
Learning in a Three-valued SettingEvelina Lamma, Fabrizio RiguzziDEIS, Universit�a di Bologna,Viale Risorgimento 240136 Bologna, Italy,felamma,friguzzig@deis.unibo.itLu��s Moniz PereiraCentro de Inteligência Arti�cial (CENTRIA),Departamento de Inform�atica,Universidade Nova de Lisboa,2825 Monte da Caparica, Portugallmp@di.fct.unl.ptMay 8, 1998AbstractWe discuss the adoption of a three-valued setting for inductive concept learning.Distinguishing between what is true, what is false and what is unknown is necessaryin situations where decisions have to be taken on the basis of scarce information.We propose a learning algorithm that adopts extended logic programs under a well-founded semantics as the representation formalism and learns a de�nition for boththe target concept and its opposite, considering positive and negative examples asinstances of two disjoint classes.In the target program, default negation is used to ensure consistency and to handleexceptions to general rules. Exceptions to a positive concept are identi�ed from neg-ative examples, whereas exceptions to a negative concept are identi�ed from positiveexamples. Exceptions can be generalized, in their turn, resulting in a hierarchy ofdefaults.1 IntroductionMost work on inductive concept learning considers a two-valued setting. In such a setting,what is not entailed by the learned theory is considered as false, by using the ClosedWorld Assumption (CWA) [12]. However, in practice, it is more often the case that weknow with certainty the truth or falsity of a limited number of facts and we are not ableto draw any conclusion on the remaining facts, because the information available is tooscarce. As it has been pointed out in [4], this is typically the case of an autonomous agentthat incrementally gathers information from its surrounding world. For such an agent, itwould be much better to learn in a three-valued setting and learn a de�nition for both theconcept and its complement, using positive examples for the concept as negative examplesfor its complement and viceversa.In order to represent three-valued theories of this kind, we adopt Extended LogicPrograms (ELP for short) under the well-founded semantics with explicit negation WFSX1

Figure 1: (a,b): two-valued setting, (c): three-valued setting (taken from [4])[9]. We consider an extension of the Inductive Logic Programming (ILP for short) problemwhere the background and target theory are ELP under WFSX. We present an algorithmthat learns a de�nition for both the positive concept p and its (explicit) negation :p,as in [7, 4]. Coverage of examples is tested by adopting the SLX interpreter for ELP,de�ned in [2, 1]. The algorithm is also able to identify exceptions to the concepts andlearn a de�nition for them. In turn, it can identify exceptions to exceptions and so on,thus leading to a hierachy of concepts.The paper is organized as follows. In section 2 we introduce the new ILP framework.Section 3 presents the learning algorithm. We conclude by discussing related works insection 4.2 Learning in a Three-valued SettingIn real world problems, complete information about the world is impossible to achieveand it is necessary to reason and act on the basis of the available partial information. Insituations of incomplete knowledge, it is important to distinguish between what is true,what is false and what is unknown.This is the situation of an agent that incrementally gathers information from thesurrounding world and has to select its own actions on the basis of such knowledge. Ifthe agent learns in a two-valued setting, it can encounter the problems that have beenhighlighted in [4]. When learning in a speci�c to general way, it will learn a cautiousde�nition for the target concept and it will not be able to distinguish what is false fromwhat is not yet known (see �gure 1a). Suppose the target predicate represents the allowedactions, then the agent will not distinguish forbidden actions from actions with an unknownoutcome and this can clearly be a limitation. If the agent learns in a general to speci�cway, instead, it will not know the di�erence between what is true and what is unknown(�gure 1b) and therefore it can try actions with an unknown outcome. Instead, by learningin a three-valued setting, it will be able to distinguish between allowed actions, forbiddenactions and actions with an unknown outcome (�gure 1c). In this way, the agent will knowwhich part of the domain needs to be further explored and will not try actions with anunknown outcome unless it is trying to expand its knowledge.Learning in a three-valued setting requires the adoption of a more expressible classof programs to be learned. This class can be represented by means of Extended LogicPrograms, under a stable semantics [6], or under a well-founded one [9]. In the following,we will adopt the well-founded semantics with explicit negationWFSX [9]. We will denotenegation by default by not and explicit negation by :. :A is said the opposite literal ofA (and viceversa) and not A the complementary literal of A (and viceversa).Starting from a set of positive and negative examples for a target predicate p and a2

background knowledge which is itself an extended logic program under WFSX, we applystandard ILP techniques in order to learn a de�nition for both the positive concept p andits opposite :p. The ILP learning problem for the case of ELP has been �rst introducedin [7]:Given:� a set P of possible (extended logic) programs� a set E+ of positive examples� a set E� of negative examples� a consistent extended logic program B (background knowledge)Find:� an extended logic program P 2 P such that{ B [P j= E+;:E� (completeness){ B [P 6j= E�;:E+ (consistency)where :E = f:eje 2 Eg, and E+;:E� (resp. E�;:E+) stands for the conjunctionof each atom in E+ and :E� (resp. in E� and :E+).Note that, in the ILP problem, it is required that the program is consistent only withrespect to the examples. We enlarge this condition requiring that the program is consistentalso for atoms of target predicates not in the training set or unseen atoms. The consistencycondition then becomes B [P 6j= L;:L for every atom L of the target concept.Since the SLX procedure is correct (in the sense speci�ed in [1]), coverage of examplesis tested by adopting the SLX top-down interpreter for extended logic programs, de�nedin [1].Our approach to learning ELP consists in applying ordinary ILP techniques to learnde�nitions of the positive and negative concepts. The ILP technique to be used dependson the level of generality that we want to have for the two de�nitions: we can look for theLeast General Solution (LGS for short) or the Most General Solution (MGS for short).LGSs can be found by using a system like GOLEM [8] that adopts a bottom-up method.MGSs, instead, can be found by a top-down system, such as FOIL [11].The generality of the solutions should be chosen independently for the two de�nitions,thus leading to four epistemological cases depending on the combination of solution gener-ality for the positive and negative concept. The choice of the level of generality should bemade on the basis of available knowledge on the domain. Two of the criteria that shouldbe taken into account are the damage that can derive from an erroneous classi�cation ofan unseen object and the con�dence we have in the training set.When classifying an unseen object as belonging to a concept, we may later discoverthat the object belongs to the opposite concept. The more we generalize a concept, thehigher number of unseen atoms is covered by the de�nition and the higher is the risk of anerroneous classi�cation. Depending on the damage that may derive from such a mistake,we may decide to take a cautious or a con�dent approach. If the possible damage for aconcept is high, then we should learn the LGS for that concept, if the possible damage islow then we can generalize the most and learn the MGS. The risk will depend on the use3

of the learned concepts within other rules, and so distinct generalities may be employedwithin the same program.As regards the con�dence in the training set, we can learn the MGS for a concept if weare con�dent that examples for the opposite concept are correct and representative of thatconcept. In fact, in top-down methods, negative examples are used in order to limit thegenerality of the solution. Otherwise, if we think that examples for the opposite conceptare not reliable, then we should learn the LGS.3 AlgorithmThe algorithm that follows learns ELP of the following form:p(~X) p+(~X); not abp(~X); not :p(~X):p(~X) p�(~X); not ab:p(~X); not p(~X)together with a de�nition for the predicates p+, p� and abp(~X), ab:p(~X) representing,respectively, the positive and negative concepts and exceptions to them.p+ and p� may have a non-empty intersection, thus leading to possible inconsistencies.The con
ict is resolved di�erently depending on the type of atoms in the intersection: thosethat belong to one of the training sets (examples) and those that don't (unseen atoms).Examples covered by both de�nitions are assigned the classi�cation given by the train-ing set. These atoms are considered as exceptions to the opposite de�nition and are treatedby means of the non abnormality literals not abp(~X), not ab:p(~X). Instead, unseen atomsare classi�ed as unknown, since the arguments for both classi�cations are equally strong.This is obtained by making the rules non deterministic [1] through the addition of theliterals not :p(~X) (resp. not p(~X)).The algorithm is given as follows:algorithm LearnELP(inputs : E+; E� : training sets,B : background theory,outputs : H : learned theory)LearnHierarchy(E+; E�; B;Hp)LearnHierarchy(E�; E+; B;H:p)Obtain H by transforming Hp and H:p intonon-deterministic rulesoutput Hprocedure LearnHierarchy(inputs : E+ : positive examples,E� : negative examples,B : background theory,outputs : H : learned theory)Learn(E+; E�; B;Hp)H := Hpfor each rule r in Hp doFind the sets E+r ; E�r of positive and negative4

examples covered by rif E�r is not empty thenAdd the literal not abr(~X) to rObtain E+abr and E�abr from E�r and E+r bytransforming each atom p(~t) into abr(~t)LearnHierarchy(E+abr ; E�abr ; B;Hr)H := H [Hrendifenforoutput HThe algorithm uses procedure LearnHierarchy which, given a set of positive examples, aset of negative examples and a background knowledge, returns a de�nition for the positiveconcept, consisting of default rules, together with the de�nitions for the abnormalityliterals of a hierarchy of exceptions. The procedure LearnHierarchy is called twice, oncefor the positive concept and once for the negative one. In the call for the negative concept,E� is used as the positive training set and E+ as the negative one.LearnHierarchy �rst calls a procedure Learn(E+; E�; B;Hp) that learns a de�nitionHp for the target concept p. Learn consists of an ordinary ILP algorithm, either bottom-upor top-down, modi�ed to adopt the SLX interpreter for testing the coverage of examplesand to relax the consistency requirement of the solution. The algorithm thus returns atheory that may cover some negative examples. These negative examples are then treatedas exceptions, by adding a default literal to the inconsistent rules and learning a de�nitionfor the abnormality predicate. In particular, for each rule r = p(~X) Body(~X) in Hp, anew non-abnormality literal not abr(~X) is added to r and a de�nition for abr(~X) is learnedby recursively calling LearnHierarchy. Examples for abr are obtained from examples forp by observing that, in order to cover a positive (uncover a negative) example p(~t) for p,the atom abr(~t) must be false (true). Therefore, positive (negative) examples for abr areobtained from the set E�r of negative (E+r of positive) examples covered by the rule.When learning a de�nition for abr, in turn, LearnHierarchy may �nd exceptions toexceptions and call itself recursively again. In this way we are able to learn a hierarchy ofexceptions.Let us now discuss in more detail the algorithm that implements the Learn procedure.We need an algorithm that, if a consistent solution can not be found, returns a theorythat covers the least number of negative examples.Two approaches are possible. The �rst consists in learning the least general clausefrom positive examples only: since the clause is not tested on negative examples, it maycover some of them. This approach can be realized by adopting a bottom-up techniquesuch as RLGG [10], for example by using the system GOLEM [8] that implements it, asin [7].The second approach consists in learning from positive and negative examples adoptinga top-down learning algorithm where consistency of clauses (specialization loop stoppingcriterion in top-down algorithms) is replaced by a weaker requirement. The simplestcriterion that can be adopted is to stop specializing the clause when no literal can beadded that reduces the coverage of negative examples.
5

4 Related WorkThe problems raised by negation and uncertainty in concept-learning, and Inductive LogicProgramming in particular, were pointed out in some previous work (e.g., [3, 4]). Forconcept learning, the use of the CWA for target predicates is no longer acceptable becauseit does not allow to distinguish between what is false and what is unde�ned. To avoidthis problem, De Raedt and Bruynooghe [4] proposed to use a three valued logic and anexplicit de�nition of the negated concept in concept learning. This technique has beenintegrated within the CLINT system, an interactive concept-learner. In the resultingsystem, both a positive and a negative de�nition are learned for a concept (predicate) p,stating, respectively, the conditions under which p is true and false. Furthermore, it isrequired that the concept descriptions be consistent.The system LELP (Learning ELP) [7] learns ELP under answer-set semantics. Asour algorithm, LELP is able to learn non-deterministic default rules with a hierarchy ofexceptions. From the point of view of the learning problems that the two algorithmscan solve, they are equivalent when the background is a de�nite logic program: all theexamples shown in [7] can be learned by our algorithm.When the background is an ELP, instead, the adoption of a well-founded semanticsgives a number of advantages with respect to the answer-set semantics. For non-strati�edbackground theories, answer-sets semantics does not enjoy the structural property of rel-evance [1], like our WFSX does, and so they cannot employ top-down proof procedures.For the well-founded semantics, instead, the top-down SLX interpreter is available, thatcan be used for testing the coverage of examples in the learning algorithm.A di�erence between us and [7] is in the level of generality of the de�nitions they canlearn. LELP generate clauses from positive examples only therefore it can only employ abottom-up ILP technique and learn the LGS. Instead, we can choose whether to adopt abottom-up or a top-down algorithm and we can learn theories of di�erent generality fordi�erent target concepts.Several other authors have also addressed the task of learning rules with exceptions[5, 13]. In these frameworks, nonmonotonicity and exceptions are dealt with by learninglogic programs with negation. In [5] the authors rely on a language which uses a limitedform of \classical" (or, better, syntactic) negation together with a priority relation amongthe sentences of the program which can be easily mapped into negation as default.AcknowledgmentsThis research was partially funded by the PRAXIS XXI project MENTAL, and a NATOsabbatical scholarship to L. M. Pereira.References[1] J. J. Alferes and L. M. Pereira. Reasoning with Logic Programming, volume 1111 ofLNAI. Springer-Verlag, Heidelberg, 1996.[2] J.J. Alferes, C.V. Dam�asio, and L.M. Pereira. Top-down query evaluation for well-founded semantics with explicit negation. In Proceedings of the European Conferenceon Arti�cial Intelligenece ECAI94, pages 140{144. Morgan Kaufmann, 1994.6

[3] M. Bain and S. Muggleton. Non-monotonic learning. In S. Muggleton, editor, Induc-tive Logic Programming, pages 145{161. Academic Press, 1992.[4] L. De Raedt and M. Bruynooghe. On negation and three-valued logic in interac-tive concept learning. In Proceedings of the 9th European Conference on Arti�cialIntelligence, 1990.[5] Y. Dimopoulos and A. Kakas. Learning Non-monotonic Logic Programs: LearningExceptions. In Proceedings of the 8th European Conference on Machine Learning,1995.[6] M. Gelfond and V. Lifschitz. Classical negation in logic programming and disjunctivedatabases. New Generation Computing, 9:365{385, 1991.[7] Katsumi Inoue and Yoshimitsu Kudoh. Learning extended logic programs. In Pro-ceedings of the 15th International Joint Conference on Arti�cial Intelligence, pages176{181. Morgan Kaufmann, 1997.[8] S. Muggleton and C. Feng. E�cient induction of logic programs. In Proceedings ofthe 1st Conference on Algorithmic Learning Theory, pages 368{381. Ohmsma, Tokyo,Japan, 1990.[9] L.M. Pereira and J.J. Alferes. Well founded semantics for logic programs with ex-plicit negation. In Proceedings of the European Conference on Arti�cial IntelligeneceECAI92, pages 102{106. John Wiley and Sons, 1992.[10] G.D. Plotkin. A note on inductive generalization. In Machine Intelligence, volume 5,pages 153{163. Edinburgh University Press, 1970.[11] J.R. Quinlan. Learning logical de�nitions from relations. Machine Learning, 5:239{266, 1990.[12] R. Reiter. On closed-word data bases. In H. Gallaire and J. Minker, editors, Logicand Data Bases, pages 55{76. Plenum Press, 1978.[13] A. Srinivasan, S. Muggleton, and M. Bain. Distinguishing exceptions from noise innon-monotonic learning. In S. Muggleton, editor, Proceedings of the 2nd InternationalWorkshop on Inductive Logic Programming, Report ICOT TM-1182, 1992.

7

