
Fundamenta Informaticae XXI (2001) 1–21 1

IOS Press

MCINTYRE: A Monte Carlo System for Probabilistic Logic
Programming

Fabrizio Riguzzi

Dipartimento di Matematica e Informatica, Università di Ferrara, Via Saragat, 1, 44122 Ferrara, Italy

fabrizio.riguzzi@unife.it

Abstract. Probabilistic Logic Programming is receiving an increasing attention for its ability to
model domains with complex and uncertain relations among entities. In this paper we concentrate
on the problem of approximate inference in probabilistic logic programming languages based on
the distribution semantics. A successful approximate approach is based on Monte Carlo sampling,
that consists in verifying the truth of the query in a normal program sampled from the probabilistic
program. The ProbLog system includes such an algorithm and so does thecplint suite. In this
paper we propose an approach for Monte Carlo inference that is based on a program transformation
that translates a probabilistic program into a normal program to which the query can be posed. The
current sample is stored in the internal database of the Yap Prolog engine. The resulting system,
called MCINTYRE for Monte Carlo INference wiTh Yap REcord, is evaluated on various problems:
biological networks, artificial datasets and a hidden Markov model. MCINTYRE is compared with
the Monte Carlo algorithms of ProbLog andcplint and with the exact inference of the PITA system.
The results show that MCINTYRE is faster than the other MonteCarlo systems.

Keywords: Probabilistic Logic Programming, Monte Carlo Methods, Logic Programs with Anno-
tated Disjunctions, ProbLog.

1. Introduction

Probabilistic Logic Programming (PLP) is an emerging field that has recently seen many proposals for
the integration of probability in logic programming. Such an integration allows logic to deal also with
uncertain propositions and probability theory to considers complex relational descriptions of domain
entities.

PLP is of interest for many application domains, such as biological networks [11], environmental
assessment [14] or ontology engineering [32]. The most promising domain is Probabilistic Inductive

Address for correspondence: Dipartimento di Matematica e Informatica, Università di Ferrara, Via Saragat, 1, 44122 Ferrara,
Italy, fabrizio.riguzzi@unife.it, Tel/Fax +390532974836

2 F. Riguzzi / An MC Algorithm for PLP

Logic Programming [10] in which PLP languages are used to represent the theories that are induced
from data. This allows a rich representation of the domains that often leads to increased modeling
accuracy. This trend can be cast in a more general tendency inMachine Learning to combine aspects of
uncertainty with aspects of logic, as is testified by the development of the field of Statistical Relational
Learning [15].

Many languages have been proposed in PLP. Among them, many share a common approach for defin-
ing the semantics, namely the so called distribution semantics [40]. This approach sees a probabilistic
logic program as a description of a probability distribution over normal logic programs, from which the
probability of queries is computed. Example of languages following the distribution semantics are (in
chronological order) Probabilistic Logic Programs [8], Probabilistic Horn Abduction [21], Independent
Choice Logic [22], PRISM [40], pD [13], Logic Programs with Annotated Disjunctions (LPADs) [46],
ProbLog [11] and CP-logic [44]. These languages have essentially the same expressive power [45, 9] and
in this paper we consider only LPADs and ProbLog because theystand at the extremes of syntax com-
plexity, LPADs having the most complex syntax and ProbLog the simplest, and because most existing
inference systems can be directly applied to them.

The problem of inference, i.e., the problem of computing theprobability of a query from a proba-
bilistic logic program, is very expensive, being #P complete [19]. Nevertheless, various exact inference
algorithms have been proposed, such as the ones in the systems PRISM1 [41], ProbLog2 [11], cplint3

[26, 29, 28, 30] and PITA4 [35, 36, 37, 38, 31] and have been successfully applied to a variety of non-
trivial problems. All of these algorithms find explanationsfor queries and then all except PRISM use
Binary Decision Diagrams (BDDs) for computing the probability. This approach has been shown to be
faster than previous algorithms. Recently, weighted modelcounting using deterministic, decomposable
negation normal forms has been applied with success to inference in PLP [12].

Reducing the time to answer a probabilistic query is important because in many applications, such
as in Machine Learning, a high number of queries must be issued [24, 25, 27, 23, 16, 18, 33, 3, 1, 2, 4].
To improve the speed, approximate inference algorithms have been proposed. Some compute a lower
bound of the probability, as thek-best algorithm of ProbLog [19] which considers only thek most
probable explanations for the query, while some compute an upper and a lower bound, as the bounded
approximation algorithm of ProbLog [19] that builds an SLD tree only to a certain depth. A completely
different approach for approximate inference is based on sampling the normal programs encoded by the
probabilistic program and checking whether the query is true in them. This approach, called Monte
Carlo, was first proposed in [19] for ProbLog, where a lazy sampling approach was used in order to
avoid sampling unnecessary probabilistic facts. Bragaglia and Riguzzi [5] present algorithms fork-best,
bounded approximation and Monte Carlo inference for LPADs that are all based on a meta-interpreter.
In particular, the Monte Carlo approach uses the arguments of the meta-interpreter predicate to store the
samples taken and to ensure consistency of the sample.

In this paper we present the system MCINTYRE for Monte Carlo INference wiTh Yap REcord that
computes the probability of queries by means of a program transformation technique. The disjunctive
clauses of an LPAD are first transformed into normal clauses to which auxiliary atoms are added to the

1http://sato-www.cs.titech.ac.jp/prism/
2http://dtai.cs.kuleuven.be/problog/
3http://sites.unife.it/ml/cplint
4https://sites.unife.it/ml/pita

http://sato-www.cs.titech.ac.jp/prism/
http://dtai.cs.kuleuven.be/problog/
http://sites.unife.it/ml/cplint
https://sites.unife.it/ml/pita

F. Riguzzi / An MC Algorithm for PLP 3

body for taking samples and storing the results. The internal database of the Yap Prolog engine5 [7] is
used to record all samples taken thus ensuring that samples are consistent. The truth of a query in a
sampled program can be then tested by asking the query to the resulting normal program.

MCINTYRE is compared with the Monte Carlo algorithms of ProbLog andcplint and with the
exact inference algorithm of PITA on various problems: biological networks, artificial datasets and a
hidden Markov model. The results show that the performancesof MCINTYRE overcome those of the
other Monte Carlo algorithms.

The paper is organized as follows. In Section 2 we review the syntax and the semantics of PLP. Sec-
tion 3 illustrates previous approaches for inference in PLPlanguages. Section 4 presents the MCINTYRE
system. Section 5 describes the experiments and Section 6 concludes the paper.

2. Probabilistic Logic Programming

One of the most interesting approaches to the integration oflogic programming and probability is the
distribution semantics [40], which was introduced for the PRISM language but is shared by many other
languages.

A program in one of these languages defines a probability distribution over normal logic programs
calledworlds. This distribution is then extended to queries and the probability of a query is obtained
by marginalizing the joint distribution of the query and theprograms. We present the semantics for
programs without function symbols but the semantics has been defined also for programs with function
symbols [40, 34, 38].

The languages following the distribution semantics differin the way they define the distribution
over logic programs. Each language allows probabilistic choices among atoms in clauses: Probabilistic
Logic Programs, Probabilistic Horn Abduction, Independent Choice Logic, PRISM and ProbLog allow
probability distributions over facts, while LPADs allow probability distributions over the heads of dis-
junctive clauses. All these languages have the same expressive power: there are transformations with
linear complexity that can convert each one into the others [45, 9]. We will discuss here LPADs and
ProbLog because LPADs have the most liberal syntax and ProbLog the most restrictive, thus they can be
considered as the two ends of a spectrum.

2.1. Logic Programs with Annotated Disjunctions

Formally aLogic Program with Annotated Disjunctions[46] T consists of a finite set of annotated dis-
junctive clauses. An annotated disjunctive clauseCi is of the form

hi1 : Πi1; . . . ;hini
: Πini

:− bi1, . . . , bimi
.

In such a clausehi1, . . . hini
are logical atoms andbi1, . . . , bimi

are logical literals,Πi1, . . . ,Πini
are

real numbers in the interval[0, 1] such that
∑ni

k=1Πik ≤ 1. bi1, . . . , bimi
is called thebody and is

indicated withbody(Ci). If it is empty, the:− symbol is omitted. Note that ifni = 1 andΠi1 = 1, the
clause corresponds to a non-disjunctive clause. If

∑ni

k=1Πik < 1, the head of the annotated disjunctive
clause implicitly contains an extra atomnull that does not appear in the body of any clause and whose
annotation is1−

∑ni

k=1Πik. We denote byground(T) the grounding of an LPADT .

5http://www.dcc.fc.up.pt/~vsc/Yap/

http://www.dcc.fc.up.pt/~vsc/Yap/

4 F. Riguzzi / An MC Algorithm for PLP

An atomic choiceis a triple(Ci, θj, k) whereCi ∈ T , θj is a substitution that groundsCi andk ∈
{1, . . . , ni}. In practiceCiθj corresponds to a random variableXij and an atomic choice(Ci, θj , k) to an
assignmentXij = k. A set of atomic choicesκ is consistentif ∀i, j, k, j, l (Ci, θj , k) ∈ κ, (Ci, θj , l) ∈
κ ⇒ k = l. A composite choiceκ is a consistent set of atomic choices. Theprobability P (κ) of a
composite choiceκ is P (κ) =

∏

(Ci,θj ,k)∈κ
Πik. A selectionσ is a composite choice that contains an

atomic choice(Ci, θj, k) for each clauseCiθj in ground(T). A selectionσ identifies a normal logic
programwσ defined aswσ = {(hik :− body(Ci))θj |(Ci, θj, k) ∈ σ}. wσ is called aworld of T . Since
selections are composite choices, we can assign a probability to possible worlds:P (wσ) = P (σ).

The programs we consider do not have function symbols so the set of worlds is finite: WT =
{w1, . . . , wm}. Since the probabilities of the individual choices sum to 1,P (w) is a distribution over
worlds:

∑

w∈WT
P (w) = 1. We also assume that each worldw has a two-valued well founded model

WFM(w). If a queryQ is true inWFM(w) we writew |= Q.
We can define the conditional probability of a queryQ given a world:P (Q|w) = 1 if w |= Q and 0

otherwise. The probability of the query can then be obtainedby marginalizing over the worlds:

P (Q) =
∑

w

P (Q,w) =
∑

w

P (Q|w)P (w) =
∑

w|=Q

P (w)

Example 2.1. The following LPADT encodes a very simple model of the development of an epidemic
or a pandemic:

C1 = epidemic : 0.6 ; pandemic : 0.3 :− flu(X), cold.

C2 = cold : 0.7.

C3 = flu(david).

C4 = flu(robert).

This program models the fact that, if somebody has the flu and the climate is cold, there is the possibility
that an epidemic arises, a pandemic arises or neither of the two. We are uncertain about whether the
climate is cold but we know for sure that David and Robert havethe flu. ClauseC1 has two groundings,
both with three atoms in the head, while clauseC2 has a single grounding with two atoms in the head, so
overall there are3× 3× 2 = 18 worlds. The queryepidemic is true in 5 of them and its probability is

P (epidemic) = 0.6 · 0.6 · 0.7 + 0.6 · 0.3 · 0.7 + 0.6 · 0.1 · 0.7 + 0.3 · 0.6 · 0.7 + 0.1 · 0.6 · 0.7

= 0.588

2.2. ProbLog

A ProbLog programis composed by a set of normal clauses and a set of probabilistic facts, possibly non-
ground. A probabilistic fact takes the formΠ :: f. whereΠ is in [0,1] andf is an atom. The semantics
of such program can be given by considering an equivalent LPAD containing, for each ProbLog normal
clauseh :−B, a clauseh : 1 :−B and, for each probabilistic ProbLog fact, a clausef : Π. The semantics
of the ProbLog program is the same as that of the equivalent LPAD.

It is also possible to translate an LPAD into a ProbLog program [9]. A clauseCi of the LPAD with
variablesX hi1 : Πi1; . . . ;hini

: Πini
:− Bi is translated into

F. Riguzzi / An MC Algorithm for PLP 5

hi1 :− Bi, fi1(X).

hi2 :− Bi, problog not(fi1(X)), fi2(X).
...

hini−1 :− Bi, problog not(fi1(X)), . . . , problog not(fini−2(X)), fini−1(X).

hini
:− Bi, problog not(fi1(X)), . . . , problog not(fini−1(X)).

πi1 :: fi1(X).
...

πin−1 :: fini−1(X).

whereproblog not/1 is a ProbLog built-in predicate that implements negation for probabilistic atoms
andπi1 = Πi1, πi2 =

Πi2

1−πi1
, πi3 =

Πi3

(1−πi1)(1−πi2)
, In generalπij =

Πij
∏j−1

k=1
(1−πik)

. Recent versions of

ProbLog allow clauses with annotated disjunctive heads as well [17] and treat them by translating into
basic ProbLog as illustrated above.

Example 2.2. The ProbLog program equivalent to the LPAD of Example 2.1 is
C11 = epidemic :− flu(X), cold, f1(X).

C12 = pandemic :− flu(X), cold, problog not(f1(X)), f2(X).

C13 = 0.6 :: f1(X).

C14 = 0.75 :: f2(X).

C21 = cold :− f3.

C22 = 0.7 :: f3.

C3 = flu(david).

C4 = flu(robert).
In this program, clauseC1 is translated into two clauses,C11 andC12, one for each head ofC1. The first,
C11, has a positive probabilistic literal for which the programcontains the probabilistic fact0.6 :: f1(X),
the latter instead,C12, contains a negative probabilistic literal and a positive one, for which the program
contains the probabilistic fact0.75 :: f2(X). Thus, the headpandemic is derived from clauseC12

whenf1(X) is false andf2(X) is true. This happens with probability0.4 · 0.75 = 0.3, the probability
associated topandemic in C1.

3. Inference Algorithms

One of the first systems for computing the probability of a query from a probabilistic logic program was
PRISM [41] that uses tabling to find derivations for the query. PRISM, however, requires goals in a
disjunction to be mutually exclusive and goals in a conjunction to be independent, strong requirements
that are not easy to satisfy.

De Raedt et al. [11] proposed the ProbLog system that overcomes these limitations by first finding
a set of explanations for the query and then computing the probability from the set by using Binary
Decision Diagrams. An explanation is a set of probabilisticfacts used in a derivation of the query. The
set of explanations can be seen as a Boolean DNF formula in which the Boolean propositions are random
variables. Computing the probability of the formula involves solving the disjoint sum problem which is

6 F. Riguzzi / An MC Algorithm for PLP

#P-complete [43]. BDDs represent an approach for solving this problem that has been shown to work
well in practice [11, 29, 35].

Kimmig et al. [19] proposed various approaches for approximate inference that are now included
in the ProbLog system. Thek-best algorithm finds only thek most probable explanations for a query
and then builds a BDD from them. The resulting probability isonly a lower bound but represents a
good approximation ifk is sufficiently high. The bounded approximation algorithm computes a lower
bound and an upper bound of the probability of the query by using iterative deepening to explore the
SLD tree for the query. The SLD tree is built partially, the successful derivations it contains are used
to build a BDD for computing the lower bound while the successful derivations plus the incomplete
ones are used to compute the upper bound. If the difference between the upper and the lower bound is
above the required precision, the SLD tree is built up to a greater depth. This process is repeated until the
required precision is achieved. These algorithms are implemented by means of a program transformation
technique applied to the probabilistic atoms: these are turned into clauses that add the probabilistic fact
to the current explanation.

Bragaglia and Riguzzi [5] presented an implementation ofk-best and bounded approximation for
LPADs that is based on a meta-interpreter and showed that in some cases this gives good results. They
also presented a Monte Carlo algorithm for LPADs that is based on a meta-interpreter. In order to keep
track of the samples taken, two arguments of the meta-interpreter predicate are used, one for keeping the
input set of choices and one for the output set of choices. This algorithm is included in thecplint suite
available in the source tree of Yap.

ProbLog [19] also contains a Monte Carlo algorithm that samples the possible programs and tests
the query in the samples. The probability of the query is thengiven by the fraction of programs where
the query is true. Figure 1 shows the overall algorithm: a fixed number of samplesn is taken and the
fraction p̂ of samples in which the query succeeds is computed. In order to compute the confidence
interval of p̂, the central limit theorem is used to approximate the binomial distribution with a normal

distribution. Then the binomial proportion confidence interval is calculated as [39]̂p± z1−α/2

√

p̂(1−p̂)
Samples

whereSamples is the number of samples,z1−α/2 is the1 − α/2 percentile of a standard normal dis-
tribution (usuallyα = 0.05 so z1−α/2 = 1.96). If the width of the interval is below a user defined
thresholdδ, the algorithm stops and returns the fraction of successfulsamples, otherwise another batch
of n samples is taken. In Figure 1SAMPLE(Q) is used to take a sample of the program and to test the
query in the sample. The algorithm converges because theSamples variables is always increasing and

thus the condition2z1−α/2

√

p̂(1−p̂)
Samples < δ in line 15 of Figure 1 will eventually become true.

Sampling in ProbLog is realized by asking the query over a transformed program in which the prob-
abilistic facts are replaced by rules. Moreover, ProbLog uses an array with an element for each ground
probabilistic fact that stores one of three values: sampledtrue, sampled false or not yet sampled. When
a literal matching a probabilistic fact is called, ProbLog first checks whether the fact has already been
sampled by looking at the array. If it has not been sampled, then it samples it and stores the result in the
array. Probabilistic facts that are non-ground in the program are treated differently: samples for ground-
ings of these facts are stored in the internal database of Yapand the sampled value is retrieved when they
are called. If no sample has been taken for a grounding, a sample is taken and recorded in the database.
No position in the array is reserved for them since their grounding is not known at the start.

F. Riguzzi / An MC Algorithm for PLP 7

1: function MONTECARLO(T,Q, n, δ)
2: Input: ProgramT , queryQ, number of batch samplesn, precisionδ
3: Output:P (Q)
4: TransformT
5: Samples← 0
6: TrueSamples← 0
7: repeat
8: for i = 1→ n do
9: Samples← Samples+ 1

10: if SAMPLE(Q) succeedsthen
11: TrueSamples← TrueSamples+ 1
12: end if
13: end for
14: p̂← TrueSamples

Samples

15: until 2z1−α/2

√

p̂(1−p̂)
Samples < δ

16: return p̂
17: end function

Figure 1. Monte Carlo algorithm.

4. MCINTYRE

MCINTYRE follows the algorithm in Figure 1 and differs from ProbLog in the transformation (line 4 in
Figure 1), in the sampling process (line 10) and in the exit condition in the loop (line 15).

MCINTYRE applies torange restrictedprograms, i.e., programs in which all the variables appearing
in the head of a clause also appear in positive literals in thebody. MCINTYRE applies the following
transformation: the disjunctive clauseCi = hi1 : Πi1 ∨ . . . ∨ hin : Πini

:− bi1, . . . , bimi
. where the

parameters sum to 1, is transformed into the set of clausesMC(Ci):

MC(Ci, 1) = hi1 :− bi1, . . . , bimi
, sample head([Πi1, . . . ,Πini

], i, V,NH), NH = 1.

. . .

MC(Ci, ni) = hini
:− bi1, . . . , bimi

, sample head([Πi1, . . . ,Πini
], i, V,NH), NH = ni.

whereV is a list containing each variable appearing inCi. If the parameters do not sum up to 1 the
last clause (the one fornull) is omitted. Basically, we create a clause for each head and we sample a
head index at the end of the body withsample head/4. If this index coincides with the head index, the
derivation succeeds, otherwise it fails. Thus failure can occur either because one of the body literals fails
or because the current clause is not part of the sample.

For example, clauseC1 of Example 2.1 becomes

MC(C1, 1) = epidemic :− flu(X), cold, sample head([0.6, 0.3, 0.1], 1, [X], NH), NH = 1.

MC(C1, 2) = pandemic :− flu(X), cold, sample head([0.6, 0.3, 0.1], 1, [X], NH), NH = 2.

The predicatesample head/4 samples an index from the head of a clause and uses the built-in Yap
predicatesrecorded/3 andrecorda/3 for respectively retrieving or adding an entry to the internal
database. Sincesample head/4 is at the end of the body and since we assume the programs to be range

8 F. Riguzzi / An MC Algorithm for PLP

restricted, at that point all the variables of the clause have been grounded. If the rule instantiation had
already been sampled,sample head/4 retrieves the head index withrecorded/3, otherwise it samples
a head index withsample/2:

sample_head(_ParList,R,VC,NH):-

recorded(samples,(R,VC,NH),_),!.

sample_head(ParList,R,VC,NH):-

sample(ParList,NH),

recorda(samples,(R,VC,NH),_).

sample(ParList, HeadId) :-

random(Prob),

sample(ParList, 0, 0, Prob, HeadId).

sample([HeadProb|Tail], Index, Prev, Prob, HeadId) :- Succ is Index + 1,

Next is Prev + HeadProb,

(Prob =< Next ->

HeadId = Index

;

sample(Tail, Succ, Next, Prob, HeadId)

).

Thussample head/4 samples a new head only if one had not been sampled for the ground clause under
consideration. If a head had already been sampled, then the index of the head is retrieved from the Yap
internal database. In this way, at most one head is sampled for each ground clauses and the sample
obtained is consistent. It is not necessary to sample the head of clauses not involved in the derivation as
whatever sample is taken this does not influence the success or failure of the goal.

It is often convenient to anticipate as much as possible the sampling and comparison predicates in
the body so that if a different head was sampled for that clause the derivation stops early. The sampling
and comparison predicates can be called as soon as all the variables in the clause have been instantiated.
In Section 5 we show an application of this technique.

Tabling can be used in the transformed program since it does not interfere with the sampling process:
in fact, even if the result of calls to therandom/1 predicate are non deterministic, the samples are taken
only once for each grounding of each clause.

To take a sample from the program we use the following predicate

sample(Goal):-

abolish_all_tables,

eraseall(samples),

call(Goal).

For example, if the query isepidemic, resolution matches the goal with the head of clauseMC(C1, 1).
Supposeflu(X) succeeds withX/david andcold succeeds as well. Thensample head([0.6, 0.3, 0.1],
1, [david], NH) is called. Since clause 1 withX replaced bydavid has not yet been sampled, a number
between 1 and 3 is sampled according to the distribution in[0.6, 0.3, 0.1] and stored inNH. If NH = 1,
the derivation succeeds and the goal is true in the sample, ifNH = 2 or NH = 3 then the derivation

F. Riguzzi / An MC Algorithm for PLP 9

fails and backtracking is performed. This involves finding the solutionX/robert for flu(X). cold was
sampled as true before so it remains true, nowsample head([0.6, 0.3, 0.1], 1, [robert], NH) is called to
take another sample.

MCINTYRE takes also into account the validity of the binomial proportion confidence interval. The
normal approximation is good for a sample size larger than 30and if p̂ is not too close to 0 or 1, while it
fails totally when the sample proportion is exactly zero or exactly one. Empirically, it has been observed
that the normal approximation works well as long asSample · p̂ > 5 andSample · (1 − p̂) > 5 [39].
Thus MCINTYRE changes the condition in line 15 of Figure 1 to

2z1−α/2

√

p̂ (1− p̂)

Samples
< δ ∧ Samples · p̂ > 5 ∧ Samples · (1− p̂) > 5

The differences between MCINTYRE and ProbLog thus regard both the algorithms and the implemen-
tations. As regards the algorithms, to deal with LPADs (i.e., clauses with more than two heads), the
clauses are translated into ProbLog by introducingn−1 Boolean variables if the clause hasn heads (see
Example 2.2). Then ProbLog samples these Boolean variablesand has to sample a different number of
variables depending on the clause, while MCINTYRE always samples a single integer variable between
1 andn. As regards the implementation, ProbLog uses an array for ground probabilistic facts instead of
the Yap internal database and a larger number of predicate calls to sample a value.

5. Experiments

We considered three sets of benchmarks: graphs of biological concepts from [11], artificial datasets from
[20]6 and a hidden Markov model from [6]. On these dataset, we mainly compare MCINTYRE with the
Monte Carlo algorithm of ProbLog [19] but for reference we also report the results of the Monte Carlo
algorithm ofcplint [5] and the exact system PITA which has been shown to be particularly fast [35].
For dataset whose ProbLog version contains ground probabilistic facts we also compare MCINTYRE
with a manually crafted version of ProbLog that we call ProbLogNG and that treats all facts as non
ground, to highlight the differences in the two implementations.

All the experiments have been performed on Linux machines with an Intel Core 2 Duo E6550 (2333
MHz) processor and 4 GB of RAM. The algorithms were run on the data for24 hours or until the program
ended for lack of memory.δ = 0.01 was chosen as the maximum confidence interval width for Monte
Carlo algorithms. The normal approximation testsSamples · p̂ > 5 andSamples · (1 − p̂) > 5 were
disabled in MCINTYRE because they are not present in ProbLog. For each experiment we used tabling
when it gave better results.

In the graphs of biological concepts, the nodes encode biological entities such as genes, proteins,
tissues, organisms, biological processes and molecular functions, and the edges conceptual and proba-
bilistic relations among them. Edges are thus represented by ground probabilistic facts. The programs
have been sampled from the Biomine network [42] containing 1,000,000 nodes and 6,000,000 edges.
The sampled programs contain 200, 400,. . ., 10000 edges. Sampling was repeated ten times, to obtain
ten series of programs of increasing size. In each program wequery the probability that the two genes
HGNC 620 and HGNC983 are related.

For MCINTYRE and ProbLog we used the following definition of path

6Available athttp://dtai.cs.kuleuven.be/cplve/ilp09/

http://dtai.cs.kuleuven.be/cplve/ilp09/

10 F. Riguzzi / An MC Algorithm for PLP

2000 4000 6000 8000 10000

10
0

10
2

10
4

Size

T
im

e
 (

s)

MCINTYRE
ProbLog
cplint
PITA

(a) Average execution times.

2000 4000 6000 8000 10000
10

0

10
1

10
2

10
3

10
4

Size

T
im

e
 (

s)

MCINTYRE
ProbLogNG

(b) Average execution times for MCINTYRE and
ProbLogNG only.

Figure 2. Biological graph experiments.

path(X,X).

path(X,Y) : -X\==Y, path(X,Z),arc(Z,Y).

arc(X,Y) :- edge(Y,X).

arc(X,Y) :- edge(X,Y).

For MCINTYRE, we tabledpath/2 using Yap tabling with the directive:- table path/2, while for
ProbLog we tabled the path predicate by means of ProbLog tabling with the commandproblog_table
(path/2). For PITA we used the program

path(X,Y) :- path(X,Y,[X],Z).

path(X,X,A,A).

path(X,Y,A,R) :- X\==Y, arc(X,Z), \+ member(Z,A), path(Z,Y,[Z|A],R).

arc(X,Y) :- edge(Y,X).

arc(X,Y) :- edge(X,Y).

that performs loop checking by keeping a list of visited nodes rather than by using tabling because this
approach gave the best results. We used the same program alsofor cplint because it does not allow to
use tabling for loop checking.

Figure 2(a) shows the execution times of the four algorithmsas a function of graph size averaged
over the graphs on which the algorithms succeeded. Table 1 shows the average execution times of
MCINTYRE and ProbLog/ProbLogNG in tabular form, together with the ratio between MCINTYRE
time and ProbLog/ProbLogNG time.

MCINTYRE and ProbLog are able to solve all graphs, while PITAandcplint stop much earlier.
MCINTYRE and ProbLog are much faster thancplint and than PITA from size 1400 onwards. MCIN-
TYRE is faster than ProbLog but its gain reduces with the sizeof the graphs: MCINTYRE time goes
from 68% to 86% of the ProbLog time.

Figure 2(b) and Table 1 show the comparison between MCINTYREand ProbLogNG. As can be seen,
the difference between MCINTYRE and ProbLog is much greater, showing that the MCINTYRE imple-
mentation is much leaner and that it could also benefit from the use of an array for ground probabilistic
facts. Also here the gain factor reduces with the size of the graphs.

The growing head dataset from [20] contains propositional programs in which the head of clauses
are of increasing size. For example, the program for size 3 is

F. Riguzzi / An MC Algorithm for PLP 11

Size MCINTYRE ProbLog M/P ProbLogNG M/PNG

1000 12.72 18.61 0.6835 108.36 0.1174

2000 49.05 70.53 0.6955 423.54 0.1158

3000 103.47 145.74 0.7100 889.41 0.1163

4000 149.02 208.81 0.7137 1293.01 0.1153

5000 211.76 280.69 0.7544 1760.60 0.1203

6000 261.70 332.96 0.7860 2116.15 0.1237

7000 313.94 389.94 0.8051 2469.80 0.1271

8000 360.09 434.99 0.8278 2801.63 0.1285

9000 392.26 459.40 0.8539 2996.42 0.1309

10000 393.26 458.23 0.8582 2875.38 0.1368

Table 1. Average execution times for MCINTYRE, ProbLog and ProbLogNG on the biological graphs. Columns
M/P and M/PNG report the ratio of the MCINTYRE time over the ProbLog and ProbLogNG time respectively.

20 40 60 80 100
10

−4

10
−2

10
0

10
2

10
4

10
6

N

T
im

e
 (

s)

MCINTYRE
ProbLog
cplint
PITA

Figure 3. Execution times for the growing head dataset, sampling last.

a0 :- a1.

a1:0.5.

a0:0.5; a1:0.5 :- a2.

a2:0.5.

The equivalent ProbLog program is

a0 :- a1. 0.5::a1f.

a1 : -a1f. 0.5::a0_2.

a0 :- a2,a0_2.

a1 :- a2,problog_not(a0_2). 0.5::a2f.

a2 :- a2f.

In this dataset no predicate is tabled for both MCINTYRE and ProbLog. Figure 3 shows the time for
computing the probability ofa0 as a function of the size. MCINTYRE is faster than ProbLog andPITA
but all of them are much slower and less scalable thancplint. The reason whycplint performs
so well is that the meta-interpreter checks for the consistency of the sample when choosing a clause

12 F. Riguzzi / An MC Algorithm for PLP

20 40 60 80 100
10

−3

10
−2

10
−1

10
0

10
1

10
2

N

T
im

e
 (

s)

MCINTYRE
ProbLog
cplint
PITA

(a) Execution times.

20 40 60 80 100
10

−3

10
−2

10
−1

10
0

10
1

N

T
im

e
 (

s)

MCINTYRE
ProbLogNG

(b) Execution times for MCINTYRE and ProbLogNG only.

Figure 4. Growing head dataset, sampling first.

Size MCINTYRE ProbLog M/P ProbLogNG M/PNG

10 0.008 0.041 0.1951 0.115 0.0696

20 0.009 0.055 0.1636 0.201 0.0448

30 0.013 0.071 0.1831 0.311 0.0418

40 0.016 0.085 0.1882 0.385 0.0416

50 0.018 0.110 0.1636 0.550 0.0327

60 0.025 0.145 0.1724 0.754 0.0332

70 0.027 0.175 0.1543 0.938 0.0288

80 0.026 0.216 0.1204 1.174 0.0221

90 0.034 0.186 0.1828 1.040 0.0327

100 0.046 0.255 0.1804 1.403 0.0328

Table 2. Execution times for MCINTYRE, ProbLog and ProbLogNG on the growing head dataset with sampling
first. Columns M/P and M/PNG report the ratio of the MCINTYRE time over the ProbLog and ProbLogNG time
respectively.

to resolve with the goal, rather than after having resolved all the body literals as in MCINTYRE and
ProbLog. However, since the clauses are ground, the sampling predicates of MCINTYRE can be put at
the beginning of the body, simulatingcplint behavior. Similarly, the probabilistic atoms can be put at
the beginning of the body of ProbLog clauses. With this approach, we get the timings depicted in Figure
4(a). Table 2 and Figure 4(b) compare MCINTYRE with ProbLog and ProbLogNG. Now MCINTYRE
and ProbLog are faster thancplint. MCINTYRE is also faster than ProbLog and ProbLogNG by a
constant factor, taking 17.04% of ProbLog and 3.80% of ProbLogNG time on average.

The blood type dataset from [20] determines the blood type ofa person on the basis of her chromo-
somes that in turn depend on those of her parents. The blood type is given by clauses of the form

bloodtype(P,a):0.90;bloodtype(P,b):0.03;bloodtype(P,ab):0.03;bloodtype(P,null):0.04 :-

pchrom(P,a),mchrom(P,a).

whereP stands for a person andpchrom/2 indicates the chromosome inherited from the father and

F. Riguzzi / An MC Algorithm for PLP 13

0 20 40 60 80 100
10

−4

10
−2

10
0

10
2

10
4

N

T
im

e
 (

s)

MCINTYRE
ProbLog
cplint
PITA

(a) Execution times.

0 20 40 60 80 100
10

−4

10
−2

10
0

10
2

10
4

N

T
im

e
 (

s)

MCINTYRE
ProbLogNG

(b) Execution times for MCINTYRE and ProbLogNG only.

Figure 5. Blood type dataset .

mchrom/2 that inherited from the mother. There is one such clause for every combination of the values
{a, b, null} for the father and mother chromosomes. In turn, the chromosomes of a person depend
from those of her parents, with clauses of the form

mchrom(P,a):0.90 ; mchrom(P,b):0.05 ; mchrom(P,null):0.05 :-

mother(Mother,P), pchrom(Mother,a), mchrom(Mother,a).

There is one such clause for every combination of the values{a, b, null} for the father and mother
chromosomes of the mother and similarly for the father chromosome of a person. In this dataset we query
the blood type of a person on the basis of that of its ancestors. We consider families with an increasing
number of components: each program adds two persons to the previous one. The chromosomes of the
parent-less ancestors are given by disjunctive facts of theform

mchrom(p,a):0.3 ; mchrom(p,b):0.3 ; mchrom(p,null):0.4.

pchrom(p,a):0.3 ; pchrom(p,b):0.3 ; pchrom(p,null):0.4.

For both MCINTYRE and ProbLog all the predicates are tabled.
Figures 5(a) and 5(b) shows the execution times as a functionof the family size. Here MCINTYRE is

faster than ProbLog and ProbLogNG but slower than the exact inference of PITA. This is probably due to
the fact that, in this dataset, the bodies of clauses with thesame atoms in the head are mutually exclusive
and the goals in the bodies are independent, making BDD operations particularly fast. Table 3 shows
the execution times of MCINTYRE, ProbLog and ProbLogNG together with time ratios: MCINTYRE
is faster than ProbLog/ProbLogNG by a nearly constant factor.

In the growing body dataset [20] the clauses have bodies of increasing size. For example, the program
for size 4 is,

a0:0.5 :- a1.

a0:0.5 :- \+ a1, a2.

a0:0.5 :- \+ a1, \+ a2, a3.

a1:0.5 :- a2.

a1:0.5 :- \+ a2, a3.

a2:0.5 :- a3.

a3:0.5.

14 F. Riguzzi / An MC Algorithm for PLP

Size MCINTYRE ProbLog M/P ProbLogNG M/PNG

10 13.2520 55.7350 0.2378 72.7920 0.1821

20 26.2930 104.2250 0.2523 140.9390 0.1866

30 38.9870 152.1470 0.2562 209.9120 0.1857

40 52.0210 203.2610 0.2559 279.5900 0.1861

50 65.9060 245.9480 0.2680 349.4330 0.1886

60 77.3020 293.8190 0.2631 418.8950 0.1845

70 90.1520 339.3580 0.2657 484.8050 0.1860

80 102.2910 406.9530 0.2514 572.9660 0.1785

90 118.1940 447.7490 0.2640 647.6960 0.1825

100 128.9810 480.3920 0.2685 700.9790 0.1840

Table 3. Execution times for MCINTYRE, ProbLog and ProbLogNG on the blood type dataset. Columns M/P
and M/PNG report the ratio of the MCINTYRE time over the ProbLog and ProbLogNG time respectively.

20 40 60 80 100
10

−4

10
−2

10
0

10
2

10
4

10
6

N

T
im

e
 (

s)

MCINTYRE
ProbLog
cplint
PITA

Figure 6. Execution times for the growing body dataset.

In this dataset as well no predicate is tabled for both MCINTYRE and ProbLog and the sampling predi-
cates of MCINTYRE and the probabilistic atoms of ProbLog have been put at the beginning of the body
since the clauses are ground.

Figure 6 shows the execution time for computing the probability of a0. Here PITA is faster and more
scalable than Monte Carlo algorithms, again probably due tothe fact that the bodies of clauses with the
same heads are mutually exclusive thus simplifying BDD operations. Figure 7(a) shows the execution
time of the Monte Carlo algorithms only, where it appears that MCINTYRE is faster than ProbLog and
cplint. Figure 7(b) compares MCINTYRE and ProbLogNG. Looking a thetimes of MCINTYRE,
ProbLog and ProbLogNG in Table 4, we can observe that again MCINTYRE is faster by a roughly
constant factor.

The UWCSE dataset [20] describes a university domain with predicates such astaught_by/2,
advised_by/2, course_level/2, phase/2, position/2, course/1, professor/1, student/1
and others. The definitions of these predicates take 36 clauses7 Programs of increasing size are consid-

7Available athttp://dtai.cs.kuleuven.be/cplve/ilp09/

http://dtai.cs.kuleuven.be/cplve/ilp09/

F. Riguzzi / An MC Algorithm for PLP 15

2 4 6 8 10 12 14
10

−2

10
0

10
2

10
4

10
6

N

T
im

e
 (

s)

MCINTYRE
ProbLog
cplint

(a) Execution times for Monte Carlo algorithms only.

2 4 6 8 10 12 14
10

−2

10
0

10
2

10
4

10
6

N

T
im

e
 (

s)

MCINTYRE
ProbLogNG

(b) Execution times for MCINTYRE and ProbLogNG only.

Figure 7. Growing body dataset.

0 10 20 30 40
10

−4

10
−2

10
0

10
2

10
4

N

T
im

e
 (

s)

MCINTYRE
ProbLog
cplint
PITA

(a) Execution times.

0 5 10 15
0

1

2

3

4

5

6

7
x 10

−3

N

A
b

s
E

rr
o

r

MCINTYRE
ProbLog

(b) Absolute error.

Figure 8. UWCSE dataset.

ered by adding facts for thestudent/1 predicate, i.e., by considering an increasing number of students.
All the predicates are tabled for both MCINTYRE and ProbLog.

The time for computing the probability of the querytaught_by(c1,p1) as a function of the number
of students is shown in Figure 8(a) and Table 58. This is a difficult dataset in which exact inference fails
for more than 16 students due to a lack of memory error. An ideaof the complexity can be obtained by
counting the average number of clauses sampled during a single sample call: for 0 students, it is 2.734,
then it grows linearly up to 47.342 for 40 students. Here again MCINTYRE is faster than ProbLog by a
roughly constant factor and both scale much better than PITA.

Figure 8(b) shows the absolute error of the probability computed by MCINTYRE and ProbLog as a
function of the number of students, i.e., the quantityAE(Q) = |Pmc(Q) − Pe(Q)|, wherePmc(Q) is
the probability of the query computed by the Monte Carlo algorithm andPe(Q) is the probability of the

8ProbLogNG is not shown as there are no ground probabilistic facts in the ProbLog version of this dataset, so there is no
difference with plain ProbLog.

16 F. Riguzzi / An MC Algorithm for PLP

Size MCINTYRE ProbLog M/P ProbLogNG M/PNG

1 0.051 5.201 0.0099 1.514 0.0337

2 0.055 0.870 0.0632 1.391 0.0395

3 0.181 0.949 0.1907 2.205 0.0821

4 0.354 1.165 0.3039 3.428 0.1033

5 0.615 1.691 0.3637 5.581 0.1102

6 1.231 3.016 0.4082 10.082 0.1221

7 3.086 7.722 0.3996 23.321 0.1323

8 10.938 28.683 0.3813 81.929 0.1335

9 47.986 137 0.3503 335.73 0.1429

10 264 721 0.3658 1772 0.1488

11 1518 4542 0.3343 10418 0.1457

12 9950 26617 0.3738 64725 0.1537

13 67609 - - - -

Table 4. Execution times for MCINTYRE, ProbLog and ProbLogNG on the growing body dataset. Columns
M/P and M/PNG report the ratio of the MCINTYRE time over the ProbLog and ProbLogNG time respectively.

query computed by an exact method, in this case PITA. The figure shows that the error is always below
the 0.01 value of the thresholdδ, thus demonstrating that convergence to the correct value was always
achieved.

The last experiment involves the Hidden Markov model for DNAsequences from [6]: bases are
output symbols and three states are assumed, of which one is the end state. The following program
generates base sequences.

hmm(O):-hmm1(_,O).

hmm1(S,O):-hmm(q1,[],S,O).

hmm(end,S,S,[]).

hmm(Q,S0,S,[L|O]):- Q\= end, next_state(Q,Q1,S0), letter(Q,L,S0), hmm(Q1,[Q|S0],S,O).

next_state(q1,q1,_S):1/3; next_state(q1,q2,_S):1/3; next_state(q1,end,_S):1/3.

next_state(q2,q1,_S):1/3; next_state(q2,q2,_S):1/3; next_state(q2,end,_S):1/3.

letter(q1,a,_S):0.25; letter(q1,c,_S):0.25; letter(q1,g,_S):0.25; letter(q1,t,_S):0.25.

letter(q2,a,_S):0.25; letter(q2,c,_S):0.25; letter(q2,g,_S):0.25; letter(q2,t,_S):0.25.

Basically, a sequence is generated starting from stateq1 with the callhmm(q1,[],S,O). hmm/4 then
stops returning the empty symbol list if the state isend, otherwise it samples a new state and a new letter
(output symbol) and calls itself recursively.

The algorithms are used to compute the probability ofhmm(O) for random sequencesO of increasing
length. Tabling was not used for MCINTYRE nor for ProbLog.

Figure 9 and Table 69 show the time taken by the various algorithms as a function ofthe sequence
length. Since the probability of such a sequence goes rapidly to zero, all Monte Carlo algorithms stop
after the first batch of samples and thus take constant time with MCINTYRE faster that ProbLog and
cplint.

9ProbLogNG is not shown as there no ground probabilistic facts in the ProbLog version of this dataset.

F. Riguzzi / An MC Algorithm for PLP 17

Size MCINTYRE ProbLog M/P

5 0.494 2.922 0.1690

10 0.862 4.106 0.2099

15 1.137 5.657 0.2010

20 1.375 6.815 0.2018

25 1.643 8.590 0.1913

30 2.043 9.868 0.2070

35 2.315 11.859 0.1952

40 2.588 12.633 0.2049

Table 5. Execution times for MCINTYRE and ProbLog on the UWCSE dataset. Column M/P reports the ratio
of the MCINTYRE time over the ProbLog time.

20 40 60 80 100
10

−3

10
−2

10
−1

10
0

10
1

10
2

N

T
im

e
 (

s)

MCINTYRE
ProbLog
cplint
PITA

Figure 9. Execution times on the Hidden Markov Model dataset.

6. Conclusions

Probabilistic Logic Programming is of high interest for itsmany application fields. The distribution
semantics is one of the most popular approaches to PLP and underlies many languages, such as LPADs
and ProbLog. However, exact inference is very expensive, being #P complete, and thus approximate
approaches have to be investigated. In this paper we proposethe system MCINTYRE that performs
approximate inference by means of a Monte Carlo technique, namely random sampling. MCINTYRE
transforms an input LPAD into a normal program that containsa clause for each head of an LPAD clause.
The resulting clauses contain auxiliary predicates in the body that perform sampling and check for the
consistency of the sample.

MCINTYRE has been tested on graphs of biological concepts, on four artificial datasets from [20]
and on a hidden Markov model. In all cases it turned out to be faster than the Monte Carlo algorithms
of cplint and ProbLog. The comparison with the latter shows that an ad hoc system can have better
performances than a system that encompasses various types of exact and approximate inference.

MCINTYRE is also faster and more scalable than exact inference except in two datasets, blood type
and growing body, that however possess peculiar characteristics. This shows that approximate inference

18 F. Riguzzi / An MC Algorithm for PLP

Size MCINTYRE ProbLog M/P

10 0.008 0.083 0.0964

20 0.008 0.080 0.1000

30 0.007 0.086 0.0814

40 0.007 0.080 0.0875

50 0.008 0.082 0.0976

60 0.008 0.088 0.0910

70 0.007 0.107 0.0654

80 0.008 0.087 0.0920

90 0.008 0.081 0.0988

100 0.007 0.109 0.0642

Table 6. Execution times for MCINTYRE and ProbLog on the HMM dataset. Column M/P reports the ratio of
the MCINTYRE time over the ProbLog time.

can be more convenient when the accuracy in the probability of the query is not of foremost importance.
MCINTYRE is available in thecplint package of the source tree of Yap and instructions on its use

are available athttp://sites.unife.it/ml/cplint.
In the future we plan to investigate other approximate inference techniques such as lifted belief

propagation and variational methods.

References

[1] Bellodi, E., Riguzzi, F.: EM over Binary Decision Diagrams for Probabilistic Logic Programs,Italian
Conference on Computational Logic, vol. 810 ofCEUR Workshop Proceedings, Sun SITE Central Europe,
2011, ISSN 1613-0073.

[2] Bellodi, E., Riguzzi, F.: Experimentation of an Expectation Maximization Algorithm for Probabilistic Logic
Programs,Intelligenza Artificiale, 8(1), 2012, 3–18, doi:10.3233/IA-2012-0027.

[3] Bellodi, E., Riguzzi, F.: Learning the Structure of Probabilistic Logic Programs,International Conference
on Inductive Logic Programming, vol. 7207 ofLNCS, Springer, 2012, doi:10.1007/978-3-642-31951-810.

[4] Bellodi, E., Riguzzi, F.: Expectation Maximization over Binary Decision Diagrams for Probabilistic Logic
Programs,Intelligent Data Analysis, 17(2), 2013.

[5] Bragaglia, S., Riguzzi, F.: Approximate Inference for Logic Programs with Annotated Disjunctions,
International Conference on Inductive Logic Programming, vol. 6489 of LNCS, Springer, 2011,
doi:10.1007/978-3-642-21295-67.

[6] Christiansen, H., Gallagher, J. P.: Non-discriminating Arguments and Their Uses,International Conference
on Logic Programming, vol. 5649 ofLNCS, Springer, 2009, doi:10.1007/978-3-642-02846-510.

[7] Costa, V. S., Damas, L., Rocha, R.: The YAP Prolog System,Theory and Practice of Logic Programming,
12(1-2), 2012, 5–34, doi:10.1017/S1471068411000512.

[8] Dantsin, E.: Probabilistic Logic Programs and their Semantics,Russian Conference on Logic Programming,
vol. 592 ofLNCS, Springer, 1991, doi:10.1007/3-540-55460-211.

http://sites.unife.it/ml/cplint
http://dx.doi.org/10.3233/IA-2012-0027
http://dx.doi.org/10.1007/978-3-642-31951-8_10
http://dx.doi.org/10.1007/978-3-642-21295-6_7
http://dx.doi.org/10.1007/978-3-642-02846-5_10
http://dx.doi.org/10.1017/S1471068411000512
http://dx.doi.org/10.1007/3-540-55460-2_11

F. Riguzzi / An MC Algorithm for PLP 19

[9] De Raedt, L., Demoen, B., Fierens, D., Gutmann, B., Janssens, G., Kimmig, A., Landwehr, N., Mantadelis,
T., Meert, W., Rocha, R., Santos Costa, V., Thon, I., Vennekens, J.: Towards Digesting the Alphabet-Soup
of Statistical Relational Learning,Workshop on Probabilistic Programming: Universal Languages, Systems
and Applications, in NIPS(D. Roy, J. Winn, D. McAllester, V. Mansinghka, J. Tenenbaum, Eds.), 2008.

[10] De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S., Eds.:Probabilistic Inductive Logic Programming -
Theory and Applications, vol. 4911 ofLNCS, Springer, 2008.

[11] De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A Probabilistic Prolog and Its Application in Link
Discovery.,International Joint Conference on Artificial Intelligence, AAAI Press, 2007.

[12] Fierens, D., Van den Broeck, G., Thon, I., Gutmann, B., De Raedt, L.: Inference in probabilistic logic
programs using weighted CNF’s,Conference on Uncertainty in Artificial Intelligence, AUAI Press, 2011.

[13] Fuhr, N.: Probabilistic datalog: Implementing logical information retrieval for advanced applications,Jour-
nal of the American Society for Information Science, 51(2), 2000, 95–110.

[14] Gavanelli, M., Riguzzi, F., Milano, M., Cagnoli, P.: Logic-Based Decision Support for Strategic Environ-
mental Assessment,Theory and Practice of Logic Programming, International Conference on Logic Pro-
gramming Special Issue, 10(4-6), July 2010, 643–658, doi:10.1017/S1471068410000335.

[15] Getoor, L., Taskar, B., Eds.:Introduction to Statistical Relational Learning, MIT Press, 2007.

[16] Gutmann, B., Kimmig, A., Kersting, K., Raedt, L. D.: Parameter Learning in Probabilistic Databases: A
Least Squares Approach,European Conference on Machine Learning, vol. 5211 ofLNCS, Springer, 2008,
doi:10.1007/978-3-540-87479-949.

[17] Gutmann, B., Thon, I., Kimmig, A., Bruynooghe, M., De Raedt, L.: The magic of logical inference
in probabilistic programming, Theory and Practice of Logic Programming, 11(4-5), 2011, 663–680,
doi:10.1017/S1471068411000238.

[18] Gutmann, B., Thon, I., Raedt, L. D.: Learning the Parameters of Probabilistic Logic Programs from Interpre-
tations, European Conference on Machine Learning and Knowledge Discovery in Databases, vol. 6911 of
LNCS, Springer, 2011, doi:10.1007/978-3-642-23780-547.

[19] Kimmig, A., Demoen, B., De Raedt, L., Costa, V. S., Rocha, R.: On the implementation of the probabilistic
logic programming language ProbLog,Theory and Practice of Logic Programming, 11(2-3), 2011, 235–262,
doi:10.1017/S1471068410000566.

[20] Meert, W., Struyf, J., Blockeel, H.: CP-Logic Theory Inference with Contextual Variable Elimination and
Comparison to BDD Based Inference Methods,International Conference on Inductive Logic Programming,
vol. 5989 ofLNCS, Springer, 2010, doi:10.1007/978-3-642-13840-910.

[21] Poole, D.: Logic Programming, Abduction and Probability - A Top-Down Anytime Algorithm for
Estimating Prior and Posterior Probabilities,New Generation Computing, 11(3-4), 1993, 377–400,
doi:10.1007/BF03037184.

[22] Poole, D.: The Independent Choice Logic for Modelling Multiple Agents under Uncertainty,Artificial
Intelligence, 94(1-2), 1997, 7–56, doi:10.1016/S0004-3702(97)00027-1.

[23] Raedt, L. D., Kersting, K., Kimmig, A., Revoredo, K., Toivonen, H.: Compressing probabilistic Prolog
programs,Machine Learning, 70(2-3), 2008, 151–168, doi:10.1007/s10994-007-5030-x.

[24] Riguzzi, F.: Learning Logic Programs with Annotated Disjunctions,International Conference on Inductive
Logic Programming, vol. 3194 ofLNCS, Springer, September 2004, doi:10.1007/978-3-540-30109-7 21.

[25] Riguzzi, F.: ALLPAD: Approximate Learning of Logic Programs with Annotated Disjunctions, In-
ternational Conference on Inductive Logic Programming, vol. 4455 of LNCS, Springer, 2007,
doi:10.1007/978-3-540-73847-311.

http://dx.doi.org/10.1017/S1471068410000335
http://dx.doi.org/10.1007/978-3-540-87479-9_49
http://dx.doi.org/10.1017/S1471068411000238
http://dx.doi.org/10.1007/978-3-642-23780-5_47
http://dx.doi.org/10.1017/S1471068410000566
http://dx.doi.org/{10.1007/978-3-642-13840-9_10}
http://dx.doi.org/10.1007/BF03037184
http://dx.doi.org/10.1016/S0004-3702(97)00027-1
http://dx.doi.org/10.1007/s10994-007-5030-x
http://dx.doi.org/10.1007/978-3-540-30109-7_21
http://dx.doi.org/10.1007/978-3-540-73847-3_11

20 F. Riguzzi / An MC Algorithm for PLP

[26] Riguzzi, F.: A Top Down Interpreter for LPAD and CP-logic, Congress of the Italian Association for Artificial
Intelligence, vol. 4733 ofLNCS, Springer, 2007, doi:10.1007/978-3-540-74782-611.

[27] Riguzzi, F.: ALLPAD: Approximate Learning of Logic Programs with Annotated Disjunctions,Machine
Learning, 70(2-3), March 2008, 207–223, doi:10.1007/s10994-007-5032-8.

[28] Riguzzi, F.: Inference with Logic Programs with Annotated Disjunctions under the Well Founded Se-
mantics, International Conference on Logic Programming, vol. 5366 of LNCS, Springer, 2008,
doi:10.1007/978-3-540-89982-254.

[29] Riguzzi, F.: Extended Semantics and Inference for the Independent Choice Logic,Logic Journal of the IGPL,
17(6), 2009, 589–629, doi:10.1093/jigpal/jzp025.

[30] Riguzzi, F.: SLGAD Resolution for Inference on Logic Programs with Annotated Disjunctions,Fundamenta
Informaticae, 102(3-4), October 2010, 429–466, doi:10.3233/FI-2010-392.

[31] Riguzzi, F.: Optimizing Inference for Probabilistic Logic Programs Exploiting Independence and Exclusive-
ness, Italian Conference on Computational Logic, vol. 857 ofCEUR Workshop Proceedings, Sun SITE
Central Europe, 2012, ISSN 1613-0073.

[32] Riguzzi, F., Bellodi, E., Lamma, E.: Probabilistic Datalog+/- under the Distribution Semantics,International
Workshop on Description Logics, vol. 846 ofCEUR Workshop Proceedings, Sun SITE Central Europe, 2012,
ISSN 1613-0073.

[33] Riguzzi, F., Di Mauro, N.: Applying the Information Bottleneck to Statistical Relational Learning,Machine
Learning, 86(1), 2012, 89–114, doi:10.1007/s10994-011-5247-6.

[34] Riguzzi, F., Swift, T.: An Extended Semantics for LogicPrograms with Annotated Disjunctions and its Effi-
cient Implementation,Italian Conference on Computational Logic, vol. 598 ofCEUR Workshop Proceedings,
Sun SITE Central Europe, Aachen, Germany, 2010, ISSN 1613-0073.

[35] Riguzzi, F., Swift, T.: Tabling and Answer Subsumptionfor Reasoning on Logic Programs with Annotated
Disjunctions,International Conference on Logic Programming, vol. 7 ofLIPIcs, Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, July 2010, doi:10.4230/LIPIcs.ICLP.2010.162.

[36] Riguzzi, F., Swift, T.: The PITA System: Tabling and Answer Subsumption for Reasoning under Uncertainty,
Theory and Practice of Logic Programming, International Conference on Logic Programming Special Issue,
11(4–5), 2011, 433–449, doi:10.1017/S147106841100010X.

[37] Riguzzi, F., Swift, T.: The PITA System for Logical-Probabilistic Inference,Latest Advances in Inductive
Logic Programming, Inductive Logic Programming, 21th International Conference, Imperial College Press,
2012.

[38] Riguzzi, F., Swift, T.: Well-Definedness and Efficient Inference for Probabilistic Logic Programming un-
der the Distribution Semantics,Theory and Practice of Logic Programming, Convegno Italiano di Logica
Computazionale Special Issue, 2013, doi:10.1017/S1471068411000664.

[39] Ryan, T. P.:Modern Engineering Statistics, John Wiley & Sons, 2007.

[40] Sato, T.: A Statistical Learning Method for Logic Programs with Distribution Semantics,International
Conference on Logic Programming, MIT Press, 1995.

[41] Sato, T., Kameya, Y.: Parameter Learning of Logic Programs for Symbolic-Statistical Modeling,Journal of
Artificial Intelligence Research, 15, 2001, 391–454.

[42] Sevon, P., Eronen, L., Hintsanen, P., Kulovesi, K., Toivonen, H.: Link Discovery in Graphs Derived from
Biological Databases,International Workshop on Data Integration in the Life Sciences, vol. 4075 ofLNCS,
Springer, 2006, doi:10.1007/117995115.

http://dx.doi.org/10.1007/978-3-540-74782-6_11
http://dx.doi.org/10.1007/s10994-007-5032-8
http://dx.doi.org/10.1007/978-3-540-89982-2_54
http://dx.doi.org/10.1093/jigpal/jzp025
http://dx.doi.org/10.3233/FI-2010-392
http://dx.doi.org/10.1007/s10994-011-5247-6
http://dx.doi.org/10.4230/LIPIcs.ICLP.2010.162
http://dx.doi.org/10.1017/S147106841100010X
http://dx.doi.org/10.1017/S1471068411000664
http://dx.doi.org/10.1007/11799511_5

F. Riguzzi / An MC Algorithm for PLP 21

[43] Valiant, L. G.: The Complexity of Enumeration and Reliability Problems,SIAM Journal on Computing, 8(3),
1979, 410–421, doi:10.1137/0208032.

[44] Vennekens, J., Denecker, M., Bruynooghe, M.: CP-logic: A language of causal probabilistic events and
its relation to logic programming,Theory and Practice of Logic Programming, 9(3), 2009, 245–308,
doi:10.1017/S1471068409003767.

[45] Vennekens, J., Verbaeten, S.:Logic Programs With Annotated Disjunctions, Technical Report CW386,
Department of Computer Science, Katholieke Universiteit Leuven, Belgium, 2003.

[46] Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic Programs With Annotated Disjunctions,International
Conference on Logic Programming, vol. 3131 ofLNCS, Springer, 2004, doi:10.1007/978-3-540-27775-030.

http://dx.doi.org/10.1137/0208032
http://dx.doi.org/10.1017/S1471068409003767
http://dx.doi.org/10.1007/978-3-540-27775-0_30

	Introduction
	Probabilistic Logic Programming
	Logic Programs with Annotated Disjunctions
	ProbLog

	Inference Algorithms
	MCINTYRE
	Experiments
	Conclusions

