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Abstract

In data mining, association and correlation rules are inferred from

data in order to highlight statistical dependencies among attributes. The

metrics defined for evaluating these rules can be exploited to score rela-

tionships between attributes in Bayesian network learning. In this paper,

we propose two novel methods for learning Bayesian networks from data

that are based on the K2 learning algorithm and that improve it by ex-

ploiting parameters normally defined for association and correlation rules.

In particular, we propose the algorithms K2-Lift and K2-X2, that exploit

the lift metric and the X
2 metric respectively. We compare K2-Lift, K2-

X
2 with K2 on artificial data and on three test Bayesian networks. The

experiments show that both our algorithms improve K2 with respect to

the quality of the learned network. Moreover, a comparison of K2-Lift

and K2-X2 with a genetic algorithm approach on two benchmark net-

works show superior results on one network and comparable results on

the other.
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1 Introduction

Bayesian networks are very effective tools for representing uncertain knowledge

and performing reasoning on it. However, building a Bayesian network for a

domain is a time consuming and difficult task. Therefore, techniques for auto-

matically inferring a Bayesian network from data have recently received a lot

of attention [3, 32, 25, 18, 11, 17, 34, 17, 23, 16, 35, 10, 7, 23]. Given a trai-

ning set of examples, learning a Bayesian network is the problem of finding the

structure of the network together with the conditional probability tables (CPTs

for short) that best match the dataset. The quality of the match is evalua-

ted using a scoring metric such as description length or posterior probability

[3, 32, 25, 18, 11, 17, 16, 35]. Usually a greedy search in the space of possible

structures is adopted.

Among the several different approaches for learning Bayesian networks, K2

[11] is one of the fastest: it takes as input a topological sort of the nodes and,

for each node, it repeatedly adds a previous node as a parent if the resulting

structure increases a score given by the joint probability of the data and the

network structure. K2 stops adding parents when no addition can increase the

score.

[29] shows that K2 has some problems in dealing with root nodes (i.e., nodes

without parents) as it erroneously generates many extra arcs pointing to them.

One way to avoid this problem is to identify all root nodes before starting

learning.

In order to reach this goal, we propose the use of parameters normally defi-
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ned in relation to association and correlation rules. In data mining, association

rules [2] and correlation rules [9] are used for representing dependencies among

variables and are automatically inferred from data. Each association or corre-

lation rule is characterized by a number of parameters which can be used to

identify independence among the nodes.

In this paper we present two algorithms that use these parameters to im-

prove the quality of the networks learned by K2 and to further reduce the

computational resources needed:

• K2-Lift exploits the lift parameter in order to improve K2;

• K2-X2 exploits Pearson’s X2 index in order to improve K2;

This paper summarizes the techniques described in [20, 21] and [13] and presents

new experimental results.

The paper is structured as follows. Section 2 provides an introduction to

the problem of learning Bayesian networks. In Section 3 we present association

and correlation rules. Section 4 describes the algorithms K2-Lift and K2-X 2.

In Section 5 we show experimental comparisons among K2, K2-Lift and K2-X 2.

In Section 6 we present some related works and discuss experiments comparing

K2-Lift and K2-X 2 with the genetic algorithms of [23]. Finally, in Section 7,

we conclude and present future work.

2 Learning Bayesian Networks

Given a set of discrete random variables V, a Bayesian network represents pro-

babilistic dependencies among the variables of V. Formally, a Bayesian network
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is a couple (G,Θ) where G is a directed acyclic graph with a node per variable

and Θ is a set of parameters expressing the dependency of a variable from its

parents in the graph.

A Bayesian network can be built by interviewing a domain expert. In the

case in which no expert is available and a set of observations regarding the

domain variables is available, Bayesian network learning algorithms can be used

to infer the parameters of the network, the structure or both.

A widely used approach for learning Bayesian networks consists in perfor-

ming local search in the space of possible structures guided by a scoring function.

Usually, local search is performed by starting from a user defined structure (pos-

sibly empty) and by repeatedly adding, removing or reversing an arc. The new

structure is then scored and the best modification is kept.

Various scoring functions have been proposed in the literature, based on

different principles: Bayesian inference [11, 17, 31], entropy [18, 14], minimum

description length [19, 35] and minimum message length [37].

The K2 algorithm [11] is a search and score algorithm that uses a Bayesian

scoring function. Given a database D, K2 searches for the structure G that

maximizes the joint probability of the data and the structure P (D,G). In [11]

the joint probability is computed in closed form given a dataset provided that

a number of assumptions hold:

1. the examples of the dataset are independent, identically distributed and

complete;

2. the parameters for different configurations of the parents of a node are
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independent given the structure;

3. the prior distribution of the parameters for a parent configuration given

the structure is uniform.

In order to present the scoring function, we need the following definitions. Va-

riable Vi has ri possible value assignments vik for k = 1, . . . , ri. Let D be a

database of m cases. Each node Vi ∈ V has a set of parents π(Vi). Let wij

denote the j-th unique instantiation of π(Vi) relative to D. Suppose there are

qi such unique instantiations of π(Vi). Define Nijk to be the number of cases in

D in which variable Vi has the value vik and π(Vi) is instantiated as wij . Let

Nij =

ri
∑

k=1

Nijk (1)

be the number of cases in which π(Vi) take value wij .

Given a Bayesian network model, from the assumption 1, 2 and 3 it follows

that

P (G,D) = P (G)
n

∏

i=1

qi
∏

j=1

(ri − 1)!

(Nij + ri − 1)!

ri
∏

k=1

Nijk! (2)

This function can be computed with one scan over the data in which the suffi-

cient statistics Nijk are computed. By defining

g (Vi, π (Vi)) =

qi
∏

j=1

(ri − 1)!

(Nij + ri − 1)!

ri
∏

k=1

Nijk! (3)

we can write

P (G,D) = P (G)

n
∏

i=1

g (Vi, π (Vi)) (4)

In this formula, the individual variables provide independent contributions, so

the score can be optimized variable by variable.
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The K2 algorithm assumes that an ordering on the variables is available and

that all structures are a priori equally likely. For every node Vi, it searches for

the set of parent nodes π(Vi) that maximizes the function g (Vi, π (Vi))

K2 adopts a greedy heuristic method. It starts by assuming that a node has

no parents, and then, at every step, it adds the parent whose addition mostly

increases the function g(Vi, π(Vi)). K2 stops adding parents to the nodes when

the addition of a single parent does not increase g(Vi, π(Vi))). A pseudo code

representation of K2 algorithm is shown in Figure 1.

[29] observed that, under particular conditions, the K2 algorithm introduces

learning errors adding many extra arcs between root nodes. The article points

out that these errors may be reduced by performing an analysis on the dataset

aimed at identifying the root nodes before starting K2 learning.

3 Association and Correlation Rules

Association rules [2] relate events that are frequently observed together. A good

example of association rules is taken from the domain of sale transactions: an

association rule in this domain expresses what items are usually bought together.

An item is a literal of the form V = v where V is a variable of the domain

(attribute of the dataset) and v is a valule that belongs to the domain of V . Let

M be the set of all the possible items. An itemset X is a consistent set of items,

that is a set X such that X ⊆ M and V = v1 ∈ X,V = v2 ∈ X ⇒ v1 = v2.

A transaction T is a record of the database. We say that a transaction T

contains an itemset X if X ⊆ T or, alternatively, if T satisfies all the literals in
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X.

The support of an itemset X (indicated by Support(X)) is the fraction of

transactions in D that contain X. The support of the opposite of an itemset

X (indicated by Support(!X)) is the fraction of transactions in D that do not

contain X. Thus, Support(!X) = 1 − Support(X).

An association rule is an implication of the form X ⇒ Y , where X and Y

are itemsets and X ∩ Y = ∅. X is called the body of the rule and Y is called

the head. For an association rule X ⇒ Y we define the following parameters:

• The support of X ⇒ Y (represented by Support(X ⇒ Y )) is defined as

Support(X ∪ Y );

• The lift [6] of X ⇒ Y (represented by Lift(X ⇒ Y )) is defined as

Support(X ∪ Y )/(Support(X) × Support(Y ));

• The leverage [30] of X ⇒ Y (represented by leverage(X ⇒ Y )) is defined

as Support(X ∪ Y ) − Support(X) × Support(Y ).

A correlation rule [9] is a set of variables {V1, . . . , Vm}. The Pearson’s X2

statistic [9] can be defined with respect to a correlation rule. This statistic

measures the degree of correlation among the variables: if the statistic is 0,

then the variables in the rule are uncorrelated. If it is bigger than 0, then there

is a certain degree of correlation. In the case of a rule with two variables P

and Q, X2 can be defined as follows. Suppose P assumes I different values

p1, . . . , pI and suppose Q assumes J different values q1, . . . , qJ . Moreover, let

us define the following parameters: N = |D|, Nij = Support({p = pi, Q =
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qj}) × N , Ni• = Support({P = pi}) × N , N•j = Support({Q = qj}) × N and

N∗
ij = Ni• × N•j/N . X2 is then given by

X2 =

I
∑

i=1

J
∑

j=1

(

Nij − N∗
ij

)2

N∗
ij

(5)

N∗
ij can be interpreted as the number of records of D that are expected to

have P = pi and Q = qj given that P and Q are independent while Nij is the

actual number of such records. Thus X2 measures the difference between the

expected number of such records in the case that P and Q are independent and

the actual number of records. The X2 test is based on the χ2 distribution with

(I−1)(J−1) degrees of freedom. The hypothesis that P and Q are uncorrelated

can be rejected with a certain level of significance if X2 is above a threshold

obtained from the distribution. For example, for 1 degree of freedom (the case of

binary variables) and a significance level of 95% (the most common significance

level) the threshold for X2 is 3.84. Thus, if X2 is above 3.84, we are 95% sure

that P and Q are correlated.

4 Proposed Algorithms

This section describes how the K2 learning algorithm has been improved by

exploiting parameters defined in relation to association and correlation rules.

On the basis of these parameters, the set of nodes from which the K2 algorithm

tries to identify the best set of parents is reduced, thus mitigating the problem

of extra arcs discussed in [29].

We consider only binary association rules, with one item in the body and

one item in the head. Each rule is characterized by a value for the lift parameter

7



described in Section 3.

4.1 K2-Lift

K2-Lift is based on the following observation. When two nodes Q and P are

maximally dependent then Support({Q = qi ∪ P = pj}) = Support({Q =

qi}) = Support({P = pj}) and the lift for the rule P = pj ⇒ Q = qi would

be 1/Support({P = pj}) = 1/Support({Q = qi}). When P and Q are not

maximally dependent, then 1/Support({Q = qi}) 6= 1/Support({P = pj}). We

consider, in this case, the average of these two values:

LiftMDij =

1
Support({P=pi})

+ 1
Support({Q=qj})

2
(6)

We use this parameter (LiftMD) as a measure of the lift in the case of Maximal

Dependency, and we compare the actual lift Liftij of the rule P = pj ⇒ Q = qi

with this value by computing the formula

LiftNormij =
Lift − 1

LiftMDij − 1
(7)

where the -1 term is used because we want to measure the departure of lift

from the case of independence in which lift is equal to 1. We use the normalized

version of the lift because in this way we can compare LiftNormij for all possible

values pi and qj of P and Q. Let MaxLiftNorm be

max
ij

{Liftij }

We then compare MaxLiftNorm to a threshold: if MaxLiftNorm is greater

than or equal to the threshold, we add P to the possible parents of node Q as

we cannot exclude a possible correlation between P and Q.
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4.2 K2-X2

K2-X2 differs from K2 because it deletes from the set of allowable parents of

a node Q all those nodes P for which the X2 statistic for the correlation rule

{P,Q} is below the threshold value given by a 95% significance.

In both cases, if MaxLiftNorm is above the threshold for many couples of

variables and if X2 is above the threshold for many correlation rules, then K2-

Lift and K2-X2 will not remove many variables from the list of parents and the

execution will require more time and will possibly incur in more errors.

5 Experimental Comparisons

In order to evaluate the new algorithms, we selected a number of Bayesian

networks, we generated datasets from them by random sampling, we applied

K2, K2-Lift and K2-X2 and then we compared the learned networks. The

comparison is performed by computing the number of extra arcs (EA for short in

the following), i.e. arcs that are present in the learned network but absent from

the original network, and missing arcs (MA for short in the following), i.e. arcs

that are present in the original network but absent from the learned network.

Note that in computing EA and MA we took into account the directionality

of the arcs, therefore if the original network contains an arc from P to Q and

the learned network contains an arc from Q to P this is counted as one missing

and one extra arcs. As a measure of performance of an algorithm we used

the total number of wrong arcs (WA for short in the following) computed as

WA = EA + MA (also called Hamming distance in [23]).
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We considered both artificially generated and benchmark Bayesian networks.

5.1 Artificially Generated Networks

We generated a number of networks by using a random procedure inspired to

the one of [33]. The procedure is shown in Figure 2 and takes as input the

number of nodes n, the maximum number of parents MP and the probability

p that a node is a parent.

The CPT of a network was generated by filling each cell of the table with a

random number between 0 and 1 and by dividing each cell of a row corresponding

to a combination of parent values by the sum of the row values.

A number of networks were generated by varying the parameters: n was

set to 10, 15 and 20 while MP and p assume the values from the following

configurations:

1. MP = 0, p = 0 (empty DAG for evaluating the EA), or

2. MP = 2, p = 0.25, or

3. MP = 3, p = 0.5

For each combination of n, MP and p we generated 20 networks. So, overall,

180 networks were generated.

A number of datasets were sampled with the following number of cases:

1000, 5000, 10000 and 20000. For each size and each network, we performed

an experiment using 10 randomly generated datasets. For each dataset, one

random sort of the attributes was given as input to each learning algorithm.
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Therefore, we generated overall 7.200 datasets and 21.600 learned networks.

For each learned network we computed WA.

For each combination of network parameters, dataset size and couple of

algorithms we applied the Student’s t two-tailed test: we computed the value

of the t statistics for the WA value over the 10 dataset - ordering couples. We

declare two algorithm equivalent in an experiment if the null hypothesis can

not be rejected with a 97.5% significance, otherwise we identify a winner and a

loser.

Table 1, Table 2 and Table 3 report the number of wins, ties and losses for

networks with 10, 15 and 20 attributes respectively.

As can be seen from the tables, K2-Lift and K2-X2 never lose against K2.

Comparing in more details K2-X2 with K2, we notice that the performance

improvement of K2-X2 is relevant for small datasets and decreases when the

dataset dimension increases. The improvement increases with the number of

network attributes (e.g., for 5000 cases, K2-X2 wins on 3 datasets for 10 attri-

butes, it wins on 7 dataset for 15 attributes and it wins on 12 datasets for 20

attributes).

Comparing in more details K2-Lift with K2, we notice that the performance

improvement of K2-Lift is not relevant for small datasets, gets larger for medium

datasets (e.g., 5000 cases) and decreases again for large datasets. As for K2-

X2, the improvement relevance increases with the number of network attributes

(e.g., for 5000 cases, K2-Lift wins on 3 datasets for 10 attributes, it wins on 6

datasets for 15 attributes and in wins on 12 datasets for 20 attributes).
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Comparing K2-Lift with K2-X2, we notice that K2-X2 is better for small

datasets while K2-Lift is better for large datasets, especially for complex net-

works.

5.2 Benchmark Networks

We have considered three different benchmark networks:

• “Asia”: a network for a fictitious medical example in which a patient has

tuberculosis, lung cancer or bronchitis, depending on their X-ray, dyspnea,

visit-to-Asia and smoking status. It has 8 nodes and 8 arcs. It is shown

in Figure 3 and is described in [24].

• “Alarm”: a medical diagnostic network for patient monitoring. It is a

nontrivial belief network with 8 diagnoses, 16 findings and 13 intermediate

variables (36 nodes and 46 arcs). It is described in [5];

• “Boelarge92”: a network for a particular scenario of neighborhood events,

that shows how even distant concepts have some connection. It has 24

nodes and 35 arcs. It is described in [8];

From these networks we generated datasets by random sampling with the fol-

lowing sizes: 5000 and 20000 for “Asia” and “Boelarge92”, 5000 and 10000 for

“Alarm”. A smaller upper size was chosen for “Alarm” because for 20000 ca-

ses the learning algorithms exhausted the memory. For each dataset size, 10

datasets were generated.

Table 4 shows the average EA and MA for the three algorithms, while

Table 5 shows the values of the t statistics. For a 99% significance the two-
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tailed threshold is 2.756, so K2-Lift and K2-X2 are always significantly superior

to K2, while K2-Lift is always signficantly superior to K2-X2.

5.3 Bioinformatics

In [13] K2 and K2-Lift were applied to the problem of learning genetic networks

starting from microarray datasets based on experiments performed on Acute

Myeloid Leukemia. The analyzed dataset, described in [28], is available on-line

in the ArrayExpress repository of the European Bioinformatics Institute1. The

dataset groups the results of 20 microarray experiments, divided as follows:

10 Acute Myeloid Leukemia (AML) samples;

10 MyeloDysplastic Syndrome (MDS) samples.

AML may develop de novo or secondarily to MDS. Large-scale profiling

of gene expression by DNA microarray analysis is a promising approach for

identifying genetic markers specific to de novo or MDS-related AML.

Given a dataset, the analysis protocol followed in the experiments in [13]

consists of 3 steps:

1. Generate a set of 20 random attribute orderings named SAOi, with i =

1, .., 20.

2. For each learning algorithm La ∈ {K2,K2 − Lift}:

(a) For i=1,..,20

i. Learn the Bayesian network BNLa,i by using La on SAOi

1http://www.ebi.ac.uk/arrayexpress/, access code E-MEXP-25
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ii. Compute the Bayes score BSLa,i of BNLa,i

(b) Rank the learned network BNLa,i according to their score BSLa,i

(c) Analyze the first five learned networks BNLa,i and identify the genes

that are frequently parents of other genes

Results in [13] show that, in most cases, K2-Lift creates a more synthetic

network than K2.

K2-Lift identified a number of genes that are frequent parents, i.e. that

have a strong influence on other genes. The strong influence of these genes is

confirmed by biological literature on studies performed on AML:

• MDM2 was found by K2-Lift as a frequent parent. MDM2 is a target gene

of the transcription factor tumor protein p53. Over-expression of this gene

can result in excessive inactivation of tumor protein p53, diminishing its

tumor suppressor function. Faderl et al [12] showed that over-expression

of MDM2 is common in AML and is associated with shorter complete

remission duration and event free survival rate.

• TOB1 was found by K2-Lift as a frequent parent. TOB1 is strictly related

to ERBB2 which is a receptor protein tyrosine kinase frequently mutated

in human cancer. The protein-kinase family is the most frequently mu-

tated family found in human cancer and faulty kinase enzymes are being

investigated as promising targets for the design of anti-tumor therapies.

Zhou et al [38] showed that ERBB2-mediated resistance to DNA-damaging

agents requires the activation of Akt, which enhances MDM2-mediated
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ubiquitination and degradation of TP53.

• HGF was found by K2-Lift as a frequent parent. HGF has been widely

implicated in tumor scattering and invasive growth and is of prognostic

importance in AML [36].

6 Related Works

Parameters of correlation rules are used in learning networks of binary variables

also in [15]: the support of the rules is used in order to select subsets of variables

with cardinality ≥ 2. These subset are built starting from cardinality 2 and are

stored in a data structure called Edgedump if they represent interactions among

the variables that are not described by lower order rules. To this purpose, a local

search for a network structure is performed among the variables of each subset

X using the BDeu score: if m is the cardinality of the subset and the resulting

structure has a node with m − 1 parents, then X is added to the Edgedump.

After having built the Edgedump, edges are progressively added to an empty

network starting from those that appear in the highest number of m-way inte-

ractions. The addition of edges stop when no improvement of BDeu is obtained.

The authors show that this algorithm, called Screen-based Bayes Net Structure

search (SBNS) is able to achieve good performances also in large networks.

However, SBNS requires the variables to be binary, while we make no such

assumption.

In [1] the authors propose an algorithm called BENEDICT for learning Baye-

sian networks that exploits the Kullback-Leibler cross entropy as a measure of
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independence between nodes. The algorithm searches the space of possible

networks by means of local search and, at each step, it computes the global di-

screpancy between the current network and the data. The global discrepancy is

simply the sum of the independence measure over all the couples of non-adjacent

nodes. The search stops when the discrepancy is below a user-defined threshold

or when the discrepancy improvement is below a user-defined threshold. As an

optimization, BENEDICT eliminates a node from the set of possible parents

of another node if the independence measure between the two nodes is close to

zero. In this aspect, BENEDICT is similar to K2-Lift and K2-X2.

In [23] the authors propose an approach for learning Bayesian networks that

is based on genetic algorithms (GA for short in the following). The approach is

tested on datasets generated by random sampling from the Asia and Alarm net-

works containing 500, 1000, 2000 and 3000 cases. In order to compare K2-Lift

and K2-X2 with the algorithm in [23], we applied them to datasets of the same

size obtained by random sampling from the above networks. For each algorithm

and each dataset size, we performed 30 learning experiments, each time provi-

ding a different random variable order to the algorithms. The average numbers

of wrong arcs (WA) for these experiments are shown in Table 6. Comparing

these results with those of [23] we can observe that, for the Asia network, K2-

Lift and K2-X2 obtained a lower number of wrong arcs with respect to the best

GA approach for all dataset size apart from 500. As regards the Alarm net-

work, K2-X2 is always superior to K2-Lift, while for the GA approach the best

algorithms are “hybrid GA with the simple reduction criterion, population size
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50, low mutation and crossover rate” (GA1) and “hybrid GA with the elitist

reduction criterion, population size 50, low mutation rate and high crossover

rate” (GA2). With respect to GA1, K2-X2 achieves lower WA in two out of

four cases and, with respect to GA2, in one out of four cases.

In the future, we plan to investigate the application of the techniques pre-

sented for ruling out parents within genetic algorithms. In particular, we plan

to modify the generation of the new population by excluding the network struc-

tures that contain parents ruled out by our heuristics. This approach can be

applied both to classical genetic algorithms, such as those presented in [23],

and to the class of Estimation of Distribution Algorithms [22, 27] where the

new population is generated by sampling from a probability distribution that is

estimated from the selected individuals. Univariate Marginal Distribution Algo-

rithm [26] and Population-Based Incremental Learning [4] are two algorithms in

this class to which we plan to apply our approach, since they have been shown

experimentally [7] to perform better than traditional genetic algorithms when

learning Bayesian networks.

7 Conclusions

In this work we have described a method for improving the Bayesian network

learning algorithm K2 by exploiting a number of parameters of association and

correlation rules.

Our method improves K2 performance by reducing the set of allowable pa-

rents from which the algorithm selects the actual parents. We have presented

17



the K2-Lift and K2-X2 algorithms that exploit the Lift and X2 parameters of,

respectively, association and correlation rules.

We have compared the algorithms on a number of randomly generated net-

works and on three benchmark networks. On the randomly generated networks

K2-Lift and K2-X2 never lose against K2 and are often significantly superior.

The improvement increases with the number of network attributes. As regards

the dependence on the dataset size, K2-X2 improvement is highest for small

numbers of examples, while K2-Lift improvement is highest for medium size

networks. Overall, K2-X2 is best for small datasets while K2-Lift is best for

large datasets, especially with a high number of attributes.

On the benchmark networks, K2-Lift and K2-X2 are always significantly

superior to K2 and K2-Lift is always significantly superior to K2-X2.

Experiments conducted on a real biological dataset, described in detail in

[13], show that, in most cases, K2-Lift creates a more synthetic network than

K2.

We have also compared K2-Lift and K2-X2 with the genetic algorithm ap-

proach proposed in [23]: on the Asia network, K2-Lift and K2-X2 obtained

a lower number of wrong arcs for three dataset dimensions out of four with

respect to the best GA parametrization, while on the Alarm network K2-X2

improves parametrization “hybrid GA with the simple reduction criterion, po-

pulation size 50, low mutation and crossover rate” in two cases out of four and

parametrization “hybrid GA with the elitist reduction criterion, population size

50, low mutation rate and high crossover” in one case out of four.
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In the future we plan to investigate the contribution that association and

correlation rules can provide to learning algorithms based on genetic search.

8 Acknowledgments

This work has been partially funded by the FAR projects of the University of

Ferrara. The authors would like to thank Francesco Marsilla for his help with

the experiments.

References

[1] S. Acid and L. M. de Campos. BENEDICT: An algorithm for learning

probabilistic belief networks. In Conference on Information Processing and

Management of Uncertainty in Knowledge-Based Systems (IPMU96), 1996.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between

sets of items in large databases. In P. Buneman and S. Jajodia, editors,

ACM SIGMOD International Conference on Management of Data (SIG-

MOD93), pages 207–216. ACM Press, 1993.

[3] H. Akaike. A new look at statistical model identification. IEEE Trans.

Automatic Control, 19:716–723, 1974.

[4] S. Baluja. Population-based incremental learning: A method for integra-

ting genetic search based function optimization and competitive learning.

Technical report, School of Computer Science, Carnegie Mellon University,

1994.

19



[5] I.A. Beinlich, H.J. Suermondt, R.M. Chavez, and G.F. Cooper. The alarm

monitoring system: A case study with two probabilistic inference techni-

ques for belief networks. In J.B. Bocca, M. Jarke, and C. Zaniolo, editors,

Second European Conference on Artificial Intelligence in Medicine (AIME

89), pages 247–256. Springer, 1989.

[6] J.A. Berry and G.S. Linoff. Data Mining Techniques for Marketing, Sales

and Customer Support. John Wiley & Sons Inc., New York, 1997.
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Table 1: K2, K2-Lift, K2-X2 comparison on artificial networks with 10 variables.
With respect to K2 With respect to K2-X2

Algorithm Size Wins Ties Losses Wins Ties Losses

K2-X2

1000 5 15 0 - - -
5000 3 17 0 - - -

10000 4 16 0 - - -
20000 1 19 0 - - -

K2-Lift

1000 0 20 0 0 16 4
5000 3 17 0 0 20 0

10000 5 15 0 0 20 0
20000 1 19 0 0 19 1
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Table 2: K2, K2-Lift, K2-X2 comparison on artificial networks with 15 variables.
With respect to K2 With respect to K2-X2

Algorithm Size Wins Ties Losses Wins Ties Losses

K2-X2

1000 11 9 0 - - -
5000 7 13 0 - - -

10000 7 13 0 - - -
20000 3 17 0 - - -

K2-Lift

1000 0 20 0 0 11 9
5000 6 14 0 0 20 0

10000 11 9 0 0 20 0
20000 5 15 0 2 17 1
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Table 3: K2, K2-Lift, K2-X2 comparison on artificial networks with 20 variables.
With respect to K2 With respect to K2-X2

Algorithm Size Wins Ties Losses Wins Ties Losses

K2-X2

1000 13 7 0 - - -
5000 12 8 0 - - -

10000 10 10 0 - - -
20000 8 12 0 - - -

K2-Lift

1000 2 18 0 0 8 12
5000 12 8 0 0 19 1

10000 13 7 0 0 20 0
20000 15 5 0 7 13 0
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Table 4: Average MA and EA of K2, K2-Lift and K2-X2 on benchmark net-
works.

K2 K2-Lift K2-X2

Network Size MA EA MA EA MA EA

Asia
5000 2.17 5.03 1.83 3.20 1.83 3.77

20000 1.37 5.60 0.93 2.60 0.97 4.10

Alarm
5000 4.67 39.77 4.63 28.86 4.63 29.40

10000 3.30 45.17 3.07 29.07 3.07 30.23

Boelarge92
5000 7.46 9.56 7.46 7.70 7.40 8.20

20000 6.10 15.10 6.70 11.33 6.10 12.90
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Table 5: t statistics values of the comparisons between K2, K2-Lift, K2-X2 on
benchmark networks.

Network Size K2-Lift Vs K2 K2-X2 Vs K2 K2-X2 Vs. K2-Lift

Asia
5000 10.63 8.73 -6.16

20000 11.37 10.11 -8.33

Alarm
5000 18.26 18.49 -3.76

10000 18.22 17.48 -4.97

Boelarge92
5000 10.50 9.78 -4.01

20000 10.43 10.43 -3.38
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Table 6: Average WA of K2, K2-Lift and K2-X2 on benchmark networks.
K2 K2-Lift K2-X2

Network Size WA WA WA

Asia

500 7.80 6.00 5.80
1000 6.67 4.76 5.26
2000 6.47 4.10 4.63
3000 6.84 4.93 5.50

Alarm

500 40.86 39.06 32.90
1000 41.54 36.84 32.03
2000 44.07 34.07 33.87
3000 44.93 33.00 32.53
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for i = 1 to n
{

π(Vi) = ∅
repeat
{

select Vj ∈ {V1, . . . , Vi−1} − π(Vi) that maximizes
g(Vi, π(Vi) ∪ {Vj})

∆ = g(Vi, π(Vi) ∪ {Vj}) − g(Vi, π(Vi))
if ∆ > 0 then π(Vi) = π(Vi) ∪ {Vj}

} until ∆ < 0 or π(Vi) = {V1, . . . , Vi−1}
}

Figure 1: K2 algorithm
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1. Chose randomly a a topological sort of the nodes.

2. Let G be a graph containing the nodes and no edges.

3. For each node C:

(a) Choose MP other nodes (possible parents).

(b) For each of these nodes P :

i. If P precedes C in the topological sort and
a randomly generated number from 0 to 1 is less than p,
add an edge from P to C to the graph G.

4. If G has no edges, go to 2 otherwise, return G.

Figure 2: Procedure for generating the networks.
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Figure 3: Asia network
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