Fundamenta Informaticae XXI (2001)[1321 1
10S Press

MCINTYRE: A Monte Carlo System for Probabilistic Logic
Programming

Fabrizio Riguzzi
Dipartimento di Matematica e Informatica, Univedsidi Ferrara, Via Saragat, 1, 44122 Ferrara, Italy

fabrizio.riguzzi@unife.it

Abstract. Probabilistic Logic Programming is receiving an incregsaitention for its ability to
model domains with complex and uncertain relations amonigiesa In this paper we concentrate
on the problem of approximate inference in probabilistigidoprogramming languages based on
the distribution semantics. A successful approximate @ggr is based on Monte Carlo sampling,
that consists in verifying the truth of the query in a normagram sampled from the probabilistic
program. The ProbLog system includes such an algorithm ardbes thecplint suite. In this
paper we propose an approach for Monte Carlo inferencedtgtsed on a program transformation
that translates a probabilistic program into a normal paogto which the query can be posed. The
current sample is stored in the internal database of the Yalpdengine. The resulting system,
called MCINTYRE for Monte Carlo INference wiTh Yap REcord dvaluated on various problems:
biological networks, artificial datasets and a hidden Mankmdel. MCINTYRE is compared with
the Monte Carlo algorithms of ProbLog asplint and with the exact inference of the PITA system.
The results show that MCINTYRE is faster than the other M@ua€o systems.

Keywords: Probabilistic Logic Programming, Monte Carlo Methods, ladgrograms with Anno-
tated Disjunctions, ProbLog.

1. Introduction

Probabilistic Logic Programming (PLP) is an emerging fidldtthas recently seen many proposals for
the integration of probability in logic programming. Suahiategration allows logic to deal also with
uncertain propositions and probability theory to consdesmplex relational descriptions of domain
entities.

PLP is of interest for many application domains, such asolgiohl networks[[11], environmental
assessment [14] or ontology engineeringl [32]. The most @iom domain is Probabilistic Inductive

Address for correspondence: Dipartimento di Matematigaf@inatica, Universita di Ferrara, Via Saragat, 1, 44128&a,
Italy, fabrizio.riguzzi@unife.it, Tel/Fax +39053297483

2 F. Riguzzi/ An MC Algorithm for PLP

Logic Programming[[10] in which PLP languages are used toesgmt the theories that are induced
from data. This allows a rich representation of the domalirag bften leads to increased modeling
accuracy. This trend can be cast in a more general tendemdgichine Learning to combine aspects of
uncertainty with aspects of logic, as is testified by the tmment of the field of Statistical Relational
Learning [15].

Many languages have been proposed in PLP. Among them, margzgleommon approach for defin-
ing the semantics, namely the so called distribution seic&{®#tC]. This approach sees a probabilistic
logic program as a description of a probability distribatimver normal logic programs, from which the
probability of queries is computed. Example of languagdisviong the distribution semantics are (in
chronological order) Probabilistic Logic Programs [8]pPabilistic Horn Abduction[[21], Independent
Choice Logic[[22], PRISM[40], pD_[13], Logic Programs witmAotated Disjunctions (LPADSs) [46],
ProbLog[11] and CP-logic¢ [44]. These languages have asflgrihe same expressive power [45, 9] and
in this paper we consider only LPADs and ProbLog becausedtamd at the extremes of syntax com-
plexity, LPADs having the most complex syntax and ProbLagdimplest, and because most existing
inference systems can be directly applied to them.

The problem of inference, i.e., the problem of computingghabability of a query from a proba-
bilistic logic program, is very expensive, being #P compldi9]. Nevertheless, various exact inference
algorithms have been proposed, such as the ones in the sthérﬁl\@ [41], ProbLogE [11], CplintE
[26],[29, 28] 30] and PITE\[BS, 36, 37/ 38, 31] and have been successfully applied taiatyaf non-
trivial problems. All of these algorithms find explanatioiws queries and then all except PRISM use
Binary Decision Diagrams (BDDs) for computing the probiapil This approach has been shown to be
faster than previous algorithms. Recently, weighted modehting using deterministic, decomposable
negation normal forms has been applied with success teeiméerin PLP[[12].

Reducing the time to answer a probabilistic query is imparteecause in many applications, such
as in Machine Learning, a high number of queries must be asf24:(25) 27| 23, 16, 18, 33! 13,[1,/2, 4].
To improve the speed, approximate inference algorithme lme@en proposed. Some compute a lower
bound of the probability, as the-best algorithm of ProbLod [19] which considers only thenost
probable explanations for the query, while some computeppemand a lower bound, as the bounded
approximation algorithm of ProbLo@ [19] that builds an SkBd only to a certain depth. A completely
different approach for approximate inference is based oipfiag the normal programs encoded by the
probabilistic program and checking whether the query ie truthem. This approach, called Monte
Carlo, was first proposed in [19] for ProbLog, where a lazy garg approach was used in order to
avoid sampling unnecessary probabilistic facts. Bragaiid Riguzzil[5] present algorithms fetbest,
bounded approximation and Monte Carlo inference for LPA2d are all based on a meta-interpreter.
In particular, the Monte Carlo approach uses the argumértke aneta-interpreter predicate to store the
samples taken and to ensure consistency of the sample.

In this paper we present the system MCINTYRE for Monte CaXlfetence wiTh Yap REcord that
computes the probability of queries by means of a progranstoamation technique. The disjunctive
clauses of an LPAD are first transformed into normal clauseshich auxiliary atoms are added to the

bhttp://sato-www.cs.titech.ac.jp/prism/
“http://dtai.cs.kuleuven.be/problog/
*http://sites.unife.it/ml/cplint
“https://sites.unife.it/ml/pita

http://sato-www.cs.titech.ac.jp/prism/
http://dtai.cs.kuleuven.be/problog/
http://sites.unife.it/ml/cplint
https://sites.unife.it/ml/pita

F. Riguzzi/ An MC Algorithm for PLP 3

body for taking samples and storing the results. The intetatabase of the Yap Prolog enﬂﬁ] is
used to record all samples taken thus ensuring that sammesonsistent. The truth of a query in a
sampled program can be then tested by asking the query tesbiing normal program.

MCINTYRE is compared with the Monte Carlo algorithms of Ftoy andcplint and with the
exact inference algorithm of PITA on various problems: tjital networks, artificial datasets and a
hidden Markov model. The results show that the performant@4CINTYRE overcome those of the
other Monte Carlo algorithms.

The paper is organized as follows. In Secfibn 2 we review yhéax and the semantics of PLP. Sec-
tion[3 illustrates previous approaches for inference in RiNguages. Sectidn 4 presents the MCINTYRE
system. Sectiop]5 describes the experiments and Séctiomcéides the paper.

2. Probabilistic Logic Programming

One of the most interesting approaches to the integratidoges¢ programming and probability is the
distribution semantics [40], which was introduced for tHI®M language but is shared by many other
languages.

A program in one of these languages defines a probabilityilalisibn over normal logic programs
calledworlds This distribution is then extended to queries and the gmiibaof a query is obtained
by marginalizing the joint distribution of the query and theograms. We present the semantics for
programs without function symbols but the semantics har Heéned also for programs with function
symbols [40] 34, 38].

The languages following the distribution semantics diffethe way they define the distribution
over logic programs. Each language allows probabilistimicds among atoms in clauses: Probabilistic
Logic Programs, Probabilistic Horn Abduction, Indepertdéhoice Logic, PRISM and ProbLog allow
probability distributions over facts, while LPADs allowgtrability distributions over the heads of dis-
junctive clauses. All these languages have the same ekmrgssver: there are transformations with
linear complexity that can convert each one into the oth€bs[9]. We will discuss here LPADs and
ProbLog because LPADs have the most liberal syntax and gtiie most restrictive, thus they can be
considered as the two ends of a spectrum.

2.1. Logic Programswith Annotated Digunctions

Formally aLogic Program with Annotated Disjunctioffid6] 1" consists of a finite set of annotated dis-
junctive clauses. An annotated disjunctive clag$és of the form

hiv = a5 oo iy = i, o= by o ooy bi -

In such a clause;, ... hi,, are logical atoms and;, ..., b;,, are logical literalsIl;;,...,II;,, are

real numbers in the interval, 1] such thaty " | TI;; < 1. bi1,..., by, is called thebody and is
indicated withbody(C;). If it is empty, the:— symbol is omitted. Note that it; = 1 andIl;; = 1, the
clause corresponds to a non-disjunctive claus@_}f | IT;;, < 1, the head of the annotated disjunctive
clause implicitly contains an extra atamu/! that does not appear in the body of any clause and whose
annotation isl —)" | II,;,. We denote byround(T') the grounding of an LPADY".

*http://www.dcc.fc.up.pt/~vsc/Yap/

http://www.dcc.fc.up.pt/~vsc/Yap/

4 F. Riguzzi/ An MC Algorithm for PLP

An atomic choices a triple (C;, 0;, k) whereC; € T, §; is a substitution that grounds; andk &
{1,...,n;}. In practiceC;0; corresponds to a random variati{g; and an atomic choicg’;, 6, k) to an
assignmentX;; = k. A set of atomic choices is consistenif Vi, j, k, 5,1 (C;,0;,k) € k,(C;,0;,1) €
k = k = [. A composite choice is a consistent set of atomic choices. Tgrebability P(x) of a
composite choice is P(x) = [](¢, 9, k)ex k- A Selectiono is a composite choice that contains an
atomic choice(C;, 0;, k) for each claus&’;6; in ground(T). A selectiono identifies a normal logic
programuw, defined asv, = {(h; :— body(C;))0;|(C;,0;,k) € o}. w, is called aworld of T'. Since
selections are composite choices, we can assign a prdpabifossible worldsP(w,) = P(o).

The programs we consider do not have function symbols sodhefsworlds is finite: Wy =
{wi,...,wy,}. Since the probabilities of the individual choices sum td’{w) is a distribution over
worlds: >y, P(w) = 1. We also assume that each worichas a two-valued well founded model
WFM(w). If aqueryQ is true inW FM (w) we writew = Q.

We can define the conditional probability of a quéhgiven a world: P(Q|w) = 1 if w = @ and 0
otherwise. The probability of the query can then be obtalmetharginalizing over the worlds:

P(Q)=> PQu)=> PQuw)P(w) = > P(w)
w w wEQ

Example 2.1. The following LPADT encodes a very simple model of the development of an epidemic
or a pandemic:

Cy = epidemic: 0.6 ; pandemic: 0.3 :— flu(X), cold.

Cy = cold:0.7.

Cs = flu(david).

Cy = flu(robert).
This program models the fact that, if somebody has the flulamdltimate is cold, there is the possibility
that an epidemic arises, a pandemic arises or neither ofanthe We are uncertain about whether the
climate is cold but we know for sure that David and Robert rHbeeflu. Clause”; has two groundings,
both with three atoms in the head, while cladsehas a single grounding with two atoms in the head, so
overall there ar@ x 3 x 2 = 18 worlds. The quergpidemic is true in 5 of them and its probability is

P(epidemic) = 0.6-0.6-0.74+0.6-0.3-0.74+06-0.1-0.7+0.3-0.6-0.740.1-0.6-0.7

= 0.588

2.2. ProbLog

A ProbLog progranis composed by a set of normal clauses and a set of prob&hfiéists, possibly non-
ground. A probabilistic fact takes the forkh:: f. wherell is in [0,1] andf is an atom. The semantics
of such program can be given by considering an equivalentD_8#ntaining, for each ProbLog normal
clauseh :— B, aclausé: : 1 :— B and, for each probabilistic ProbLog fact, a claysell. The semantics
of the ProbLog program is the same as that of the equivaleADLP

It is also possible to translate an LPAD into a ProbLog progf@]. A clauseC; of the LPAD with
variablesX h;1 : 15 . .5 hip, : Wiy, :— B is translated into

F. Riguzzi/ An MC Algorithm for PLP 5

hi1 =— By, fi(X).
hig =— B;, problog_not(fi(X)), fiz(X).

hin,—1 :— By, problog_not(fi1(X)), ..., problog not(fin,—2(X)), fin,—1(X).
hzm B Bi7pT0blog—n0t(le())7 prOblog—nOt(fmi—l())
T41 <2 le(y)

Tin—1 - fznz—l(_)
whereproblog_not/1 is a ProbLog built-in predicate that implements negatianpimbabilistic atoms

S v: S _ My
=)=y N generalr;; = NTRE——E Recent versions of

ProbLog allow clauses with annotated d|SJunct|ve headsels[iv/] and treat them by translating into
basic ProbLog as illustrated above.

II;o
andr;; = I, mi2 = Tomyyr T3 =

Example 2.2. The ProbLog program equivalent to the LPAD of Exaniplé 2.1 is
C11 = epidemic :— flu(X),cold, f1(X).

C12 = pandemic:— flu(X), cold, problog_not(f1(X)), f2(X).
Cis = 0.6: f1(X).

Cia = 0.75: fo(X).

Cyr = cold:— fs.

Coo = 0.7: f5.

C3 = flu(david).

Cy = flu(robert).

In this program, clausé€’; is translated into two clauseS;; andC}», one for each head @f,. The first,
C11, has a positive probabilistic literal for which the prograontains the probabilistic faét6 :: f1(X),
the latter instead;’; 5, contains a negative probabilistic literal and a positiae,dor which the program
contains the probabilistic fact.75 :: fo(X). Thus, the heagandemic is derived from claus&’;,
when f1(X) is false andfy(X) is true. This happens with probability4 - 0.75 = 0.3, the probability
associated tpandemic in C1.

3. Inference Algorithms

One of the first systems for computing the probability of argdeom a probabilistic logic program was
PRISM [41] that uses tabling to find derivations for the queBRISM, however, requires goals in a
disjunction to be mutually exclusive and goals in a conjioncto be independent, strong requirements
that are not easy to satisfy.

De Raedt et al.[[11] proposed the ProbLog system that oversdhese limitations by first finding
a set of explanations for the query and then computing thbaghibty from the set by using Binary
Decision Diagrams. An explanation is a set of probabilifditts used in a derivation of the query. The
set of explanations can be seen as a Boolean DNF formula chwine Boolean propositions are random
variables. Computing the probability of the formula invedvsolving the disjoint sum problem which is

6 F. Riguzzi/ An MC Algorithm for PLP

#P-complete[[43]. BDDs represent an approach for solvimggioblem that has been shown to work
well in practice [11] 29, 35].

Kimmig et al. [19] proposed various approaches for appratarinference that are now included
in the ProbLog system. Thiebest algorithm finds only thé most probable explanations for a query
and then builds a BDD from them. The resulting probabilityordy a lower bound but represents a
good approximation if; is sufficiently high. The bounded approximation algorithomputes a lower
bound and an upper bound of the probability of the query bpgugierative deepening to explore the
SLD tree for the query. The SLD tree is built partially, thesessful derivations it contains are used
to build a BDD for computing the lower bound while the sucéasderivations plus the incomplete
ones are used to compute the upper bound. If the differeneeeba the upper and the lower bound is
above the required precision, the SLD tree is built up to atgredepth. This process is repeated until the
required precision is achieved. These algorithms are im@teed by means of a program transformation
technique applied to the probabilistic atoms: these areetiimto clauses that add the probabilistic fact
to the current explanation.

Bragaglia and Riguzzi [5] presented an implementatiork-best and bounded approximation for
LPADs that is based on a meta-interpreter and showed thaiie €ases this gives good results. They
also presented a Monte Carlo algorithm for LPADs that is thasea meta-interpreter. In order to keep
track of the samples taken, two arguments of the meta-irgmppredicate are used, one for keeping the
input set of choices and one for the output set of choicess dlgiorithm is included in theplint suite
available in the source tree of Yap.

ProbLog [19] also contains a Monte Carlo algorithm that das\the possible programs and tests
the query in the samples. The probability of the query is thigan by the fraction of programs where
the query is true. Figure 1 shows the overall algorithm: adfirember of samples is taken and the
fraction p of samples in which the query succeeds is computed. In ocdeompute the confidence
interval ofp, the central limit theorem is used to approximate the bimbmiistribution with a normal

distribution. Then the binomial proportion confidence imgis calculated ag [39]+ 21 /91 / Lt)

Samples

where Samples is the number of samples; _,, /; is thel — /2 percentile of a standard normal dis-
tribution (usuallya = 0.05 s0 2;_,/» = 1.96). If the width of the interval is below a user defined
thresholds, the algorithm stops and returns the fraction of successiiples, otherwise another batch
of n samples is taken. In FigutéslaMPLE(Q) is used to take a sample of the program and to test the
guery in the sample. The algorithm converges becausé&dheples variables is always increasing and

thus the conditior2z;_, /> 21D 5in |ine[I§ of Figuré 1l will eventually become true.

Samples

Sampling in ProbLog is realized by asking the query overmrsftamed program in which the prob-
abilistic facts are replaced by rules. Moreover, ProbLagswen array with an element for each ground
probabilistic fact that stores one of three values: samiplezl sampled false or not yet sampled. When
a literal matching a probabilistic fact is called, ProbLagtfichecks whether the fact has already been
sampled by looking at the array. If it has not been sampleah thsamples it and stores the result in the
array. Probabilistic facts that are non-ground in the pogare treated differently: samples for ground-
ings of these facts are stored in the internal database chiYdphe sampled value is retrieved when they
are called. If no sample has been taken for a grounding, alsasiaken and recorded in the database.
No position in the array is reserved for them since their gding is not known at the start.

F. Riguzzi/ An MC Algorithm for PLP 7

1. function MONTECARLO(T', Q, n, 6)

2: Input: Progranil’, query@, number of batch samples precisiond
3 Output: P(Q)
4 TransformT
5: Samples + 0
6: TrueSamples < 0

7 repeat

8 fori=1—ndo

9 Samples < Samples 4+ 1

10: if SAMPLE(Q)) succeedshen

11: TrueSamples < TrueSamples + 1
12: end if

13: end for

14]5 (_ TrueSamples

Samples

15: until 2z;_, /5 %ﬁgs <9
16: return p

17: end function

Figure 1. Monte Carlo algorithm.

4. MCINTYRE

MCINTYRE follows the algorithm in Figurel1 and differs fromrdbLog in the transformation (lirig 4 in
Figure[1), in the sampling process (lind 10) and in the exiddon in the loop (liné_15).

MCINTYRE applies taange restrictecprograms, i.e., programs in which all the variables appeari
in the head of a clause also appear in positive literals irbtitdy. MCINTYRE applies the following
transformation: the disjunctive clausg = h;; : II;; V ... V hip @ I, == bin, ..., bim,. Where the
parameters sum to 1, is transformed into the set of clals€$C;):

MC(C;,1) = hj1 — b, ..., bim,, sample_head([I1;1, ..., ;y,],0, V,NH), NH = 1.

MC(Ci,ni) = hin, =— bir, ..., bim,, sample_head([IL;1, . .., ;y,],4,V,NH), NH = n,.
whereV is a list containing each variable appearing(in If the parameters do not sum up to 1 the
last clause (the one fowull) is omitted. Basically, we create a clause for each head andample a
head index at the end of the body withmple_head/4. If this index coincides with the head index, the
derivation succeeds, otherwise it fails. Thus failure caruo either because one of the body literals fails
or because the current clause is not part of the sample.

For example, claus€; of Exampld 2.1L becomes

MC(C1,1) = epidemic :— flu(X), cold, sample_head(]0.6,0.3,0.1],1,[X], NH), NH = 1.

MC(C1,2) = pandemic:— flu(X), cold, sample_head([0.6,0.3,0.1],1,[X],NH), NH = 2.
The predicatesample head/4 samples an index from the head of a clause and uses therbiig
predicatesrecorded/3 andrecorda/3 for respectively retrieving or adding an entry to the ingrn
database. Sinceample head/4 is at the end of the body and since we assume the programs ande r

8 F. Riguzzi/ An MC Algorithm for PLP

restricted, at that point all the variables of the clausesHasen grounded. If the rule instantiation had
already been sampleglample head/4 retrieves the head index witecorded/3, otherwise it samples
a head index witlsample/2:

sample_head (_ParList,R,VC,NH):-
recorded (samples, (R,VC,NH),_),!.

sample_head(ParList,R,VC,NH) :-
sample (ParList,NH),
recorda(samples, (R,VC,NH),_).

sample (ParList, HeadId) :-
random(Prob),
sample(ParList, 0, O, Prob, HeadId).
sample ([HeadProb|Tail], Index, Prev, Prob, HeadId) :- Succ is Index + 1,
Next is Prev + HeadProb,
(Prob =< Next ->
HeadId = Index
sample(Tail, Succ, Next, Prob, HeadId)
).

Thussample head/4 samples a new head only if one had not been sampled for theadycdause under
consideration. If a head had already been sampled, thendes bf the head is retrieved from the Yap
internal database. In this way, at most one head is sampteglafth ground clauses and the sample
obtained is consistent. It is not necessary to sample the: dleclauses not involved in the derivation as
whatever sample is taken this does not influence the succésituoe of the goal.

It is often convenient to anticipate as much as possible dheping and comparison predicates in
the body so that if a different head was sampled for that el#lus derivation stops early. The sampling
and comparison predicates can be called as soon as all ihblearin the clause have been instantiated.
In Sectiorl 5 we show an application of this technique.

Tabling can be used in the transformed program since it doigsterfere with the sampling process:
in fact, even if the result of calls to theandom/1 predicate are non deterministic, the samples are taken
only once for each grounding of each clause.

To take a sample from the program we use the following préelica

sample(Goal) : -
abolish_all_tables,
eraseall (samples),
call(Goal).

For example, if the query igpidemic, resolution matches the goal with the head of claug€(C, 1).
Supposeflu(X) succeeds witlk'/david andcold succeeds as well. Thesample_head([0.6,0.3,0.1],

1, [david], N H) is called. Since clause 1 withi replaced bylavid has not yet been sampled, a number
between 1 and 3 is sampled according to the distributidf.é0.3,0.1] and stored inVH. If NH = 1,

the derivation succeeds and the goal is true in the sampMHf= 2 or NH = 3 then the derivation

F. Riguzzi/ An MC Algorithm for PLP 9

fails and backtracking is performed. This involves findihg solutionX /robert for flu(X). cold was
sampled as true before so it remains true, sawple_head([0.6,0.3,0.1], 1, [robert], N H) is called to
take another sample.

MCINTYRE takes also into account the validity of the binohpeoportion confidence interval. The
normal approximation is good for a sample size larger thaarDif is not too close to 0 or 1, while it
fails totally when the sample proportion is exactly zeroxaaly one. Empirically, it has been observed
that the normal approximation works well as long&snple - p > 5 and Sample - (1 — p) > 5 [39].
Thus MCINTYRE changes the condition in linel 15 of Figlle 1 to

p(l—p)

< O AN Samples - p > 5N Samples - (1 —p) > 5
Samples

221_q)2
The differences between MCINTYRE and ProbLog thus regatd thee algorithms and the implemen-
tations. As regards the algorithms, to deal with LPADs (ictlauses with more than two heads), the
clauses are translated into ProbLog by introducirng1 Boolean variables if the clause hafieads (see
Exampl€_ 2.2). Then ProbLog samples these Boolean variabléas to sample a different number of
variables depending on the clause, while MCINTYRE alwaysmas a single integer variable between
1 andn. As regards the implementation, ProbLog uses an array tamgl probabilistic facts instead of
the Yap internal database and a larger number of predicli$st@zample a value.

5. Experiments

We considered three sets of benchmarks: graphs of biolarpoaepts from[[11], artificial datasets from
[ZOﬁ and a hidden Markov model frorl[6]. On these dataset, we maminpare MCINTYRE with the
Monte Carlo algorithm of ProbLog [19] but for reference weaateport the results of the Monte Carlo
algorithm ofcplint [5] and the exact system PITA which has been shown to be phatig fast [35].
For dataset whose ProbLog version contains ground prasiibilacts we also compare MCINTYRE
with a manually crafted version of ProbLog that we call PropNG and that treats all facts as non
ground, to highlight the differences in the two implemeiotad.

All the experiments have been performed on Linux machinéis & Intel Core 2 Duo E6550 (2333
MHz) processor and 4 GB of RAM. The algorithms were run on #ita dbor24 hours or until the program
ended for lack of memory = 0.01 was chosen as the maximum confidence interval width for Monte
Carlo algorithms. The normal approximation teStanples - p > 5 andSamples - (1 — p) > 5 were
disabled in MCINTYRE because they are not present in ProbEog each experiment we used tabling
when it gave better results.

In the graphs of biological concepts, the nodes encode digab entities such as genes, proteins,
tissues, organisms, biological processes and molecuatifuns, and the edges conceptual and proba-
bilistic relations among them. Edges are thus representegtdund probabilistic facts. The programs
have been sampled from the Biomine netwarkl [42] containif@pQ,000 nodes and 6,000,000 edges.
The sampled programs contain 200, 400, 10000 edges. Sampling was repeated ten times, to obtain
ten series of programs of increasing size. In each programusgy the probability that the two genes

HGNC_ 620 and HGNC983 are related.
For MCINTYRE and ProbLog we used the following definition aitp

SAvailable athttp://dtai.cs.kuleuven.be/cplve/ilp09/

http://dtai.cs.kuleuven.be/cplve/ilp09/

10 F. Riguzzi/ An MC Algorithm for PLP

10*
%102
(4]
=
= g
1o°g— —~+MCINTYRE| 1
-6-ProbLog
-o-cplint —~MCINTYRE
‘ ‘ ‘ —E—P[TA J ‘ ‘ ‘ -©-ProbLogNG
2000 4000 _ 6000 8000 10000 © 2000 4000 _ 6000 8000 10000
Size Size
(a) Average execution times. (b) Average execution times for MCINTYRE and
ProbLogNG only.
Figure 2. Biological graph experiments.
path(X,X).

path(X,Y) : -X\==Y, path(X,Z),arc(Z,Y).
arc(X,Y) :- edge(Y,X).
arc(X,Y) :- edge(X,Y).

For MCINTYRE, we tablechath/2 using Yap tabling with the directive- table path/2, while for
ProbLog we tabled the path predicate by means of ProbLomtahiith the commangroblog_table
(path/2). For PITA we used the program

path(X,Y) :- path(X,Y,[X],Z).

path(X,X,A,A).

path(X,Y,A,R) :- X\==Y, arc(X,Z), \+ member(Z,A), path(Z,Y,[Z|A],R).
arc(X,Y) :- edge(Y,X).

arc(X,Y) :- edge(X,Y).

that performs loop checking by keeping a list of visited rod&her than by using tabling because this
approach gave the best results. We used the same prograforated int because it does not allow to
use tabling for loop checking.

Figure[2(a) shows the execution times of the four algorittams function of graph size averaged
over the graphs on which the algorithms succeeded. Tdbleodssthe average execution times of
MCINTYRE and ProbLog/ProbLogNG in tabular form, togethethathe ratio between MCINTYRE
time and ProbLog/ProbLogNG time.

MCINTYRE and ProbLog are able to solve all graphs, while PA#d cplint stop much earlier.
MCINTYRE and ProbLog are much faster thepilint and than PITA from size 1400 onwards. MCIN-
TYRE is faster than ProbLog but its gain reduces with the sizthe graphs: MCINTYRE time goes
from 68% to 86% of the ProbLog time.

Figurg 2(b) and Tablg 1 show the comparison between MCINT¥REProbLogNG. As can be seen,
the difference between MCINTYRE and ProbLog is much greatewing that the MCINTYRE imple-
mentation is much leaner and that it could also benefit froerutte of an array for ground probabilistic

facts. Also here the gain factor reduces with the size of thplts.
The growing head dataset from [20] contains propositiomagmams in which the head of clauses
are of increasing size. For example, the program for size 3 is

F. Riguzzi/ An MC Algorithm for PLP 11

Size MCINTYRE ProbLog M/P ProbLogNG M/PNG
1000 12.72 18.61 0.6835 108.36 0.1174
2000 49.05 70.53 0.6955 423.54 0.1158
3000 103.47 145.74 0.7100 889.41 0.1163
4000 149.02 208.81 0.7137 1293.01 0.1153
5000 211.76 280.69 0.7544 1760.60 0.1203
6000 261.70 332.96 0.7860 2116.15 0.1237
7000 313.94 389.94 0.8051 2469.80 0.1271
8000 360.09 434.99 0.8278 2801.63 0.1285
9000 392.26 459.40 0.8539 2996.42 0.1309

10000 393.26 458.23 0.8582 2875.38 0.1368

Table 1. Average execution times for MCINTYRE, ProbLog anol®.ogNG on the biological graphs. Columns
M/P and M/PNG report the ratio of the MCINTYRE time over th@Blrog and ProbLogNG time respectively.

10°

—+MCINTYRE
10 -©-ProbLog ||
-o-cplint
107 = PITA
20 40 60 80 100

Figure 3. Execution times for the growing head dataset, agiast.

a0 :- al.

al:0.5.

a0:0.5; a1:0.5 :- a2.
a2:0.5.

The equivalent ProbLog program is

a0 :- al. 0.5::alf.
al : -alf. 0.5::a0_2.
a0 :- a2,a0_2.

al :- a2,problog_not(a0_2). 0.5::a2f.
a2 :- a2f.

In this dataset no predicate is tabled for both MCINTYRE anobBog. Figurd B shows the time for
computing the probability of0 as a function of the size. MCINTYRE is faster than ProbLog BRTA

but all of them are much slower and less scalable #ghnint. The reason whyplint performs
so well is that the meta-interpreter checks for the consistef the sample when choosing a clause

12 F. Riguzzi/ An MC Algorithm for PLP

10° 10"
10"
_10°
L
2 o]
£ 10
o M —-MCINTYR
10 -©-ProbLog
—o-cplint —#MCINTYRE
1073 S PITA 10°2 —o-ProbLogNG
20 40 N 60 80 100 20 40 N 60 80 100
(a) Execution times. (b) Execution times for MCINTYRE and ProbLogNG only.

Figure 4. Growing head dataset, sampling first.

Size MCINTYRE ProbLog M/P ProbLogNG M/PNG
10 0.008 0.041 0.1951 0.115 0.0696
20 0.009 0.055 0.1636 0.201 0.0448
30 0.013 0.071 0.1831 0.311 0.0418
40 0.016 0.085 0.1882 0.385 0.0416
50 0.018 0.110 0.1636 0.550 0.0327
60 0.025 0.145 0.1724 0.754 0.0332
70 0.027 0.175 0.1543 0.938 0.0288
80 0.026 0.216 0.1204 1.174 0.0221
90 0.034 0.186 0.1828 1.040 0.0327

100 0.046 0.255 0.1804 1.403 0.0328

Table 2. Execution times for MCINTYRE, ProbLog and ProbL@g§bh the growing head dataset with sampling
first. Columns M/P and M/PNG report the ratio of the MCINTYRE¢ over the ProbLog and ProbLogNG time
respectively.

to resolve with the goal, rather than after having resolMétha body literals as in MCINTYRE and
ProbLog. However, since the clauses are ground, the sagnmiadicates of MCINTYRE can be put at
the beginning of the body, simulatingplint behavior. Similarly, the probabilistic atoms can be put at
the beginning of the body of ProbLog clauses. With this appinp we get the timings depicted in Figure
[d(a). Tablé R and Figufe 4(b) compare MCINTYRE with ProbLad &robLogNG. Now MCINTYRE
and ProbLog are faster thaplint. MCINTYRE is also faster than ProbLog and ProbLogNG by a

constant factor, taking 17.04% of ProbLog and 3.80% of PogiNG time on average.
The blood type dataset frorn [20] determines the blood type érson on the basis of her chromo-
somes that in turn depend on those of her parents. The blpedgygiven by clauses of the form

bloodtype(P,a):0.90;bloodtype(P,b):0.03;bloodtype(P,ab):0.03;bloodtype(P,null):0.04 :-
pchrom(P,a) ,mchrom(P,a) .

whereP stands for a person angthrom/2 indicates the chromosome inherited from the father and

F. Riguzzi/ An MC Algorithm for PLP 13

2| —+MCINTYRE| 2]
i -©-ProbLog
-o-cplint —#MCINTYRE
107 ‘ ‘ . | =PITA 107 ‘ ‘ . | -© ProbLogNG
0 20 40 N 60 80 100 0 20 40 N 60 80 100
(a) Execution times. (b) Execution times for MCINTYRE and ProbLogNG only.

Figure 5. Blood type dataset .

mchrom/2 that inherited from the mother. There is one such clausevieryecombination of the values
{a, b, null} for the father and mother chromosomes. In turn, the chromeswf a person depend
from those of her parents, with clauses of the form

mchrom(P,a):0.90 ; mchrom(P,b):0.05 ; mchrom(P,null):0.05 :-
mother (Mother,P), pchrom(Mother,a), mchrom(Mother,a).

There is one such clause for every combination of the vajaesb, null} for the father and mother
chromosomes of the mother and similarly for the father clummme of a person. In this dataset we query
the blood type of a person on the basis of that of its ancestidesconsider families with an increasing
number of components: each program adds two persons todkimps one. The chromosomes of the
parent-less ancestors are given by disjunctive facts dbtime

mchrom(p,a):0.3 ; mchrom(p,b):0.3 ; mchrom(p,null):0.4.
pchrom(p,a):0.3 ; pchrom(p,b):0.3 ; pchrom(p,null):0.4.

For both MCINTYRE and ProbLog all the predicates are tabled.

Figureg 5(d) and 5(b) shows the execution times as a funatitre family size. Here MCINTYRE is
faster than ProbLog and ProbLogNG but slower than the eréarignce of PITA. This is probably due to
the fact that, in this dataset, the bodies of clauses witlsdnge atoms in the head are mutually exclusive
and the goals in the bodies are independent, making BDD tipesaparticularly fast. Tablel 3 shows
the execution times of MCINTYRE, ProbLog and ProbLogNG tbge with time ratios: MCINTYRE

is faster than ProbLog/ProbLogNG by a nearly constant facto
In the growing body dataset [20] the clauses have bodiesof@sing size. For example, the program
for size 4 is,

a0:0.5 :- al.

a0:0.5 :- \+ al, a2.
a0:0.5 :- \+ a1, \+ a2, a3.
al:0.5 :- a2.

al:0.5 :- \+ a2, a3.
a2:0.5 :- a3.

a3:0.5.

14 F. Riguzzi/ An MC Algorithm for PLP

Size MCINTYRE ProbLog M/P ProbLogNG M/PNG
10 13.2520 55.7350 0.2378 72.7920 0.1821
20 26.2930 104.2250 0.2523 140.9390 0.1866
30 38.9870 152.1470 0.2562 209.9120 0.185%7
40 52.0210 203.2610 0.2559 279.5900 0.1861
50 65.9060 245.9480 0.2680 349.4330 0.1886
60 77.3020 293.8190 0.2631 418.8950 0.1845
70 90.1520 339.3580 0.2657 484.8050 0.1860
80 102.2910 406.9530 0.2514 572.9660 0.1785
90 118.1940 447.7490 0.2640 647.6960 0.1825

100 128.9810 480.3920 0.2685 700.9790 0.1840

Table 3. Execution times for MCINTYRE, ProbLog and ProbLd&gin the blood type dataset. Columns M/P
and M/PNG report the ratio of the MCINTYRE time over the Prolgland ProbLogNG time respectively.

10
10*
102
)
()
E10°
|_
~ —+#MCINTYRE
10 -©-ProbLog
-o-cplint
10- = PITA
20 40 60 80 100

N

Figure 6. Execution times for the growing body dataset.

In this dataset as well no predicate is tabled for both MCINREYand ProbLog and the sampling predi-
cates of MCINTYRE and the probabilistic atoms of ProbLogenbeen put at the beginning of the body
since the clauses are ground.

Figure[6 shows the execution time for computing the proliglwf a0. Here PITA is faster and more
scalable than Monte Carlo algorithms, again probably dubeddact that the bodies of clauses with the
same heads are mutually exclusive thus simplifying BDD afpens. Figur¢ 7(@) shows the execution
time of the Monte Carlo algorithms only, where it appeard M&INTYRE is faster than ProbLog and
cplint. Figure[7(b) compares MCINTYRE and ProbLogNG. Looking a tinges of MCINTYRE,
ProbLog and ProbLogNG in Tablé 4, we can observe that agaitNWIZRE is faster by a roughly
constant factor.

The UWCSE dataset [20] describes a university domain witdipates such asaught_by/2,
advised_by/2, course_level/2, phase/2, position/2, course/1, professor/1, student/1
and others. The definitions of these predicates take 36&%Er$ograms of increasing size are consid-

"Available athttp://dtai.cs.kuleuven.be/cplve/ilp09/

http://dtai.cs.kuleuven.be/cplve/ilp09/

F. Riguzzi/ An MC Algorithm for PLP 15

10 108
10 10*
@ 2)
GE) 10 p 102
£
[-
10°] 10°
—MCINTYRE
N -e-ProbLog i —+-MCINTYRE
_ —-cplint _ —-ProbLogNG
10 2 ! : 10 2
2 4 6 % 10 12 14 2 4 6 N8 10 12 14

(a) Execution times for Monte Carlo algorithms only. (b) Execution times for MCINTYRE and ProbLogNG only.

Figure 7. Growing body dataset.

10* : : , ,x10 -
-+ MCINTYRHE —+MCINTYR
roERRE
10° —=PITA
5,
c S4f
1 o
n 3t
Q
<
2, 4
K
19 1
0™ ‘ ‘ \ 0 ‘ ‘ ‘
0 10 2’\(1) 30 40 0 5 N 10 15
(a) Execution times. (b) Absolute error.

Figure 8. UWCSE dataset.

ered by adding facts for thetudent/1 predicate, i.e., by considering an increasing number alfesits.
All the predicates are tabled for both MCINTYRE and ProbLog.

The time for computing the probability of the queryught_by (c1,p1) as a function of the number
of students is shown in Figufe 8(a) and TdHie Bhis is a difficult dataset in which exact inference fails
for more than 16 students due to a lack of memory error. An addeéhe complexity can be obtained by
counting the average number of clauses sampled during ke Sample call: for O students, it is 2.734,
then it grows linearly up to 47.342 for 40 students. Here@{&CINTYRE is faster than ProbLog by a
roughly constant factor and both scale much better than PITA

Figure[8(b) shows the absolute error of the probability coteg by MCINTYRE and ProbLog as a
function of the number of students, i.e., the quantitif (Q) = |Pnc(Q) — P.(Q)|, whereP,,.(Q) is
the probability of the query computed by the Monte Carlo athm and P, (Q) is the probability of the

8ProbLogNG is not shown as there are no ground probabilistitsfin the ProbLog version of this dataset, so there is no
difference with plain ProbLog.

16 F. Riguzzi/ An MC Algorithm for PLP

Size MCINTYRE ProbLog M/P ProbLogNG M/PNG
1 0.051 5.201 0.0099 1514 0.0337
2 0.055 0.870 0.0632 1.391 0.0395
3 0.181 0.949 0.1907 2.205 0.0821
4 0.354 1.165 0.3039 3.428 0.10338
5 0.615 1.691 0.3637 5.581 0.1102
6 1.231 3.016 0.4082 10.082 0.1221
7 3.086 7.722 0.3996 23.321 0.1328
8 10.938 28.683 0.3813 81.929 0.1335
9 47.986 137 0.3503 335.73 0.1429

10 264 721 0.3658 1772 0.1484
11 1518 4542 0.3343 10418 0.145Y
12 9950 26617 0.3738 64725 0.153¢
13 67609 - - - -

Table 4. Execution times for MCINTYRE, ProbLog and ProbL&yln the growing body dataset. Columns
M/P and M/PNG report the ratio of the MCINTYRE time over th@Bltog and ProbLogNG time respectively.

guery computed by an exact method, in this case PITA. Thedighows that the error is always below
the 0.01 value of the thresholq thus demonstrating that convergence to the correct vaisealways
achieved.

The last experiment involves the Hidden Markov model for DBEguences fromi_[6]: bases are

output symbols and three states are assumed, of which ohe isnd state. The following program
generates base sequences.

hmm (0) : ~hmm1 (_,0) .

hmm1(S,0) : ~hmm(q1, [],S,0).

hmm(end,S,S, []).

hmm (Q,S0,S, [L10]):- Q\= end, next_state(Q,Q1,S0), letter(Q,L,S0), hmm(Q1i, [Q|S0],S,0).
next_state(ql,ql,_S):1/3; next_state(ql,q2,_S):1/3; next_state(ql,end,_S):1/3.
next_state(q2,ql,_S):1/3; next_state(q2,q92,_S):1/3; next_state(q2,end,_S):1/3.
letter(ql,a,_S):0.25; letter(ql,c,_S):0.25; letter(ql,g,_S):0.25; letter(ql,t,_S):0.25.
letter(g2,a,_S):0.25; letter(q2,c,_S):0.25; letter(q2,g,_S5):0.25; letter(q2,t,_S):0.25.

Basically, a sequence is generated starting from stateith the callhmm(q1, [1,S,0). hmm/4 then
stops returning the empty symbol list if the statexns!, otherwise it samples a new state and a new letter
(output symbol) and calls itself recursively.

The algorithms are used to compute the probabilitymef (0) for random sequencésof increasing
length. Tabling was not used for MCINTYRE nor for ProbLog.

Figure[® and TablEfBshow the time taken by the various algorithms as a functioth@fsequence
length. Since the probability of such a sequence goes sammdtero, all Monte Carlo algorithms stop
after the first batch of samples and thus take constant tirtte MCINTYRE faster that ProbLog and
cplint.

9ProbLogNG is not shown as there no ground probabilisticsfacthe ProbLog version of this dataset.

F. Riguzzi/ An MC Algorithm for PLP 17

Size MCINTYRE ProbLog M/P

5 0.494 2.922 0.1690
10 0.862 4.106 0.2099
15 1.137 5.657 0.2010
20 1.375 6.815 0.2018
25 1.643 8.590 0.1913
30 2.043 9.868 0.2070
35 2.315 11.859 0.1952
40 2.588 12.633 0.2049

Table 5. Execution times for MCINTYRE and ProbLog on the UVEOSataset. Column M/P reports the ratio
of the MCINTYRE time over the ProbLog time.

— MCINTYRE
-©-ProbLog

20 20 60 80 100

Figure 9. Execution times on the Hidden Markov Model dataset

6. Conclusions

Probabilistic Logic Programming is of high interest for iteany application fields. The distribution
semantics is one of the most popular approaches to PLP amdliesdnany languages, such as LPADs
and ProbLog. However, exact inference is very expensiviaghb#P complete, and thus approximate
approaches have to be investigated. In this paper we prdhesgystem MCINTYRE that performs
approximate inference by means of a Monte Carlo technigamety random sampling. MCINTYRE
transforms an input LPAD into a normal program that contaiokuse for each head of an LPAD clause.
The resulting clauses contain auxiliary predicates in thdykthat perform sampling and check for the
consistency of the sample.

MCINTYRE has been tested on graphs of biological conceptdpor artificial datasets from_[20]
and on a hidden Markov model. In all cases it turned out to beefaghan the Monte Carlo algorithms
of cplint and ProbLog. The comparison with the latter shows that anoadsiistem can have better
performances than a system that encompasses various typescband approximate inference.

MCINTYRE is also faster and more scalable than exact infegeaxcept in two datasets, blood type
and growing body, that however possess peculiar charsiitsri This shows that approximate inference

18

F. Riguzzi/ An MC Algorithm for PLP

Size MCINTYRE ProbLog M/P
10 0.008 0.083 0.0964
20 0.008 0.080 0.1000
30 0.007 0.086 0.0814
40 0.007 0.080 0.0875
50 0.008 0.082 0.0976
60 0.008 0.088 0.0910
70 0.007 0.107 0.0654
80 0.008 0.087 0.0920
90 0.008 0.081 0.0988

100 0.007 0.109 0.0642

Table 6. Execution times for MCINTYRE and ProbLog on the HMitaket. Column M/P reports the ratio of
the MCINTYRE time over the ProbLog time.

can be more convenient when the accuracy in the probabflityeoquery is not of foremost importance.

MCINTYRE is available in theeplint package of the source tree of Yap and instructions on its use

are available afittp://sites.unife.it/ml/cplint.

In the future we plan to investigate other approximate griee techniques such as lifted belief

propagation and variational methods.

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

Bellodi, E., Riguzzi, F.: EM over Binary Decision Diagre for Probabilistic Logic Programs]talian
Conference on Computational Logiol. 810 of CEUR Workshop ProceedingSun SITE Central Europe,
2011, ISSN 1613-0073.

Bellodi, E., Riguzzi, F.: Experimentation of an Expdta Maximization Algorithm for Probabilistic Logic
Programs)ntelligenza Artificiale 8(1), 2012, 3—18, d0i:10.3233/1A-2012-0027.

Bellodi, E., Riguzzi, F.: Learning the Structure of Padilistic Logic Programs]nternational Conference
on Inductive Logic Programmingol. 7207 ofLNCS Springer, 2012, di:10.1007/978-3-642-3195163

Bellodi, E., Riguzzi, F.: Expectation Maximization avBinary Decision Diagrams for Probabilistic Logic
Programs)ntelligent Data Analysisl7(2), 2013.

Bragaglia, S., Riguzzi, F.: Approximate Inference foodic Programs with Annotated Disjunctions,
International Conference on Inductive Logic Programmingpl. 6489 of LNCS Springer, 2011,
doi{10.1007/978-3-642-212957%

Christiansen, H., Gallagher, J. P.: Non-discrimingtkrguments and Their Usefpternational Conference
on Logic Programmingvol. 5649 ofLNCS Springer, 2009, d0i:10.1007/978-3-642-0284665

Costa, V. S., Damas, L., Rocha, R.: The YAP Prolog Syst@imeory and Practice of Logic Programming
12(1-2),2012, 5-34, d0i:10.1017/S1471068411000512.

Dantsin, E.: Probabilistic Logic Programs and their S@tics,Russian Conference on Logic Programming
vol. 592 of LNCS Springer, 1991, d0i:10.1007/3-540-55460-.

http://sites.unife.it/ml/cplint
http://dx.doi.org/10.3233/IA-2012-0027
http://dx.doi.org/10.1007/978-3-642-31951-8_10
http://dx.doi.org/10.1007/978-3-642-21295-6_7
http://dx.doi.org/10.1007/978-3-642-02846-5_10
http://dx.doi.org/10.1017/S1471068411000512
http://dx.doi.org/10.1007/3-540-55460-2_11

F. Riguzzi/ An MC Algorithm for PLP 19

[9] De Raedt, L., Demoen, B., Fierens, D., Gutmann, B., JrssG., Kimmig, A., Landwehr, N., Mantadelis,
T., Meert, W., Rocha, R., Santos Costa, V., Thon, I., Vennské.: Towards Digesting the Alphabet-Soup
of Statistical Relational Learning)Morkshop on Probabilistic Programming: Universal LangeagSystems
and Applications, in NIPED. Roy, J. Winn, D. McAllester, V. Mansinghka, J. Tenenbaituds.), 2008.

[10] De Raedt, L., Frasconi, P., Kersting, K., Muggleton,Eis.: Probabilistic Inductive Logic Programming -
Theory and Applicationwol. 4911 ofLNCS Springer, 2008.

[11] De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A Prdilistic Prolog and Its Application in Link
Discovery.,International Joint Conference on Atrtificial Intelligenc&AAl Press, 2007.

[12] Fierens, D., Van den Broeck, G., Thon, I, Gutmann, Be, Raedt, L.: Inference in probabilistic logic
programs using weighted CNF'§onference on Uncertainty in Artificial IntelligencAUAI Press, 2011.

[13] Fuhr, N.: Probabilistic datalog: Implementing lodiagaormation retrieval for advanced applicatior&ur-
nal of the American Society for Information SciefeK2), 2000, 95-110.

[14] Gavanelli, M., Riguzzi, F., Milano, M., Cagnoli, P.: g&-Based Decision Support for Strategic Environ-
mental AssessmenfTheory and Practice of Logic Programming, Internationalri@&rence on Logic Pro-
gramming Special Iss,&0(4-6), July 2010, 643—-658, doi:10.1017/S147106841008033

[15] Getoor, L., Taskar, B., Edsintroduction to Statistical Relational Learnind/IT Press, 2007.

[16] Gutmann, B., Kimmig, A., Kersting, K., Raedt, L. D.: Raneter Learning in Probabilistic Databases: A
Least Squares Approackuropean Conference on Machine Learningl. 5211 ofLNCS Springer, 2008,
doii10.1007/978-3-540-874794%.

[17] Gutmann, B., Thon, I., Kimmig, A., Bruynooghe, M., De &, L.: The magic of logical inference
in probabilistic programming, Theory and Practice of Logic Programmind1(4-5), 2011, 663-680,
doii10.1017/S1471068411000238.

[18] Gutmann, B., Thon, I., Raedt, L. D.: Learning the Partarseof Probabilistic Logic Programs from Interpre-
tations, European Conference on Machine Learning and Knowledgedvesty in Databasesvol. 6911 of
LNCS Springer, 2011, d0i:10.1007/978-3-642-2378875

[19] Kimmig, A., Demoen, B., De Raedt, L., Costa, V. S., RadRa On the implementation of the probabilistic
logic programming language ProbLobheory and Practice of Logic ProgrammintiL(2-3), 2011, 235-262,
doi{10.1017/S1471068410000566.

[20] Meert, W., Struyf, J., Blockeel, H.: CP-Logic Theoryfénence with Contextual Variable Elimination and
Comparison to BDD Based Inference Methotigernational Conference on Inductive Logic Programming
vol. 5989 ofLNCS Springer, 2010, d0i:10.1007/978-3-642-13840€9

[21] Poole, D.: Logic Programming, Abduction and Probapili A Top-Down Anytime Algorithm for
Estimating Prior and Posterior ProbabilitiesNew Generation Computingl1(3-4), 1993, 377-400,
doi{10.1007/BF03037134.

[22] Poole, D.: The Independent Choice Logic for Modellingiliple Agents under UncertaintyArtificial
Intelligence 94(1-2), 1997, 7-56, d6i:10.1016/S0004-3702(97)00027-1.

[23] Raedt, L. D., Kersting, K., Kimmig, A., Revoredo, K., iVonen, H.: Compressing probabilistic Prolog
programsMachine Learning70(2-3), 2008, 151-168, d0i:10.1007/s10994-007-5030-x.

[24] Riguzzi, F.: Learning Logic Programs with AnnotatedsDinctions,International Conference on Inductive
Logic Programmingvol. 3194 ofLNCS Springer, September 2004, doi:10.1007/978-3-540-3719%.

[25] Riguzzi, F.: ALLPAD: Approximate Learning of Logic Pgobams with Annotated Disjunctions,In-
ternational Conference on Inductive Logic Programmingol. 4455 of LNCS Springer, 2007,
doi{10.1007/978-3-540-7384743..

http://dx.doi.org/10.1017/S1471068410000335
http://dx.doi.org/10.1007/978-3-540-87479-9_49
http://dx.doi.org/10.1017/S1471068411000238
http://dx.doi.org/10.1007/978-3-642-23780-5_47
http://dx.doi.org/10.1017/S1471068410000566
http://dx.doi.org/{10.1007/978-3-642-13840-9_10}
http://dx.doi.org/10.1007/BF03037184
http://dx.doi.org/10.1016/S0004-3702(97)00027-1
http://dx.doi.org/10.1007/s10994-007-5030-x
http://dx.doi.org/10.1007/978-3-540-30109-7_21
http://dx.doi.org/10.1007/978-3-540-73847-3_11

20

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

F. Riguzzi/ An MC Algorithm for PLP

Riguzzi, F.: A Top Down Interpreter for LPAD and CP-lagCongress of the Italian Association for Artificial
Intelligence vol. 4733 ofLNCS Springer, 2007, doi:10.1007/978-3-540-7478215

Riguzzi, F.: ALLPAD: Approximate Learning of Logic Pgoams with Annotated Disjunctiondylachine
Learning 70(2-3), March 2008, 207-223, doi:10.1007/s10994-007-50132

Riguzzi, F.: Inference with Logic Programs with Anntad Disjunctions under the Well Founded Se-
mantics, International Conference on Logic Programmijngol. 5366 of LNCS Springer, 2008,
doi{10.1007/978-3-540-899825.

Riguzzi, F.: Extended Semantics and Inference fortiskependent Choice Logitpgic Journal of the IGPL
17(6), 2009, 589-629, doi:10.1093/jigpal/jzp025.

Riguzzi, F.: SLGAD Resolution for Inference on Logicograms with Annotated Disjunctionsundamenta
Informaticae 102(3-4), October 2010, 429-466, doi:10.3233/FI-2010-392.

Riguzzi, F.: Optimizing Inference for Probabilistiotiic Programs Exploiting Independence and Exclusive-
ness, Italian Conference on Computational Logieol. 857 of CEUR Workshop ProceedingsSun SITE
Central Europe, 2012, ISSN 1613-0073.

Riguzzi, F., Bellodi, E., Lamma, E.: Probabilistic B&ig+/- under the Distribution Semantidsternational
Workshop on Description Logigcgol. 846 of CEUR Workshop ProceedingSun SITE Central Europe, 2012,
ISSN 1613-0073.

Riguzzi, F., Di Mauro, N.: Applying the Information Bidg¢neck to Statistical Relational Learninglachine
Learning 86(1), 2012, 89-114, d0i:10.1007/s10994-011-5247-6.

Riguzzi, F., Swift, T.: An Extended Semantics for Loicograms with Annotated Disjunctions and its Effi-
cient Implementationtalian Conference on Computational Logiol. 598 of CEUR Workshop Proceedings
Sun SITE Central Europe, Aachen, Germany, 2010, ISSN 16%3-0

Riguzzi, F., Swift, T.: Tabling and Answer Subsumption Reasoning on Logic Programs with Annotated
Disjunctions,International Conference on Logic Programmijngl. 7 of LIPIcs, Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, July 2010, doi:10.4230/LIPI1€3LIP.2010.162.

Riguzzi, F., Swift, T.: The PITA System: Tabling and Avex Subsumption for Reasoning under Uncertainty,
Theory and Practice of Logic Programming, Internationalf&rence on Logic Programming Special Issue
11(4-5), 2011, 433-449, doi:10.1017/S147106841100010X.

Riguzzi, F., Swift, T.. The PITA System for Logical-Rrabilistic Inference,Latest Advances in Inductive
Logic Programming, Inductive Logic Programming, 21th intional Conferencelmperial College Press,
2012.

Riguzzi, F., Swift, T.: Well-Definedness and Efficiemférence for Probabilistic Logic Programming un-
der the Distribution SemanticsTheory and Practice of Logic Programming, Convegno Itadiat Logica
Computazionale Special Issi#013, dol:10.1017/S1471068411000664.

Ryan, T. P..Modern Engineering Statisticdohn Wiley & Sons, 2007.

Sato, T.: A Statistical Learning Method for Logic Pragrs with Distribution Semantics|nternational
Conference on Logic ProgramminylIT Press, 1995.

Sato, T., Kameya, Y.: Parameter Learning of Logic Paogg for Symbolic-Statistical Modelingournal of
Artificial Intelligence Researcti5, 2001, 391-454.

Sevon, P., Eronen, L., Hintsanen, P., Kulovesi, K. v@oen, H.: Link Discovery in Graphs Derived from
Biological Databasednternational Workshop on Data Integration in the Life Suies vol. 4075 ofLNCS
Springer, 2006, d0i:10.1007/11799581

http://dx.doi.org/10.1007/978-3-540-74782-6_11
http://dx.doi.org/10.1007/s10994-007-5032-8
http://dx.doi.org/10.1007/978-3-540-89982-2_54
http://dx.doi.org/10.1093/jigpal/jzp025
http://dx.doi.org/10.3233/FI-2010-392
http://dx.doi.org/10.1007/s10994-011-5247-6
http://dx.doi.org/10.4230/LIPIcs.ICLP.2010.162
http://dx.doi.org/10.1017/S147106841100010X
http://dx.doi.org/10.1017/S1471068411000664
http://dx.doi.org/10.1007/11799511_5

F. Riguzzi/ An MC Algorithm for PLP 21

[43] Valiant, L. G.: The Complexity of Enumeration and Reliiy Problems,SIAM Journal on Computin@(3),
1979, 410-421, d6i:10.1137/0208032.

[44] Vennekens, J., Denecker, M., Bruynooghe, M.: CP-Iodiclanguage of causal probabilistic events and
its relation to logic programming, Theory and Practice of Logic Programmin§(3), 2009, 245-308,
doii10.1017/S1471068409003767.

[45] Vennekens, J., Verbaeten, S.ogic Programs With Annotated DisjunctignsTechnical Report CW386,
Department of Computer Science, Katholieke Universiteitven, Belgium, 2003.

[46] Vennekens, J., Verbaeten, S., Bruynooghe, M.: LogogRams With Annotated Disjunctionfiternational
Conference on Logic Programmingpl. 3131 ofLNCS Springer, 2004, d0i:10.1007/978-3-540-277736)

http://dx.doi.org/10.1137/0208032
http://dx.doi.org/10.1017/S1471068409003767
http://dx.doi.org/10.1007/978-3-540-27775-0_30

	Introduction
	Probabilistic Logic Programming
	Logic Programs with Annotated Disjunctions
	ProbLog

	Inference Algorithms
	MCINTYRE
	Experiments
	Conclusions

