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Abstract. Representing uncertain information is very important for
modeling real world domains. Recently, the DISPONTE semantics has
been proposed for probabilistic description logics. In DISPONTE, the
axioms of a knowledge base can be annotated with a set of variables
and a real number between 0 and 1. This real number represents the
probability of each version of the axiom in which the specified variables
are instantiated. In this paper we present the algorithm BUNDLE for
computing the probability of queries from DISPONTE knowledge bases
that follow the ALC semantics. BUNDLE exploits an underlying DL
reasoner, such as Pellet, that is able to return explanations for queries.
The explanations are encoded in a Binary Decision Diagram from which
the probability of the query is computed. The experiments performed
by applying BUNDLE to probabilistic knowledge bases show that it can
handle ontologies of realistic size and is competitive with the system
PRONTO for the probabilistic description logic P-SHIQ(D).

1 Introduction

Representing uncertain information is of foremost importance in order to effec-
tively model real world domains. This has been fully recognized in the field of
Description Logics (DLs) where many proposals have appeared on the combina-
tion of probability theory and DLs [17].

In general, the integration of probability with logic has been much studied
lately, with many different proposals [30]. In the field of Logic Programming, the
distribution semantics [25] has emerged as one of the most effective approaches.

In [24] we applied this approach to DLs obtaining DISPONTE for “DIstri-
bution Semantics for Probabilistic ONTologiEs” (Spanish for “get ready”). The
idea is to annotate axioms of a theory with a probability and assume that each
axiom is independent of the others. DISPONTE allows two types of probabilistic
axiom: an epistemic type, that represents a degree of belief in the axiom as a
whole, and a statistical type, that considers the populations to which the ax-
iom is applied. Statistical probabilistic axioms allow the representation of partial
concept overlapping and knowledge about random individuals of populations.



The DISPONTE semantics differs from previous proposals because it extends
the language minimally and provides a unified framework for representing dif-
ferent types of probabilistic knowledge, from an epistemic to a statistical type.
Moreover, it allows to seamlessly represents probabilistic assertional and termi-
nological knowledge.

In this paper we present the algorithm BUNDLE for “Binary decision dia-
grams for Uncertain reasoNing on Description Logic thEories”, that performs
inference over DISPONTE DLs that follow the ALC semantics. BUNDLE ex-
ploits an underlying reasoner such as Pellet [29] that returns explanations for
queries. BUNDLE uses the inference techniques developed for probabilistic logic
programs under the distribution semantics, in particular Binary Decision Dia-
grams, for computing the probability of queries from a covering set of explana-
tions. We applied BUNDLE to various real world datasets and we found that it is
able to handle domains of significant size. Moreover, we compared it with Pronto
[14], a system for inference in the probabilistic description logic P-SHIQ(D).
The results show that BUNDLE is faster than PRONTO for knowledge bases
of the same size. The paper is organized as follows. Section 2 introduces De-
scription Logics and Section 3 illustrates DISPONTE while Section 4 describes
BUNDLE. Section 5 discusses related work and Section 6 shows the results of
experiments with BUNDLE. Finally, Section 7 concludes the paper.

2 Description Logics

Description Logics (DLs) are knowledge representation formalisms that possess
nice computational properties such as decidability and/or low complexity, see
[1,2] for excellent introductions. DLs are particularly useful for representing on-
tologies and have been adopted as the basis of the Semantic Web. For example,
the OWL DL sub-language of OWL is based on the SHOIN (D) DL.

While DLs can be translated into predicate logic, they are usually represented
using a syntax based on concepts and roles. A concept corresponds to a set
of individuals of the domain while a role corresponds to a set of couples of
individuals of the domain. In the rest of this Section we concentrate on ALC
[28], since the version of BUNDLE here presented considers this DL language.

Let A, R and I be sets of atomic concepts, roles and individuals, respectively.
Concepts are defined by induction as follows. Each A ∈ A is a concept and

⊥ and > are concepts. If C, C1 and C2 are concepts and R ∈ R, then (C1uC2),
(C1 t C2) and ¬C are concepts, as well as ∃R.C and ∀R.C.

A TBox T is a finite set of concept inclusion axioms C v D, where C and
D are concepts. We use C ≡ D to abbreviate C v D and D v C. An ABox
A is a finite set of concept membership axioms a : C, role membership axioms
(a, b) : R, equality axioms a = b, and inequality axioms a 6= b, where C is a
concept, R ∈ R and a, b ∈ I. A knowledge base K = (T ,A) consists of a TBox
T and an ABox A.

A knowledge base K is usually assigned a semantics in terms of set-theoretic
interpretations and models of the form I = (∆I , ·I), where ∆I is a non-empty



domain and ·I is the interpretation function that assigns an element in ∆I to
each a ∈ I, a subset of ∆I to each C ∈ A and a subset of ∆I × ∆I to each
R ∈ R. The semantics of DLs can be given equivalently by transforming a DL
knowledge base into a predicate logic theory and then using the model-theoretic
semantics of the resulting theory. A translation of ALC into First Order Logic
is given in the following. The translation uses two functions πx and πy that map
concept expressions to logical formulas, where πx is given by

πx(A) = A(x)
πx(¬C) = ¬πx(C)

πx(C uD) = πx(C) ∧ πx(D)
πx(C tD) = πx(C) ∨ πx(D)
πx(∃R.C) = ∃y.R(x, y) ∧ πy(C)
πx(∀R.C) = ∀y.R(x, y)→ πy(C)

and πy is obtained from πx by replacing x with y and vice-versa.

Table 1 shows the translation of each axiom of ALC knowledge bases.

Axiom Translation

C v D ∀v1.πx(C)→ πx(D)

a : C πx(C)(a)

(a, b) : R R(a, b)

a = b a = b

a 6= b a 6= b

Table 1. Translation of ALC axioms into predicate logic.

A query over a knowledge base is usually an axiom for which we want to test
the entailment from the knowledge base. The entailment test may be reduced
to checking the unsatisfiability of a concept in the knowledge base, i.e., the
emptiness of the concept. For example, the entailment of the axiom C v D may
be tested by checking the unsatisfiability of the concept C u ¬D.

A DL enjoys the finite model property [6] if a knowledge base that has an
arbitrary, possibly infinite model, also has a finite one. For example, ALC has
the finite model property while SHOIN (D), the basis of OWL DL, doesn’t. If
the DL enjoys the finite model property, the domain ∆I can be assumed finite
and so also I.

Given a predicate logic formula F , a substitution θ is a set of pairs x/a where
x is a variable universally quantified in the outermost quantifier in F and a ∈ I.
The application of θ to F , indicated by Fθ, is called an instantiation of F and
is obtained by replacing x with a in F and by removing x from the external
quantification for every pair x/a in θ.



3 The DISPONTE Semantics for Probabilistic
Description Logics

DISPONTE applies the distribution semantics to probabilistic DL theories. The
distribution semantics underlies many probabilistic logic programming languages
such as PRISM [25,26], Independent Choice Logic [20], Logic Programs with
Annotated Disjunctions (LPADs) [32] and ProbLog [8].

A program in one of these languages defines a probability distribution over
normal logic programs called worlds. Each language has its own ways of spec-
ifying the distribution but all offer the possibility of specifying alternatives in
clauses. The probability of a world is obtained by multiplying the probabilities
associated to each alternative as these are considered independent of each other.
This gives a probability distribution P (w) over the worlds. The joint distribution
of the query Q and the worlds is considered: P (Q,w). This can be expressed with
the probability chain rule as P (Q|w)P (w). Given a world w, the probability of a
query is 1 if the query is entailed and 0 otherwise, so P (Q|w) = 1 if w |= Q and 0
otherwise. We can thus obtain the probability of the query by marginalizing the
joint distribution as P (Q) =

∑
w P (Q,w) =

∑
w P (Q|w)P (w) =

∑
w:w|=Q P (w).

The distribution semantics was applied successfully in many domains [8,26,3] and
various inference and learning algorithms are available for it [13,22,4].

In DISPONTE, a probabilistic knowledge base K is a set of certain and proba-
bilistic axioms. Certain axioms take the form of regular DL axioms. Probabilistic
axioms take the form

p ::V ar E (1)

where p is a real number in [0, 1], V ar can be empty or the symbol x and it
specifies the “type” of probability and E is a DL axiom.

In order to give a semantics to such probabilistic knowledge bases, we consider
their translation into predicate logic. The idea of DISPONTE is to associate
independent Boolean random variables to (instantiations of) the formulas in
predicate logic that are obtained from the translation of the axioms. By assigning
values to every random variable we obtain a world, the set of predicate logic
formulas whose random variable is assigned to 1.

In particular, we fix a set of individuals I and we assume it is finite. We give
here the description of DISPONTE for description logics that enjoy the finite
model property. For those that do not, the semantics has to be given slightly
differently, following the semantics for probabilistic logic programming languages
that include function symbols given in [25,26,20].

To obtain a world w, we include every formula from a certain axiom. For
each probabilistic axiom, we generate all the substitutions for the variables of
the equivalent predicate logic formula that are indicated in the subscript. The
variables are replaced with elements of I. For each instantiated formula we decide
whether or not to include it in w. In this way we obtain a predicate logic theory
which can be assigned a model-theoretic semantics. A query is entailed by a
world if it is true in every model of the world.



If V ar is empty, the probability p can be interpreted as an epistemic proba-
bility, i.e., as the degree of our belief in axiom E, while if V ar is equal to x, p can
be interpreted as a statistical probability, i.e., as information regarding random
individuals from the domain.

For example, a probabilistic concept membership axiom p :: a : C means
that we have degree of belief p in C(a). The statement that Tweety flies with
probability 0.9 can be expressed as 0.9 :: tweety : Flies.

A probabilistic concept inclusion axiom of the form

p :: C v D (2)

represents the fact that we believe in the truth of C v D with probability p.
V ar can take value x in a probabilistic concept inclusion axiom of the form

p ::x C v D (3)

This axiom means that a random individual of class C has probability p of
belonging to D, thus representing the statistical information that a fraction p of
the individuals of C belongs to D. In this way, the overlap between C and D is
quantified by the probability p. We can highlight the difference between the two
axioms by observing that, if two individuals belong to class C, the probability
that they both belong to D according to (2) is p, since p represents the truth of
the formula as a whole, while according to (3) is p · p, since each individual of C
has probability p of belonging to class D and the two events are independent.

The statement that with 90% probability birds fly for example can be ex-
pressed as 0.9 :: Bird v Flies. If we want to compute the probability of flying of
a bird, this axiom and 0.9 ::x Bird v Flies give the same result. For two birds,
the probability of both flying will be 0.9 · 0.9 = 0.81 with the second axiom and
still 0.9 with first.

Let us now give the formal definition of DISPONTE. An atomic choice is a
triple (Fi, θj , k) where Fi is the formula obtained by translating the ith prob-
abilistic axiom in predicate logic following Table 1, θj is a substitution and
k ∈ {0, 1}. k indicates whether Fiθj is chosen to be included in a world (k = 1)
or not (k = 0). θj instantiates the variable indicated in the V ar subscript of the
ith probabilistic axiom.

A composite choice κ is a consistent set of atomic choices, i.e., (Fi, θj , k) ∈
κ, (Fi, θj ,m) ∈ κ⇒ k = m (only one decision for each formula). The probability
of composite choice κ is P (κ) =

∏
(Fi,θj ,1)∈κ pi

∏
(Fi,θj ,0)∈κ(1 − pi), where pi is

the probability associated to axiom Fi. A selection σ is a composite choice that
contains an atomic choice (Fi, θj , k) for every instantiation Fiθj of every proba-
bilistic axiom of the theory. Let us indicate with SK the set of all selections. Since
the set of individuals is finite, each selection is finite and so is SK. A selection σ
identifies a theory wσ called a world in this way: wσ = C ∪ {Fiθj |(Fi, θj , 1) ∈ σ}
where C is the set of the translations in predicate logic of certain axioms. Let
us indicate with WK the set of all worlds. The probability of a world wσ is
P (wσ) = P (σ) =

∏
(Fi,θj ,1)∈σ pi

∏
(Fi,θj ,0)∈σ(1− pi). P (wσ) is a probability dis-

tribution over worlds, i.e.
∑
w∈WK

P (w) = 1.



We can now assign probabilities to queries. Given a world w, the probability
of a query Q is defined as P (Q|w) = 1 if w |= Q and 0 otherwise. The probability
of a query can be defined by marginalizing the joint probability of the query and
the worlds:

P (Q) =
∑

w∈WK

P (Q,w) =
∑

w∈WK

P (Q|w)p(w) =
∑

w∈WK:w|=Q

P (w) (4)

However, using (4) to compute the probability of a query is not practical as it
involves generating all possible worlds. Since their number is exponential in the
number of instantiated probabilistic axioms, a different approach is followed in
which explanations for queries are found.

A composite choice κ is an explanation for a query Q if Q is entailed by every
world of ωκ, where ωκ = {wσ|σ ∈ SK, σ ⊇ κ} is the set of worlds compatible
with κ. We also define the set of worlds identified by a set of composite choices
K as ωK =

⋃
κ∈K ωκ.

A set of composite choices K is covering with respect to Q if every world
w ∈ WK in which Q is entailed is such that w ∈ ωK .

We can associate with every instantiated formula Fiθj a Boolean random vari-
able Xij . An atomic choice (Fi, θj , 1) then corresponds to Xij assuming value 1
and (Fi, θj , 0) corresponds to Xij assuming value 0. The variables X = {Xij |Fi ∈
K, θj is a substitution} are pairwise independent and the probability that Xij

takes value 1 is pi, the probability associated with the ith axiom.
Given a covering set of explanations K for a query Q, each world where

the query is true corresponds with an assignment of X for which the following
Boolean function takes value 1:

fK(X) =
∨
κ∈K

∧
(Fi,θj ,1)∈κ

Xij

∧
(Fi,θj ,0)∈κ

Xij (5)

Thus we can compute the probability of Q by computing the probability that
fK(X) takes value 1. This formula is in Disjunctive Normal Form (DNF) but
we can’t compute P (fK(X)) by summing the probability of each individual
explanation because the different explanations may not be mutually disjoint.
The problem of computing P (fK(X)) for a DNF was shown to be #P-hard (see
e.g. [21]). The class #P [31] describes counting problems associated with decision
problems in NP. More formally, #P is the class of function problems of the form
“compute f(x)”, where f is the number of accepting paths of a nondeterministic
Turing machine running in polynomial time.

To solve the problem, we can apply knowledge compilation to the proposi-
tional formula fK(X) [7] in order to translate it to a target language that allows
to compute the probability in polynomial time. A target language that was found
to give good performances is the one of Binary Decision Diagrams (BDD).

A BDD for a function of Boolean variables is a rooted graph that has one level
for each Boolean variable. A node n in a BDD has two children: one correspond-
ing to the 1 value of the variable associated with n, indicated with child1(n),
and one corresponding to the 0 value of the variable, indicated with child0(n).



The leaves store either 0 or 1. Given values for all the variables, a BDD can be
used to compute the value of the formula by traversing the graph starting from
the root, following the edges corresponding to the variables values and returning
the value associated to the leaf that is reached.

A BDD performs a Shannon expansion of the Boolean formula fK(X), so
that if X is the variable associated to the root level of a BDD, the formula

fK(X) can be represented as fK(X) = X ∧ fXK (X) ∨X ∧ fXK (X) where fXK (X)

(fXK (X)) is the formula obtained by fK(X) by setting X to 1 (0). Now the two
disjuncts are mutually exclusive and the probability of fK(X) can be computed

as P (fK(X)) = P (X)P (fXK (X)) + (1−P (X))P (fXK (X)). In other words, BDDs
make the explanations mutually incompatible. Figure 1 shows the function Prob
that implements the dynamic programming algorithm of [8] for computing the
probability of a formula encoded as a BDD.

BDDs can be built by combining simpler BDDs using Boolean operators.
While building BDDs, simplification operations can be applied that delete or
merge nodes. Merging is performed when the diagram contains two identical
sub-diagrams, while deletion is performed when both arcs from a node point
to the same node. In this way a reduced BDD is obtained, often with a much
smaller number of nodes with respect to the original BDD. The size of the
reduced BDD depends on the order of the variables: finding an optimal order is
an NP-complete problem [5] and several heuristic techniques are used in practice
by highly efficient software packages such as CUDD. Alternative methods involve
learning variable order from examples [9].

1: function Prob(node)
2: Input: a BDD node
3: Output: the probability of the Boolean function associated to the node
4: if node is a terminal then
5: return value(node) . value(node) is 0 or 1
6: else
7: let X be v(node) . v(node) is the variable associated to node
8: P1 ←Prob(child1(node))
9: P0 ←Prob(child0(node))

10: return P (X) · P1 + (1− P (X)) · P0

11: end if
12: end function

Fig. 1. Function that computes the probability of a formula encoded as a BDD.

Let us discuss some examples.

Example 1. The following knowledge base is inspired by the ontology called
people+pets proposed in [19]:

∃hasAnimal.Pet v NatureLover



(kevin,fluffy) : hasAnimal

(kevin, tom) : hasAnimal

0.4 :: fluffy : Cat

0.3 :: tom : Cat

0.6 :: Cat v Pet

The knowledge base indicates that the individuals that own an animal which is a
pet are nature lovers and that kevin owns the animals fluffy and tom. Moreover,
we believe in the fact that fluffy and tom are cats and that cats are pets with a
certain probability. The predicate logic formulas (without external quantifiers)
equivalent to the probabilistic axioms are F1 = Cat(fluffy), F2 = Cat(tom) and
F3 = Cat(x) → Pet(x). A covering set of explanations for the query axiom
Q = kevin : NatureLover is K = {κ1, κ2} where κ1 = {(F1, ∅, 1), (F3, ∅, 1)} and
κ2 = {(F2, ∅, 1), (F3, ∅, 1)}.

If we associate the random variables X11 with (F1, ∅), X21 with (F2, ∅) and
X31 with (F3, ∅), the BDD associated with the set K of explanations is shown
in Figure 2. By applying algorithm in Figure 1 we get

X11
�� ���� ��n1 I

;

X21
�� ���� ��n2

�
�
�
�

X31
�� ���� ��n3 Z X U R O L

1 0

Fig. 2. BDD for Example 1.

Prob(n3) = 0.6 · 1 + 0.4 · 0 = 0.6

Prob(n2) = 0.4 · 0.6 + 0.6 · 0 = 0.24

Prob(n1) = 0.3 · 0.6 + 0.7 · 0.24 = 0.348

so P (Q) = Prob(n1) = 0.348.

Example 2. If we replace the axiom 0.6 :: Cat v Pet in Example 1 with 0.6 ::x
Cat v Pet, we are expressing the knowledge that 60% of cats are pets. In
this case the query would have the explanations K = {κ1, κ2} where κ1 =
{(F1, ∅, 1), (F3, {x/fluffy}, 1)} and κ2 = {(F2, ∅, 1), (F3, {x/tom}, 1)}. The prob-
ability in this case raises to P (Q) = 0.3768.

4 BUNDLE

BUNDLE (Binary decision diagrams for Uncertain reasoNing on Description
Logic thEories) computes the probability of queries from a probabilistic knowl-



edge base that follows the DISPONTE semantics. It first finds a covering set of
explanations for the query and then builds a BDD for computing the probability
of the query.

The problem of finding explanations for a query has been investigated by
various authors [27,11,12,10]. For example, Pellet finds explanations by using a
tableau algorithm [11]. A tableau is a graph where each node a represents an
individual a and is labeled with the set of concepts L(a) it belongs to. Each edge
〈a, b〉 in the graph is labeled with the set of roles L(〈a, b〉) to which the couple
(a, b) belongs. Pellet repeatedly applies a set of consistency preserving tableau
expansion rules until a clash (i.e., a contradiction) is detected or a clash-free
graph is found to which no more rules are applicable. A clash is for example a
couple (C, a) where C and ¬C are present in the label of a node, i.e. {C,¬C} ⊆
L(a).

The transformation rule for disjunction is non-deterministic, i.e., it generates
a finite set of tableaux. Thus the algorithm keeps a set of tableaux that is
consistent if there is any tableau in it that is consistent, i.e., that is clash-free.
Each time a clash is detected in a tableau G, the algorithm stops applying rules
to G. Once every tableau in T contains a clash or no more expansion rules
can be applied to it, the algorithm terminates. If all the tableaux in the final
set T contain a clash, the algorithm returns unsatisfiable as no model can be
found. Otherwise, any one clash-free completion graph in T represents a possible
model for the concept and the algorithm returns satisfiable. Each expansion rule
of Pellet updates a tracing function τ as well, which associates sets of axioms
with labels of nodes and edges. The tracing function τ maps couples (concept,
individual) or (role, couple of individuals) to a fragment of K. For example,
τ(C, a) (τ(R, 〈a, b〉)) is the set of axioms needed to explain the addition of C
(R) to the label of a (〈a, b〉). The function τ is initialized as the empty set for
all elements of its domain except for τ(C, a) and τ(R, 〈a, b〉) to which the values
{a : C} and {(a, b) : R} are assigned if a : C and (a, b) : R are in the ABox
respectively.

In BUNDLE we are interested in instantiated explanations that entail an
axiom. An instantiated explanation is a finite set F = {(F1, θ1), . . . , (Fn, θn)}
where F1, . . . , Fn are axioms and θ1, . . . , θn are substitutions. Thus BUNDLE
modifies the tableau tracing function of Pellet to return a set of pairs (axiom,
substitution) instead of a set of axioms. The application of the expansion rules
now stores, together with information regarding concepts and roles, also infor-
mation concerning individuals involved in the expansion rules, which will be
returned at the end of the derivation process together with the axioms. Figure
3 shows the tableau expansion rules of BUNDLE for the case of ALC.

BUNDLE finds a covering set of explanations using Pellet’s strategy: it first
finds a single explanation and then finds the others by iteratively removing
from the theory an axiom belonging to an explanation and looking for a new
explanation.

BUNDLE first finds a covering set of explanations for the query using the
modified version of Pellet and then builds the BDD representing them from



→ CE: if (C v D) ∈ K thenif (¬C tD) /∈ L(a), then L(a) = L(a) ∪ {¬C tD}
τ(¬C tD, a) := {(C v D, a)}

→ u: if (C1 u C2) ∈ L(a) then if {C1, C2} 6⊆ L(a), then L(a) = L(a) ∪ {C1 u C2}
τ(Ci, a) := τ((C1 u C2), a)

→ t: if (C1 t C2) ∈ L(a) then if {C1, C2} ∩ L(a) = ∅, then
Generate graphs Gi := G for each i ∈ {1, 2}, L(a) = L(a) ∪ {Ci} for each i ∈ {1, 2}
τ(Ci, a) := τ((C1 t C2), a)

→ ∃: if ∃S.C ∈ L(a) then if a has no S-neighbor b with C ∈ L(b),then
create new node b, L(b) = {C}, L(〈a, b〉) = {S},

τ(C, b) := τ((∃S.C), a), τ(S, 〈a, b〉) := τ((∃S.C), a)
→ ∀: if ∀(S,C) ∈ L(a), there is an S-neighbor b of a then if C /∈ L(b), then L(b) = L(b) ∪ {C}

τ(C, b) := τ(∀S.C, a) ∪ τ(S, 〈a, b〉)

Fig. 3. BUNDLE tableau expansion rules.

which it computes the probability. BUNDLE, shown in Figure 4, first builds a
data structure PMap that associates each DL axiom E with a set of couples
(V ar, p), one for each probabilistic axiom p ::V ar E in the knowledge base K.
Then BUNDLE finds the explanations and initializes the array V arAxAnn for
storing the triples (Axiom, θ, Prob) associated with a Boolean variable in the
BDD. It builds the BDD with a cycle over the set of explanations: for each
explanation, it builds the BDD representing the conjunction of the random vari-
ables associated to the atomic choices and then computes the disjunction of the
BDDs of individual explanations. At the end, it computes the probability by
calling the dynamic programming algorithm that visits the BDD. To manipu-
late BDDs, we use JavaBDD that is an interface to a number of underlying BDD
manipulation packages. As the underlying package we use CUDD.

BUNDLE has the possibility of setting a maximum number of explanations
to be found. If a query has a larger number of explanations, then the probability
that is computed is a lower bound of the true probability.

5 Related Work

There are many works that propose approaches for combining probability and
description logics. We refer to [24] for the relationships with DISPONTE. We
discuss here only P-SHIQ(D) proposed in [16] because it is equipped with a rea-
soner, PRONTO [14]. P-SHIQ(D) uses probabilistic lexicographic entailment
from probabilistic default reasoning and allows both terminological probabilistic
knowledge as well as assertional probabilistic knowledge about instances of con-
cepts and roles. P-SHIQ(D) is based on Nilsson’s probabilistic logic [18] that
defines probabilistic interpretations instead of a single probability distribution
over theories. Each probabilistic interpretation Pr defines a probability distri-
bution over the set of usual interpretations Int. The probability of a logical
formula F according to Pr, denoted Pr(F ), is the sum of all Pr(I) such that
I ∈ Int and I |= F . A probabilistic knowledge base K is a set of probabilistic
formulas of the form F ≥ p. A probabilistic interpretation Pr satisfies F ≥ p iff
Pr(F ) ≥ p. Pr(F ) ≥ p is a tight logical consequence of K iff p is the infimum
of Pr(F ) subject to all models Pr of K.



1: function Bundle(K, C)
2: Input: K (the knowledge base)
3: Input: C (the concept to be tested for unsatisfiability)
4: Output: the probability of the unsatisfiability of C w.r.t. K
5: Build Map PMap from DL axioms to sets of couples (V ar, probability)
6: Explanations←GetExplanations(C,K, ∅)
7: Initialize V arAxAnn to empty . V arAxAnn: array of triples (Axiom, θ, Prob)
8: BDD ←BDDZero
9: for all Explanation ∈ Explanations do

10: BDDE ←BDDOne
11: for all (Ax, θ) ∈ Explanation do
12: (V ar, p)← PMap(Ax)
13: Scan V arAxAnn looking for (Ax, θ)
14: if !found then
15: Add to V arAxAnn a new cell containing (Ax, θ, p)
16: end if
17: Let i be the position of (Ax, θ, p) in V arAxAnn
18: B ← BDDGetIthVar(i)
19: BDDE ←BDDAnd(BDDE,B)
20: end for
21: BDD ←BDDOr(BDD,BDDE)
22: end for
23: return Prob(BDD) . V arAxAnn is used to compute P (X) in Prob
24: end function

Fig. 4. Function Bundle: computation of the probability of a concept C given the
knowledge base K.

Nilsson’s logic allows weaker conclusions than the distribution semantics: con-
sider a probabilistic ontology composed of the axioms 0.4 :: a : C and 0.5 :: b : C
and a probabilistic knowledge base composed of C(a) ≥ 0.4 and C(b) ≥ 0.5.
The distribution semantics allows to say that P (a : C ∨ b : C) = 0.7, while with
Nilsson’s logic the lowest p such that Pr(C(a) ∨ C(b)) ≥ p holds is 0.5. This is
due to the fact that in the distribution semantics the probabilistic axioms are
considered as independent, which allows to make stronger conclusions. However,
this does not restrict expressiveness as one can specify any joint probability dis-
tribution over the logical ground atoms interpreted as Boolean random variables,
possibly introducing new atoms if needed.

6 Experiments

We evaluate the performances of BUNDLE in two different ways. In the first,
following [15], we ran BUNDLE and the publicly available version of PRONTO
to answer queries to increasingly complex ontologies obtained by randomly sam-
pling axioms from a large probabilistic ontology for breast cancer risk assess-
ment (BRCA) and compared their results. The central idea behind the design



of the ontology was to reduce risk assessment to probabilistic entailment in P-
SHIQ(D). The BRCA ontology is divided into two parts: a certain part and a
probabilistic part. The probabilistic part contains conditional constraints of the
form (D|C)[l, u] that informally mean “generally, if an object belongs to C, then
it belongs to D with a probability in the interval [l, u]”.

The tests were defined by randomly sampling axioms from the probabilistic
part of this ontology. In particular, each test case has been generated by sampling
a subset of conditional constraints of the probabilistic part and adding these
constraints to the certain part. So each sample was a probabilistic knowledge base
with the full certain part of the BRCA ontology and a subset of the probabilistic
constraints. We varied the number of these constraints from 9 to 15, and, for each
number, we repeatedly sampled ontologies and tested them for consistency. We
stopped sampling when we obtained 100 consistent ontologies for each number
of constraints.

In order to generate a query, an individual a is added to the ontology. a is ran-
domly assigned to each class that appears in the sampled conditional constraints
with probability 0.6. If the class is composite, as for example Postmenopausal-
WomanTakingTestosterone, a is assigned to the component classes rather than
to the composite one. In the example above, a will be added to Postmenopausal-
Woman and WomanTakingTestosterone.

The ontologies are then translated into DISPONTE by replacing the con-
straint (D|C)[l, u] with the axiom u ::x C v D. For instance, the statement that
an average woman has up to 12.3% chance of developing breast cancer in her
lifetime is expressed by

(WomanUnderAbsoluteBRCRisk|Woman)[0, 0.123]

is translated into

0.123 ::x WomanUnderAbsoluteBRCRisk vWoman

For each ontology we perform the query a : C where the class C is randomly
selected among those that represent women under increased and lifetime risk
such as WomanUnderLifetimeBRCRisk and WomanUnderStronglyIncreasedBR-
CRisk. We then applied both BUNDLE and PRONTO to each generated test
and we measured the execution time and the memory used. Figure 5(a) shows
the execution time averaged over the 100 knowledge bases as a function of the
number of axioms and, similarly, Figure 5(b) shows the average amount of mem-
ory used. As one can see, execution times was similar for small knowledge bases,
but the difference between the two reasoners rapidly increases for larger knowl-
edge bases. The memory usage for BUNDLE is always less than 53 percent that
of PRONTO.

In the second approach we used BUNDLE to compute lower bounds on the
probability of queries to three larger real world datasets. The first one models the
carcinogenesis prediction of cells, the second one is an extract from DBPedia and
the third is an extract from education.data.gov.uk that contains information



(a) Execution times (ms). (b) Memory used (Kb).

Fig. 5. Comparison between BUNDLE and PRONTO.

about the school system in the United Kingdom. All queries were concept mem-
bership axioms ind : C where ind is an individual and C is a class contained in
the ontology. To choose the class C for each individual ind we randomly selected
a class to which ind belongs in the ontology, so that each query has at least one
explanation. To obtain a probabilistic ontology, all axioms were considered as
statistical probabilistic axioms. We set to 10 the maximum number of explana-
tions for each query. In Table 2 we report for each dataset the number of axioms
contained in the ontology, the average number of explanations for each query,
the number of queries executed, the average time in milliseconds that BUNDLE
took for building the BDD and the average time for the overall execution of a
query. In particular, the number of explanations for the Carcinogenesis dataset
is on average between 50 and 100 because the ontology is very complex. In order
to find all the explanations of a query w.r.t. this dataset, BUNDLE took on
average about 2 hours. Therefore we did several tests to find a good compromise
between the computation time and the approximation of the probability of the
query, in order to choose a value that allowed BUNDLE to answer a query in a
relatively short time with a small approximation of the final probability. After
these tests, we choose 10 as value of maximum value of explanations to find.

These tests show that BUNDLE is able to scale to ontologies of realistic size
and that the most expensive operation of the algorithm is the computation of
explanations whle the construction of the BDD is usually cheaper.

Dataset n. axioms n. expl n. queries BDD time (ms) total time (ms)

Carcinogenesis 74226 10 335 383.2 60766

DBPedia 3757 2.3 3607 128.2 41597

educational.data.gov.uk 5545 1.9 5723 101.7 45651
Table 2. Results of the experiments.



7 Conclusions

BUNDLE computes the probability of queries from uncertain DL knowledge
bases following the DISPONTE semantics. BUNDLE is available for download
from http://sites.unife.it/ml/bundle together with the datasets used in
the experiments. BUNDLE has been tested on random ontologies of increasing
complexity regarding breast cancer risk assessment and on other real world on-
tologies. BUNDLE is also used in the system EDGE appearing in this volume
[23] for learning the parameters of DISPONTE ontologies.

In the future, we plan to apply this approach to different DLs, such as
SHOIN (D) that is the semantics on which OWL DL is based.
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