learning each concept and its complement (see section
3.2.7 for a definition of LGS and MGS).

LGSs can be found by adopting one of the bottom-up methods such as relative least
general generalization (rlgg) [Plo70] (see section 3.2.5) and the GOLEM system [MF90] (see
section 3.4.1), inverse resolution [MB92] or inverse entailment [LM92]. Conversely, MGSs
can be found by adopting a top-down refining method (see section 3.2.6) and a system such
as FOIL [Qui90b] (see section 3.4.2) or Progol [Mug95a).

88

5.4 Strategies for Combining Different Generalizations

The generality of concepts to be learned is an important issue when learning in a three-
valued setting. In a two-valued setting, once the generality of the definition is chosen,
the extension (i.e., the generality) of the set of false atoms is, we’'ve seen, undesirably
automatically decided, because it is the complement of the true atoms set. In a three-valued
setting, rather, the extension of the set of false atoms depends on the generality of the
definition learned for the negative concept. Therefore, the corresponding level of generality
may be chosen independently for the two definitions, thus affording four epistemological
cases.

Furthermore, the generality of the solutions learned for the positive and negative concepts
clearly influences the interaction between the definitions. If we learn the MGS for both a
concept and its opposite, the probability that their intersection is non-empty is higher than
if we learn the LGS for both. Accordingly, the decision as to which type of solution to learn
should take into account the possibility of interaction as well: if we want to reduce this
possibility, we have to learn two LGS, if we do not care about interaction, we can learn two
MGS. In general, we may learn different generalizations and combine them in distinct ways
for different strategic purposes within the same application problem.

The choice of the level of generality should be made on the basis of available knowledge
about the domain. Two of the criteria that can be taken into account are the damage or
risk that may arise from an erroneous classification of an unseen object, and the confidence
we have in the training set as to its correctness and representativeness.

When classifying an as yet unseen object as belonging to a concept, we may later discover
that the object belongs to the opposite concept. The more we generalize a concept, the higher
is the number of unseen atoms covered by the definition and the higher is the risk of an
erroneous classification. Depending on the damage that may derive from such a mistake, we
may decide to take a more cautious or a more confident approach. If the possible damage
from an over extensive concept is high, then one should learn the LGS for that concept, if
the possible damage is low then one can generalize the most and learn the MGS. The overall
risk will depend too on the use of the learned concepts within other rules.

As regards the confidence in the training set, we can prefer to learn the MGS for a concept
if we are confident that examples for the opposite concept are correct and representative of
the concept. In fact, in top-down methods, negative examples are used in order to delimit
the generality of the solution. Otherwise, if we think that examples for the opposite concept
are not reliable, then we should learn the LGS.

In the following, we present a realistic example of the kind of reasoning that can be
used to choose and specify the preferred level of generality, and discuss how to strategically
combine the different levels by employing the extended Logic Programming approach to
learning.

Example 59 Consider a person living in a bad neighbourhood in Los Angeles. He is an
honest man and to survive he needs two concepts, one about who is likely to attack him, on
the basis of appearance, gang membership, age, past dealings, etc. Since he wants to take a
cautious approach, he maximizes attacker and minimizes —attacker, so that his attackerl
concept allows him to avoid dangerous situations.

attacker1(X) < attackerygs(X)

89

—attackerl(X) « —attackerpgs(X)
Another concept he needs is the type of beggars he should give money to (he is a good man)
that actually seem to deserve it, on the basis of appearance, health, age, etc. Since he is not
rich and does not like to be tricked, he learns a beggarl concept by minimizing beggar and
mazximizing —beggar, so that his beggar concept allows him to give money strictly to those
appearing to need it without faking.

beggarl(X) < beggarpas(X)

—beggarl(X) «+ —beggarpyas(X)
However rejected beggars, especially malicious ones, may turn into attackers, in this very
bad neighbourhood. Consequently, if he thinks a beggar might attack him he had better be
more permissive about who is a beggar and placate him with money. In other words, he
should mazimize beggar and minimize —beggar in a beggar?2 concept.

beggar2(X) < beggaryas(X)

—beggar2(X) «+ —beggarpas(X)
These concepts can be used in order to minimize his risk taking when he carries, by his
standards, a lot of money and meets someone who is likely to be an attacker, with the
following kind of reasoning:

run(X) < lot_of _money(X), meets(X,Y), attackerl(Y),not beggar2(Y)

—run(X) < lot_of _money(X), give_money(X,Y)

give_money(X,Y) < meets(X,Y), beggarl(Y)

give_money(X,Y) < meets(X,Y), attacker1(Y), beggar2(Y)
If he does not have a lot of money on him, he may prefer not to run as he risks being beaten
up. In this case he has to relax his attacker concept into attacker2, but not relaz it so much
that he would use —attackerygs.

—run(X) « little_money(X), meets(X,Y), attacker2(Y)

attacker2(X) < attackerpgs(X)

—attacker2(X) « —attackerrgs(X)
The various notions of attacker and beggar are learnt on the basis of previous experience
the man has had. In the following, we show, through a simple background knowledge and
training set, how such concepts can be learned.

Example 60 (cont’d) Consider the case in which we have a background knowledge contain-
ing the following general rules:

animal(X) < person(X) person(X) < man(X)
animal(X) < dog(X) person(X) + woman(X)

in addition to which we know some facts about a mumber of instances (male or female,
person or dog) we have encountered in the past that have been classified as attackers or
non attackers, and as beggars or non beggars.

man(1) —good_appearance(1) gang-member (1)
man(2) —good_appearance(2) age(2, adult)
man(3) —good_appearance(3) age(3,old)
woman(4) —good_appearance(4) age(4,old)
man(5) good_appearance(5) age(5, adult) —healthy(5)
man(6) —good_appearance(6) age(6,youth)
man(?) good_appearance(7) age(7, adult)

90

woman(8) good_appearance(8) age(8, old)

man(9) age(9, youth)

woman(10) age(10, youth)

dog(11) —good_appearance(1l) age(11,o0ld)

woman(12) —good_appearance(12) age(12, adult) —healthy(12)
man(13) age(13, old) healthy(13)
man(14) good_appearance(14) age(14, adolescent)

man(15) —good_appearance(15) gang-member(15)
man(16) —good_appearance(16) age(16, adult)

man(17) good_appearance(17) age(17, adult) —healthy(17)
man(18) good_appearance(18) age(18, adult)

dog(19) —good_appearance(19) age(19, old)

man(20) age(20, old) healthy(20)
woman(21) good_appearance(21) age(21, adolescent)

Let the training set for the attacker and beggar comncepts be:

Et = { attacker(1), attacker(2), attacker(15), attacker(16),
beggar(3), beggar(4), beggar(5), beggar(17), beggar(12)}

E— =/ attacker(3), attacker(4), attacker(7), attacker(18), attacker(8),
attacker(9), attacker(10), attacker(11), attacker(19),
beggar(11), beggar(19), beggar(13), beggar(14), beggar(20), beggar(21)}

Then, most general and least general solutions can be computed. By using the system
GOLEM [MF90], we obtained the following results. For the positive and negative concepts
of attacker:

attackerygs(X) — + gang-member(X)
attackeryas(X) — « —good_appearance(X), age(X, adult)

4

attackerpas(X) gang-member(X), man(X), animal(X),
person(X), ~good_appearance(X)
attackerrgs(X) + ~—good_appearance(X), man(X), animal (X),

person(X), age(X, adult)

—attackerygs(X) < good_appearance(X)

—attackerygs(X) « age(X,youth)

—attackeryas(X) « age(X,old)

—attackerpgs(X) <« age(X,adult),man(X),animal(X), person(X),
good_appearance(X)

—attackerpgs(X) « age(X,youth),animal(X), person(X)

—attackerpgs(X) « age(X,old),animal(X)

and for those of beggar:

beggaryras(X) + age(X, adult)
beggarpas(X) + person(X), ~good_appearance(X)

91

beggarras(X) + age(X,adult),man(X), animal (X), person(X),
—healthy(X), good_appearance(X)

beggarras(X) + person(X), ~good_appearance(X), age(X, B), animal(X)
—beggarmes(X) < dog(X)

—beggaryas(X) + healthy(X)

—beggaryas(X) + age(X, adolescent)

—beggarrgs(X) + dog(X),age(X,old),animal(X), ~good_appearance(X)
—beggarrgs(X) + healthy(X), age(X, old), man(X), animal(X), person(X)
—beggarpas(X) +— age(X, adolescent), good_appearance(X), animal(X), person(X)

Notice that the positive and negative versions of a concept (despite the algorithm used to
learn a definition for it) never overlap on training set instances, but they might overlap for
atoms not belonging to the training set. The latter situation requires program refining in
order to eliminate contradictions, as shown next.

5.5 Strategies for Eliminating Learned Contradictions

Both in single and multi-agent learning, we shall see, the definitions of the positive and
negative concepts may overlap. Conflicting rules for a predicate and its explicit negation
may originate in the same knowledge source, or in combining rules obtained from distinct
knowledge sources or on distinct occasions. In the sequel, we deal with the problem of
removing contradiction in such cases.

5.5.1 Single Source Contradiction

Even for a single agent, the definitions of the positive and negative concepts may overlap. In
this case, we have a contradictory classification for the objective literals in the intersection.
In order to resolve the conflict, we must distinguish two types of literals in the intersection:
those that belong to the training set and those that do not, also dubbed unseen atoms (see
figure 5.2).

Example 61 (cont’d) Let the person living in Los Angeles be now travelling to Brazil, where
youth gangs are known for attacks on tourists. For the unseen instance:

man(22) —good_appearance(22) age(22,youth) gang-member(22)

the person concludes both that instance 22 is an attacker and a non attacker as well,
since attackeras(22) (alternatively attacker pas(22)) and —attacker,gs(22) (alternatively
—attackerycs(22)) are true. Thus, contradiction arises for attacker and —attacker.

In the following, we discuss how to resolve the conflict in the case of unseen literals and of
literals in the training set. We first consider the case in which the training sets are disjoint
and we later extend the scope to the case where there is a non-empty intersection of the
training sets, when they are less than perfect. From now onwards, X stands for a tuple of
arguments.

92

Contradiction on Unseen Literals For unseen literals, the conflict is resolved by classi-
fying them as undefined, since the arguments supporting the two classifications are equally
strong. Instead, for literals in the training set, the conflict is resolved by giving priority
to the classification stipulated by the training set. In other words, literals in a training
set that are covered by the opposite definition are made as exceptions to that definition.
For unseen literals in the intersection, the undefined classification is obtained by making

+ p_

Exceptions to the Exqeptions tolthe
negative definition: Unseen atoms positive definition:

positive atoms negative atoms

Figure 5.2: Interaction of the positive and negative definitions on exceptions.

opposite rules mutually defeasible, or “non-deterministic” (see [BG94a, AP96]). The target
theory is consequently expressed in the following way:

p()_f) — p+(X),notﬁp(X)

-p(X) « p (X),not p(X

where pT (X) and p~ (X) are, respectively, the definitions learned for the positive and the
negative concept, obtained by renaming the positive predicate by p™ and its explicit negation
by p~. From now onwards, we will indicate with these superscripts the definitions learned
separately for the positive and negative concepts.

We want p(X) and —p(X) each to act as an exception to the other. In case of contra-
diction, this will introduce mutual circularity, and hence undefinedness according to WFSX.
For each literal in the intersection of p™ and p~, there are two stable models, one containing
the literal in its three-valued version, the other containing the opposite literal. According
to WFSX, there is a third (partial) stable model where both literals are undefined, i.e., no
literal p(X), —p(X), not p(X) or not —p(X) belongs to the well-founded (or least partial
stable) model. The resulting program contains a recursion through negation (i.e., it is non-
stratified) but the top-down SLX procedure does not go into a loop because it comprises
mechanisms for loop detection and treatment, which are implemented by X SB through
tabling.

Example 62 Let us consider the Example of section 5.4. In order to avoid contradictions
on unseen atoms, the learned definitions must be:

attackerl(X) < attacker},ss(X),not ~attackerl(X)
—attackerl(X) <« attackerp,q(X),not attackerl(X)

93

beggarl(X) +— beggarfs(X),not ~beggarl(X)
—beggarl(X) — beggary;os(X),not beggarl(X)
beggar2(X) +— beggari;cs(X),not —beggar2(X)
—beggar2(X) — beggary;g(X),not beggar2(X)
attacker2(X) + attacker],s(X),not —attacker2(X)
—attacker2(X) < attacker;,q(X),not attacker2(X)

Note that pT(X) and p~(X) can display as well the undefined truth value, either because
the original background is non-stratified or because they rely on some definition learned for
another target predicate, which is of the form above and therefore non-stratified. In this
case, three-valued semantics can produce literals with the value “undefined”, and one or
both of p(X) and p~ (X) may be undefined. If one is undefined and the other is true, then
the rules above make both p and —p undefined, since the negation by default of an undefined
literal is still undefined. However, this is counter-intuitive: a defined value should prevail
over an undefined one.

In order to handle this case, we suppose that a system predicate unde fined(X) is avail-
able?, that succeeds if and only if the literal X is undefined. So we add the following two
rules to the definitions for p and —p:

p*(X), unde fined(p~ (X))
p~ (X), unde fined(p™ (X))

According to these clauses, p(X) is true when p*(X) is true and p~(X) is undefined, and
conversely.

Contradiction on Examples Theories are tested for consistency on all the literals of the
training set, so we should not have a conflict on them. However, in some cases, it is useful
to relax the consistency requirement and learn clauses that cover a small amount of counter
examples. This is advantageous when it would be otherwise impossible to learn a definition
for the concept, because no clause is contained in the language bias that is consistent, or
when an overspecific definition would be learned, composed of very many specific clauses
instead of a few general ones. In such cases, the definitions of the positive and negative
concepts may cover examples of the opposite training set. These must then be considered
exceptions and treated as abnormalities.

Exceptions may also be due to noise in the collection of data, or to abnormalities in the
opposite concept. In the latter case, if exceptions form a class, it may be possible to learn a
definition for it, provided that we have data on their common properties and the language
bias so allows.

Let us start with the case where some literals covered by a definition belong to the
opposite training set. We want of course to classify these according to the classification
given by the training set, by making such literals ezceptions. To handle exceptions to

—

classification rules, we add a negative default literal of the form not abnorm,(X) (resp.

— —

not abnorm-,(X)) to the rule for p(X) (resp. —p(X)), to express possible abnormalities

2The undefined predicate can be implemented through negation NOT under CWA (NOT P means that
P is false whereas not means that P is false or undefined), i.e., undefined(P) <~ NOT P, NOT(not P).

94

arising from exceptions. Then, for every exception p(f), an individual fact of the form
abnorm,(t) (resp. abnorm-_,(t)) is asserted so that the rule for p(X) (resp. —p(X)) does
not cover the exception, while the opposite definition still covers it. In this way, exceptions
will figure in the model of the theory with the correct truth value. The learned theory thus
takes the form:

p(X) « pt(X),not abnorm,(X), not -p(X) (5.1)
-p(X) « p (X),not abrnorm_, (X),not p(X) (5.2)
p(X) « pT(X),undefined(p (X)) (5.3)
-p(X) « p (X),undefined(pt (X)) (5.4)

Abnormality literals have not been added to the rules for the undefined case because a
literal which is an exception is also an example, and so must be covered by its respective
definition; therefore it cannot be undefined.

Individual facts of the form abnormp(f) are then used as examples for learning a def-
inition for abnorm, and abnorm-,, as in [IK97, LMMR97]. In turn, exceptions to the
definitions of abnorm, and abnorm., may be found and so on, thus leading to a hierarchy
of exceptions.

Example 63 Consider a domain containing entities a,b,c,d,e, f and suppose the target
concept is flies. Let the background knowledge be:

bird(a) has_wings(a)
jet(b) has_wings(b)
angel(c) has_wings(c) has_limbs(c)
penguin(d) has_wings(d) has_limbs(d)
dog(e) has_limbs(e)
cat(f) has_limbs(f)

and let the training set be:
Et = {flies(a)} E~ = {flies(d), flies(e)}
The learned theory is:

flies(X) <+ fliesT(X),not abnormalyies(X),not = flies1(X)
—flies(X) <+ flies™(X),not flies1(X)
flies(— flies™(X),undefined(flies (X))
(« (X)

flies™ (X),unde fined(flies™ (X))

where fliest(X) « has_wings(X) and flies(X)™ < has_limbs(X) Moreover, the abnor-
mality fact abnormal fiies(d) can be generalized to obtain
abnormal f1ies (X) < penguin(X)

The example above and figure 5.3 show all the various cases for a literal when learning in a
three-valued setting. a and e are examples that are consistently covered by the definitions. b

95

flies” E E flies”

<]
> @)

Figure 5.3: Coverage of definitions for opposite concepts

and f are unseen literals on which there is no contradiction. ¢ and d are literals where there
is contradiction, but c¢ is classified as undefined whereas d is considered as an exception to
the positive definition and is classified as negative.

extended logic programs can be used as well to represent n disjoint classes pi,...,p,.
When one has to learn n disjoint classes, the training set contains a number of facts for a
number of predicates pi,...,p,. Let p; be a definition learned by using, as positive exam-
ples, the literals in the training set classified as belonging to p; and, as negative examples,
all the literals for the other classes. Then the following rules ensure consistency on unseen
literals and on exceptions:

pl():(:) — pf():(:),not abrnormal,, ()g),not pz():(:), ... ,not gn(f) _
p2(X) « p3(X),not abnormaly,(X),not p1(X),not p3(X),...,not pp(X)

e % .o

pn(X) « pt(X),not abnormal,, (X),not p1(X),...,not pp_1(X)

n(X) « pf(X),undefined(pF (X)),...,undefined(p;} (X))

pa(X) p;(f),undefined(pf(f)),undefined(p?(f)),...,undefined(px(f))
e % .o

pn(X) « pt(X),undefined(pf (X)),.. .,undefined(p;_l()z))

regardless of the algorithm used for learning the p;".

Noisy Training Set Consider the case in which the training sets are not disjoint. Then,
literals in the intersection of the training sets will be abnormal exceptions for both definitions.
For an atom p(X), both p(X) and —p(X) will result false in the three-valued model of the
theory. Therefore, these literals differ from unseen ones, for which the truth value of p(X)

—

and —p(X) is undefined.

5.5.2 Multiple Source Contradiction

In the single source case above, we showed how to deal with contradictions arising from
learning conflicting rules for a predicate and its explicit negation, originating in the same
knowledge source. Here we consider and handle contradictions arising from combining rules
obtained from distinct knowledge sources or on distinct occasions. Let us dub it multiple
source contradiction. This kind of situation may occur in the settings of:

96

e multiple, separately learning agents with distinct background knowledge, or multiple,
cloned, agents with the same background knowledge;

e one agent learning separate rules from heterogenous data sources;

e one agent learning rules from uniform but separate data sets, (either because of their
size, or in order to benefit from parallelism, or both);

e one agent learning separate sets of rules on different occasions;
e one agent learning separate sets of rules by employing multiple strategies or systems;

e a combination of these settings.

Example 64 Consider, for instance, the case of two persons living in Los Angeles (say i
and j). Both have an interest in identifying attackers (and non attackers) but each of them
has had different experiences (i.e., different training sets). Let, for instance, the background
knowledge and training set of person i be those reported in the example in section 5.4. Let
person j know what is known by person i, but also that youth gangs can attack persons, ever
since he visited Brazil:

man(22) —good_appearance(22) age(22,youth) gang_member(22)

Let the training set for j be the same of example 60 plus a new positive example attacker(22).
Then, the program clauses induced by person j are as follows (here we consider only the most
general solutions learned by GOLEM):

attacker};os(X) +« gang-member(X)
attackery,os(X) < —good_appearance(X), age(X, adult)

attacker;o4(9)

attackery;;¢(10)

attackery;o¢(X) ¢ good_appearance(X)
attacker ;a5(X) ¢ age(X,old)

Then, when these two persons meet one another and exchange experience about their notions
of attacker, a contradiction arises because persomn i classifies the unseen instance 22 as a
non attacker whereas person j classifies it as an attacker.

Generalizing the Single Source Technique The single source technique of section
5.5.1 can be easily generalized to multiple sources for learning p and —p. Let there be s
sources for p and —p. We now have clauses 5.1-5.4 previously introduced, and for i from 1
to s:

pr(X) « pi(X) (5.5)

p (X) « pi(X) (5.6)
abnormp()_f) — abnormpj (X) (5.7)
(X) « (5.8)

abnormp]__ (X)

This means that whenever any two sources conflict on p for X, both p(X) and —p(X)
become undefined. Also, any abnormality found by one source is, ipso facto, an abnormality
for them all. Note that some sources may provide information only about positive or negative
information, thus the definition for only one of pj or p, may be available.

Conflicts and Preferences However, a new situation may now arise which could not do
so in the single source case: we may prefer one knowledge source over another, e.g., we may
trust one source all the more because of its learning method, or because it has more recent
or more trustworthy information. In example 64, for instance, the preference might be given
to the person which has had in his past life the greatest number of experiences (i.e., known
instances and classified instances).

To achieve this, and inspired by the program update method of [ALP* 98], we generalize
clause 5.5 and 5.6 above to the combination rules:

p+()_f) — pj()_('),notreject(pf()_('))
p*(X') +— p;(f),not reject(p;(f))

Predicate reject expresses when one knowledge source, say ¢, is rejected by another, say j,
with respect to p, through the reject rules®:

reject(pf (X)) <« pj(X)
reject(p; (X)) <« p}'(X)
It may as well be the case that the positive and negative information provided by source i
are rejected by two different sources k£ and .

reject(p; (X)) « py(X)
reject(p; (X))« p/(X)
It can also be the case that only one or even none of these clauses is present for source 7, in
the case in which no source is preferred to ¢.

But, naturally, rejection may be made to occur for a variety of reasons, and the bodies
of clauses for reject will then observe the corresponding conditions.

As for the case of a single source, two or more knowledge sources may reject one another’s
conflicting conclusions. Instead of treating mutually contradictory information as undefined,
as done by means of clauses 5.1-5.4, we can treat mutually contradictory information as
false by means of appropriate reject rules, both in the single source case and in the multiple
source case. Preferring false to undefined in removing a contradiction amounts to ignoring
the clause instances leading to it, so that the usual CWA is adopted symmetrically with
respect to positive and negative information [APP98].

Conflicting conclusions of two knowledge sources 7 and j can be made mutually false
instead of undefined by means of the following instances of reject rules:

reject(pj'()?)) — p]_(X:) reject(p;'()z)) — pz_()_f)
reject(p;(f)) — p;'(f) reject(p;(f)) — pj'()?)

3If we want rejection to be as strong as what is rejected we may qualify these rules by appealing to the
non undefinedness of the rejector.

98

If symmetry is not desired, one can remove self-contradiction by opting for only some of
these clauses.
Let us now consider an example where a knowledge source is preferred over another.

Example 65 Suppose k is the boss of i, and that they may have distinct, separately learnt,
opinions about p. We may combine together their knowledge, by adding

reject(p;r()z)) — P (X)

reject(p; (X)) < pf(X)

to ensure that a conclusion arrived at by the boss wins over that of a contrary conclusion by
the subordinate.
For the case of a colleague j of i, we may choose to eliminate all mutual contradictions,
by means of:
reject(pf (X)) + pj (X) reject(pf (X)) « p; (X)
reject(py (X)) + pf(X) reject(p; (X)) « pf(X)

Notice that, when learning, an agent as access only to its background knowledge but, when
the knowledge is combined, it may access as well the definitions of background or target
predicates of other agents. In some cases it may happen that a contradiction arises exactly
because, after the combination of the learned rules, an agent may use the knowledge learned
by another agent as background knowledge.

Example 66 Suppose agent i has non-contradictorily learned from examples that

pi(X) + a(X)

P (X) « b(X)

Recall that, before knowledge sources are combined, only access to self knowledge is possible.
Further, suppose next that j has learned the rules

>

a;(X) « -c(
bi(X) « —c(

)

>

and that the background acknowledges the fact
—c(golem)

When the rules from i and j are combined, i and j may access each conclusion and the back-
ground knowledge too. Now a contradiction arises in the knowledge of i regarding p?‘ (golem)
and p; (golem). If we want to resolve this contradiction by preferring false over undefined,
we can use the following reject rules

reject(pzr()z)) — p;(X:)
reject(p;(f)) +— pj'()?)

99

5.6 Strategies for Theory Refinement

When learning a definition for a concept p and its opposite —p (separately or not), it can be
the case that some contradiction arises for an unseen literal. Figure 5.4 depicts various cases
which may occur. Identifying such contradictions is useful in interactive theory revision,
where the system can ask an oracle to classify the literal(s) leading to contradiction, and
accordingly revise the least or most general solutions for p and for —p. Detecting uncovered
literals points to theory extension.

P mas

N
P Lcs

.
Pvias

Figure 5.4: Intersection of Learnt Solutions

Refinement Further information on unseen contradictory literals for the various cases can
help in improving learnt rules.

Area A represents contradictions between the two least general solutions, for a con-
cept p and its opposite —p, i.e., it represents unseen literals satisfying the conjunction
PEas(X), pres(X). This is the strongest form of contradiction, and unseen literals in region
A should be given priority when querying the oracle.

Example 67 Consider, for instance, examples 59-60, and the unseen literal 22 which be-
longs to the intersection of the learned definitions for attackerics and attacker qq (i.e.,
area A in figure 5.4). Knowing that 22 is an attacker helps in specializing the learned defi-
nitions, in this case attacker} s and attackery; ;.

Areas B represent contradictions between most general solutions for concept pt and p~
which are outside the least general solution for one concept, but inside the least gen-
eral solution for the other. I.e., they represent unseen literals satisfying the conjunc-

tion p+MGS(X), not prS(X),pZGS(X) or the conjunction p,,.¢(X), not p;GS(X),prS(X).
Identifying such contradictions can be useful in refining knowledge and, in particular, the
most and least general solutions for a concept. For literals satisfying the first conjunction,
the system has to revise most general solution for p* if the oracle classifies the literal as
negative and the least and most general solution for p~ if the oracle classifies the literal as
positive, and vice-versa for the literals satisfying the second conjunction.

Though less strongly contradictory than area A, areas B are more strongly so than areas
C, and so merit attention next when querying the oracle.

100

algorithm LIVE(
inputs :ET, E~: training sets,
B: background theory,
outputs : H : learned theory)
LearnHierarchy(E™, E~, B; H,)
LearnHierarchy(E—, E™, B; H-,)
Obtain H by:
transforming H,,, H-, into “non-deterministic” rules
adding the clauses for the undefined case
output H

Figure 5.5: Algorithm LIVE

Areas C represent contradictions between most general solutions for concept p and its
opposite which are outside both the least general solutions. I.e., it represents literals sat-
isfying the conjunction pLGS(f),not p{GS(X),leGS(X),not pZGS(X). Identifying such
contradictions can be useful in refining knowledge and bridging the gap between most and
least general solutions for a concept. The system has to revise the most general solution for
p if the oracle classifies the atom as negative and for —p if the oracle classifies the atom as
positive, and vice-versa.

Finally, it is worth mentioning that other regions where a contradiction does not arise,
namely D and E, can be useful in guiding knowledge acquisition. New information about an
unseen atom always increases knowledge, and thus eventually requires knowledge refinement
or knowledge extension. However, among unseen literals not leading to contradiction, we
can identify class D which can be more useful than E in bridging the gap between the least
and the_’most general _splution. This area represents instances W_’hiCh satisfy thg conjunction
piras(X),not pfas(X),not prras(X) or pyyas(X),not pras(X),not phyas(X). If aliteral
satisfying the former condition is classified as negative by a oracle, then the most general
solution for p has to be revised, whereas, if a literal satisfying the latter condition is classified
as positive by an oracle, then the most general solution for —p has to be revised.

It may be that learnt rules do not cover atoms and their negations for legitimate argument
tuples. Accordingly, a further area exists (the one outside the areas in figure 5.4) which
pinpoints cases of interest, leading to theory extension (and subsequent refinement where
contradictions emerge).

5.7 An Algorithm for Learning Extended Logic Pro-
grams

The algorithm LIVE (Learning In a 3-Valued Environment) learns extended logic programs
containing non-deterministic rules for a concept and its opposite that may allow a hierarchy
of exceptions.

Figure 5.5 shows the main procedure of the algorithm. It calls a procedure LearnHierar-
chy (see figure 5.6) that, given a set of positive, a set of negative examples and a background
knowledge, returns a definition for the positive concept, consisting of default rules, together

101

procedure LearnHierarchy (
inputs : ET: positive examples,
E~: negative examples, B: background theory,
outputs : H: learned theory)
Learn(E*,E~, B; Hp)
H:=H,
for each rule r in H, do
Find the sets E;f, E~ of positive and negative examples covered by r
if £ is not empty then
Add the literal not_abnormal,(X) to r
Obtain E:z‘_bnormalr’ Ea_bnormalr from E;’ E;r by
transforming each p(t) into abnormal,.(f)
LearnHierarchy(E;%normalr, E B;H,)
H:=HUH,
endif
enfor

output H

abnormal,’

Figure 5.6: Procedure LearnHierarchy

with definitions for the eventual abnormality literals. The procedure LearnHierarchy is called
twice, once for the positive concept and once for the negative concept. When it is called for
the negative concept, E~ is used as the positive training set and ET as the negative one.
LearnHierarchy first calls a procedure Learn(E™, E~, B; H,) that learns a definition H,
for the target concept p. Learn consists of an ordinary ILP algorithm, either bottom-up
or top-down, modified to adopt the SLX interpreter for testing the coverage of examples
and to relax the consistency requirement of the solution. The procedure thus returns a
theory that may cover some negative examples. These negative examples are then treated
as exceptions, by adding a default literal to the inconsistent rules and learning a definition

— —

for the abnormality predicate. In particular, for each rule r = p(X) < Body(X) in H,

—

covering some negative examples, a new non-abnormality literal not abnormal,(X) is added
to 7 and a definition for abnormalr(f) is learned by recursively calling LearnHierarchy.
Examples for abnormal, are obtained from examples for p by observing that, in order to
cover a positive (uncover a negative) example p(X) for p, the atom abnormal,(X) must
be false (true). Therefore, positive (negative) examples for abnormal, are obtained from
the set E, of negative (E;" of positive) examples covered by the rule. When learning a
definition for abnormal,., in turn, LearnHierarchy may find exceptions to exceptions and
call itself recursively again. In this way, we are able to learn a hierarchy of exceptions.

Let us now discuss in more details the algorithm that implements the Learn procedure.
Depending on the generality of solution that we want to learn, different algorithms must be
employed: a top-down algorithm for learning the MGS, a bottom-up algorithm for the LGS.
In both cases, the algorithm must be such that, if a consistent solution cannot be found, it
returns a theory that covers the least number of negative examples.

When learning with a top-down algorithm, the consistency necessity stopping criterion
must be relaxed to allows clauses that are inconsistent with a small number of negative

102

examples to be learned, for example by adopting one of the heuristic necessity stopping
criteria proposed in ILP to handle noise, such as the encoding length restriction [Qui90b]
of FOIL (see section 3.4.2) or the significancy test of mFOIL [Dze91] (see section 3.4.3). In
this way, we are able to learn definitions of concepts with exceptions: when a clause must be
specialized too much in order to make it consistent, we prefer to transform it into a default
rule and consider the covered negative examples as exceptions.

The simplest criterion that can be adopted is to stop specializing the clause when no
literal from the language bias can be added that reduces the coverage of negative examples.

When learning with a bottom-up algorithm, we can learn using positive examples only
by using the rlgg operator: since the clause is not tested on negative examples, it may cover
some of them. This approach is realized by using the system GOLEM (see section 3.4.1),
as in [IK97].

In order to show the behaviour of the algorithm when learning exceptions and to compare
it with those of the system LELP [IK97], we will consider the learning problem that is
described in example 3.4 in [IK97] where the definition of the concept flies is learned.

Example 68 Consider the following background knowledge and training sets:

penguin(l) penguin(2)

bird(3) bird(4) bird(5)
animal(6) animal(7) animal (8)
animal(9) animal(10) animal(11)
animal(12)

animal(X) + bird(X)

bird(X) + penguin(X)
Et ={flies(3), flies(4), flies(5)}
E~ = {flies(1), flies(2), flies(6), flies(7), flies(8), flies(9), flies(10), flies(11), flies(12)}

We consider the case in which a top-down method is adopted for the procedure Learn. The
stopping criterion used is the simplest, i.e., we stop when no literal can be added to reduce the
number of covered negative examples (suppose that the language bias allows any literal built
on predicates of the background knowledge to appear in the body of clauses). The algorithm
learns the rules

(1) flies™(X) « bird(X),not abnormaly (X)

(2) abnormal; (X) < penguin(X)

(3) flies™ (X) < animal(X), not abnormals(X)

(4) abnormals(X) < bird(X),not abnormals(X)

(5) abnormals(X) < penguin(X)
Then, the algorithm builds the clauses for flies and — flies and make them non-deterministic,
adds the clauses for the undefined case and terminates.

5.8 Implementation

In order to learn the most general solutions, a top-down ILP algorithm (cf. section 3.2.6)
has been integrated with the procedure SLX for testing the coverage. The specialization
loop of the top-down system consists of a beam search in the space of possible clauses. At

103

each step of the loop, the system removes the best clause from the beam and generates all
its refinement. They are then evaluated according to an accuracy heuristic function, and
their refinements covering at least one positive example are added to the beam. The best
clause found so far is also separately stored: this clause is compared with each refinement
and is replaced if the refinement is better. The specialization loop stops when either the
best clause in the beam is consistent or the beam becomes empty. Then, the system returns
the best clause found so far. The beam may become empty before a consistent clause is
found and in this case the system will return an inconsistent clause.

In order to find least general solutions, the GOLEM ([MF90], also described in section
3.4.1) system is employed. The finite well-founded model is computed, through SLX, and it
is transformed by replacing literals of the form —A with new predicate symbols of the form
neg-A. Then GOLEM is called with the computed model as background knowledge. The
output of GOLEM is then parse in order to extract the clauses generated by rigg before
they are post-processed by dropping literals. Thus, the clauses that are extracted belong to
the least general solution. In fact, they are obtained by randomly picking couples of exam-
ples, computing their rlgg and choosing the consistent one that covers the bigger number of
positive examples. This clause is further generalized by choosing randomly new positive ex-
amples and computing the rlgg of the previously generated clause and each of the examples.
The consistent generalization that covers more examples is chosen and further generalized
until the clause starts covering some negative examples. An inverse model transformation is
then applied to the rules thus obtained by substituting each literal of the form neg_A with
the literal —A.

Prolog was chosen for the implementation of LIVE for the same reasons for which it
was chosen for ACL1 that are mentioned in section 4.4.1: Prolog is particularly suitable
for the elaboration of logic programs due to the uniformity of code and data, to meta-level
predicates for accessing programs and to the availability of lists as primitive data structures.

LIVE code is composed of the following main procedures. As for ACL1, i(File) is the
command to be given at the Prolog prompt for starting the induction. It reads the files that
contains the input data, it calls the procedure learn ELP(Rules) and writes the output to
a file.

learn ELP(Rules) implements the main procedure of LIVE (see figure 5.5) and calls
twice the procedure learn hierarchy(Eplus,Eminus,Rules,Gen) for learning the positive
and the negative concept. The argument Gen can assume the values 1gs or mgs and is used
in order to indicate the generality of the solutions specified by the user.

The procedure learn(Eplus,Eminus,Rules,Gen) is called by learn hierarchy and,
depending on the value of Gen, either calls a procedure call golem(Eplus,Eminus,Rules),
that invokes GOLEM, or calls the procedure covering loop(Eplus,Eminus, [],Rules)
that implements the top-down algorithm.

covering loop (Eplus,Eminus,RulesIn,Rules0ut) first initializes the beam by includ-
ing in it a clause with an empty body for every target predicate and then starts the special-
ization loop by calling specialize(BeamIn,BeamOut,Eplus,Eminus,N). The parameter N
is used in order to put a limit on the maximum number of specialization steps.

The predicate evaluate (Value,Clause,Eplus,Epluscovered,Eminus,Eminuscovered,
Nplus,Nminus) is used in order to evaluate clauses. It takes as input the clause to be
evaluated Clause and the current training set Eplus, Eminus, and returns the values of
the heuristic function Value together with the sets of covered examples Epluscovered,

104

Eminuscovered.

LIVE was implemented in XSB Prolog [SSW197] and the code of the system can be
found at the following address:
http://www-lia.deis.unibo.it/Software/LIVE/.

5.9 Related Work

The adoption of a three-valued logic in learning has been investigated by many authors.
Many propositional learning systems learn a definition for both the concept and its opposite.
For example, systems that learn decision trees, as c4.5 [Qui93], or decision rules, as the AQ
family of systems [Mic73], are able to solve the problem of learning a definition for n classes,
that generalizes the problem of learning a concept and its opposite. However, in most cases
the definitions learned are assumed to cover the whole universe of discourse: no undefined
classification is produced, any instance is always classified as belonging to one of the classes.
Instead, we classify as undefined the instances for which the learned definitions do not give
an unanimous response.

When learning multiple concepts, it may be the case that the descriptions learned are
overlapping. We have considered this case as non-desirable: this is reasonable when learning
a concept and its opposite but it may not be the case when learning more than two concepts.
As it has been pointed out by [Mic84], in some cases, it is useful to produce more than one
classification for an instance: for example if a patient has two diseases, his symptoms should
satisfy the descriptions of both diseases. Subject for future work will be to consider classes
of paraconsistent logic programs where the overlapping of definitions for p and —p (and, in
general, multiple concepts) is allowed.

The problems raised by negation and uncertainty in concept-learning, and Inductive
Logic Programming in particular, were pointed out in some previous work (e.g., [BM92,
DRBY0, DR92]). For concept learning, the use of the CWA for target predicates is no
longer acceptable because it does not allow to distinguish between what is false and what is
undefined. De Raedt and Bruynooghe [DRB90| proposed to use a three-valued logic (later
on formally defined in [DR92]) and an explicit definition of the negated concept in concept
learning. This technique has been integrated within the CLINT system, an interactive
concept-learner. In the resulting system, both a positive and a negative definition are
learned for a concept (predicate) p, stating, respectively, the conditions under which p is
true and those under which it is false. The definitions are learned so that they do not
produce an inconsistency on the examples. Differently from this system, we take also care
that the two definitions do not produce inconsistency on unseen atoms and we are able to
learn definitions for exceptions to both concepts. Furthermore, we are able to cope with two
kinds of negation, the explicit one used to state what is false, and the default (defeasible)
one used to state what can be assumed false.

The system LELP (Learning Extended Logic Programs) [IK97] learns extended logic
programs under answer-set semantics. As our algorithm, LELP is able to learn non-
deterministic default rules with a hierarchy of exceptions. From the point of view of the
learning problems that the two algorithms can solve, they are equivalent when the back-
ground is a stratified extended logic program. All the examples shown in [IK97] are stratified
and therefore they can be learned by our algorithm and, viceversa, example in section 5.5.1
can be learned by LELP. However, when the background is a non-stratified extended logic

105

program, the adoption of a well-founded semantics gives a number of advantages with respect
to the answer-set semantics. For non-stratified background theories, answer-sets semantics
does not enjoy the structural property of relevance [Dix95], like our WFSX does, and so
they cannot employ any top-down proof procedure. Furthermore, answer-set semantics is
not cumulative [Dix95], i.e., if you add a lemma then the semantics can change, and thus
the improvement in efficiency given by tabling cannot be obtained. Moreover, by means
of WFSX, we have introduced a method to choose one concept when the other is unde-
fined which they cannot replicate because in the answer-set semantics one has to compute
eventually all answer-sets to find out if a literal is undefined.

The structure of the two algorithms is similar: LELP first generates candidate rules
from a concept using an ordinary ILP framework. Then exceptions are identified (as cov-
ered examples of the opposite set) and rules specialized through negation as default and
abnormality literals, which are then assumed to prevent the coverage of exceptions. These
assumptions can be, in their turn, generalized to generate hierarchical default rules.

One of the differences between us and [IK97] is in the level of generality of the definitions
we can learn. LELP learn a definition for a concept only from positive examples of that
concept and therefore it can only employ a bottom-up ILP technique and learns the LGS.
Instead, we can choose whether to adopt a bottom-up or a top-down algorithm and we can
learn theories of different generality for different target concepts.

Another difference consists in the fact that LELP learns a definition only for the concept
that has the highest number of examples in the training set. It learns both positive and
negative concepts only when the number of positive examples is close to that of negative
ones (in 60 %-40 % range), while we always learn both concepts.

LELP also differs from our approach because it adds to the theory a clause for the
negative concept given in terms of the abnormality literals for the positive concept. For
example, in the case of example 63, LELP would produce the following theory:

C1 = fliest(X) < has-wings(X),not abnormal; (X)

Cy = abnormaly (X) < penguin(X)

C3 = flies™ (X) « has_limbs(X)

Cy = flies™ (X) < abnormal; (X)

We do not generate clause Cy since, when learning a definition for both flies and —flies, the
examples it covers are already covered by clause C3 and therefore such a clause is redundant.

Several other authors have also addressed the task of learning rules with exceptions
[DK95]. In these frameworks, non monotonicity and exceptions are dealt with by learning
logic programs with negation. In [DK95] the authors rely on a language which uses a limited
form of “classical” (or, better, syntactic) negation together with a priority relation among
the sentences of the program [KMD94]. The expressive power of this formalism is however
more restricted than the one of extended logic programs since, theories expressed in this
language can be mapped into normal logic program.

Non-abnormality literals can also be viewed as new abducible predicates, as done for
instance in [LMMR97, EFL*98, In098]. In particular, in [LMMR97, EFLT98] the authors
have considered the integration and cooperation of induction and abduction in order to
learn Abductive Logic Programs (ALP) from (possibly) incomplete background knowledge
expressed as ALP in its turn. In order to make a rule for a target predicate p consistent,
the rule is specialized by adding a new abducible literal not_abnormi(f) and exceptions are
ruled out by abducing abnorm;(X) for them. These assumptions are then used to learn a

106

definition for abnorm; that describes the class of exceptions. In this way, they are able to
learn hierarchies of exceptions. Since there exists an implementation of SLX with abduction
(called SLXA [AP98]) this points to future extensions of LIVE with abduction too.

5.10 Conclusions

The two-valued setting that has been considered in most work on ILP and Inductive Concept
Learning in general is not sufficient in many cases where we need to represent real world
data. This is for example the case of an agent that has to learn the effect of the actions
it can perform on the domain by performing experiments. Such an agent needs to learn a
definition for allowed actions, forbidden actions and actions with an unknown outcome and
therefore it needs to learn in a richer three-valued setting.

In order to adopt such a setting in ILP, the class of extended logic programs under the
well-founded semantics with explicit negation (WFSX) is adopted as the representation lan-
guage. This language allows two kinds of negation, default plus a second form of negation
called explicit, that is used in order to represent explicitly negative information. Adopt-
ing extended logic programs in ILP prosecutes the general trend in Machine Learning of
extending the representation language in order to overcome the limits of existing systems.

The programs that are learned will contain a definition for the concept and its opposite,
where the opposite concept is expressed by means of explicit negation. When learning
in a three-valued settings, a number of issues have to be taken into account. Standard
ILP techniques can be adopted to separately learn the definitions for the concept and its
opposite. Depending on the adopted technique, one can learn the most general or the
least general definition. Accordingly, four epistemological varieties occur, resulting from the
mutual combination of most general and least general solutions for the positive and negative
concept. The choice of one of these epistemological variety should be done on the basis of
a number of conditions that hold in the learning situation, such as the damage that can
derive from an erroneous classification of an unseen object or the confidence we have in the
training set.

The two definition learned may overlap and the inconsistency is resolved in a different
way for atoms in the training set and for unseen atoms: atoms in the training set are consid-
ered as exceptions, while unseen atoms are considered as unknown. The different behaviour
is obtained by employing negation by default in the definitions: default abnormality literals
are used in order to consider exceptions to rules, while non-deterministic rules are used
in order to obtain an unknown value for unseen atoms. Exceptions to a positive concept
are identified from negative examples, whereas exceptions to a negative concept are iden-
tified from positive examples. A definition for the class of exceptions may then be learned
and may include new exceptions. The process is then iterated thus possibly producing a
hierarchy of exceptions. This way of coping with contradiction can be generalized for multi-
ple source learning, and modified in order to take into account preferences among multiple
learning agents or information sources. Moreover, we discuss how detecting different kinds
of uncovered atoms points to different opportunities for theory extension.

The system LIVE (Learning in a three-Valued Environment) has been developed that
implements the above mentioned techniques. In particular, the system learns a definition
for both the concept and its opposite and is able to identify exceptions and to learn a
hierarchical definition for them. The system is parametric in the procedure used for learning

107

each definition: it can adopt either a top-down algorithm, using beam-search and heuristic
necessity stopping criterion, or a bottom-up algorithm, that exploits the GOLEM system.

108

Chapter 6

Conclusions

The aim of this thesis was to demonstrate how some of the limits of existing learning
techniques in ILP can be overcome by adopting extensions of Logic Programming. Increasing
the expressiveness of the representation language in Machine Learning is a general trend
that has allowed to solve more and more complex learning problems. The language used
to represent concepts and examples has gone from analytical expressions to attribute-value
formalisms and finally to first order logic languages and Logic Programming in particular.
Adopting extensions of Logic Programming is thus a natural prosecution of this trend.

Two problems where current ILP systems perform poorly are presented. The first prob-
lem consists in learning from an incomplete background knowledge. To this purpose, abduc-
tive logic programs are used that allow to perform hypothetical reasoning from incomplete
knowledge. A new learning problem is defined where both the background and target theo-
ries are abductive theories and abductive entailment is used as the coverage relation.

The system ACL (Abductive Concept Learning) has been developed that is able to learn
in this new framework. An abductive theory is learned by first learning the program part,
by means of a top-down algorithm (called ACL1) adopting an abductive proof procedure for
testing the coverage, and then learning the constraint part by employing the system ICL.
Experiments have been performed in a variety of domains where the knowledge is incomplete.
The results have been compared with those of the systems ICL-Sat, mFOIL and FOIL that
adopt special techniques for handling imperfect data. In the multiplexer experiment, the
accuracy of the theory learned by ACL1 has been superior to the one of theories learned
by ICL-Sat and mFOIL. In the father experiment, ACL1 without constraints learned a
complete and consistent theory for all levels of incompleteness apart from 80% and 40%,
while mFOIL learned a complete theory for all levels of incompleteness but a consistent one
only for the case of no incompleteness. When considering as well integrity constraints in the
background, ACL1 learned a complete and consistent theory for all levels of incompleteness.
An experiment has been performed as well on real world data from the domain of marketing
where the incompleteness occours naturally as unanswered questions and the theory learned
by ACL1 has been judged to be very meaningful by experts. For all three experiments, the
constraint learning phase was also performed, obtaining in all cases constraints that could
be useful for classifying incompletely specified unseen atoms.

The framework of learning abductive logic programs can be very useful as well for learning
multiple predicates. A system for learning multiple predicates called M-ACL has been

109

implemented that is able to solve some of the problems of ILP systems when learning multiple
predicates. The system was able to learn programs containing the definitions of multiple
predicates such as a very simple definite clause grammar for the English language, the
mutually recursive predicates even and odd and multiple family relations.

The other problem that has been considered consists in learning in a three-valued logi-
cal setting. Most work on inductive concept learning has considered a two-valued setting,
however this is not sufficient in many learning situations, such as the one of an autonomous
agent that has to learn general rules about the outcome of its actions on the surrounding
world. In this case, the agent wants to learn when an action has a positive outcome, when
it has a negative outcome and distinguish them from actions with an unknown outcome. To
this purpose, the class of extended logic programs under the well founded semantics with
explicit negation WFSX ([AP96]) is used as the representation language. The language
allows two forms of negation, default negation plus explicit negation that is used in order
to explicitly represent negative information, and the semantics allows three logical values
for atoms. The programs that are learned will contain a definition for the concept and its
opposite.

The system LIVE (Learning In a three-Valued Environment) has been developed that
is able to learn extended logic programs containing a definition for the concept and its
opposite. The system takes into account a number of issues that arise when learning in a
three-valued settings. Contradiction among the definitions for the concept and its opposite
may arise. The contradiction is resolved differently depending on whether the atom on which
there is contradiction is an unseen atom or belongs to the training set. In the first case, the
contradiction is resolved by assigning the unknown truth value to the atom, in the second
case by assigning the truth value given by the training set. Contradiction is handled by
employing representation techniques offered by extended logic programs. Similar techniques
can also be used in order to handle contradiction among different sources of information.
The system is parametric in the learning technique adopted for learning the concept and
its opposite: if a bottom-up technique is used, then a least general solution is found, if a
top-down technique is used, then a most general solution is found. Various criteria have been
studied for choosing between the least general solution or the most general solution for the
concepts. The theory learned by LIVE may allow exceptions. A definition for exceptions
is then learned that, on its turn, may also allow exceptions. In this way hierarchies of
exceptions can be learned.

LIVE is compared with the system LELP that is also able to learn extended logic pro-
grams containing a definition for the concept and its opposite that allow exceptions. Differ-
ently from LIVE, LELP adopts a two-valued semantics and thus is not able to classify as
unknown unseen atoms in the intersection of definitions. Moreover, LELP is not parametric
in the learning technique employed, thus it can not learn solutions of different generality.

The two systems proposed have been tested on a number of artificial datasets in various
domains. ACL was also tested on real world data in the marketing domain. Further testing
on real world data is needed in order to provide more evidence of the effectiveness of the
techniques in practice. In particular, the system ACL will be applied to perform Data Mining
tasks in domains where incompleteness occours naturally in the data, as in the marketing
domain. LIVE instead will be applied to perform knowledge acquisition by agents that have
to automatically explore the surrounding world. Such agents could be, for example, robots
sent to unknown environments to perform a specific task.

110

The study of the two proposed extension of Logic Programming is a first step towards the
development of a system that is able to learn from incomplete information in a three-valued
settings.

In the research field of Logic Programming an extension of the language has been studied
that considers abductive theories containing two kinds of negation, default and explicit. A
semantics for this class of programs was given in [BLMM97] and a proof procedure for it
was given in [AP98]. The learning techniques adopted in the two proposed systems can be
combined for obtaining a system that learns using this extended class of programs as the
representation language. Such a system would be able to learn definitions for both a concept
and its opposite starting from an incomplete background knowledge.

111

112

Appendix A

Appendixes to Chapter 4

A.1 Proof of Theorem 44 on Equivalence of ACL with
ACL1 and ACL2

Theorem 17 Let Tacr1 = (P U P A I), AT and A~ be the solution of ACLI given
training sets ET and E~, background theory T = (P, A,I) and space of possible programs
P. Moreover, let T' = (PUP', A, TUI") be the solution to ACL2 given the previous solution
of ACL1 and space of possible constraints Z. Then T' is a solution to the ACL problem that
has EY and E~ as training sets, T as background theory and P and I as spaces of possible
programs and constraints.

Proof: We first prove that T’ |=4 E™ and then that Ve~ € E—, T' [£a e

Proof of T' =4 E*: from ACL1 we have that Mpyp(AT) = E*. From ACL1 and ACL2
we have, respectively, that Mp p (AT) |E I and Mpyp (A1) E I, therefore Mpup (AT) |
TUI'. This, together with Mp,p (A1) = ET, proves that A* is an abductive explanation
for ET in T".

Proof of Ve € E—, T' £a e : from ACL1 we have that Tacr1 =4 not_E~ with A~.
From the definition of strong abductive explanation of a conjunction of goals (definition 35)
A~ is also a strong abductive explanation for not_e™ for every e~ € E~. Therefore, from
property 36 in section 4.2 we have

VA, :TacriEae” withA,, €A, :leA”

Since the integrity constraints in 7" are a superset of those in T'acr1 and the rule part is
the same, the set of explanations for e~ in 7" is a subset of those for e~ in Tycr1.

The constraints I’ generated by ACL2 make inconsistent each of the complements in
A~ and hence for every such A,- there exists an [€ A,- such that {I} is inconsistent
with I’. From the restricted form of the integrity constraints in I’, any superset of {I},
in particular A,-, cannot satisfy the integrity constraints. Therefore, any A,- is not a
consistent extension of 7' and hence T [~ 4 e~ as required.

O

113

A.2 Proof of Theorem 48 on Soundness of ACL

Let us first give the proof of proposition 38 that will be needed for proving theorem 48.

Proposition 11 Let T = (P, A, I) be an abductive theory in its three-valued version and let
A1 and As be two strong abductive explanations of, respectively, G1 and G2, where G1 and
G2 can be either positive or negative goals. If Ay U Ag is self-consistent, then Ay U As is a
strong abductive explanation for both G1 and Gs.

Proof: We first consider the case where G; and G are two positive goals. We need to verify
the two conditions of definition 34.

Let us first prove that M (A;UA;) is a generalized model. Consider A, as a self-consistent
extension of A;. Since A; is a strong abductive explanation, any self-consistent extension A’
of Ay for which M(A') |= 1, is such that M (A; UA') |= I. Taking A’ = A,, since Az is an
abductive explanation, M(Az) = I holds and so M (A; U Ay) = I. Therefore M (A1 U As)
is a generalized model. Since PUA; UA; is a definite logic program, M (A; UA3) D M(A;)
and M(A; UA3) D M(A2) therefore M(A; UA2) =Gy and M (A3 UA,) |= Ga, 50 Ay UA,
is an abductive explanation for both G; and G.

To show that A; U A, satisfies the second condition of definition 34 consider a set
A’ such that A’ U A; U Ay is self-consistent and M (A') = I. We need to prove that
M(A"UA; UA) = I. Consider the set A” = A’ U A,. Since A; is strong and A" U A is
self-consistent, if M(A") = I then M(A; UA") |= I would follow. But M (A") = I is true
since A, is strong, A’ U A, is self-consistent and M(A') = I.

Consider now the case where we have two negative goals G; = not_O; and G5 = not_O-.
In order for A;UAs to be a strong abductive explanation for G; and G2, we need to show that
the conditions of definition 35 are satisfied. The fact that M (A;UA;) is a strong generalized
model can be proved in the same way as for positive goals. To show that M (A; UA3) = O
(and similarly M(A; U Az) = O2) we note that A; is a strong abductive explanation for
not_0; and hence if Ay were an abductive explanation for O;, then A; U A2 would not be
self-consistent which contradicts the hypothesis of the statement. Next we show the second
condition of definition 35, i.e., that for every A’ that is an abductive explanation for O; (or
O3), then (A; U Az) U A’ is not self-consistent. This follows directly from the fact that if
A’ is an explanation for O; (O2), since A; (Agz) is strong, then A’ U A; (A’ U Az) is not
self-consistent and hence A; U Ay U A’ is not self-consistent. The other case where one of
the goals is positive and the other is negative can be shown similarly. |

Theorem 22 (Soundness) The ACL algorithm is sound.

Proof: ACL finds a solution 7" of ACL by solving the ACL1 and ACL2 subproblems in
sequence. Theorem 44 states that the combination of the solutions of ACL1 and ACL2
gives a solution for ACL. Therefore, to prove the soundness of ACL, it is sufficient to prove
that the solutions found by the algorithms for ACL1 and ACL2 satisfy their respective
subproblem definitions.

For the second phase of ACL2, this is guaranteed by the correctness of the ICL [DRL95]
algorithm or of any other sound method used for discriminating between positive and neg-
ative interpretations. It remains therefore to prove that the procedure ACL1 is sound with
respect to the ACL1 definition, i.e. that, given the background theory T' = (P, A, I) and

114

training sets £ and E~, the program Tacr1 = (P U P', A, I) and the sets AT and A~
that are generated by the algorithm are such that

Tacrn 'ZA ET with AT (Al)
Tacrn 'ZA not_E~ with A~ (A2)
AT U A" is self-consistent (A.3)

ACL1 learns the program Ty 11 by iteratively adding a new clause to the current hypothesis,
initially empty. Each clause is tested by trying an abductive derivation for each positive
and for each (negated) negative example.

Suppose that clauses are learned in the following order: Cy,...,C;. Let Hy,...,H; be
the successive partial hypotheses, with Hy = @ and H), = Hj_; U {Cy}, and let T}, =
(P U H, A I). Let also E,:r = {e;r,l,...,e;r,nk} be the set of positive examples whose
conjunction is covered by clause Cj and let E* = {e],...,el}, E= = {e;,...,e,,} be the
complete sets of positive and negative examples.

For each clause Cy, we define two sets of abductive assumptions A and Agut. Al is the
initial set of assumptions under which the testing of examples with this clause starts. A"
is the final set of assumptions produced in the derivations of all the examples in E,j' and in
E~. The input sets A" are defined recursively via Ai* = A", U A, for k = 2,...,1,
with A" = . The output sets A%"* are given by A% = Al U A} with

+
Ak o U Aef-i
i:l,...,nk

AI; = U Ak,not_e]._

j=1,....m
where A_+ is the explanation for example e;c" ; and A
k,i ’

in the theory T} = (P U Hy, A, I).
We will show that each abductive explanation Ae:_ and A

kunot_e 13 the explanation for not_e;

konot_e; 15 @ strong abductive

explanation in the theory Tj. These explanations are constructed successively with the
explanation for each example forming part of the input for the next example. Therefore,
if the input sets A};" are strong, then also the individual explanations are strong, by the
correctness (with respect to definition 39) of the abductive derivation used by the algorithm
and the property of proposition 38 that the union of strong explanations is strong. Note
also that the successive test of the examples by the abductive derivation in the algorithm
ensures that these individual explanations are self-consistent with each other required for
the application of proposition 38.

Hence we need to show that Afc” are strong abductive extensions in T}, for k =1,...,1[.
We do this by induction on k. For k = 1, Ai® =) which is a strong abductive extension
because, by the assumptions on the hypothesis spaces of the integrity constraints and pro-
grams, it always satisfies any set of constraints and it trivially satisfies the strong property in
definition 34. Suppose that A#" is strong in T}, we have to prove that Afc’jrl is strongin Ty 1.
We first prove that A} | is strong in Ty. A}, = A*UA7“ is the union of strong abductive
extensions of T}: }cn is strong by the inductive hypothesis and A$“ is strong because is the
union of strong explanations computed successively by the correct abductive derivations of

115

the algorithm starting from the strong extension A%*. Also the derivations ensures that all
these explanations are self-consistent with each other. Therefore, by proposition 38, A};”H
is a strong abductive extension of Tj.

We still need to show that Afc’jrl is a strong extension of T};. This can be done by
directly verifying the conditions in the definition 34 of strong abductive extension. Since the
integrity constraints I and the background program P do not contain any target predicate,
their satisfaction is independent from the addition of any clause for the target predicates.
Therefore, as A" | satisfies I in T%, it does so in Tj41 as well. We also need to show that,
for any set A’ such that A}, U A’ is self-consistent and A’ satisfies I in Tjy1, A, UA'
must also do so in Tj4;. From the independence of I and P from the target predicates,
A" satisfies I in T}, implies that A’ satisfies I in Ty. Since Afgj_l is strong in T}, then
AU A’ sqtisﬁes I in Tj. Again, the independence of I and P from the target predicates
gives that A} | U A’ satisfies [in Tjyq.

We can now show the ACL1 conditions with

ar= U U Az
=1,...,nk *

k=1,...,l%

AT = U Alc,not e;

which by construction are the final sets returned by the ACL1 algorithm. We first show
that all the explanations for the individual examples are strong abductive explanations in
the final theory 7; = Tacr1 from the fact that they are strong in their respective theories
Ty This follows in the same way as we have shown above that A", is strong in Tj1; from
the fact that it is strong in T}.

We also know that all these individual explanations are self-consistent with each other.
This follows directly from their successive construction in the algorithm satisfying the ab-
ductive derivability of definition 39. Hence ATUA™ is self-consistent and the third condition
(3) of ACL1 is satisfied. Moreover, by proposition 38, the union A7 is then also a strong
abductive explanation of E; ..., E;}' in Tacr1. From the sufficiency stopping criterion (see
figure 4.1) we have that E;"U...UE;" = E*, therefore At is a strong abductive explanation
of ET in T4cr1 and condition A.1 is satisfied. Similarly, by proposition 38, the union A~
is a strong abductive explanation of £~ in T'4c 11 and condition A.2 is satisfied.

O

A.3 Abductive Proof Procedure

In the following we recall the abductive proof procedure for ALP, taken from [KM90c], used
as a basis for the abductive coverage procedure in the ACL1 algorithm.

This ALP procedure is applied to abductive theories T = (P, A, I) in their three-valued
version. Thus the abducibles A contain predicates (a € A) for positive assumptions and
predicates (not_a € A) for negative assumptions. The integrity constraints in I are restricted
to have a denial form, ~(By A...AB;,, A— A1 A...A—Ay) (written here in Logic Programming
style as goals « (By,...,B,,,—A;,...,—Ay;), with at least one abducible with no definition
in P appearing in B,..., By,. Integrity constraints in the range-restricted clausal form,

116

A1 V...VA, < By A...NA By, are first transformed into the equivalent denial above before
they are used by the abductive procedure.

This procedure also assumes that the program P of T contains no definitions for the
abducible predicates ie. no rule (or fact) in P has in its head an abducible predicate.
When the program contains such definitions the abductive theory T = (P, A, I) can be first
transformed so that no such definitions exist. For each abducible predicate p that constains
that has a partial definition in P we add a new abducible §, to the set of abducibles A, we

— —

remove p from A and we add the rule p(X) < 6,(X) to the program P. In this way, if p(¢)
can not be derived using the partial definition for p, it can be derived by abducing 6,(¢)
thus effectively abducing p.

The procedure is composed of two phases: abductive derivation and consistency deriva-
tion.

Abductive derivation
An abductive derivation from (G:1 A1) to (Gn Ay) in (P, A,I) via a safe selection rule R, of a
literal’ from a goal, is a sequence

(G1 A1), (G2 Az), .., (Gn An)

such that each G; has the form <« Li,..., L, R(G;) = L;j and (Gi+1 Ait1) is obtained according
to one of the following rules:

(1) If L; is not abducible, then G;+1 = C and A;4+1 = A; where C is the resolvent of some clause
in P with G; on the selected literal L;;

(2) If Lj is abducible and L]' (S Ai, then Gi+1 = ¢ Lg,... ,Lj_l,L]'+1, oy Ly and Ai+1 = Ai;

(3) If L; is a ground abducible, L; € A; and L; ¢ A; and there exists a consistency derivation
from ({LJ} A; U{Lj}) to ({} A’) then Gi+1 = < Lq,..., Ljfl, Lj+1, ..., Ly and Ai+1 =A'

Steps (1) and (2) are SLD-resolution steps with the rules of P and abductive assumptions already
computed, respectively. In step (3) a new abductive assumption is required and it is added to the
current set of assumptions provided it is consistent.

Consistency derivation
A consistency derivation for an abducible o from (o, A1) to (Fn, Ay) in (P, A,I) is a sequence

(@ A1), (F1 Ar), (F2 Az), ..., (Fn An)

where :

(i) Fi is the union of all goals of the form < Li,...,L, obtained by resolving the abducible o
with the denials in I with no such goal been empty;

(ii) for each 7 > 1, F; has the form { < Li,..., Ly} UF}, for some j = 1,...,k L; is selected and
(Fi+1 Aiy1) is obtained according to one of the following rules:

(C1) If L; is not abducible, then F; 11 = C'UF; where C' is the set of all resolvents of clauses
in P with < Li1,..., Ly on the literal L; and the empty goal [| € C', and A;j+1 = A;;

(C2) If L; is abducible, L; € A; and k > 1, then
Fig1= { (—Ll,...,Lj_l,L]'+1,...,Lk}UFZ-’
and Ai+1 = Ai;

1We use the term literal despite the fact that goals contain only positive conditions due to the presence
of negative abducible conditions of the form not_a.

117

(C3) If L; is abducible, L; € A; then Fij11 = F} and A1 = Ay;
(C4) If L; is a ground abducible, L; ¢ A; and L; ¢ A;, and there exists an abductive
derivation from (< L; A;) to ([] A") then F;11 = Fj and A1 = A';

(Ch) If L; is equal to -A with A a ground atom and there exists an abductive derivation
from ((— A A,) to ([] A’) then Fiy, = Fi’ and A1 = A

In case (C1) the current branch splits into as many branches as the number of resolvents
of < Ly,...,L; with the clauses in P on L;. If the empty clause is one of such resolvents
the whole consistency check fails. In case (C2) the goal under consideration is made simpler
if literal L; belongs to the current set of assumptions A;. In case (C3) the current branch
is already consistent under the assumptions in A;, and this branch is dropped from the
consistency checking In case (C4) the current branch of the consistency search space can be
dropped provided < L; is abductively provable. In case (C5), like (C4) the current branch
fails and can be dropped provided that we can show that the atom A holds.

Given an initial goal (query) G, the procedure succeeds, and returns the set of abducibles
A iff there exists an abductive derivation from (G {}) to ([] A). In this case, we also say
that the abductive derivation succeeds.

A.4 Examples 51 and 52

M-ACL was tested on examples 51 and 52 in order to verify its ability to backtrack from a
wrong clause and to use negative examples generated from abduction to avoid overgeneral-
ization.

For example 51, the following output was generated:

/* Execution time 0.940000 seconds. Generated rules */

rule(ancestor(A,B), [parent (A,B)],c2)

GC: yes, LC: yes

Covered positive examples: [ancestor(b,c),ancestor(a,b)]
Covered positive abduced examples: []

Covered negative abduced examples: []

Abduced literals: []

rule(father(A,B), [male(A) ,ancestor(A,B)],c13)
GC: yes, LC: yes

Covered positive examples: [father(a,b)]
Covered positive abduced examples: []

Covered negative abduced examples: []

Abduced literals: [[not(ancestor(a,c)),c13]]

rule(ancestor(A,B), [parent (A,C) ,ancestor(C,B)],c21)
GC: yes, LC: yes

Covered positive examples: [ancestor(d,c)]

Covered positive abduced examples: []

118

Covered negative abduced examples: [ancestor(a,c)]
Abduced literals: [[not(ancestor(c,d)),c21], [not(ancestor(b,d)),c21],
[not (ancestor(c,a)),c21]1]

Backtracking: retracting clauses
rule(father(A,B), [male(A) ,ancestor(A,B)],
c13, [father(a,b)], [1)

rule(father(A,B), [male(A) ,parent (4,B)],c32)
GC: yes, LC: yes

Covered positive examples: [father(a,b)]
Covered positive abduced examples: []
Covered negative abduced examples: []
Abduced literals: []

For example 52, the following output was generated:

/* Execution time 0.690000 seconds. Generated rules */

rule(grandfather(4,B), [parent (C,B) ,father(A,C)],c16)

GC: yes, LC: yes

Covered positive examples: [grandfather(david,jim),grandfather(john,ellen)]
Covered positive abduced examples: []

Covered negative abduced examples: []

Abduced literals: [[not(father(mary,ellen)),c16],[father(david,steve),c16]]

rule(father(A,B), [parent (A,B) ,male(A)],c44)

GC: yes, LC: yes

Covered positive examples: [father(john,mary)]

Covered positive abduced examples: [father(david,steve)]
Covered negative abduced examples: []

Abduced literals: []

119

120

Bibliography

[Abe98]

[AD94]

[AD95]

[ADP94]

[ADRBY5]

[ALP*98]

[AP6]

[AP9S]

[APP9g]

[BDR96]

A. Abe. The relation between abductive hypotheses and inductive hypotheses.
In Flach and Kakas [FK98].

H. Adé and M. Denecker. RUTH: An ILP theory revision system. In Proceedings
of the 8th International Symposium on Methodologies for Intelligent Systems,
1994.

H. Adé and M. Denecker. AILP: Abductive inductive logic programming. In
Proceedings of the 14th International Joint Conference on Artificial Intelli-
gence, 1995.

J. J. Alferes, C. V. Damdsio, and L. M. Pereira. SLX - A top-down derivation
procedure for programs with explicit negation. In M. Bruynooghe, editor, Proc.
Int. Symp. on Logic Programming. The MIT Press, 1994.

H. Adé, L. De Raedt, and M. Bruynooghe. Declarative bias for specific-to-
general ILP systems. Machine Learning, 20(1/2):119-154, 1995.

J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. C. Przymusin-
ski. Dynamic logic programming. In Sizth International Conference on Prin-
ciples of Knowledge Representation and Reasoning. Morgan Kauffman, 1998.

J. J. Alferes and L. M. Pereira. Reasoning with Logic Programming, volume
1111 of LNAIL Springer-Verlag, 1996.

J. J. Alferes and L. M. Pereira. Tabling abduction. In Proceedings of the First
International Workshop on Tabulation in Parsing and Deduction, TAPDYS,
pages 75—82, Paris, France, April 1998.

J. J. Alferes, L. M. Pereira, and T. C. Przymusinski. “Classical” negation
in non-monotonic reasoning and logic programming. Journal of Automated
Reasoning, 20:107-142, 1998.

H. Blockeel and L. De Raedt. Inductive database design. In Proceedings of
the 10th International Symposium on Methodologies for Intelligent Systems,
volume 1079 of Lecture Notes in Artificial Intelligence, pages 376-385. Springer-
Verlag, 1996.

121

[BGO3)]

[BG94a]

[BG94b]

[BGY5]
[BGS8S]

[BLMM97]

[BM91]

[BM92]

[Car89]

[CB8Y]

[Ces90]

[CKB87]

[CKRP73]

[Cla78]
[CMMS3]

F. Bergadano and D. Gunetti. An interactive system to learn functional logic
programs. In R. Bajcsy, editor, Proceedings of the 13th International Joint Con-
ference on Artificial Intelligence, pages 1044-1049. Morgan Kaufmann, 1993.

C. Baral and M. Gelfond. Logic programming and knowledge representation.
Journal of Logic Programming, 19/20:73-148, 1994.

F. Bergadano and D. Gunetti. Learning clauses by tracing derivations. In
S. Wrobel, editor, Proceedings of the 4th International Workshop on Inductive
Logic Programming, volume 237 of GMD-Studien, pages 11-30. Gesellschaft fiir
Mathematik und Datenverarbeitung MBH, 1994.

F. Bergadano and D. Gunetti. Inductive Logic Programming. MIT press, 1995.

A. Bergadano, A. Giordana, and L. Saitta. Automated concept acquisition
in noisy environments. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 10(4):555-578, 1988.

A. Brogi, E. Lamma, P. Mancarella, and P. Mello. A unifying view for logic
programming with non-monotonic reasoning. Theoretical Computer Science,
184:1-59, 1997.

M. Bain and S. Muggleton. Non-monotonic learning. In J.E. Hayes-Michie and
E. Tyugu, editors, Machine Intelligence, volume 12. Oxford University Press,
1991.

M. Bain and S. Muggleton. Non-monotonic learning. In S. Muggleton, editor,
Inductive Logic Programming, pages 145-161. Academic Press, 1992.

J. G. Carbonell. Introduction: Paradigms for machine learning. Artificial
Intelligence, 40(1-3):1-9, 1989.

P. Clark and R. Boswell. The CN2 induction algorithm. Machine Learning,
3(4):261-283, 1989.

B. Cestnik. Estimating probabilities: A crucial task in machine learning. In
Proceedings of the Ninth European Conference on Artificial Intelligence, pages
147-149, London, 1990. Pitman.

B. Cestnik, I. Knononenko, and I. Bratko. ASSISTANT 86: A knowledge
elicitation tool for sophisticated users. In I. Bratko and N. Lavrac, editors,
Progress in Machine Learning, pages 31-45. Sigma Press, Wilmslow, UK, 1987.

A. Colmerauer, H. Kanoui, P. Roussel, and R. Pasero. Un systeme de commu-
nication homme-machine en Francais. Technical report, Groupe de Recherche
en Intelligence Artificielle, Université d’Aix-Marseille, 1973.

K. L. Clark. Negation as failure. In Logic and Databases. Plenum Press, 1978.

J. G. Carbonell, R. S. Michalski, and T. M. Mitchell. An overview of machine
learning. In Michalski et al. [MCM83], pages 3-24.

122

[Coh92]

[DB92]

[DDS92]

[Dix95]

[DK95]

[DK96]

[DP97]

[DPYS]

[DPPY7]

[DR92]

[DR97]

[DRB89)

[DRB90)

W. W. Cohen. Abductive explanation-based learning: A solution to the mul-
tiple inconsistent explanation problem. Machine Learning, 8:167-219, 1992.

S. Dzeroski and I. Bratko. Handling noise in inductive logic programming.
In S. Muggleton, editor, Proceedings of the 2nd International Workshop on
Inductive Logic Programming, Report ICOT TM-1182, 1992.

M. Denecker and D. De Schreye. SLDNFA: an abductive procedure for normal
abductive programs. In K. R. Apt, editor, Proceedings of the International
Joint Conference and Symposium on Logic Programming, pages 686-700, 1992.

J. Dix. A classification-theory of semantics of normal logic programs: I. & II.
Fundamenta Informaticae, XX11(3):227-255 and 257-288, 1995.

Y. Dimopoulos and A. C. Kakas. Learning non-monotonic logic programs:
Learning exceptions. In Proceedings of the 8th European Conference on Ma-
chine Learning, 1995.

Y. Dimopoulos and A. C. Kakas. Abduction and inductive learning. In Ad-
vances in Inductive Logic Programming. 10S Press, 1996.

C. V. Damadsio and L. M. Pereira. Abduction on 3-valued extended logic pro-
grams. In V. W. Marek, A. Nerode, and M. Trusczynski, editors, Logic Pro-
gramming and Non-Monotonic Reasoning - Proc. of 3rd International Confer-
ence LPNMR’95, volume 925 of LNAI, pages 29-42, Germany, 1997. Springer-
Verlag.

C. V. Damadsio and L. M. Pereira. A survey on paraconsistent semantics for
extended logic programs. In D.M. Gabbay and Ph. Smets, editors, Handbook of
Defeasible Reasoning and Uncertainty Management Systems, volume 2, pages
241-320. Kluwer Academic Publishers, 1998.

J. Dix, L. M. Pereira, and T. Przymusinski. Prolegomena to logic programming
and non-monotonic reasoning. In J. Dix, L. M. Pereira, and T. Przymusinski,
editors, Non-Monotonic Extensions of Logic Programming - Selected papers
from NMELP’96, number 1216 in LNAI, pages 1-36, Germany, 1997. Springer-
Verlag.

L. De Raedt. Interactive Theory Revision: An Inductive Logic Programming
Approach. Academic Press, 1992.

L. De Raedt. Logical settings for concept learning. Artificial Intelligence,
95(1):187-201, 1997.

L. De Raedt and M. Bruynooghe. Towards friendly concept-learners. In Pro-
ceedings of the 11th International Joint Conference on Artificial Intelligence,
pages 849-856. Morgan Kaufmann, 1989.

L. De Raedt and M. Bruynooghe. On negation and three-valued logic in in-
teractive concept learning. In Proceedings of the 9th European Conference on
Artificial Intelligence, 1990.

123

[DRB92a]

[DRB92b]

[DRB93]

[DRBM91]

[DRDY4]

[DRDY6a]

[DRDI6b]

[DRD96c]

[DRL95]

[DRLD93]

[Dun91]

[dV89]

[Dze91]

[EFL*98]

[EK89]

L. De Raedt and M. Bruynooghe. Belief updating from integrity constraints
and queries. Artificial Intelligence, 53:291-307, 1992.

L. De Raedt and M. Bruynooghe. Interactive concept learning and constructive
induction by analogy. Machine Learning, 8(2):107-150, 1992.

L. De Raedt and M. Bruynooghe. A theory of clausal discovery. In Proceedings
of the 13th International Joint Conference on Artificial Intelligence, 1993.

L. De Raedt, M. Bruynooghe, and B. Martens. Integrity constraints and inter-
active concept-learning. In L. Birnbaum and G. Collins, editors, Proceedings of
the 8th International Workshop on Machine Learning, pages 394-398. Morgan
Kaufmann, 1991.

L. De Raedt and S. Dzeroski. First order jk-clausal theories are PAC-learnable.
Artificial Intelligence, 70:375-392, 1994.

L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 1996. (To
appear).

L. De Raedt and L. Dehaspe. DLAB a declarative language bias for con-
cept learning and knowledge discovery engines. Technical Report CW214,
Katholieke Universiteit Leuven, 1996.

L. De Raedt and L. Dehaspe. Learning from satisfiability. Technical report,
Katholieke Universiteit Leuven, 1996.

L. De Raedt and W. Van Lear. Inductive constraint logic. In Proceedings of
the 5th International Workshop on Algorithmic Learning Theory, 1995.

L. De Raedt, N. Lavra¢, and S. Dzeroski. Multiple predicate learning. In
S. Muggleton, editor, Proceedings of the 3rd International Workshop on Induc-
tive Logic Programming, pages 221-240. J. Stefan Institute, 1993.

P. M. Dung. Negation as hypothesis: An abductive foundation for logic pro-
gramming. In Proceedings of the Eigth Int. Conf. on Logic Programming,
ICLPY1, pages 3-17. The MIT Press, 1991.

W. Van de Velde. IDL, or taming the multiplexer problem. In Morik K., editor,
Proceedings of the 4th European Working Session on Learning. Pittman, 1989.

S. Dzeroski. Handling noise in inductive logic programming. Master’s thesis,
Faculty of Electrical Engineering and Computer Science, University of Ljubl-
jana, 1991.

F. Esposito, S. Ferilli, E. Lamma, P. Mello, M. Milano, F. Riguzzi, and G. Se-
meraro. Cooperation of abduction and induction in logic programming. In
P. A. Flach and A. C. Kakas, editors, Abductive and Inductive Reasoning, Pure
and Applied Logic. Kluwer, 1998. Submitted for publication.

K. Eshghi and R. A. Kowalski. Abduction compared with Negation by Failure.
In Proceedings of the 6th International Conference on Logic Programming, 1989.

124

[ELM*96]

[FK96]

[FK97]

[FKOS]
[Fla92]
[F1a95]

[GL8S)

[GL90]

[GM90]

[Hel89]

[IK97]

[IKIT96]

[Ino94]

[Ino98]

F. Esposito, E. Lamma, D. Malerba, P. Mello, M. Milano, F. Riguzzi, and
G. Semeraro. Learning abductive logic programs. In Flach and Kakas [FK96].
Available on-line at http://www.cs.bris.ac.uk/~“flach/ECAI96/.

P. A. Flach and A. C. Kakas, editors. Proceedings of the ECAI’96 Work-
shop on Abductive and Inductive Reasoning, 1996. Available on-line at
http://www.cs.bris.ac.uk/“flach/ECAI96/.

P. A. Flach and A. C. Kakas, editors. Proceedings of the IJCAI’97 Work-
shop on Abductive and Inductive Reasoning, 1997. Available on-line at
http://www.cs.bris.ac.uk/“flach/IJCAI97/.

P. A. Flach and A. C. Kakas, editors. Abductive and Inductive Reasoning. Pure
and Applied Logic. Kluwer, 1998.

P. A. Flach. Logical approaches to machine learning - An overview. THINK,
1(2):25-36, 1992.

P. A. Flach. Conjectures: An Inquiry Concerning the Logic of Induction. PhD
thesis, Katholieke Universiteit Brabant, 1995.

M. Gelfond and V. Lifschitz. The stable model semantics for logic program-
ming. In R. Kowalski and K. A. Bowen, editors, Proceedings of the 5th Int.
Conf. on Logic Programming, pages 1070-1080. MIT Press, 1988.

M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Pro-
ceedings of the 7th International Conference on Logic Programming ICLP90,
pages 579-597. The MIT Press, 1990.

L. Giordano and A. Martelli. Generalized stable model semantics, truth main-
tenance and conflict resolution. In Proceedings of the 7th International Con-
ference on Logic Programming, pages 427-411, Jerusalem, 1990. MIT Press.

N. Helft. Induction as nonmonotonic inference. In Proceedings of the 1st Inter-
national Conference on Principles of Knowledge Representation and Reasoning,
pages 149-156. Morgan Kaufmann, 1989.

K. Inoue and Y. Kudoh. Learning extended logic programs. In Proceedings of
the 15th International Joint Conference on Artificial Intelligence, pages 176—
181. Morgan Kaufmann, 1997.

N. Inuzuka, M. Kamo, N. Ishii, H. Seki, and H. Itoh. Top-down induction of
logic programs from incomplete samples. In S. Muggleton, editor, Proceedings
of the 6th International Workshop on Inductive Logic Programming, pages 119—
136. Stockholm University, Royal Institute of Technology, 1996.

K. Inoue. Hypothetical reasoning in logic programs. Journal of Logic Program-
ming, 18:191-227, 1994.

K. Inoue. Learning abductive and nonmonotonic logic programs. In P. A.
Flach and A. C. Kakas, editors, Abductive and Inductive Reasoning, Pure and
Applied Logic. Kluwer, 1998. Submitted for publication.

125

[1594]

[1S95]

[Kal79]

[KK98]

[KKT93)]

[KKT97]

[KM90a]

[KMO0b]

[KM90c]

[KMD94]

[Kow74]

[KR97]

[KR98]

[LDY2]

K. Inoue and C. Sakama. On the equivalence between disjunctive and abductive
logic programs. In In proceedings of ICLP94, pages 489-503, 1994.

K. Inoue and C. Sakama. Abductive framework for nonmonotonic theory
change. In Proceedings of the 14th International Joint Conference on Arti-
ficial Intelligence, pages 204-210, 1995.

J. Kalbfleish. Probability and Statistical Inference, volume II. Springer, New
York, 1979.

T. Kanai and S. Kunifuji. Extending inductive generalization with abduction.
In Flach and Kakas [FK98].

A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive logic programming.
Journal of Logic and Computation, 2:719-770, 1993.

A. C. Kakas, R. A. Kowalski, and F. Toni. The role of abduction in logic
programming. In D. Gabbay, C. Hogger, and J. Robinson, editors, Handbook
of Logic in AI and Logic Programming, volume 5, pages 233-306. Oxford Uni-
versity Press, 1997.

A. C. Kakas and P. Mancarella. Database updates through abduction. In
R. Sacks-Davis D. McLeod and H. Schek, editors, Proceedings of the 16th In-
ternational Conference on Very Large Databases, VLDB-90, pages 650—661.
Morgan Kaufmann, 1990.

A. C. Kakas and P. Mancarella. Generalized stable models: a semantics for
abduction. In Proceedings of the 9th European Conference on Artificial Intel-
ligence, 1990.

A. C. Kakas and P. Mancarella. On the relation between truth maintenance
and abduction. In Proceedings of the 2nd Pacific Rim International Conference
on Artificial Intelligence, 1990.

A. C. Kakas, P. Mancarella, and P. M. Dung. The acceptability semantics for
logic programs. In Proceedings of the 11th International Conference on Logic
Programming, 1994.

R. A. Kowalski. Predicate logic as a programming language. In Proceedings
IFIP7}, pages 569-574. North Holland Publishing Co., 1974.

A. C. Kakas and F. Riguzzi. Learning with abduction. In Proceedings of the
7th International Workshop on Inductive Logic Programmaing, 1997.

A. C. Kakas and F. Riguzzi. Learning with abduction. submitted for publica-
tion, 1998.

N. Lavra¢ and S. Dzeroski. Inductive learning of relations from noisy exam-
ples. In S. Muggleton, editor, Inductive Logic Programming, pages 495-516.
Academic Press, 1992.

126

[LDY4]

[LDBY6]

[LDGY1a]

[LDGO1b]

[L1087]

[LMY2]

[LMMR97]

[LMMRO8]

[LP98]

[LRP88a]

[LRP88b]

[LRP88c]

[MB92]

N. Lavra¢ and S. Dzeroski. Inductive Logic Programming: Techniques and
Applications. Ellis Horwood, 1994.

N. Lavrag, S. Dzeroski, and I. Bratko. Handling imperfect data in inductive
logic programming. In L. De Raedt, editor, Advances in Inductive Logic Pro-
gramming, pages 48—64. IOS Press, 1996.

N. Lavrag, S. Dzeroski, and M. Grobelnik. Learning nonrecursive definitions
of relations with LINUS. In Y. Kodratoff, editor, Proceedings of the 5th Euro-
pean Working Session on Learning, volume 482 of Lecture Notes in Artificial
Intelligence, pages 265—281. Springer-Verlag, 1991.

N. Lavrag, S. Dzeroski, and M. Grobelnik. Learning nonrecursive definitions
of relations with LINUS. In Y. Kodratoff, editor, Proceedings of the 5th Euro-
pean Working Session on Learning, volume 482 of Lecture Notes in Artificial
Intelligence, pages 265-281. Springer-Verlag, 1991.

J. Lloyd. Foundations of Logic Programming. Springer Verlag, Berlin, second
edition, 1987.

S. Lapointe and S. Matwin. Sub-unification: A tool for efficient induction of
recursive programs. In D. Sleeman and P. Edwards, editors, Proceedings of
the 9th International Workshop on Machine Learning, pages 273-281. Morgan
Kaufmann, 1992.

E. Lamma, P. Mello, M. Milano, and F. Riguzzi. Integrating induction and
abduction in logic programming. In P. P. Wang, editor, Proceedings of the
Third Joint Conference on Information Sciences, volume 2, pages 203-206,
1997.

E. Lamma, P. Mello, M. Milano, and F. Riguzzi. Integrating induction and
abduction in logic programming. To appear on Information Sciences, 1998.

J. A. Leite and L. M. Pereira. Generalizing updates: from models to programs.
In J. Dix, L. M. Pereira, and T. C. Przymusinski, editors, Collected Papers from
Workshop on Logic Programming and Knowledge Representation LPKR’97,
number 1471 in LNAI Springer-Verlag, 1998.

E. Lamma, F. Riguzzi, and L. M. Pereira. Learning in a three-valued setting. In
Proceedings of the Fourth International Workshop on Multistrategy Learning,
1988.

E. Lamma, F. Riguzzi, and L. M. Pereira. Learning with extended logic pro-
grams. In Proceedings of the Logic Programming track of the Seventh Interna-
tional Workshop on Nonmonotonic Reasoning (LP-NMR98), 1988.

E. Lamma, F. Riguzzi, and L. M. Pereira. Strategies in combined learning via
logic programs. Technical report, DEIS - University of Bologna, 1988.

S. Muggleton and W. Buntine. Machine invention of first-order predicates by
inverting resolution. In S. Muggleton, editor, Inductive Logic Programming,
pages 261-280. Academic Press, 1992.

127

[MCM83]

[MCMS86]

[MDR94]

[MF90]

[Mic73]

[Mic80]

[Mic84]

[Mic86]

[Mit82]

[Mit97]

[Mo098]

[Mor91]

[Mug95a]

[Mug95b]

[MV95a]

R. Michalski, J. G. Carbonell, and T. M. Mitchell, editors. Machine Learning
- An Artificial Intelligence Approach. Springer-Verlag, 1983.

R. Michalski, J. G. Carbonell, and T. M. Mitchell, editors. Machine Learning
- An Artificial Intelligence Approach Vol. II. Morgan Kaufmann, 1986.

S. Muggleton and L. De Raedt. Inductive logic programming: Theory and
methods. Journal of Logic Programming, 19/20:629-679, 1994.

S. Muggleton and C. Feng. Efficient induction of logic programs. In Proceed-
ings of the 1st Conference on Algorithmic Learning Theory, pages 368—381.
Ohmsma, Tokyo, Japan, 1990.

R. Michalski. Discovery classification rules using variable-valued logic system
VL1. In Proceedings of the Third International Conference on Artificial Intel-
ligence, pages 162-172. Stanford University, 1973.

R.S. Michalski. Pattern recognition as rule-guided inductive inference. In Pro-
ceedings of IEEE Transactions on Pattern Analysis and Machine Intelligence,
pages 349-361, 1980.

R. Michalski. A theory and methodology of inductive learning. In R. Michalski,
J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning - An Artificial
Intelligence Approach, volume 1, pages 83-134. Springer-Verlag, 1984.

R. S. Michalski. Understanding the nature of learning: Issues and research
directions. In Michalski et al. [MCMS86], pages 3—26.

T. M. Mitchell. Generalization as search. Artificial Intelligence, 18(2):203-226,
1982.

T. M. Mitchell. Machine Learning. McGraw Hill, 1997.

R. Mooney. Integrating abduction and induction in machine learning. In Flach
and Kakas [FK98].

K. Morik. Balanced cooperative modelling. In Proc. First Int. Workshop on
Multistrategy Learning, Fairfax, VA, 1991. George Mason University.

S. Muggleton. Inverse entailment and Progol. New Generation Computing,
Special issue on Inductive Logic Programming, 13(3-4):245-286, 1995.

S. Muggleton. Inverting entailment and Progol. In Machine Intelligence, vol-
ume 14, pages 133-188. Oxford University Press, 1995.

L. Martin and C. Vrain. MULT_ICN: An empirical multiple predicate learner.
In L. De Raedt, editor, Proceedings of the 5th International Workshop on In-
ductive Logic Programming, pages 129-144. Department of Computer Science,
Katholieke Universiteit Leuven, 1995.

128

[MV95b]

[NBS6]

[0'R94]

[PA92]

[PGAST]

[PK92]

[P1070]

[Plo71]

[Qui90a]

[Qui9O0b]

[Qui9l]

[Qui93]

[Rei78]

[Rob65]

[Rus89]

L. Martin and C. Vrain. A three-valued framework for the induction of general
program. In L. De Raedt, editor, Proceedings of the 5th International Workshop
on Inductive Logic Programming, pages 109-128. Department of Computer Sci-
ence, Katholieke Universiteit Leuven, 1995.

T. Niblett and I. Bratko. Learning decision rules in noisy domains. In
M. Bramer, editor, Research and Development in Expert Systems III, pages
24-25. Cambridge University Press, 1986.

P. O’Rourke. Abduction and explanation-based learning: Case studies in di-
verse domains. Computational Intelligence, 10:295-330, 1994.

L. M. Pereira and J. J. Alferes. Well founded semantics for logic programs
with explicit negation. In Proceedings of the European Conference on Artificial
Intelligenece ECAI92, pages 102-106. John Wiley and Sons, 1992.

D. Poole, R. G. Goebel, and Aleliunas. Theorist: a logical reasoning system for
default and diagnosis. In Cercone and McCalla, editors, The Knowledge Fron-
teer: Essays in the Representation of Knowledge, Lecture Notes in Computer
Science, pages 331-352. Springer-Verlag, 1987.

M.J. Pazzani and D. Kibler. The utility of knowledge in inductive learning.
Machine Learning, 9(1):57-94, 1992.

G.D. Plotkin. A note on inductive generalization. In Machine Intelligence,
volume 5, pages 153-163. Edinburgh University Press, 1970.

G.D. Plotkin. A further note on inductive generalization. In Machine Intelli-
gence, volume 6, pages 101-124. Edinburgh University Press, 1971.

J. R. Quinlan. Learning logical definitions from relations. Machine Learning,
5:239-266, 1990.

J.R. Quinlan. Learning logical definitions from relations. Machine Learning,
5:239-266, 1990.

J. R. Quinlan. Unknown attribute values in induction. In Proceedings of the
Sixth International Machine Learning Workshop, pages 164-168, San Mateo,
CA, 1991. Morgan Kaufmann.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA, 1993.

R. Reiter. On closed-word data bases. In H. Gallaire and J. Minker, editors,
Logic and Data Bases, pages 55—76. Plenum Press, 1978.

J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(1):23-41, 1965.

S. Russell. The Use of Knowledge in Analogy and Induction. Pitman, London,
1989.

129

[Sak9g]

[SBS6)]

[Sha83]

[S192]

[Sim83]

[SSW*97]

[Swe9T]

[TM94]

[VGRS91]

C. Sakama. Computing induction through abduction. In Flach and Kakas
[FK98].

C. Sammut and R. Banerji. Learning concepts by asking questions. In R.S.
Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning: An
Artificial Intelligence Approach, Volume 2, pages 167-191. Morgan Kaufmann,
1986.

E. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

K. Satoh and N. Iwayama. A query evaluation method for abductive logic
programming. In In proceedings of the 1992 Joint International Conference
and Symposium on Logic Programming, pages 671-685, 1992.

H. A. Simon. Why should machines learn. In Michalski et al. [MCM83], pages
25-37.

K. F. Sagonas, T. Swift, D. S. Warren, J. Freire, and P. Rao. The XSB Pro-
grammer’s Manual Version 1.7.1, 1997.

Swedish Institute of Computer Science, Kista, Sweden. SICStus Prolog User’s
Manual, 1997.

C. Thompson and R. Mooney. Inductive learning for abductive diagnosis. In
Proceedings of the 12th National Conference on Artificial Intelligence, 1994.

A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for
general logic programs. Journal of the ACM, 38(3):620-650, 1991.

[VLDDRY94] W. Van Laer, L. Dehaspe, and L. De Raedt. Applications of a logical discovery

[WD95]

[Wro88]

engine. In Proceedings of the AAAI Workshop on Knowledge Discovery in
Databases, pages 263-274, 1994.

S. Wrobel and S. Dzeroski. The ILP description learning problem: Towards
a genearl model-leve definition of data mining in ILP. In Proceedings of the
Fachgruppentreffen Maschinelles Lernen, 1995.

S. Wrobel. Automatic representation adjustment in an observational discov-
ery system. In D. Sleeman, editor, Proceedings of the 3rd European Working
Session on Learning, pages 253—-262. Pitman, 1988.

130

