1.1

A Survey of Probabilistic
Logic Programming

Fabrizio Riguzzi, Dipartimento di Matematica e Informatica, University of Ferrara, Ferrara,
Italy

Theresa Swift, Coherent Knowledge Systems, Mercer Island, Washington, USA and NOVA
LINCS Universidade Nova de Lisboa, Portugal

The combination of logic programming and probability has proven useful for modeling
domains with complex and uncertain relationships among elements. Many probabilistic logic
programming (PLP) semantics have been proposed, among these the distribution semantics
has recently gained an increased attention and is adopted by many languages such as the
Independent Choice Logic, PRISM, Logic Programs with Annotated Disjunctions, ProbLog
and P-log.

This chapter reviews the distribution semantics, beginning in the simplest case with strati-
fied Datalog programs, and showing how the definition is extended to programs that include
function symbols and non-stratified negation. The languages that adopt the distribution se-
mantics are also discussed and compared both to one another and to Bayesian networks. We
then survey existing approaches for inference in PLP languages that follow the distribution se-
mantics. We concentrate on the PRISM, ProbLog and PITA systems. The PRISM system was
one of the first and can be applied when certain restrictions on the program hold. ProbLog
introduced the use of Binary Decision Diagrams that provide a computational basis for re-
moving these restrictions and so performing inference over more general classes of logic
programs. PITA speeds up inference by using tabling and answer subsumption. It supports
general probabilistic programs, but can easily be optimized for simpler settings and even pos-
sibilistic uncertain reasoning. The chapter also discusses the computational complexity of the
various approaches together with techniques for limiting it by resorting to approximation.

Introduction

If inference is a central aspect of mathematical logic, then uncertain inference (a term coined
by Henry Kyburg) is central to much of computational logic and to logic programming in
particular. The term uncertain inference captures non-monotonic reasoning, fuzzy and pos-
sibilistic logic, as well as combinations of logic and probability. Intermixing probabilistic
with logical inference is of particular interest for artificial intelligence tasks such as modeling
agent behavior, diagnosing complex systems, assessing risk, and conducting structure learn-

ing. It is also useful for exploiting learned knowledge that it is itself probabilistic, such as
used in medicine, bioinformatics, natural language parsing, marketing, and much else. These
aspects have led to a huge amount of research into probabilistic formalisms such as Bayesian
networks, Markov networks, and statistical learning techniques.

These trends have been reflected within the field of logic programming by various ap-
proaches to Probabilistic Logic Programming (PLP). These approaches include the languages
and frameworks Probabilistic Logic Programs [Dantsin||1991]], Probabilistic Horn Abduction
[Poole|1993b], PRISM [Sato 19935]], Independent Choice Logic [Poole|1997]|, pD [Fuhr{2000],
Bayesian Logic Programs [Kersting and Raedt/[2001]], CLP(BN) [Costa et al./[2003]], Logic
Programs with Annotated Disjunctions [Vennekens et al.|2004], P-log [Baral et al.|[2009],
ProbLog [De Raedt et al.[2007] and CP-logic [[Vennekens et al.[2009]]. While such a profusion
of approaches indicates a ferment of interest in PLP, the question arises that if there are so
many different languages, is any of them the right one to use? And why should PLP be used
at all as opposed to Bayesian networks or other more popular approaches?

Fortunately, most of these approaches have similarities that can be brought into focus using
various forms of the distribution semantics [Sato 19951]_1 Under the distribution semantics, a
logic program defines a probability distribution over a set, each element of which is a normal
logic program (termed a world). When there are a finite number of such worlds, as is the case
with Datalog programs, the probability of an atom A is directly based on the proportion of the
worlds whose model contains A as true. It can immediately be seen that distribution semantics
are types of frequency semantics (cf. e.g., [Halpern/2003])). By replacing worlds with sets of
worlds, the same idea can be used to construct probabilities for atoms in programs that have
function symbols and so may have an infinite number of worlds. Given these similarities,
various forms of the distribution semantics differ on how a model is associated with a world:
a model may be a (minimal) stratified model, a stable model, or even a well-founded model.
Finally, the semantics of Bayesian networks can be shown to be equivalent to a restricted class
of probabilistic logic program under the distribution semantics, indicating that approaches to
PLP are at least as powerful as Bayesian networks.

For these reasons, this chapter uses the distribution semantics as an organizing principle to
present an introduction to PLP. Our focus on the distribution semantics and on the problem
of inference distinguishes this survey from [De Raedt and Kimmig|2015], a useful overview
that focuses more on the actual programming in PLP. Accordingly, Section[I.2]starts with ex-
amples of some PLP languages. Section[I.3]then formally presents the distribution semantics
in stages. The simplest case — that of Datalog programs with a single stratified model — is
presented first in Section using this basis the languages of Section are shown to be
expressively equivalent for stratified Datalog. Next, Section [I.3.3]extends the distribution se-
mantics for programs with function symbols, by associating each explanation of a query (a set

U'In this chapter the term distribution semantics is used in different contexts to refer both to a particular semantics
and to a family of related semantics.

1.2

of probabilistic facts needed to prove the query) with a set of worlds, and constructing prob-
ability distributions on these sets. As a final extension, the assumption of a single stratified
model for each world is lifted (Section [[.3.4).

Section [I.4] discusses semantics for probabilistic logics that are alternative to the distribu-
tion semantics. Section [I.3then discusses PLP languages that are closely related to Bayesian
networks and shows how Bayesian networks are equivalent to special cases of PLPs.

The distribution semantics is essentially model-theoretic; Section discusses how infer-
ences can be made from probabilistic logic programs. First, the relevant complexity results are
recalled in Section[I.6.1} given that probabilistic logic programs are as expressive as Bayesian
networks, query answering in probabilistic logic programs is easily seen to be NP-hard, and
in fact is #P-complete. Current exact inferencing techniques for general probabistic logic
programs, such as the use of Binary Decision Diagrams as pioneered in the ProbLog sys-
tem [Kimmig et al[2011] are discussed in Section|[I.6.2] Section[I.6.3|discusses special cases
of probabilistic logic programs for which inferencing is tractable and that have been exploited
especially by the PRISM system [Sato et al.|[2010]. Section concludes the chapter with a
final discussion.

Background and Assumptions

This survey can be read either by those with familiarity with logic programming who want
to learn about its probabilistic extensions, or by those with background in probabilistic
programming systems who want to learn how probabilistic reasoning can be modeled and
implemented in logic programming. In terms of logic programming, we assume a basic
familiarity with the syntax and terminology of Prolog/ASP, along with the general notion
that programs may have different types of models depending on how negation is used. For
instance, there are two main semantics for negation that are implemented in current logic
programming systems: stable models and well-founded models, see [Truszczynski|2018] for a
gentle introduction. These two semantics coincide for programs that either do not use negation
(definite programs), or where negation is well-behaved (stratified programs) [[Iruszczynski
2018|]. Technical details about these models, such as how they are constructed via a fixed point,
are not required. In terms of probability theory, we usually assume only a basic understanding
of discrete distributions; definitions of other concepts are recalled when needed.

Languages with the Distribution Semantics

The languages following distribution semantics largely differ in how they encode choices
for clauses, and how the probabilities for these choices are stated. In all languages, however,
choices are independent from each other. As will be shown in Section[I.3.2] as long as models
for the various types of programs are associated to worlds in the same manner — they all have
the same expressive power. This fact shows that the differences in the languages are syntactic,
and also justifies speaking of the distribution semantics.

1.2.0.1

1.2.0.2

Probabilistic Horn Abduction
In Probabilistic Horn Abduction (PHA) [Poole|[1993b|] and Independent Choice Logic (ICL)
[Poole||1997], alternatives are expressed by facts, called disjoint-statements, having the form

disjoint([Ay : p1,...,An: pul)-

where each A; is a logical atom and each p; a number in [0, 1] such that Y} ; p; = 1. Such
a statement can be interpreted in terms of its ground instantiations: for each substitution 0
grounding the atoms of the statement, the A;0s are random alternatives and A;0 is true with
probability p;. Each world is obtained by selecting one atom from each grounding of each
disjoint-statement in the program. In practice, each ground instantiation of a disjoint statement
corresponds to a random variable with as many values as the alternatives in the statement.
The variables corresponding to different instantiations of the same disjoint statement are
independent and identically distributed (iid).

Example 1. The following PHA/ICL program encodes the fact that a person sneezes if he has
the flu and this is the active cause of sneezing, or if he has hay fever and hay fever is the active
cause for sneezing:

sneezing(X) :- flu(X), flu_sneezing(X).

sneezing(X) :- hay_fever(X),hay_fever_sneezing(X).
Slu(bob).

hay fever(bob).

dis joint ([flu_sneezing(X) : 0.7,null : 0.3]). (Cy)
dis joint ([hay fever_sneezing(X) : 0.8,null : 0.2]). (G)

Here, and for the other languages based on the distribution semantics, the atom null does not
appear in the body of any clause and is used to represent an alternative in which no atom is

selected.

PRISM
The language PRISM [Sato and Kameyal|1997] is similar to PHA/ICL but introduces random
facts via the predicate msw/3 (multi-switch):

msw(SwitchName, Trialld, Value).

The first argument of this predicate is a random switch name, a term representing a set
of discrete random variables; the second argument is an integer, the frial id; and the third
argument represents a value for that variable. The set of possible values for a switch is defined
by a fact of the form

values(SwitchName, [v1, ..., vy)).

where SwitchName is again a term representing a switch and each v; is a term. Each ground
pair (SwitchName,Trialld) represents a distinct random variable and the set of random
variables associated with the same switch are iid.

The probability distribution over the values of the random variables associated to
SwitchName is defined by a directive of the form

:- set_sw(SwitchName, [p1,.. ., pn])-

where p; is the probability that variable SwitchName takes value v;. Each world is obtained by
selecting one value for each trial id of each random switch.

Example 2. The modeling of coin tosses shows differences in how the various PLP languages
represent iid random variables. Suppose that coin c is known not to be fair, but that all tosses
of c1 have the same probabilities of outcomes — in other words each toss of ¢ is taken from a
Sfamily of iid random variables. This can be represented in PRISM as

values(cy, [head,tail)).
:- set_sw(cy,[0.4,0.6])

Different tosses of ¢ can then be identified using the trial id argument of msw/3.

In PHA/ICL and many other PLP languages, each ground instantiation of a disjoint/1
statement represents a distinct random variable, so that iid random variables need to be
represented through the statement’s instantiation patterns: e.g.,

dis joint([coin(c1, TossNumber, head) : 0.4, coin(cy, TossNumber,tail) : 0.6]).

In practice, the PRISM systems accepts an msw/2 predicate whose atoms do not contain
the trial id and for which each occurrence in a program is considered as being associated to a
different new variable.

Example 3. Example(I|can be encoded in PRISM as:

sneezing(X) :- flu(X), msw(flu_sneezing(X), 1).

sneezing(X) :- hay fever(X),msw(hay_fever _sneezing(X),1).
Sflu(bob).

hay _fever(bob).

values(flu_sneezing(X),[1,0]).
values(hay_fever _sneezing(X),[1,0]).

:- set_sw(flu_sneezing(_X),[0.7,0.3]).

:- set_sw(hay_fever_sneezing(_X),[0.8,0.2]).

1.2.0.3

1.2.04

Logic Programs with Annotated Disjunctions

In Logic Programs with Annotated Disjunctions (LPADs) [Vennekens et al.|[2004], the al-
ternatives are expressed by means of annotated disjunctive heads of clauses. An annotated
disjunctive clause has the form

Hii . pits...sHip; @ pin; - Bit, .., Bim;

where H;1, ..., H;y, are logical atoms, By1,..., By, are logical literals and pj1, ..., pin, are real
numbers in the interval [0, 1] such that ¥';" | py = 1. Each world is obtained by selecting one
atom from the head of each grounding of each annotated disjunctive Claus

Example 4. Example|l|can be expressed in LPADs as:

sneezing(X) : 0.7V null : 0.3 :- flu(X). (Cy)
sneezing(X) : 0.8V null : 0.2 :- hay_fever(X). (C2)
Slu(bob).
hay fever(bob).

ProbLog

The design of ProbLog [De Raedt et al.[2007] was motivated by the desire to make as simple
a probabilistic extension of Prolog as possible. In ProbLog alternatives are expressed by
probabilistic facts of the form

pi A

where p; € [0,1] and A; is an atom, meaning that each ground instantiation A;0 of A; is true
with probability p; and false with probability 1 — p;. Each world is obtained by selecting or
rejecting each grounding of all probabilistic facts.

Example 5. Example([l|can be expressed in ProbLog as:

sneezing(X) :- flu(X),flu_sneezing(X).

sneezing(X) :- hay fever(X), hay fever_sneezing(X).
Slu(bob).

hay_fever(bob).

0.7 :: flu_sneezing(X).

0.8 :: hay fever_sneezing(X).

As for ICL, in LPADs and ProbLog each grounding of a probabilistic clause is associated
to a random variable with as many values as head disjuncts for LPADs and with two values
for ProbLog. The random variables corresponding to different instantiations of a probabilistic
clause are iid.

2 CP-logic [Vennekens et al.[2009] has a similar syntax to LPADs, and the semantics of both languages coincide for
stratified Datalog programs.

1.3

1.3.1

Defining the Distribution Semantics
In presenting the distribution semantics, we use the term probabilistic construct to refer to
disjoint-statements, multi-switches, annotated disjunctive clauses, and probabilistic facts, in
order to discuss their common properties.

The distribution semantics applies to unrestricted normal logic programs. Nonetheless, for
the purposes of explanation, we begin in Section[I.3.1|by making two simplifications.

e Datalog Programs: if a program has no function symbols, the Herbrand universe is finite
and so is the set of groundings of each probabilistic construct.

o Stratified Programs: these programs have either a total well founded model [Van Gelder
et al.|1991] or equivalently a single stable model [Gelfond and Lifschitz 1988ﬂ

With the distribution semantics thus defined, Section[I.3.2]discusses the relationships among
the languages presented in Section Afterwards, the restriction to Datalog programs is
lifted in Section[I.3.3] while the restriction of stratification is lifted in Section[T.3.4] We note
that throughout this section, all probabilities distributions are discrete; however continuous
probability distributions have also been used with the distribution semantics [[Gutmann et al.
2011al [Islam et al.[2012]].

The Distribution Semantics for Stratified Datalog Programs

An atomic choice is the selection of the i-th atom for grounding C8 of a probabilistic construct
C. It is denoted with the triple (C,0,i) where C is a clause, 0 is a grounding substitution and
i is the index of the alternative atom chosen. In Example [I} (Cy,{X/bob},1) is an atomic
choice relative to disjoint-statement

C| = disjoint([flu_sneezing(X) : 0.7,null : 0.3]).

denoting the selection of atom flu_sneezing(bob). Atomic choices for other languages are
made similarly: for instance, an atomic choice for a ProbLog fact p :: foo(X) and a substitution
0 = {X/a} can be obtained by interpreting the fact as C = foo(X) : pVnull : 1 —p,so (C,0,1)
selects atom AB while (C,0,2) selects atom null.

A set of atomic choices is consistent if it does not contain two atomic choices (C,9,i) and
(C,9,) with i = j (only one alternative is selected for a ground probabilistic construct).

A composite choice x is a consistent set of atomic choices, i.e., if (C,0,i) € xand (C, 0, j) €
K then i = j. In Example[] the set of atomic choices k = {(Ci,{X /bob}, 1), (C1,{X /bob},2)}

3 This restriction is sometimes called soundness in the PLP literature. There have been various definitions of
stratification in the literature, which involve various types of negative self-dependency occurring in the derivation
of an atom A. Among the most general is that of [Przymusinskif1989], in which a program is dynamically stratified
iff it has a two-valued well-founded model. This notion of stratification is used (sometimes implicitly) in this chapter.

is not consistent. The probability of composite choice K is

Pi)=] m
(C.8,i)ek
where p; is the probability of the i-th alternative for probabilistic construct C.
A selection G is a total composite choice, i.e., it contains one atomic choice for every
grounding of each probabilistic construct. A selection in Example [T]is

61 = {(C1,{X /bob}, 1), (Ca, {X /bob},1)}.

A world ws is a normal logic program that is identified by a selection 6. The world
we is formed by replacing probabilistic constructs from the program with the non prob-
abilistic constructs corresponding to each atomic choice of 6. In other words, for each
atomic choice (C,0,i), a ground clause or fact is obtained from CO by selecting the i-th
alternative from the construct. For instance, given the previous selection Gj, the atoms
flu_sneezing(bob) and hay_fever_sneezing(bob) would be added to the first four clauses of
Example |1| to make wg,. Note that a world is a normal logic program, which may include
rules and facts, see Examples [6] and [7] below. For the LPAD of Example [] the selection
o1 ={(Cy,{X/bob},1),(Cs,{X /bob},1)} yields the clauses

sneezing(bob) :- flu(bob).
sneezing(bob) :- hay_fever(bob).

that are included in wg, .
The probability of a world wg is

P(ws)=P(c)= [] p:

Since in this section we are assuming Datalog programs, the set of groundings of each
probabilistic construct is finite, and so is the set of worlds Wr. Accordingly, for a proba-
bilistic logic program T, Wy = {wjy,...,wy, }. Moreover, P(w) is a distribution over worlds:
ZWEWT P(W) =1

Let O be a query in the form of a ground atom. We define the conditional probability of
Q given a world w as: P(Q|w) = 1 if Q is true in the model of w and 0 otherwise. Since in
this section we consider only stratified negation (sound programs), w has only one two-valued
model and Q can be only true or false in it. The probability of Q can thus be computed by
summing out the worlds from the joint distribution of the query and the worlds:

P(Q) =Y P(Q,w) =Y P(Qw)P(w)= Y P(w)

e

Example 6. The PHA/ICL program of Example |I| has four worlds {wi,wa,w3,wa}, each
containing the certain (non-probabilistic) clauses:

sneezing(X) :- flu(X),flu_sneezing(X).

sneezing(X) :- hay fever(X), hay fever_sneezing(X).
flu(bob).

hay_fever(bob).

The facts from disjoint-statements are distributed among the worlds as:

w1 = flu_sneezing(bob). wy = null.
hay_fever_sneezing(bob). hay fever _sneezing(bob).
P(wi) =0.7% 0.8 P(w>) = 0.3 % 0.8

ws = flu_sneezing(bob). wa = null.
null. null.
P(w3) =0.7x0.2 P(ws) =0.3%0.2

The query sneezing(bob) is true in three worlds and its probability is
P(sneezing(bob)) =0.7 x0.840.3 x0.8+0.7 x 0.2 =0.94.

Example 7. The LPAD of Example | has four worlds {w,wa,w3,wa}:

wi = sneezing(bob) :- flu(bob). wy = null :- flu(bob).
sneezing(bob) :- hay fever(bob). sneezing(bob) :- hay fever(bob).
Slu(bob). Sflu(bob).
hay_fever(bob). hay_fever(bob).
P(wi) =0.7% 0.8 P(ws) = 0.3% 0.8
ws = sneezing(bob) :- flu(bob). wa = null :- flu(bob).
null :- hay_fever(bob). null :- hay_fever(bob).
Slu(bob). Slu(bob).
hay fever(bob). hay _fever(bob).
P(w3) =0.7%0.2 P(ws) =0.3x0.2

The query sneezing(bob) is true in 3 worlds and its probability is
P(sneezing(bob)) =0.7x0.840.3 x0.8+0.7x0.2=0.94

The probability of sneezing(bob) is calculated in a similar manner for PRISM and ProbLog.

1.3.2

Example 8. PHA/ICL, PRISM and LPADs can have probabilistic statements with more than
two alternatives. For example, the LPAD

Cy = strong_sneezing(X) : 0.3V moderate_sneezing(X) : 0.5 :-
Su(X).

Cy = strong_sneezing(X) : 0.2V moderate_sneezing(X) : 0.6 :-
hay_fever(X).

Cz= flu(david).

Cy = hayfeer(david).

encodes the fact that flu and hay fever can cause strong sneezing, moderate sneezing or
no sneezing. The clauses contain an extra atom null in the head that receives the missing

probability mass and that is left implicit for brevity.

Equivalence of Expressive Power
To show that all these languages have the same expressive power for stratified Datalog pro-
grams, we discuss transformations among probabilistic constructs from the various languages.
The mapping between PHA/ICL and PRISM translates each PHA/ICL disjoint statement into
a multi-switch declaration and vice-versa in the obvious way. The mapping from PHA/ICL
and PRISM to LPADs translates each disjoint statement/multi-switch declaration into a dis-
junctive LPAD fact.

The translation from an LPAD into PHA/ICL (first shown in [[Vennekens and Verbaeten
2003|]) rewrites each clause C; with v variables X

H :piVv..VH,:p,:-B.

into PHA/ICL by adding n new predicates {choice;1/v,...,choice; ,/v} and a disjoint state-
ment:

H, :- B, choice; | (X).

H, :- B,choice; ,(X).

dis joint([choice; 1(X) : pi,...,choice; n(X) : pn])-
For instance, clause C; of the LPAD of Example E] is translated to

strong_sneezing(X) :- flu(X), choice; 1 (X).
moderate_sneezing(X) : 0.5 :- flu(X), choice; 2(X).
dis joint([choice; 1 (X) : 0.3, choice; 2(X) : 0.5, choice; 3 : 0.2]).

where the clause null :- flu(X),choice, 3. is omitted since null does not appear in the body of
any clause. Finally, as shown in [De Raedt et al.|2008]], to convert LPADs to ProbLog, each

10

1.3.2.1

clause C; with v variables X
Hy:p1V...VH, : p,:-B.
is translated into ProbLog by adding n — 1 probabilistic facts for predicates { fi.1 /v, ..., fin/v}:
H; :- B, f;1(X).

H, - B,not(fi1(X)), fi2(X).

H, :- B,not(f;1(X)),...,not(fin—1(X)).

T fi1(X).
Th—1 Zifi,nfl(Y).
where T} = p;, T = 157%1’ T = U—mgﬁ’ In general T; = m Note that

while the translation into ProbLog introduces negation, the introduced negation only involves
probabilistic facts, and so the transformed program will have a two-valued model whenever
the original program does.

For instance, clause C; of the LPAD of Example E]is translated to

strong_sneezing(X) :- flu(X), f1.1(X).
moderate_sneezing(X) : 0.5 :- flu(X),not (f11(X)), f1.2(X).
0.3: f171(X).

0.71428571428 :: f1 2(X).

Additional Examples

Example 9. The following program encodes the Mendelian rules of inheritance of the color
of pea plants [Blockeel|2004|]. The color of a pea plant is determined by a gene that exists
in two forms (alleles), purple, p, and white, w. Each plant has two alleles for the color gene
that reside on a couple of chromosomes. cg(X,N,A) indicates that plant X has allele A on
chromosome N. The facts of the program express that c is the offspring of f and m and that
the alleles of m are ww and of f are pw. The disjunctive rules encode the fact that an offspring
inherits the allele on chromosome 1 from the mother and the allele on chromosome 2 from the
father. In particular, each allele of the parent has a probability of 50% of being transmitted.
The definite clauses for color express the fact that the color of a plant is purple if at least one
of the alleles is p, i.e., that the p allele is dominant.

color(X,white):- cg(X,1,w),cg(X,2,w).
color(X,purple):- cg(X,-A,p).

11

1.3.3

cg(X,1,A):0.5 V cg(X,1,B):0.5 :- mother(Y,X),cg(Y,1,A),cg(Y,2,B).
cg(X,2,A):0.5 V cg(X,2,B):0.5 :- father(Y,X),cg(Y,1,A),cg(Y,2,B).

mother(m,c). father(f,c).
cg(m,1,w). cg(m,2,w). cg(f,1,p). cg(f,2,w).

Example 10. An interesting application of PLP under the distribution semantics is the
computation of the probability of a path between two nodes in a graph in which the presence
of each edge is probabilistic:

path(X,X).
path(X,Y) :- path(X,Z),edge(Z,Y).

edge(a,b):0.3. edge(b,c):0.2. edge(a,c):0.6.

This program, coded in ProbLog, was used in [De Raedt et al.||2007|] for computing the
probability that two biological concepts are related in the BIOMINE network [Sevon et al.
20006|].

Distribution Semantics for Stratified Programs with Function Symbols

When a program contains functions symbols, there is the possibility that its grounding may
be infinite. If so, there may be an uncountably infinite number of worlds, or equivalently, the
number of atomic choices in a selection that defines a world may be infinite. In this case,
the probability of each individual world is zero since it is the product of infinite numbers
all smaller than one. So the semantics as defined in Section is not well-defined. The
distribution semantics with function symbols has been proposed for PRISM [Sato||1995| and
ICL [[Poole[1997] but is easily applicable also to the other languages discussed in Section[I.2]
Before delving into the semantics, we first present a motivating example.

Example 11. A Hidden Markov Model (HMM) is a graphical model that represents a time-
dependent process with a state and an output symbol for every time point. The state at time
t depends only on the state at the previous time point t — 1 while the output symbol at time t
depends only on the state at the same time t. Let us suppose that the initial time is 0 and the
final time is T. HMMs, which are used in speech recognition and many other applications,
are usually represented as in Figure[I.]

There are various specialized algorithm for computing the probability of an output, the
state sequence that most likely gave a certain output and the values of the parameters.
However the HMM of Figure|l.l|can also be easily encoded as a probabilistic logic program
(in this case an LPAD):

hmm(S,0) :- hmm(q1,[],S,0).
hmm(end,S,S,[]).

12

Figure 1.1

QoD v QD

Hidden Markov Model.

hmm(Q,S0,S,[L|O]) :-
Q \= end, next_state(Q,Q1,S0),
emission(Q,L,S0), hmm(Q1,[Q]|S0],S,0).

next_state(ql,q1,S):1/4 V next_state(ql,q2,S):1/2 V
next_state(ql,end,S):1/4.

next_state(q2,q1,5):1/2 V next_state(q2,q2,S):1/4
next_state(q2,end,S):1/4.

emission(ql,a,S):1/6 V emission(ql,c,S):1/6 V
emission(ql,g,S):1/6 V emission(q1,t,S):1/2.

emission(q2,a,S):1/4 V emission(q2,c,S):1/6 V
emission(q2,g,S):5/12 V emission(q2,t,S):1/6.

This programs models an HMM with three (hidden) states, q1, q2 and end, of which the last
is an end state. The output symbols are a, ¢, g, and t. This HMM can for example model
DNA sequences, where the output symbols are the amino-acids. The disjunctive clauses for
next_state/3 define the transition probabilities, while the disjunctive clauses for emission/3
define the output probabilities. hmm(S,0) is true when O is the output sequence for state
sequence S. hmm(Q,S0,S,0) is true when Q is the current state (time t), SO is the list of
previous states (up to time t — 1), S is the final list of states (for time points in [0,T]) and O is
the list of output symbols for the time interval [t,T). next_state(Q,Q1,S) is true when Q1 is
the next state from current state Q and list of previous states S. emission(Q,L,S) is true when
L is the output symbol from current state Q and list of previous states S.

Note that the clauses for next_state/3 and emission/3 have a variable argument holding
the list of previous states. This is needed in order to have a different random variable for the
next state and the output symbol for each time point. In fact, without that argument, in each
world a single next state and output symbol would be always selected for each time point.

Note that the above program uses a function symbol (the list constructor) for representing
the sequence of visited states. While finite HMMs can be represented by Bayesian networks,

13

1.3.3.1

1.3.3.2

if a probabilistic logic program with functions has an infinite grounding or if it has cycles, then
it cannot have a direct transformation into a Bayesian network. This theme will be discussed
further in Section[[.5.3

We now present the definition of the distribution semantics for programs with function
symbols following [Poole|[1997]. We preferred to follow [Poole|[1997]] because we think it is
more constructive than [Sato||1995].

Algebras and Probability Measures

The semantics for a probabilistic logic program T with function symbols is given by defining a
probability measure u over the set of worlds Wr. Informally, u assigns a probability to subsets
of Wr, rather than to every element of WTE] The approach dates back to [Kolmogorov||1950]
who defined a probability measure u as a real-valued function whose domain is a 6-algebra
Q of subsets of a set W called the sample space. Together (W, Q. u) is called a probability

space. [
Definition 1. The set Q of subsets of ‘W is an algebra of ‘W iff

o (a-1) WecQ;
e (a-2) Q is closed under complementation,
e (a-3) Q is closed under finite union, i.e., Vi € Q, v, € Q — (ViUVv;) € Q

The elements of Q are called measurable sets. Importantly, for defining the distribution
semantics for programs with function symbols, not every subset of W needs be present in Q.

Definition 2. Given a sample space ‘W and an algebra Q of subsets of W, a (finitely additive)
probability measure is a function u: Q — R that satisfies the following axioms:

o (u-1) u(v) >0 forallv e Q,

o (u2)u(W)=1;

o (u-3) u is finitely additive, i.e., if O = {Vv{,Va,...} C Q is a finite collection of pairwise
disjoint sets, then u(Uyco) = Liu(vi).

Defining a Probability Measure for Programs with the Distribution Semantics

Towards defining a suitable algebra given a probabilistic logic program T, define the set of
worlds V¢ compatible with a finite composite choice k as v = {wy € Wr|k C ¥'} where
K’ is also a finite composite choice. Thus a composite choice identifies a set of worlds. For
programs without function symbols P(k) = ¥.,,cy, P(w).

4 The probability measure is then turned into a probability distribution by the identity map.

3 For simplicity,we only consider the finite additivity version of probability spaces [Halpern|2003]. A more general
case, the case of countable additivity, is detailed in [[Sato and Kameya|2001]. In this case, probability measures are
defined over c-algebras.

14

Example 12. For Examplell] consider « = {(C1,{X /bob},1)}. The set of worlds compatible
with this composite choice is

Sflu_sneezing(bob). Sflu_sneezing(bob).
hay_fever _sneezing(bob). null.
P(w) =0.7x 0.8 P(ws) = 0.7 % 0.2

plus the non-probabilistic rules of Example (I} The probability of K is thus P(x) = 0.7 =
P(wi) +P(w2).

Given a set of composite choices K, the set of worlds Vg compatible with K is Vg =
Uxek Vx- Two composite choices K and K, are incompatible if their union is not consistent.
For example, the composite choices

k1 = {(Cy,{X/bob},1)}
and

Ky = {(Clv{X/bOb}vz)v (CZa{X/bOb}v l)}

are incompatible. A set K of composite choices is pairwise incompatible if for all x| € K, K, €
K, K1 # %3 implies that k; and K, are incompatible.
Note that in general, for programs without function symbols,

Y P()#) P(w)

xek WEVK

as can be seen from the following example.

Example 13. The set of composite choices for Example
K={xi,x} (1.1)

with x1 = {(C1,{X/bob},1)} and ks = {(C2,{X/bob},1)} is such that P(x;) = 0.7 and
P(x2) = 0.8 but ¥,,cy P(w) = 0.94.
If, on the other hand, K is pairwise incompatible then

ZP(K) = Z P(w).

xkekK WEVK

For example, consider
K = {x,%} (1.2)

with, = {(C1,{X /bob},2),(Cs,{X /bob},1)}. P(x,) =0.3-0.8 = 0.24 s0 the property holds
with the probabilities of the worlds summing up to 0.94.

Regardless of whether a probabilistic logic program has a finite number of worlds or not,
obtaining pairwise incompatible sets of composite choices is an important problem because

15

one way to assign probabilities to a set K of composite choices is to construct an equivalent set
that is pairwise incompatible. Two sets K| and K, of finite composite choices are equivalent
if they correspond to the same set of worlds: Vg, = Vg, .

Then the probability of a pairwise incompatible set K of composite choices is defined as

P(K)=) P(x). (1.3)
KeK
Given a set K of composite choices, an equivalent set that is pairwise incompatible can
be constructed through the technique of splitting. More specifically, if F'0 is an instantiated
formula and x is a composite choice that does not contain an atomic choice (F, 0, i) for any o,
the split of ¥ on F0 is the set of composite choices

Sero = {xU{(F,6,1)},....,xU{(F,8,n)}}

where 7 is the number of alternatives in F'. It is easy to see that k and Sx rg identify the same
set of possible worlds, i.e., that vi = Vg_ ... For example, the split of k| = {(Cy,{X /bob},1)}

on Co{X /bob} is

{{(C1,{X/bob},1),(Ca,{X /bob}, 1)},{(C1,{X /bob},1),(Ca,{X /bob},2)} }

K,FO*

The technique of splitting composite choices on formulas is used for the following re-
sult [[Poole|2000].

Theorem 1 (Existence of a pairwise incompatible set of composite choices [Poole|[2000]).
Given a finite set K of composite choices, there exists a finite set K' of pairwise incompatible
composite choices such that K and K' are equivalent.

Proof. Given a finite set of composite choices K, there are two possibilities to form a new set
K’ of composite choices so that K and K’ are equivalent:

1. removing dominated elements: if ;,%, € K and k] C &, let K’ = K\ {k>}.

2. splitting elements: if k;,x, € K are compatible (and neither is a superset of the other),
there is a (F,0,i) € k1 \ kz. We replace k; by the split of K, on F0. Let K’ = K\ {1} U
SKz,Fe'

In both cases Vg = vg/. If we repeat this two operations until neither is applicable, we obtain
a splitting algorithm (see Figure that terminates because K is a finite set of composite
choices. The resulting set K’ is pairwise incompatible and is equivalent to the original set. For
example, the splitting algorithm applied to K can return K’ . O

Theorem 2 (Equivalence of the probability of two equivalent pairwise incompatible finite sets

of finite composite choices [Poole|1993al). If K| and K, are both pairwise incompatible finite
sets of finite composite choices such that they are equivalent then P(K;) = P(K3).

16

Figure 1.2

1: procedure SPLIT(K)

2 Input: set of composite choices K

3 Output: pairwise incompatible set of composite choices equivalent to K
4 loop

5: if 31, %, € K and x| C k; then

6 K+ K\{x}

7 else

8 if 3K,k € K compatible then
9: choose (F,0,i) € 1 \ k2
10: K(—K\{KQ}USKLFQ
11: else
12: exit and return K
13: end if
14: end if
15: end loop

16: end procedure

Splitting Algorithm.

Proof. Consider the set D of all instantiated formulas F'0 that appear in an atomic choice in
either K; or K. This set is finite. Each composite choice in K; and K has atomic choices for
a subset of D. For both K; and K, we repeatedly replace each composite choice k of K| and
K5 with its split S re; on an F;6; from D that does not appear in K. This procedure does not
change the total probability as the probabilities of (F;,0;,1),...,(F;,8;,n) sumto 1.

At the end of this procedure the two sets of composite choices will be identical. In fact,
any difference can be extended into a possible world belonging to Vg, but not to vk, or vice
versa. O

Example 14. Recall from Examplethe set of composite choices K' = {x1,%, } with
k1 = {(C1,{X /bob}, 1)}
and
K3 = {(C1,{X/bob},2),(C2, {X /bob}, 1)}.
Consider also the composite choices

K11 = {(C1,{X/bob}, 1), (C2,{X /bob}, 1)},
K,I.Z = {(Clv{X/bOb}v 1)7 (C27{X/b0b}72)}

17

and the set K" = {x| ,,¥| ,,%,}. Note that K’ and K" are equivalent and are both pairwise
incompatible. By Theorem 2their probabilities are equivalent:

P(K’) =0.7+03x0.8=0.94
while
P(K")=0.7x0.840.7x0.2+0.3x0.8=0.94.

For a probabilistic logic program 7, we can thus define a unique probability measure
u: Qr — [0,1] where Qp is defined as the set of sets of worlds identified by finite sets of
finite composite choices:

Qr = {vk/|K is a finite set of finite composite choices}.

The corresponding measure u is defined by u(vg) = P(K’) where K’ is a pairwise incompatible
set of composite choices equivalent to K.

Theorem 3. (Wr,Qr,u) is a finitely additive probability space.

Proof. Qr is an algebra over Wy since Wy = vg with K = {0}. Moreover, the complement
of vg where K is a finite set of finite composite choice is Vg where K is a certain finite set
of finite composite choice. In fact, K can be obtained with the function duals(K) of [Poole
2000] that performs Reiter’s hitting set algorithm over K, generating an element ¥ of K by
picking an atomic choice (C,8,k) from each element of K and inserting in K an incompatible
atomic choice, i.e., an atomic choice (C,0,k’) with k # k. After this process is performed
in all possible ways, inconsistent sets of atom choices are removed obtaining K. Since the
possible choices of the atomic choices and of their incompatible counterparts is finite, so is K.

Finally, condition (a-3) holds since the union of vg, with vg, is equal to Vg,uk, by
definition.

p is a probability measure because u(vigy) = 1, u(vg) > 0 for all K and if vk, Nvg, =0
and K| (Kj}) is pairwise incompatible and equivalent to K; (K3), then K| UK} is pairwise
incompatible because vk, NVg, = 0 and

uvk, Uvi) =), P(x)= Y P(ki)+ Y, P(k)=pu(vk,)+u(Vg,)-

KeK| UK} K1 €K] K€K}

Given a query Q, a composite choice x is an explanation for Q if
Yweve, wEQ

A set K of composite choices is covering wrt Q if every world in which Q is true belongs to

Vk

18

1.3.3.3

Definition 3. For a probabilistic logic program T, the probability of a ground atom Q is given
by

P(Q) = u({wlw € Wr,w = 0})

If Q has a finite set K of finite explanations such that K is covering then {w|w € Wr Aw |=
0} = vk € Qr and we say that P(Q) is well-defined for the distribution semantics. A program
T is well-defined if the probability of all ground atoms in the grounding of T is well-defined.

Example 15. Consider the PHA/ICL program of Example([I| The two composite choices:

k1 = {(C,{X/bob},1)}

and
2 ={(C1,{X/bob},2),(C2,{X /bob},1)}

are such that K = {x1,%2} is a pairwise incompatible finite set of finite explanations that
are covering for the query Q = sneezing(bob). Definition |3| therefore applies, and P(Q) =
P(x1)+P(k2) =0.740.3-0.8 =0.94

Comparison with Sato and Kameya’s Definition
[Sato and Kameya|2001]] build a probability measure on the sample space Wr from a collection
of finite distributions. Let T’ = {C1,C3,...} be the grounding of T and let X; be a random
variable associated to C; whose domain is {1,..., j;} where j; is the number of alternatives of
C,'.

The finite distributions P}”) (X1 =ki1,...,X, =k,) for n > 1 must be such that

0<PM X =ki,... Xy =hky) <1

Yok PG =Ky Xy = k) = 1

Y P (X =ty Xt = k1) =
P (Xy =ky,... Xy = ky)

(1.4)

where k; € {1,..., j;}. The last equation is called the compatibility condition. It can be proved
[Chow and Teicher|2012| from the compatibility condition that there exists a probability space
(Wr,¥r,m) where 1 is a probability measure on W7, the minimal c-algebra containing open
sets of Wr such that for any n,

N1 =kt Xy =ky) =PV (X) = ki, Xy = k). (1.5)

[Sato and Kameya [2001] define P}">(X1 =ki,..., X, = k) as P;”)(Xl =k, Xy = k) =
p1 - .. by Where p; is the annotation of alternative k; in clause C;. This definition clearly satisfies
the properties in (T.4).

19

1.3.34

1.3.4
1.34.1

It can be shown that this definition of the distribution semantics with function symbols
coincides with the one given above following [Poole|[1997] in the case that each ground atom
has a finite set of finite explanations that is covering.

In this case, in fact, X; = ky,...,X,, = k, is equivalent to the set of composite choices
K = {{(C1,0,k1),...,(Cy,0,ky)}} and u(vg) is equal to pj ...p,, which satisfies equation
(L.5).

Programs for which the Distribution Semantics is Well-defined
Inference procedures often rely on the computation of a covering set of explanations. In
this sense, the notion of well-defined programs is important, as it ensures that the set of
explanations is finite and so is each explanation. Therefore an important open question is
to understand when a program or query is well-defined, and to identify cases where there
are decidable algorithms to determine this. For instance, ground queries to the program of
Example [TT] which describe an HMM, are well-defined as each such query has a finite set
of finite explanations which is covering — even though there are an infinite number of such
queries.

In PRISM well-definedness of a program is explicitly required [Sato and Kameyal2001].
In PHA/ ICL the program (excluding disjoint statements) is required to be acyclic [Apt and
Bezem||1991]]. The condition of modular acyclicity is proposed in [Riguzzil[2009] to enlarge
the set of programs. This condition was weakened in [Riguzzi and Swift|2013]] to the set
of programs that are bounded term-size, a property whose definition is based on dynamic
stratification. While the property of being bounded term-size is semi-decidable, such programs
include a number of recent static classes for programs with finite models (cf. [Alviano et al.
2010, [Baselice and Bonatti/[2010, (Calimeri et al.|[2011} |Greco et al.|[2013]] for some recent
work on decidability of stable models).

The works [Gorlin et al|2012| |Sato and Meyer| 2012]] go beyond well-definedness by
presenting inference algorithm that can deal with infinite explanations for restricted classes of
programs.

The Distribution Semantics for Non-Stratified Programs
The Well-Founded Semantics
The distribution semantics can be extended in a straightforward manner to the well-founded
semantics (WFSﬂ In the following, ws |= L means that the ground literal L is true in the
well-founded model of the program wg.

For a literal Lj, let r(L;) stand as shorthand for L; = true. We extend the probability
distribution on programs to ground literals by assuming P(t(L;)|w) = 1 if L; is true in w
and 0 otherwise (i.e., if L; is false or undefined in w). Thus the probability of L; being true in

© As an alternative approach, [Sato et al[2005|] provides a semantics for negation in probabilistic programs based on
the three-valued Fitting semantics for logic programs.

20

a program 7 without function symbols is
P(t(L;)=), P(t(Lj).w)=), P(L)w)Pw)= Y P(w).
weWr weWr weWr w=Lj
Example 16. The barber paradox, introduced by Bertrand Russell [Russell |I967]], is ex-
pressed as:

The village barber shaves everyone in the village who does not shave himself.

The paradox was modeled as a logic program under WFS in [Dung||1991|]. Making things
probabilistic, the paradox can be modeled as the LPAD:

shaves(barber,Person):- villager(Person),not shaves(Person,Person).
C shaves(barber,barber):0.25.
C shaves(doctor,doctor):0.25.

villager(barber). villager(mayor). villager(doctor).

where the facts that the barber and the doctor shave theeemselves are probabilistic.
There are four different worlds associated with this LPAD.

e wy. both Cy and C; are selected. In this world
shaves(barber,barber), shaves(barber,mayor) and shaves(doctor,doctor)
are all true. The probability of wi is %

wy. C is selected but not Cs. In this world

shaves(barber,barber) shaves(barber,mayor) and shaves(barber,doctor)
3

E.

o w3: C; is selected but not Cy. In this world

are all true. The probability of w» is

shaves(barber,mayor) and shaves(doctor,doctor)
are true, while shaves(barber,barber) is undefined. The probability of w3 is 1%'

wy. neither Cy nor Cy is selected. In this world

shaves(barber,mayor) and shaves(barber,doctor)

are true, while shaves(barber,barber) is undefined. The probability of wy is %.
In each of the above world, each ground instantiation of shaves/2 that is not explicitly

mentioned is false.

Given the probabilities of each world, the probability of each literal can be computed:

o P(shaves(doctor,doctor)) = P(wy) + P(w3) = 1;
» P(not shaves(doctor,doctor)) = P(w2) + P(w4) = 3;
P(shaves(barber,doctor)) = P(w) + P(ws) = 3;
* P(not shaves(barber,doctor)) = P(w1) —|—P(3) =1
P(shaves(barber,barber)) = P(w1) + P(w;) =

21

1.34.2

* P(not shaves(barber,barber) = 0

Note that P(A) = 1 — P(not A), except for the case where A is shaves(barber, barber).

From the perspective of modeling, the use of the well-founded semantics provides an
approximation of the probability of an atom and of its negation, and thus may prove useful for
domains in which a cautious under-approximation of probabilities is necessary. In addition,
as discussed in Section [I.6.4] using the third truth value of the well-founded semantics offers
a promising approach to semantically sound approximation of probabilistic inference.

The Stable Model Semantics

P-log [Baral et al.|2009] is a formalism for introducing probability in Answer Set Program-
ming (ASP). P-log has a rich syntax that allows expression of a variety of stochastic and
non-monotonic information. The semantics of a P-log program 7T is given in terms of its
translation into an Answer Set program 7t(7) whose stable models are the possible worlds of
T. The following simple program from [Baral et al.[2009] illustrates certain aspects of P-log.

Example 17. Consider two gamblers, john and mike: john owns a die that is fair, while mike
owns a die that isn’t. This situation can be represented by the P-log program below. The
first portion of the program is a declaration of sorts, such as dice, score and person along
with attributes such as roll and owner. These declarations allow P-log syntax to extend ASP
syntax to include (possibly non-ground) attribute terms such as roll(Die) along with atomic
statements such as roll(Die) = 6. In addition to rules with this extended syntax, P-log has
random selection rules to indicate that certain attributes may be considered random over a
certain domain. A simple example of such a rule is random(roll(Die)), which indicates, since
Die is not restricted, that roll is random attribute over the entire domain dice. P-log also
contains probability atoms indicating the probabilities of atomic statements (e.g., pr(roll(Die)
= Score | owner(Die) = john) = é) which indicates that if the owner of a given die, Die, is
john, the probability of roll(Die) is .

Declaration
dice = {d1,d2}. score = {1,2,3,4,5,6}. roll: dice — score.
person = {mike,john}. owner: dice — person,

Rules
owner(d1) = john. owner(d2) = mike.

Random Selection
random(roll(Die)).

Probabilistic Information
pr(roll(Die) = Score | owner(Die) = john) = %.
pr(roll(Die) = 6 | owner(Die) = mike) = %.
pr(roll(Die) = Score | Score # 6,owner(Die) = mike) = 2%.

22

1.4

In order to evaluate the above program, the declarations are used to translate the rules and
random selections into a standard ASP program. Atomic statements are translated to ground
atoms using the sorts of the attribute domains and ranges if necessary: for instance owner(d1)
= john is translated to the atom owner(dl,john). In a similar manner, random selection rules
are translated to ground disjunctions (in ASP, a disjunction in a fact or rule head is taken as
an exclusive use of “or”). In the program above, the random selection random(roll(Die)) is

translated into two disjunctive ground facts:

roll(d1,1) V roll(d1,2) V roll(d1,3) V roll(d1,4) V roll(d1,5) V roll(d1,6).
and

roll(d2,1) V roll(d2,2) V roll(d2,3) V roll(d2,4) V roll(d2,5) V roll(d2,6).

As shown in the example above, random selection rules correspond to probabilistic con-
structs, so that when a P-log program T is translated into an ASP program 7t(T) the stable
models of (T") will contain total composite choices and so will correspond to possible worlds.
The probability for each stable model My 7 is constructed using the probability atoms that
are satisfied in My7). A probability is then assigned to each stable model; the probability of a
query Q is given, as for other distribution semantics languages, by the sum of the probabilities
of the possible worlds where Q is true. CONTRADICTIONS

Example 18 (Example 16 Continued). There are 36 stable models for n(T) of the previous
example: one for each score for d1 and d2. The probability of each world containing roll(d2,6)
is ﬁ while the probability of each other world is %

P-log differs from the languages mentioned in Section because the possible worlds
are generated not only because of stochastic choices but also because of disjunctions and
non-stratified negations appearing in the logical part of a P-log program. As a consequence,
the distribution obtained by multiplying all the probability factors of choices that are true
in a stable model is not normalized. In order to get a probability distribution over possible
worlds, the unnormalized probability of each stable model must be divided by the sum of the
unnormalized probabilities of each possible world.

In most of the literature on P-log, function symbols are not handled by the semantics,
although [Gelfond and Rushton|[2010] provides recent work towards this end. Furthermore,
recent work that extends stable models to allow function symbols [Alviano et al.[[2010}
Baselice and Bonatti/[2010, (Calimeri et al.[2011} |Greco et al.[2013]] may also lead to finite
well-definedness conditions for P-log programs containing function symbols.

Other Semantics for Probabilistic Logics
Here we briefly discuss a few examples of frameworks related to probabilistic logic program-
ming that are outside of the distribution semantics. Our goal in this section is simply to give

23

1.4.1

1.4.2

the flavor of other possible approaches; a complete accounting of such frameworks is beyond
the scope of this chapter.

Stochastic Logic Programs

Stochastic Logic Programs (SLPs) [[Cussens|2001, Muggleton|[1996] are logic programs with
parameterized clauses which define a distribution over refutations of goals. The distribution
provides, by marginalisation, a distribution over variable bindings for the query. SLPs are a
generalization of stochastic grammars and hidden Markov models.

An SLP S is a definite logic program where some of the clauses are of the form p : C where
p €R,p >0 and C is a definite clause. Let n(S) be the definite logic program obtained by
removing the probability labels. A pure SLP is an SLP where all clauses have probability
labels. A normalized SLP is one where probability labels for clauses whose heads share the
same predicate symbol sum to one.

In pure SLPs each SLD derivation for a query Q is assigned a real label by multiplying
the labels of each individual derivation step. The label of a derivation step where the selected
atom unifies with the head of clause p; : C; is p;. The probability of a successful derivation
from Q is the label of the derivation divided by the sum of the labels of all the successful
derivations. This clearly is a distribution over successful derivations from Q

The probability of an instantiation Q0 is the sum of the probabilities of the successful
derivations that produce Q0. It can be shown that the probabilities of all the atoms for a
predicate ¢ that succeed in n(S) sum to one, i.e., S defines a probability distribution over the
success set of ¢ in n(S).

In impure SLPs, the unparameterized clauses are seen as non-probabilistic domain knowl-
edge acting as constraints. To this purpose, derivations are identified with the set of the pa-
rameterized clauses they use. In this way, derivations that differ only on the unparameterized
clauses form an equivalence class.

Given their similarity with stochastic grammars and hidden Markov models, SLPs are
particularly suited to represent this kind of models. They differ from the distribution semantics
because they define a probability distribution over instantiations of the query, while the
distribution semantics defines a distribution over the truth values of ground atoms.

Nilsson’s probabilistic logic

Nilsson’s probabilistic logic [Nilsson||1986] takes an approach different from the distribution
semantics for combining logic and probability: while the first considers sets of distributions,
the latter computes a single distribution over possible worlds. In Nilsson’s logic, a probabilis-
tic interpretation Pr defines a probability distribution over the set of interpretations /nt. The
probability of a logical formula F according to Pr, denoted Pr(F), is the sum of all Pr(I) such
that / € Inf and I = F. A probabilistic knowledge base ‘W is a set of probabilistic formulas
of the form F > p. A probabilistic interpretation Pr satisfies F' > p iff Pr(F) > p. Pr satisfies

24

1.4.3

W, or Pris a model of W, iff Pr satisfies all F > p € W. Pr(F) > p is a tight logical con-
sequence of W iff p is the infimum of Pr(F) in the set of all models Pr of W. Computing
tight logical consequences from probabilistic knowledge bases can be done by solving a linear
optimization problem.

Nilsson’s logic allows different consequences to be drawn from logical formulas than the
distribution semantics. Consider a ProbLog program (cf. Section composed of the facts
0.4 :: ¢(a). and 0.5 :: ¢(b).; and a probabilistic knowledge base composed of ¢(a) > 0.4 and
¢(b) > 0.5. For the distribution semantics P(c(a) V ¢(b)) = 0.7, while with Nilsson’s logic the
lowest p such that Pr(c(a) V ¢(b)) > p holds is 0.5. This difference is due to the fact that,
while in Nilsson’s logic no assumption about the independence of the statements is made,
in the distribution semantics the probabilistic axioms are considered as independent. While
independencies can be encoded in Nilsson’s logic by carefully choosing the values of the
parameters, reading off the independencies from the theories becomes more difficult.

The assumption of independence of probabilistic axioms does not restrict expressiveness
as one can specify any joint probability distribution over the logical ground atoms, possibly
introducing new atoms if needed. This claim is substantiated by the fact that Bayesian
networks can be encoded in probabilistic logic programs under the distribution semantics,
as discussed in Section[[.3.3]

Markov Logic Networks

A Markov Logic Network (MLN) is a first order logical theory in which each sentence has
a real-valued weight. An MLN is a template for generating Markov networks, graphical
models where the edges among variables are undirected. Given sets of constants defining the
domains of the logical variables, an MLN defines a Markov network that has a node for each
ground atom and edges connecting the atoms appearing together in a grounding of a formula.
MLNs follow the so-called Knowledge Base Model Construction approach for defining a
probabilistic model [Bacchus||1993) [Wellman et al.|[{1992] in which the probabilistic-logic
theory is a template for generating an underlying probabilistic graphical model (Bayesian or
Markov networks). The probability distribution encoded by an MLN is

P(x) = lexp(Y wini(x))

Z fieM

where X is a joint assignment of truth value to all atoms in the Herbrand base, M is the model,
f; is the i-th formula in M, w; is its weight, n;(x) is the number of groundings of formula f;
that are satisfied in X and Z is a normalization constant.

A probabilistic logic program T under the distribution semantics differs from an MLN
because T has a semantics defined directly rather than through graphical models (though
there are strong relationships to graphical models, see Section[I.5]) and because restricting the

25

1.4.4

logic of choice to be logic programming, rather than full first-order logic, permits to exploit
the plethora of techniques developed in logic programming.

Evidential Probability

Evidential probability (cf. [Kyburg and Teng|[2001])) is an approach to reason about proba-
bilistic information that may be approximate, incomplete or even contradictory. Evidential
probability adds statistical statements of the form

%Vars(Target,Reference, Lower,U pper) (1.6)

where Target and Reference are formulas, and Lower and U pper are numbers between 0 and
1. Although the syntax is unusual, it may help to think of % as a quantifier and Vars as the
set of variables open in the Target and Reference formulas. The statistical statment thus states
that the proportion of instantiations of Vars for which Target is true, among those for which
Reference is also true, is between Lower and U pper.

As an example, consider

%X (in_urn(u;,X),is_blue(X),0.3,0.4)

which can be read as The percentage of X such that in_urn(uy,X) is true, where is_blue(X) also
true, is between 0.3 and 0.4. This illustrates and important special case that occurs when Vars
is a singleton variable shared by Target and Reference. In this case the statement can be read
as one of probabilistic set membership of a given individual in a domain, and we restrict the
rest of this discussion to this special case.

To see how this works in practice consider the problem of determining the likelihood of
whether an individual o0 is in a class C (when o1 cannot be proved for certain to be in C).
Each statistical statement S = %X (Cr,Cg,L,U) is collected for which o; is known to be an
element of the target class Cr of S and for which C is a superset of the reference class of
Cg (i.e., Cg implies C). For instance, in the above example, the reference class indicates the
uncertain property of whether a ball were blue, so for a given ball, target classes of applicable
statistical statements indicate properties known about the ball, while reference classes of these
statements consist of properties that imply blueness. Once the applicable statements have been
identified, a series of rules is used to derive a single interval from these collected statements,
and to weigh the evidence provided for different statements if their intervals are contradictory.
(Two intervals contradict each other if neither is a subinterval of the other.) One such rule is
the principle of specificity: a statement S; may override statement S, if the target class of §;
is more specific to o than that of S,. (For instance, a statistical statement about an age cohort
might override a statement about the general population.)

Evidential probability is thus not a probabilistic logic, but a meta-logic for defeasible rea-
soning about statistical statements once non-probabilistic aspects of a model have been de-

26

1.4.5

1.5

1.5.1

rived. It is thus less powerful than probabilistic logics based on the distribution semantics, but
is applicable to situations where such logics don’t apply, due to contradiction, incompleteness,
or other factors.

Annotated Probabilistic Logic Programs

Another approach is that of Annotated Probabilistic Logic Programming (Annotated PLP) [Ng
and Subrahmanian|1992], which allows program atoms to be annotated with intervals that can
be interpreted probabilistically. An example rule in this approach:

a:[0.75,0.85] < b: [1,1],¢:[0.5,0.75]

can be taken as stating that the probability of a is between 0.75 and 0.85 if b is certainly true
and the probability of ¢ is between 0.5 and 0.75. The probability interval of a conjunction
or disjunction of atoms is defined using a combinator to construct the tightest bounds for the
formula. For instance if d is annotated with [I;,hy] and e with [, k] the probability of a A b
is annotated with

[max(0,1; + 1, — 1),min(hg,h,)].

Using these combinators, an inference operator and fixed point semantics is defined for
positive Datalog programs. A model theory is obtained for such programs by considering
the annotations as constraints on acceptable probabilistic worlds: an Annotated PLP thus
describes a family of probabilistic worlds.

Annotated PLPs have the advantage that deduction is of low complexity, as the logic is
truth-functional, i.e., the probability of a query can be computed directly using combinators.
The corresponding disadvantages are that Annotated PLPs may be inconsistent if they are not
carefully written, and that the use of the above combinators may quickly lead to assigning
overly slack probability intervals to certain atoms. These aspects are partially addressed by
Hybrid Annotated PLPs [Dekhtyar and Subrahmanian|2000]], which allow different flavors of
combinators based on e.g., independence or mutual exclusivity of given atoms.

Probabilistic Logic Programs and Bayesian Networks

In this section, we first present two examples of probabilistic logic programs whose semantics
is explicitly related to Bayesian Networks: Bayesian Logic Programs and Knowledge Base
Model Construction. Making use of the formalism of Bayesian Logic Programs, we then
discuss the relationship of Bayesian Networks to the distribution semantics (for background
on Bayesian networks cf. [Pearl||1988|] or similar texts).

Bayesian Logic Programs

Bayesian Logic Programs (BLPs) [Kersting and Raedt| [2001]] use logic programming to
compactly encode a large Bayesian network. In BLPs, each ground atom represents a random

27

1.5.2

variable and the clauses define the dependencies between ground atoms. A clause of the form
AlAy,.. Ay

indicates that, for each of its groundings (A|A1,...,A.;)0, ABhas A6, ..., A,,0 as parents. The
domains and conditional probability tables (CPTs) for the ground atom/random variables are
defined in a separate portion of the model. In the case where a ground atom A6 appears in the
head of more than one clause, a combining rule is used to obtain the overall CPT from those
given by individual clauses.

For example, in the Mendelian genetics program of Example[9] the dependency that gives
the value of the color gene on chromosome 1 of a plant as a function of the color genes of its
mother can be expressed as

cg(X,1)|mother(Y,X),cg(Y,1),cg(Y,2).

where the domain of atoms built on predicate c¢g/2 is {p,w} and the domain of mother(Y,X) is
Boolean. A suitable CPT should then be defined that assigns equal probability to the alleles
of the mother to be inherited by the plant.

Knowledge Base Model Construction

In Knowledge Base Model Construction (KBMC) [Bacchus|1993| |Wellman et al.|1992], PLP
is a template for building a complex Bayesian network. The semantics of the probabilistic
logic program is then given by the semantics of the generated network. For example, in a
CLP(BN) program [Costa et al.|2003]], logical variables can be random. Their domain, parents
and CPTs are defined by the program. Probabilistic dependencies are expressed by means of
CLP constraints:

{ Var = Function with p(Values, Dist) }
{ Var = Function with p(Values, Dist, Parents) }

The first form indicates that the logical variable Var is random with domain Values and CPT
Dist but without parents; the second form defines a random variable with parents. In both
forms, Function is a term over logical variables that is used to parameterize the random
variable: a different random variable is defined for each instantiation of the logical variables
in the term. For example, the following snippet from a school domain:

course_difficulty(CKey, Dif) :-
{ Dif = difficulty(CKey) with p([h,m,1], [0.25, 0.50, 0.25]) }.

defines the random variable Dif with values &, m and [representing the difficulty of the course
identified by CKey. There is a different random variable for every instantiation of CKey —
i.e., for each course. In a similar manner, the intelligence Int of a student identified by SKey is
given by

28

1.5.3

student_intelligence(SKey, Int) :-
{ Int = intelligence(SKey) with p([h, m, 1], [0.5,0.4,0.1]) }.

Using the above predicates, the following snippet predicts the grade received by a student
when taking the exam of a course.

registration_grade(Key, Grade) :-

registration(Key, CKey, SKey),

course_difficulty(CKey, Dif),

student_intelligence(SKey, Int),

{ Grade = grade(Key) with p([’A’,B’,C’;D’],
9h/h h/m b/l m/h m/m m/1 /h I/m 111
[0.20,0.70,0.85,0.10,0.20,0.50,0.01,0.05,0.10, % A’
0.60,0.25,0.12,0.30,0.60,0.35,0.04,0.15,0.40, % ’B’
0.15,0.04,0.02,0.40,0.15,0.12,0.50,0.60,0.40, % ’'C’
0.05,0.01,0.01,0.20,0.05,0.03,0.45,0.20,0.10 |, % ’D’
[Int,Dif]) }.

Here Grade indicates a random variable parameterized by the identifier Key of a registration
of a student to a course. The code states that there is a different random variable Grade for
each student’s registration in a course and each such random variable has possible values 'A’,
’B’, ’C’ and ’D’. The actual value of the random variable depends on the intelligence of the
student and on the difficulty of the course, that are thus its parents. Together with facts for
registration/3 such as

registration(r0,c16,s0). registration(rl,c10,s0).
registration(r2,c57,s0). registration(r3,c22,s1).

the code defines a Bayesian network with a Grade random variable for each registration.
CLP(BN) is implemented as a library of YAP Prolog [[Costa et al.|2012].

Conversion of PLP under the Distribution Semantics to Bayesian Networks

In [[Vennekens and Verbaeten|2003| the relationship between LPADs and BLPs is investigated
in detail. The authors show that ground BLPs can be converted to ground LPADs and that
ground acyclic LPADs can be converted to ground BLPs. |'| A logic program is acyclic
[Apt and Bezem|[1991] if its atom dependency graph is acyclic. As a BLP directly encodes
a Bayesian network, the results of [[Vennekens and Verbaeten|[2003] allow us to draw a
connection between LPADs and Bayesian networks.

7We note that this equivalence is only for ground programs, unlike the equivalences of Section [1.3.2|which hold for
non-ground programs.

29

Example 19. Figure shows a simple Bayesian network for reasoning about the causes of
a building alarm. This network can be encoded as the following LPAD:

alarm(t) :- burglary(t),earthquake(t).

alarm(t):0.8 V alarm(f):0.2 :- burglary(t),earthquake(f).
alarm(t):0.8 V alarm(f):0.2 :- burglary(f),earthquake(t).
alarm(t):0.1 V alarm(f):0.9 :- burglary(f),earthquake(f).

burglary(t):0.1 V burglary(f):0.9.
earthquake(t):0.2 V earthquake(f):0.8.

[burg [¢ [f] alarm t f

» [[0.1 [09| b=te=t | 1.0 | 0.0

b=te=f | 08 | 0.2

[earthq [t [f] b=fe=t | 0.8 | 0.2

[[02 [08 | b=fe=f | 0.1 | 09

Figure 1.3 Bayesian network

In general, given a Bayesian network B = {P(X;|IL;)|i = 1,...,n}, we obtain a ground
LPAD, o(B), as follows. For each variable X; and value v in the domain D; = {v;,...,vi,} of
X; we have one atom X} in the Herbrand base of ou(B). For each row P(X;|X;1 = vi,..., Xy =)
of the CPT for X; with probabilities py,..., pi, for the values of X;, we have an LPAD clause

in a(B):
X" py \/...\/Xivimi cpm - XX
Theorem 4. Bayesian network B and LPAD o/(B) define the same probability distribution.

Proof. There is an immediate translation from a Bayesian network B to a ground BLP B’
Theorem 4 of [[Vennekens and Verbaeten|2003]] states the equivalence of the semantics of
a ground BLP B’ and a ground LPAD y(B’) obtained from B’ with a translation Y. This
translation is in close correspondence with o so the theorem is proved. O

Extending Theorem [acyclic Datalog LPADs under the distribution semantics can be
translated to Bayesian networks. To do so, first the grounding of the program must be
generated. Consider an LPAD T and let ground(T) be its grounding. For each atom A in
the Herbrand base g of T, the network contains a binary variable A. For each clause C; in
ground(T)

H :p1V...VH,:p,:-B1,...By,—Cy,...,—C;

30

1.6

the network contains a variable CH; with Hy, ..., H, and null as values. CH; has
Bi,....,Byu,C1,....C;

as parents. The CPT of CH, is

. | Bi=1,...,B,=1,C; =0,...,C;=0 | ...
CH,'ZH] 0.0 P1 0.0
CH,=H, | 0.0 Pu 0.0
CH;=null | 1.0 1-Yipi 1.0

Basically, if the body assumes a false value, then CH; assumes value null with certainty, oth-
erwise the probability is distributed over atoms in the head of C; according to the annotations.

Each variable A corresponding to atom A has as parents all the variables CH; of clauses C;
that have A in the head. The CPT for A is:

at least one parent equal to A | remaining columns
A=1 1.0 0.0
A=0 0.0 1.0

This table encodes a deterministic function: A assumes value 1 with certainty if at least one
parent assumes value A, otherwise it assumes value 0 with certainty. Let us call A(T) the
Bayesian network obtained with the above translation from an LPAD 7. Then the following
theorem holds.

Theorem 5. Given an acyclic Datalog LPAD T, the Bayesian network A(T) defines the same
probability distribution over the atoms of Hr.

Proof. The proof uses Theorem 5 of [[Vennekens and Verbaeten|[2003] that states the equiva-
lence of the semantics of a ground LPAD T and a ground BLP (7) obtained from 7 with a
translation f3 in close correspondence with A. Since there is an immediate translation from a
ground BLP to a Bayesian network, the theorem is proved. O

Together, Theorems [4 and [5] show the equivalence of the distribution semantics with that
of Bayesian networks for the special case of acyclic probabilistic Datalog programs. As
discussed in previous sections, however, the distribution semantics is defined for larger classes
of programs, indicating its generality.

Inferencing in Probabilistic Logic Programs

So far, we have focused mainly on definitions and expressiveness of the distribution seman-
tics, and this presentation has had a somewhat model-theoretic flavor. This section focuses
primarily on the main inference task for probabilistic logic programs: that of query evalua-
tion. In its simplest form, query evaluation means determining the probability of a ground
query Q when no evidence is given.

31

1.6.1

Section [I.6.T] discusses the computational complexity of query evaluation which, perhaps
not surprisingly, is high. Current techniques for computing the distribution semantics for strat-
ified programs are discussed in Section [I.6.2] Because of the high computational complex-
ity, these general techniques are not always scalable. Section [I.6.3] discusses a restriction of
the distribution semantics, pioneered by the PRISM system, for which query evaluation is
tractable. Another approach is to only approximate the point intervals of the distribution se-
mantics, as discussed in Section Section [I.6.4] also briefly discusses other inferencing
tasks, such as computing the Viterbi probability for a query.

The Complexity of Query Evaluation

To understand the complexity of query evaluation for PLPs, let Q be a ground query to a
probabilistic logic program T'. A simple approach might be to somehow save the probabilistic
choices made for each proof of Q. For instance, each time a probabilistic atom was encoun-
tered as a subgoal, the corresponding atomic choice (C,0,i) would be added to a data struc-
ture. As a result each proof of O would be associated with an explanation £}, and when all n
proofs of Q had been exhausted the set of explanations £ = Uj<,E; would cover Q. While
this approach was sketched for top-down evaluations, a similar approach could be constructed
in a bottom-up manner.

If all E; were known to be mutually exclusive, the probability of Q (= P(E)) could be
computed simply by computing the probability of each explanation and summing them up;
but this is not generally the case. Usually, explanations are not pairwise exclusive, requiring a
technique such as the principle of inclusion-exclusion to be used (cf. e.g., [Rauzy et al.|2003]):

P(E)= Yi<i<nP(Ei) —Xi<icj<n P(Ei,E})

) (1.7)
+Zl§i<j<k§nP(Eian7Ek)_"'+(_1) +1P(Eia"'7En)

Unfortunately, use of the inclusion-exclusion algorithm is exponential in n. Is there a better
way? ‘E can also be viewed as a propositional formula, formula(‘E), in disjunctive normal
form. The difficulty of determining the number of solutions to a propositional formula such
as formula(E) is the canonical #P-complete problem, and computing the probability of £
is at least as difficult as computing the number of solutions of formula(‘E). It can easily be
shown that computing the probability of E also is in #P so that it is a #P-complete problem.
For practical purposes, computing the probability of £ can be thought of as equivalent to
a FPspace complete problem (where an FPspace problem outputs a value, unlike a Pspace

problemﬂ

81t is easy to see that counting solutions to a #P-complete problem can be done in polynomial space. By Toda’s
Theorem, every problem in FPspace is reducible in polynomial time to a problem in #P (cf. [Papadimitriou|1994]).

32

1.6.2

1.6.2.1

1.6.2.2

Exact Query Evaluation for Unrestricted Programs

At this point, there have been two classes of approaches to exact query evaluation for
programs in which the use of the distribution semantics is unrestricted (although the programs
themselves may be restricted): transformational and direct approaches. As mentioned above,
we focus on probabilistic queries without evidence.

Transformational Approaches

Given the relationship between an acyclic Datalog probabilistic logic program 7 and a
Bayesian Network as stated in Theorem [5] of Section [I.5] one approach is to transform T
into a Bayesian network, use Bayesian Network inference algorithms to evaluate the query,
and then translate back the results. Given the large amount of work on efficiently evaluating
Bayesian networks (cf. [Koller and Friedman|2009]), such an approach could lead to efficient
evaluations.

This approach was used in CVE inferencing [Meert et al.|[2008, [2009], which evaluated
CP-logic [Vennekens et al.[2009], a formalism closely related to LPADs. Some of the factors
of the Bayesian network that results from the translation contain redundant information since
they have many identical columns. To reduce the size of the generated network, this situation,
called contextual independence, can be exploited during inference using a special technique
called contextual variable elimination [Poole and Zhang|2003]]. CVE applies this technique to
compute the probability of queries to CP-logic programs.

An alternative approach is taken by a very recent implementation of the ProbLog system
(called ProbLog2 to distinguish it from previous implementations, [Fierens et al|2015]),
which converts a program, queries and evidence (if any) to a weighted Boolean formula
(cf. [Chavira and Darwiche|2008]]). Once transformed, the program can be evaluated by an
external weighted model counting or max-SAT solver.

Direct Approaches Based on Explanation
A more direct approach is to find a set of explanations that is covering for a query Q and
then to make the explanations pairwise incompatible. Explanations can be made pairwise
incompatible in a number of ways. The pD engine [Fuhri[2000] uses inclusion-exclusion
(Equation directly. The Ailog2 system for Independent Choice Logic [Poole [2000]),
iteratively applies the Splitting Algorithm (Figure [I.2). More commonly however, Binary
Decision Diagrams (BDDs) [Bryant|[1992] are used to ensure pairwise incompatibility. This
approach was first used in the ProbLog system [De Raedt et al.|2007]], and later adopted by
several other systems including cplint [Riguzzi|2007,[2009] and PITA [Riguzzi and Swift
2013]]

The BDD data structure was designed to efficiently store Boolean functions (i.e., formulas),
which makes it a natural candidate to store explanations. A BDD is a directed acyclic graph,
with a root node representing the start of the function, and with terminal nodes 0 (false) and

33

1 (true). An interior node, n;, sometimes called a decision node, represents a variable v; in the
Boolean function. Each such n; has a 0-child representing the next node whose truth value
will be examined if v; is false, and a 1-node representing the next node whose truth value
will be examined if v; is true. Accordingly, each path from root to terminal node in a BDD
represents a (partial or total) truth assignment to the variables leading to the truth of falsity of
the formula. What gives a BDD its power are the following operations.

e Ordering: all paths through the BDD traverse variables in the same order. This ensures
that each variable is traversed at most once on a given path.

e Reduction: within a BDD isomorphic subgraphs are merged, and any node whose two
children root isomorphic subgraphs (or the same subgraph) is considered redundant and
removed from the BDD. These operations ensure that once enough variables have been
traversed to determine the value of the Boolean function, no other variables will be
traversed (or need to be stored).

Although performing these operations when building a BDD can be expensive, the resulting
BDD has the property that any two distinct paths differ in the truth value of at least one
variable, so that BDDs are an efficient way to store and manipulate pairwise incompatible
explanations as described in Section|[1.3.3.1]

To explain the details, consider an application to ProbLog, where in each probabilistic fact,
either an atom or null may be chosen. Let (C,0,i) be an atomic choice for the selection of
the ground probabilistic fact: (C,0, 1) means that CO was chosen, and (C, 6,2) means that null
was chosen. If we consider these atomic choices as Boolean random variables, then a set of
explanations is simply a DNF formula, and storing this formula in a BDD will ensure pairwise
incompatibility of the explanations in the set. Recall that if K is a pairwise incompatible set
of explanations that is covering for a probabilistic query Q, then the probability of Q is given
by

P(Q) = Z H (P((C’e7i))'

KEK (C,0,i)ex

Accordingly, once K is stored in a BDD, a simple traversal of the BDD suffices to compute
the probability of Q as shown in Figure [I.4]

Example 20. Returning to the sneezing example of Section a set of covering expla-
nations for sneezing(david) is K = {x1,K2}, where ¥ = {(C1,{X/david},1)} and x, =
{(C2,{X /david},1)}. A BDD representing K is shown in Figure [I.5} while K is not pair-
wise incompatible, note that the ordering and reduction operations used in constructing the
BDD result in the fact that all paths through the BDD represent pairwise incompatible expla-
nations. Using this BDD, the probability of sneezing(david) can be calculated by the simple

algorithm of Figure

34

node_prob(BDD node n)
if n is the 1-terminal return 1

if n is the O-terminal return 0
let 7,414 be the 1-child of n and let f_;;4 be the 0-child of n and
return P((C,0,1)) x node_prob(tepiiq) + (1 — P((C,0,1))) X node_prob(feniia)

Figure 1.4 Determining the probability of a node in a BDD used to store a covering set of explanations
[De Raedt et al.|2007]]

0
- - 0
o e
(C1,{X /david},1) (Cy,{X /david}, 1)

Figure 1.5 A BDD representing a pairwise incompatible set of explanations for sneezing(david)

Implementations of BDD-Based Explanation Approaches The ProbLog system [Kimmig
et al.|2011]], implemented using YAP Prolog [Costa et al.|2012]], has a two-phase approach
to computing probabilities for ProbLog programs. A source-code transformation is made of a
ProbLog program so that during the SLD-proof phase each atomic choice is added to a running
list representing the explanation of the proof; when the proof is completed the explanation is
stored in a trie of the style used for tabling in YAP and XSB. Once all proofs have been
completed the trie is traversed so that a BDD can be efficiently created using an external BDD
packageﬂ

The cplint system [Riguzzi2007] is also implemented using YAP Prolog and an external
BDD package, but implements LPADs. To directly implement LPADs, two extensions must
be made. First, the BDD interface must be modified to support ground atomic choices that
allow more than two outcomes; second default negation is supported via SLDNF. The PITA
system [Riguzzi and Swift|2013]], is based on XSB [Swift and Warren|2012] and uses tabling
extended with answer subsumption in order to combine different explanations. As each new
explanation is derived for a given subgoal G, it is added to the current BDD for G. When a
tabling technique termed call subsumption is also used, PITA can be shown to theoretically
terminate on any finitely well-defined LPAD that is stratified and for which all worlds have
finite models.

9 The Cudd package (http://vlsi.colorado.edu/ fabio/CUDD/node7.html) is used for ProbLog as
well as for cplint and for PITA.

35

1.6.3

Papers about CVE, BDD-based ProbLog, cplint, and PITA have compared the systems
on certain probabilistic programs. Not surprisingly, source code transformations outperform
meta-interpretations. The current generation of BDD-based systems usually — but not always
— outperforms the transformation-based CVE, while recent experiments in [Fierens et al.
2015] indicate that translation of probabilistic logic programs into weighted Boolean formulas
outperforms the use of BDDs on certain programs. ProbLog and PITA, which are more closely
related, show conflicting experimental results. Timings based on PITA have shown that for
traversals of probabilistic networks, the vast majority of time is spent in BDD manipulation.
Based on the current set of experiments and benchmarks, there is no clear evidence about
whether it is more efficient to construct a BDD during the course of evaluation as with PITA or
to wait until the end as with ProbLog. In short, much more implementational and experimental
work is needed to determine the best way to evaluate queries for unrestricted probabilistic
logic programs.

Overall, implementation of probabilistic reasoning for the ASP-based P-Log has received
less attention, although [Gelfond et al.|2006] describe a prototype implementation; while [[Anh
et al.|2008]] describe an approach that grounds a P-Log program using XSB and then sends it
to an ASP solver.

Exact Query Evaluation for Restricted Programs
As an alternative to inference for unrestricted programs, an implementation may be restricted
to programs for which the probability of queries is easy to compute. In particular, an im-
plementation may assume axioms of exclusion and independence. This approach has been
followed in an early implementation of PHA [Poole|[1993b]], and in a module of the PITA
system [Riguzzi and Swift|201 1]]; however this approach has been most thoroughly developed
in the PRISM system [Sato et al.|2010]], implemented using B-Prolog [Zhou 2012

In order to define when an LPAD T satisfies the assumption of exclusion, consider its
grounding ground(T). If there is no world w of T such that the bodies of a pair of clauses
of ground(T) sharing an atom in the head are both true, then T satisfies the assumption of
exclusion. In this case, a covering set of explanations will always be pairwise incompatible
and the probability of a query can be computed by summing the probability of the individual
explanations. As an example, the program

q:-a. a:0.2.
q :- ab. b:04.

violates the exclusiveness assumption as the two clauses for the ground atom ¢ have non-
exclusive bodies.

10The assumptions of exclusion and independence are made in the PRISM system, but not in the PRISM lan-
guage [Sato and Kameya1997].

36

1.6.4

An LPAD T satisfies the assumption of independence when, for each clause C of
ground(T), no pair of literals in the body of C depends on a common subgoal. The as-
sumption of independence allows the probability of a body to be computed as the product of
the probabilities of its literals. As an example, the program

q :-ab.
a:-c. b:-c. c:0.2.

doesn’t satisfy the independence assumption because a and b both depend on c. In the
distribution semantics the probability of ¢ is 0.2, while if we multiply the probabilities of
a and b in the body of the clause for g we get 0.04.

To get an idea about how restrictive these assumptions are in practice, consider the
examples introduced so far in this chapter. The sneezing examples (Examples violate
the exclusion assumption; the path example (Example [I0) violates both independence and
exclusion; the barber example (Example [I6) violates independence. However the examples
about Mendelian inheritance (Example [0), Hidden Markov Models (Example [IT)) and alarm
(Example [1.5.2) satisfy both assumptions. In terms of practical applications, programs with
the independence and exclusion assumptions have been used for parameter learning [Sato and
Kameya|2001]], and for numerous forms of generative modeling [Sato and Kameya/2008|].

PRISM implements queries to probabilistic logic programs with the independence and ex-
clusion assumptions by using tabling to collect a set of explanations that has any duplicates
filtered out. Probabilities are then collected directly from this set. PITA also uses tabling, but
with the addition of answer subsumption to combine probabilities of different explanations as
query evaluation progresses. In either case, computation is much faster than if the indepen-
dence and exclusion assumptions do not hold. In particular, the learning algorithm of PRISM
in the case of HMMs achieves the same complexity of the Baum-Welch algorithm that is
specific of HMMs [Sato and Kameya|2001].

Additionally, projecting out superfluous (non-discriminating) arguments from subgoals us-
ing the technique of [Christiansen and Gallagher|2009] can lead to significant speed improve-
ment for Hidden Markov Model examples. Finally, [Riguzzi/[2012] presents approaches for
efficient evaluation of probabilistic logic programs that do not use the full independence and
exclusion assumptions.

Approximation and Other Inferencing Tasks

For programs that violate the independence or exclusion assumptions, and for which exact in-
ference may be too expensive, approximate inference may be considered. Recall from Equa-
tion [I.7] that, using the inclusion-exclusion principle, computing probability is exponential in
the number of explanations. Accordingly ProbLog [Kimmig et al.[2011]] supports an optimiza-
tion that retains only the k£ most likely explanations, thus reducing the cost of building a BDD
to make the explanations pairwise incompatible. ProbLog also offers an approach similar to

37

1.7

iterative deepening, where lower and upper bounds on the probability are iteratively computed
and inference terminates when their difference is below a given threshold. Both of these ap-
proximations are sound only for definite programs; if negation is used, sound approximation
requires a three-valued semantics (Section[I.3.4.T) to distinguish the known probabilities of a
query and negation from the range that is still unknown due to approximation.

Monte Carlo simulations are also used by various systems. Monte Carlo in PRISM per-
forms Bayesian inference (updating a prior probability distribution in the light of evidence)
by updating a Metropolis-Hastings algorithm for Probabilistic Context Free Grammars [[Sato
2011]. ProbLog and PITA perform plain Monte Carlo by sampling the worlds and counting
the fraction where the query is true, exploiting tabling to save computation.

Lastly, while this section has focused on evaluation of ground queries when there is no
additional supporting evidence, this is by no means the only inference problem that has
been studied. ProbLog?2 [Fierens et al.|[2015]] evaluates queries with and without supporting
evidence. PRISM supports Maximum A Posteriori (or Most Probable Explanation) inference,
which finds the most likely state of a set of query atoms given some evidence. In Hidden
Markov Models, this inference reduces to finding the most likely sequence of the state
variables also called the Viterbi path (also supported by PITA). Again, thanks to the exclusion
and independence assumptions, the complexity of finding the Viterbi path in HMMs with
PRISM is the same of the Viterbi algorithm that is specific to HMMs. Finally, recent work
seeks to perform inference in a lifted way, i.e., by avoiding grounding the model as much as
possible. This technique can lead to exponential savings in some cases [Bellodi et al.|[2014}
Van den Broeck et al.[2014].

Discussion

This chapter has described the distribution semantics for logic programs, starting with strat-
ified Datalog programs, then showing how the semantics can be extended to programs that
include function symbols and non-stratified negation (Section [I.3)). Various PLP languages
have been described and their inter-translatability has been discussed (Section [I.2). The rela-
tionship of PLPs and Bayesian networks has also been shown (Section [I.5)). Finally, the in-
tractable problem of inferencing with the distribution semantics was discussed in Section [1.6]
along with implementations that either directly address the full distribution semantics; make
simplifying restrictions about the types of programs for which they provide inference; or per-
form heuristic approximations.

We believe that this material provides necessary background for much of the current re-
search into PLP. However as noted, our focus on the distribution semantics leaves out many
interesting and important languages and systems (a few of which were summarized in Sec-
tion[I.4). In addition, we have not covered the important problem of using these languages for
machine learning. Indeed, the support for machine learning has been an important motivation

38

for PLPs since the very first proposals and nowadays a variety of systems are available for
learning either the parameters or the structure of programs under the distribution semantics.

To mention a very few such systems, PRISM [Sato and Kameya 2001]], LeProbLog
[Gutmann et al.[2008]], LFI-ProbLog [Gutmann et al.[2011b[], EMBLEM [Bellodi and Riguzzi
2013|] and ProbLog2 [Fierens et al|[2015] learn the parameters either by using an EM
algorithm or by gradient descent. SEM-CP-logic [Meert et al.||2008], SLIPCASE [Bellodi
and Riguzzi|2012]] and SLIPCOVER [Bellodi and Riguzzi|2015] learn both the structure and
the parameters by performing a search in the space of possible programs and using parameter
learning as a subroutine.

All these systems have been successfully applied to a variety of domains, including
biology, medicine, link prediction and text classification. The results obtained show that these
systems are competitive with systems at the state of the art of statistical relational learning
such as Alchemy [Richardson and Domingos|2006] and others.

Acknowledgments
This work was supported by the “National Group of Computing Science (GNCS-INDAM)”.

39

Bibliography

M. Alviano, W. Faber, and N. Leone. 2010. Disjunctive ASP with functions: Decidable queries and
effective computation. Theory and Practice of Logic Programming, 10(4-6): 497-512.

H. Anh, C. Ramli, and C. Damadsio. 2008. An implementation of extended P-Log using XASP. In Proc.
24th Int. Conf. Logic Programming, pp. 739-743.

K. R. Apt and M. Bezem. 1991. Acyclic programs. New Generation Computing, 9(3/4): 335-364.

F. Bacchus. 1993. Using first-order probability logic for the construction of bayesian networks. In Proc.
9th Annual Conf. on Uncertainty in Artificial Intelligence, pp. 219-226.

C. Baral, M. Gelfond, and N. Rushton. 2009. Probabilistic reasoning with answer sets. Theory and
Practice of Logic Programming, 9(1): 57-144.

S. Baselice and P. Bonatti. 2010. A decidable subclass of finitary programs. Theory and Practice of
Logic Programming, 10(4-6): 481-496.

E. Bellodi and F. Riguzzi. 2012. Learning the structure of probabilistic logic programs. In Proc.

21st Int. Conf. on Inductive Logic Programming, volume 7207 of LNCS, pp. 61-75. Springer Berlin
Heidelberg. doi:10.1007/978-3-642-31951-8_10.

E. Bellodi and F. Riguzzi. 2013. Expectation Maximization over binary decision diagrams for

probabilistic logic programs. Intelligent Data Analysis, 17(2): 343-363.

E. Bellodi and F. Riguzzi. 2015. Structure learning of probabilistic logic programs by
searching the clause space. Theory and Practice of Logic Programming, 15(2): 169-212.
doii10.1017/S1471068413000689.

E. Bellodi, E. Lamma, F. Riguzzi, V. Santos Costa, and R. Zese. 2014. Lifted variable elimination for
probabilistic logic programming. Theory and Practice of Logic Programming, 14(Special issue 4-5 -
ICLP 2014): 681-695. doi:10.1017/S1471068414000283.

H. Blockeel. 2004. Probabilistic logical models for Mendel’s experiments: An exercise. In Proc. 14th
Int. Conf. on Inductive Logic Programming. Work in Progress Track.

R. Bryant. 1992. Symbolic boolean manipulation with ordered binary decision diagrams. ACM
Computing Surveys, 24(3): 293-318.

E. Calimeri, S. Cozza, G. lanni, and N. Leone. 2011. Finitely recursive programs: Decidability and
bottom-up computation. Al Communication, 24(4): 311-334.

M. Chavira and A. Darwiche. 2008. On probabilistic inference by weighted model counting. Artificial
Intelligence, 172(6-7): 772—-799.

Y. Chow and H. Teicher. 2012. Probability Theory: Independence, Interchangeability, Martingales.
Springer Texts in Statistics. Springer New York. ISBN 9781461219507.

H. Christiansen and J. Gallagher. 2009. Non-discriminating arguments and their uses. In Proc. 25th Int.
Conf. Logic Programming, pp. 55—69.

4

https://doi.org/10.1007/978-3-642-31951-8_10
https://doi.org/10.1017/S1471068413000689
https://doi.org/10.1017/S1471068414000283

V. S. Costa, D. Page, M. Qazi, and J. Cussens. 2003. CLP(BN): Constraint logic programming for
probabilistic knowledge. In Proc. 19th Conf. on Uncertainty in Artificial Intelligence, pp. 517-524.

V. S. Costa, L. Damas, and R. Rocha. 2012. The YAP Prolog system. Theory and Practice of Logic
Programming, 12(1-2): 5-34.

J. Cussens. 2001. Parameter estimation in stochastic logic programs. Machine Learning, 44(3): 245—
271. doii10.1023/A:1010924021315.

E. Dantsin. 1991. Probabilistic logic programs and their semantics. In Proc. Ist and 2nd Russian Conf.
on Logic Programming, volume 592 of LNCS, pp. 152-164. Springer.

L. De Raedt and A. Kimmig. 2015. Probabilistic (Logic) Programming Concepts. Machine Learning,
100(1): 5-47.

L. De Raedt, A. Kimmig, and H. Toivonen. 2007. ProbLog: A probabilistic Prolog and its application
in link discovery. In Proc. 20th Int. Joint Conf. on Al, pp. 2462-2467.

L. De Raedt, B. Demoen, D. Fierens, B. Gutmann, G. Janssens, A. Kimmig, N. Landwehr, T. Man-
tadelis, W. Meert, R. Rocha, V. Santos Costa, I. Thon, and J. Vennekens. 2008. Towards digesting the
alphabet-soup of statistical relational learning. In NIPS*2008 Workshop on Probabilistic Program-
ming.

A. Dekhtyar and V. Subrahmanian. 2000. Hybrid probabilistic programs. J. Logic Programming, 43(2):
187-250.

P. Dung. 1991. Negation as hypothesis: An abductive foundation for logic programming. In Proc. 8th
Int. Conf. Logic Programming, pp. 1-17.

D. Fierens, G. Van den Broeck, J. Renkens, D. Shterionov, B. Gutmann, I. Thon, G. Janssens, and
L. De Raedt. 2015. Inference and learning in probabilistic logic programs using weighted boolean
formulas. Theory and Practice of Logic Programming, 15(3): 358-401.

N. Fuhr. 2000. Probabilistic Datalog: Implementing logical information retrieval for advanced applica-
tions. Journal of the American Society of Information Sciences, 51(2): 95-110.

M. Gelfond and V. Lifschitz. 1988. The stable model semantics for logic programming. In Proc. 5th
Int. Conf. Logic Programming, pp. 1070-1080.

M. Gelfond and N. Rushton. 2010. Causal and probabilistic reasoning in p-log: Heuristics, probabilities
and causality. In R. Dechter, H. Geftner, and J. Halpern, eds., A Tribute to Judea Pearl, pp. 337-359.
College Publications.

M. Gelfond, N. R. N, and W. Zhu. 2006. Combining logical and probabilistic reasoning. In
Proceedings of AAAI 06 Spring Symposium: Formalizing and Compiling Background Knowledge
and Its Applications to Knowledge Representationand Question Answering, pp. 50—-55.

A. Gorlin, C. R. Ramakrishnan, and S. A. Smolka. 2012. Model checking with probabilistic tabled logic
programming. Theory and Practice of Logic Programmimg, 12(4-5): 681-700.

S. Greco, C. Molinaro, and 1. Trubitsyna. 2013. Bounded programs: A new decidable class of logic
programs with function symbols. In Proc. 23rd Int. Joint Conf. on Al, pp. 926-932.

B. Gutmann, A. Kimmig, K. Kersting, and L. De Raedt. 2008. Parameter learning in probabilistic

databases: A least squares approach. In Proc. European Conf. on Machine Learning and Knowledge
Discovery in Databases, pp. 473—488.

42

https://doi.org/10.1023/A:1010924021315

B. Gutmann, M. Jaeger, and L. De Raedt. 2011a. Extending problog with continuous distributions. In
Proc. 20th Int. Conf. on Inductive Logic Programming, volume 6489 of LNCS, pp. 76-91. Springer.

B. Gutmann, I. Thon, and L. D. Raedt. 2011b. Learning the parameters of probabilistic logic programs
from interpretations. In Proc. European Conf. on Machine Learning and Knowledge Discovery in
Databases, pp. 581-596.

J. H. Halpern. 2003. Reasoning About Uncertainty. MIT Press.

M. Islam, C. R. Ramakrishnan, and I. V. Ramrkrishnan. 2012. Inference in probabilistic logic programs
with continuous random variables. Theory and Practice of Logic Programming, 12(4-5): 505-523.

K. Kersting and L. D. Raedt. 2001. Towards combining inductive logic programming with Bayesian
networks. In Proc. 11th Int. Conf. on Inductive Logic Programming, pp. 118-131.

A. Kimmig, B. Demoen, L. De Raedt, V. S. Costa, and R. Rocha. 2011. On the implementation of
the probabilistic logic programming language ProbLog. Theory and Practice of Logic Programming,
11(2-3): 235-262.

D. Koller and N. Friedman. 2009. Probabilistic Graphical Models: Principles and Techniques. MIT
Press.

A. N. Kolmogorov. 1950. Foundations of the Theory of Probability. Chelsea Publishing Company, New
York.

H. Kyburg and C. Teng. 2001. Uncertain Inference. Cambridge University Press.

W. Meert, J. Struyf, and H. Blockeel. 2008. Learning ground CP-Logic theories by leveraging Bayesian
network learning techniques. Fundamanta Informaticae, 89(1): 131-160.

W. Meert, J. Struyf, and H. Blockeel. 2009. CP-Logic theory inference with contextual variable
elimination and comparison to BDD based inference methods. In Proc. 19th Int. Conf. on Inductive
Logic Programming.

S. Muggleton. 1996. Stochastic logic programs. In Advances in inductive logic programming, pp.
254-264. 10S Press.

R. Ng and V. S. Subrahmanian. 1992. Probabilistic logic programming. Information and Computation,
101(2): 150-201.

N. J. Nilsson. 1986. Probabilistic logic. Artificial Intelligence, 28(1): 71-87.
C. Papadimitriou. 1994. Computational Complexity. Addison-Wesley.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufmann.

D. Poole. 1993a. Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence, 64(1).

D. Poole. 1993b. Logic programming, abduction and probability - a top-down anytime algorithm for
estimating prior and posterior probabilities. New Generation Computing, 11(3): 377-400.

D. Poole. 1997. The Independent Choice Logic for modelling multiple agents under uncertainty.
Artificial Intelligence, 94(1-2): 7-56.

D. Poole. 2000. Abducing through negation as failure: stable models within the independent choice
logic. J. Logic Programming, 44(1-3): 5-35.

D. Poole and N. Zhang. 2003. Exploiting contextual independence in probabilistic inference. J. Artificial
Intel. Res., 18: 266-313.

43

T. Przymusinski. 1989. Every logic program has a natural stratification and an iterated least fixed point
model. In Proc. 8th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pp.
11-21. ACM Press.

A. Rauzy, E. Chatelet, Y. Dutuit, and C. Bérenguer. January 2003. A practical comparison of methods
to assess sum-of-products. Reliability Engineering and System Safety, 79(1): 33-42.

M. Richardson and P. Domingos. 2006. Markov logic networks. Machine Learning, 62(1-2): 107-136.

F. Riguzzi. 2007. A top-down interpreter for LPAD and CP-logic. In Proc. 10th Congress of the Italian
Association for Artificial Intelligence, volume 4733 of LNAI, pp. 109-120. Springer.

F. Riguzzi. 2009. Extended semantics and inference for the Independent Choice Logic. Logic Journal
of the IGPL, 17(6): 589-629.

F. Riguzzi. 2012. Optimizing inference for probabilistic logic programs exploiting independence and
exclusiveness. In Proc. 27th Italian Conf. on Computational Logic.

F. Riguzzi and T. Swift. 2011. The PITA system: Tabling and answer subsumption for reasoning under
uncertainty. Theory and Practice of Logic Programming, 11(4-5): 433-449.

F. Riguzzi and T. Swift. March 2013. Well-definedness and efficient inference for probabilistic logic
programming under the distribution semantics. Theory and Practice of Logic Programming, 13(2):
279-302. doi:10.1017/S1471068411000664.

B. Russell. 1967. Mathematical logic as based on the theory of types. In J. van Heikenoort, ed., From
Frege to Godel, pp. 150-182. Harvard Univ. Press.

T. Sato. 1995. A statistical learning method for logic programs with distribution semantics. In Proc.
12th Int. Conf. Logic Programming, pp. 715-729.

T. Sato. 2011. A general MCMC method for Bayesian inference in logic-based probabilistic modeling.
In Proc. 22nd Int. Joint Conf. on Al.

T. Sato and Y. Kameya. 1997. PRISM: A language for symbolic-statistical modeling. In Proc. 15th Int.
Joint Conf. on Al pp. 1330-1339.

T. Sato and Y. Kameya. 2001. Parameter learning of logic programs for symbolic-statistical modeling.
J. Artificial Intel. Res., 15: 391-454.

T. Sato and Y. Kameya. 2008. New advances in logic-based probabilistic modeling by PRISM. In L. De
Raedt, P. Frasconi, K. Kersting, and S. Muggleton, eds., Probabilistic Inductive Logic Programming
- Theory and Applications, volume 4911 of LNCS, pp. 118-155. Springer-Verlag. doi:10.1007/978-
3-540-78652-8_5.

T. Sato and P. Meyer. 2012. Tabling for infinite probability computation. In Proc. 28th Int. Conf. Logic
Programming, volume 17 of LIPIcs, pp. 348-358.

T. Sato, Y. Kameya, and N.-F. Zhou. 2005. Generative modeling with failure in PRISM. In Proc. 19th
Int. Joint Conf. on Al, pp. 847—-852.

T. Sato, N.-F. Zhou, Y. Kameya, and Y. Izumi, 2010. PRISM User’s Manual (Version 2.0). http:
/[sato-www.cs.titech.ac.jp/prism/download/prism20.pdf.

P. Sevon, L. Eronen, P. Hintsanen, K. Kulovesi, and H. Toivonen. 2006. Link discovery in graphs derived
from biological databases. In International Workshop on Data Integration in the Life Sciences,
volume 4075 of LNCS, pp. 35-49. Springer.

44

https://doi.org/10.1017/S1471068411000664
https://doi.org/10.1007/978-3-540-78652-8_5
https://doi.org/10.1007/978-3-540-78652-8_5
http://sato-www.cs.titech.ac.jp/prism/download/prism20.pdf
http://sato-www.cs.titech.ac.jp/prism/download/prism20.pdf

T. Swift and D. S. Warren. 2012. XSB: Extending the power of Prolog using tabling. Theory and
Practice of Logic Programming, 12(1-2): 157-187.

M. Truszczynski. 2018. An introduction to the stable and the well-founded semantics of logic programs.
In M. Kifer and Y. A. Liu, eds., Declarative Logic Programming: Theory, Systems, and Applications.
MCP/ACM.

G. Van den Broeck, W. Meert, and A. Darwiche. 2014. Skolemization for weighted first-order model
counting. In Proc. 17th Int. Conf. Principles of Knowledge Representation and Reasoning.

A. Van Gelder, K. A. Ross, and J. S. Schlipf. 1991. The well-founded semantics for general logic
programs. J. ACM, 38(3): 620—650.

J. Vennekens and S. Verbaeten. 2003. Logic programs with annotated disjunctions. Technical Report
CW386, KU Leuven.

J. Vennekens, S. Verbaeten, and M. Bruynooghe. 2004. Logic programs with annotated disjunctions. In
Proc. 20th Int. Conf. Logic Programming, pp. 195-209.

J. Vennekens, M. Denecker, and M. Bruynooghe. 2009. CP-logic: A language of causal probabilistic
events and its relation to logic programming. Theory and Practice of Logic Programming, 9(3):
245-308.

M. P. Wellman, J. S. Breese, and R. P. Goldman. 1992. From knowledge bases to decision models. The
Knowledge Engineering Review, 7(01): 35-53.

N. Zhou. 2012. The language features and architecture of B-Prolog. Theory and Practice of Logic
Programming, 12(1-2): 189-218.

45

	A Survey of Probabilistic Logic Programming
	Introduction
	Background and Assumptions

	Languages with the Distribution Semantics
	Defining the Distribution Semantics
	The Distribution Semantics for Stratified Datalog Programs
	Equivalence of Expressive Power
	Distribution Semantics for Stratified Programs with Function Symbols
	The Distribution Semantics for Non-Stratified Programs

	Other Semantics for Probabilistic Logics
	Stochastic Logic Programs
	Nilsson's probabilistic logic
	Markov Logic Networks
	Evidential Probability
	Annotated Probabilistic Logic Programs

	Probabilistic Logic Programs and Bayesian Networks
	Bayesian Logic Programs
	Knowledge Base Model Construction
	Conversion of PLP under the Distribution Semantics to Bayesian Networks

	Inferencing in Probabilistic Logic Programs
	The Complexity of Query Evaluation
	Exact Query Evaluation for Unrestricted Programs
	Exact Query Evaluation for Restricted Programs
	Approximation and Other Inferencing Tasks

	Discussion

