Learning in a Three-valued Setting

Evelina Lamma, Fabrizio Riguzzi
DEIS, Universita di Bologna,
Viale Risorgimento 2
40136 Bologna, Italy,
{elamma,friguzzi}@deis.unibo.it

Luis Moniz Pereira
Centro de Inteligéncia Artificial (CENTRIA),
Departamento de Informatica,
Universidade Nova de Lisboa,
2825 Monte da Caparica, Portugal
lmp@di.fct.unl.pt

May 8, 1998

Abstract

We discuss the adoption of a three-valued setting for inductive concept learning.
Distinguishing between what is true, what is false and what is unknown is necessary
in situations where decisions have to be taken on the basis of scarce information.
We propose a learning algorithm that adopts extended logic programs under a well-
founded semantics as the representation formalism and learns a definition for both
the target concept and its opposite, considering positive and negative examples as
instances of two disjoint classes.

In the target program, default negation is used to ensure consistency and to handle
exceptions to general rules. Exceptions to a positive concept are identified from neg-
ative examples, whereas exceptions to a negative concept are identified from positive
examples. Exceptions can be generalized, in their turn, resulting in a hierarchy of
defaults.

1 Introduction

Most work on inductive concept learning considers a two-valued setting. In such a setting,
what is not entailed by the learned theory is considered as false, by using the Closed
World Assumption (CWA) [12]. However, in practice, it is more often the case that we
know with certainty the truth or falsity of a limited number of facts and we are not able
to draw any conclusion on the remaining facts, because the information available is too
scarce. As it has been pointed out in [4], this is typically the case of an autonomous agent
that incrementally gathers information from its surrounding world. For such an agent, it
would be much better to learn in a three-valued setting and learn a definition for both the
concept and its complement, using positive examples for the concept as negative examples
for its complement and viceversa.

In order to represent three-valued theories of this kind, we adopt Extended Logic
Programs (ELP for short) under the well-founded semantics with explicit negation WFSX

T

-m

Figure 1: (a,b): two-valued setting, (c): three-valued setting (taken from [4])

[9].

We consider an extension of the Inductive Logic Programming (ILP for short) problem
where the background and target theory are ELP under WFSX. We present an algorithm
that learns a definition for both the positive concept p and its (explicit) negation —p,
as in [7, 4]. Coverage of examples is tested by adopting the SLX interpreter for ELP,
defined in [2, 1]. The algorithm is also able to identify exceptions to the concepts and
learn a definition for them. In turn, it can identify exceptions to exceptions and so on,
thus leading to a hierachy of concepts.

The paper is organized as follows. In section 2 we introduce the new ILP framework.
Section 3 presents the learning algorithm. We conclude by discussing related works in
section 4.

2 Learning in a Three-valued Setting

In real world problems, complete information about the world is impossible to achieve
and it is necessary to reason and act on the basis of the available partial information. In
situations of incomplete knowledge, it is important to distinguish between what is true,
what is false and what is unknown.

This is the situation of an agent that incrementally gathers information from the
surrounding world and has to select its own actions on the basis of such knowledge. If
the agent learns in a two-valued setting, it can encounter the problems that have been
highlighted in [4]. When learning in a specific to general way, it will learn a cautious
definition for the target concept and it will not be able to distinguish what is false from
what is not yet known (see figure 1la). Suppose the target predicate represents the allowed
actions, then the agent will not distinguish forbidden actions from actions with an unknown
outcome and this can clearly be a limitation. If the agent learns in a general to specific
way, instead, it will not know the difference between what is true and what is unknown
(figure 1b) and therefore it can try actions with an unknown outcome. Instead, by learning
in a three-valued setting, it will be able to distinguish between allowed actions, forbidden
actions and actions with an unknown outcome (figure 1c). In this way, the agent will know
which part of the domain needs to be further explored and will not try actions with an
unknown outcome unless it is trying to expand its knowledge.

Learning in a three-valued setting requires the adoption of a more expressible class
of programs to be learned. This class can be represented by means of Extended Logic
Programs, under a stable semantics [6], or under a well-founded one [9]. In the following,
we will adopt the well-founded semantics with explicit negation WFSX [9]. We will denote
negation by default by not and explicit negation by —. —A is said the opposite literal of
A (and viceversa) and not A the complementary literal of A (and viceversa).

Starting from a set of positive and negative examples for a target predicate p and a

background knowledge which is itself an extended logic program under WFSX, we apply
standard ILP techniques in order to learn a definition for both the positive concept p and
its opposite =p. The ILP learning problem for the case of ELP has been first introduced
in [7]:

Given:

e a set P of possible (extended logic) programs

e aset ET of positive examples

e a set £~ of negative examples

e a consistent extended logic program B (background knowledge)
Find:

e an extended logic program P € P such that

— BUP [Et,~E~ (completeness)
— BUP W E,—E* (consistency)

where =F = {—el|e € E}, and E",~E~ (resp. E~,~E") stands for the conjunction
of each atom in £ and =E~ (resp. in E~ and —=E™).

Note that, in the ILP problem, it is required that the program is consistent only with
respect to the examples. We enlarge this condition requiring that the program is consistent
also for atoms of target predicates not in the training set or unseen atoms. The consistency
condition then becomes B U P [~ L, —L for every atom L of the target concept.

Since the SLX procedure is correct (in the sense specified in [1]), coverage of examples
is tested by adopting the SLX top-down interpreter for extended logic programs, defined
in [1].

Our approach to learning ELP consists in applying ordinary ILP techniques to learn
definitions of the positive and negative concepts. The ILP technique to be used depends
on the level of generality that we want to have for the two definitions: we can look for the
Least General Solution (LGS for short) or the Most General Solution (MGS for short).
LGSs can be found by using a system like GOLEM [8] that adopts a bottom-up method.
MGSs, instead, can be found by a top-down system, such as FOIL [11].

The generality of the solutions should be chosen independently for the two definitions,
thus leading to four epistemological cases depending on the combination of solution gener-
ality for the positive and negative concept. The choice of the level of generality should be
made on the basis of available knowledge on the domain. Two of the criteria that should
be taken into account are the damage that can derive from an erroneous classification of
an unseen object and the confidence we have in the training set.

When classifying an unseen object as belonging to a concept, we may later discover
that the object belongs to the opposite concept. The more we generalize a concept, the
higher number of unseen atoms is covered by the definition and the higher is the risk of an
erroneous classification. Depending on the damage that may derive from such a mistake,
we may decide to take a cautious or a confident approach. If the possible damage for a
concept is high, then we should learn the LGS for that concept, if the possible damage is
low then we can generalize the most and learn the MGS. The risk will depend on the use

of the learned concepts within other rules, and so distinct generalities may be employed
within the same program.

As regards the confidence in the training set, we can learn the MGS for a concept if we
are confident that examples for the opposite concept are correct and representative of that
concept. In fact, in top-down methods, negative examples are used in order to limit the
generality of the solution. Otherwise, if we think that examples for the opposite concept
are not reliable, then we should learn the LGS.

3 Algorithm

The algorithm that follows learns ELP of the following form:

)
)

—

(
—p(

T

— pT(X),not aby(X), not -p(X)

— p(X),not abﬁp(f),not p(X)

together with a definition for the predicates p™, p— and abp()?), abﬂp(f) representing,
respectively, the positive and negative concepts and exceptions to them.

p' and p~ may have a non-empty intersection, thus leading to possible inconsistencies.
The conflict is resolved differently depending on the type of atoms in the intersection: those
that belong to one of the training sets (examples) and those that don’t (unseen atoms).

Examples covered by both definitions are assigned the classification given by the train-
ing set. These atoms are considered as ezceptions to the opposite definition and are treated
by means of the non abnormality literals not abp()?), not abﬁp()?). Instead, unseen atoms
are classified as unknown, since the arguments for both classifications are equally strong.
This is obtained by making the rules non deterministic [1] through the addition of the
literals not —p(X) (resp. not p(X)).

The algorithm is given as follows:

algorithm LearnELP(

inputs : ET, E~ : training sets,

B : background theory,

outputs : H : learned theory)
LearnHierarchy(E™, E~, B; H,)
LearnHierarchy(E~, E™, B; H,)
Obtain H by transforming H, and H-, into

non-deterministic rules
output H

procedure LearnHierarchy(
inputs : ET : positive examples,
E~ : negative examples,
B : background theory,
outputs : H : learned theory)
Learn(E*, E~, B; Hp)
H:=H,
for each rule r in H, do
Find the sets E;f, E. of positive and negative

examples covered by r
if £, is not empty then
Add the literal not_ab,(X) to r
Obtain E, and E, from E, and E; by
transforming each atom p(t) into ab,(f)

LearnHierarchy(E}, ,E,, ,B; H,)
H:=HUH,
endif
enfor
output H

The algorithm uses procedure LearnHierarchy which, given a set of positive examples, a
set of negative examples and a background knowledge, returns a definition for the positive
concept, consisting of default rules, together with the definitions for the abnormality
literals of a hierarchy of exceptions. The procedure LearnHierarchy is called twice, once
for the positive concept and once for the negative one. In the call for the negative concept,
E~ is used as the positive training set and E as the negative one.

LearnHierarchy first calls a procedure Learn(E+, E~, B; Hp) that learns a definition
H,, for the target concept p. Learn consists of an ordinary ILP algorithm, either bottom-up
or top-down, modified to adopt the SLX interpreter for testing the coverage of examples
and to relax the consistency requirement of the solution. The algorithm thus returns a
theory that may cover some negative examples. These negative examples are then treated
as exceptions, by adding a default literal to the inconsistent rules and learning a definition

— —

for the abnormality predicate. In particular, for each rule r = p(X) < Body(X) in Hj, a
new non-abnormality literal not_ab, (X) is added to r and a definition for ab, (X) is learned
by recursively calling LearnHierarchy. Examples for ab, are obtained from examples for
p by observing that, in order to cover a positive (uncover a negative) example p(f) for p,
the atom ab,(f) must be false (true). Therefore, positive (negative) examples for ab, are
obtained from the set E; of negative (E;" of positive) examples covered by the rule.

When learning a definition for ab,, in turn, LearnHierarchy may find exceptions to
exceptions and call itself recursively again. In this way we are able to learn a hierarchy of
exceptions.

Let us now discuss in more detail the algorithm that implements the Learn procedure.
We need an algorithm that, if a consistent solution can not be found, returns a theory
that covers the least number of negative examples.

Two approaches are possible. The first consists in learning the least general clause
from positive examples only: since the clause is not tested on negative examples, it may
cover some of them. This approach can be realized by adopting a bottom-up technique
such as RLGG [10], for example by using the system GOLEM [8] that implements it, as
in [7].

The second approach consists in learning from positive and negative examples adopting
a top-down learning algorithm where consistency of clauses (specialization loop stopping
criterion in top-down algorithms) is replaced by a weaker requirement. The simplest
criterion that can be adopted is to stop specializing the clause when no literal can be
added that reduces the coverage of negative examples.

4 Related Work

The problems raised by negation and uncertainty in concept-learning, and Inductive Logic
Programming in particular, were pointed out in some previous work (e.g., [3, 4]). For
concept learning, the use of the CWA for target predicates is no longer acceptable because
it does not allow to distinguish between what is false and what is undefined. To avoid
this problem, De Raedt and Bruynooghe [4] proposed to use a three valued logic and an
explicit definition of the negated concept in concept learning. This technique has been
integrated within the CLINT system, an interactive concept-learner. In the resulting
system, both a positive and a negative definition are learned for a concept (predicate) p,
stating, respectively, the conditions under which p is true and false. Furthermore, it is
required that the concept descriptions be consistent.

The system LELP (Learning ELP) [7] learns ELP under answer-set semantics. As
our algorithm, LELP is able to learn non-deterministic default rules with a hierarchy of
exceptions. From the point of view of the learning problems that the two algorithms
can solve, they are equivalent when the background is a definite logic program: all the
examples shown in [7] can be learned by our algorithm.

When the background is an ELP, instead, the adoption of a well-founded semantics
gives a number of advantages with respect to the answer-set semantics. For non-stratified
background theories, answer-sets semantics does not enjoy the structural property of rel-
evance [1], like our WFSX does, and so they cannot employ top-down proof procedures.
For the well-founded semantics, instead, the top-down SLX interpreter is available, that
can be used for testing the coverage of examples in the learning algorithm.

A difference between us and [7] is in the level of generality of the definitions they can
learn. LELP generate clauses from positive examples only therefore it can only employ a
bottom-up ILP technique and learn the LGS. Instead, we can choose whether to adopt a
bottom-up or a top-down algorithm and we can learn theories of different generality for
different target concepts.

Several other authors have also addressed the task of learning rules with exceptions
[5, 13]. In these frameworks, nonmonotonicity and exceptions are dealt with by learning
logic programs with negation. In [5] the authors rely on a language which uses a limited
form of “classical” (or, better, syntactic) negation together with a priority relation among
the sentences of the program which can be easily mapped into negation as default.

Acknowledgments
This research was partially funded by the PRAXIS XXI project MENTAL, and a NATO
sabbatical scholarship to L. M. Pereira.

References

[1] J. J. Alferes and L. M. Pereira. Reasoning with Logic Programming, volume 1111 of
LNAI Springer-Verlag, Heidelberg, 1996.

[2] J.J. Alferes, C.V. Damésio, and L.M. Pereira. Top-down query evaluation for well-
founded semantics with explicit negation. In Proceedings of the European Conference
on Artificial Intelligenece ECAI94, pages 140-144. Morgan Kaufmann, 1994.

3]

[4]

[10]

[11]

[12]

[13]

M. Bain and S. Muggleton. Non-monotonic learning. In S. Muggleton, editor, Induc-
tive Logic Programming, pages 145-161. Academic Press, 1992.

L. De Raedt and M. Bruynooghe. On negation and three-valued logic in interac-
tive concept learning. In Proceedings of the 9th European Conference on Artificial
Intelligence, 1990.

Y. Dimopoulos and A. Kakas. Learning Non-monotonic Logic Programs: Learning
Exceptions. In Proceedings of the 8th European Conference on Machine Learning,
1995.

M. Gelfond and V. Lifschitz. Classical negation in logic programming and disjunctive
databases. New Generation Computing, 9:365-385, 1991.

Katsumi Inoue and Yoshimitsu Kudoh. Learning extended logic programs. In Pro-
ceedings of the 15th International Joint Conference on Artificial Intelligence, pages
176-181. Morgan Kaufmann, 1997.

S. Muggleton and C. Feng. Efficient induction of logic programs. In Proceedings of
the 1st Conference on Algorithmic Learning Theory, pages 368—-381. Ohmsma, Tokyo,
Japan, 1990.

L.M. Pereira and J.J. Alferes. Well founded semantics for logic programs with ex-
plicit negation. In Proceedings of the European Conference on Artificial Intelligenece
ECAI92, pages 102-106. John Wiley and Sons, 1992.

G.D. Plotkin. A note on inductive generalization. In Machine Intelligence, volume 5,
pages 153-163. Edinburgh University Press, 1970.

J.R. Quinlan. Learning logical definitions from relations. Machine Learning, 5:239—
266, 1990.

R. Reiter. On closed-word data bases. In H. Gallaire and J. Minker, editors, Logic
and Data Bases, pages 55—76. Plenum Press, 1978.

A. Srinivasan, S. Muggleton, and M. Bain. Distinguishing exceptions from noise in
non-monotonic learning. In S. Muggleton, editor, Proceedings of the 2nd International
Workshop on Inductive Logic Programming, Report ICOT TM-1182, 1992.

