
Noname manuscript No.
(will be inserted by the editor)

Tableau Reasoning for Description Logics and its
Extension to Probabilities

Riccardo Zese · Elena Bellodi · Fabrizio
Riguzzi · Giuseppe Cota · Evelina
Lamma

Received: date / Accepted: date

Abstract The increasing popularity of the Semantic Web drove to a wide-
spread adoption of Description Logics (DLs) for modeling real world domains.
To help the diffusion of DLs, a large number of reasoning algorithms have been
developed. Usually these algorithms are implemented in procedural languages
such as Java or C++. Most of the reasoners exploit the tableau algorithm
which features non-determinism, that is not easily handled by those languages.
Prolog directly manages non-determinism, thus is a good candidate for dealing
with the tableau’s non-deterministic expansion rules.

We present TRILL, for “Tableau Reasoner for descrIption Logics in pro-
Log”, that implements a tableau algorithm and is able to return explanations
for queries and their corresponding probability, and TRILLP , for “TRILL
powered by Pinpointing formulas”, which is able to compute a Boolean for-
mula representing the set of explanations for a query. Reasoning on real world
domains also requires the capability of managing probabilistic and uncertain
information. We show how TRILL and TRILLP can be used to compute the
probability of queries to knowledge bases following DISPONTE semantics.
Experiments comparing these with other systems show the feasibility of the
approach.

Keywords Description Logics, Tableau, Prolog, Semantic Web

Riccardo Zese, Elena Bellodi, Giuseppe Cota, Evelina Lamma
Dipartimento di Ingegneria
University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy
E-mail: {riccardo.zese,elena.bellodi,giuseppe.cota,evelina.lamma}@unife.it

Fabrizio Riguzzi
Dipartimento di Matematica e Informatica
University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy
E-mail: fabrizio.riguzzi@unife.it

2 Riccardo Zese et al.

1 Introduction

The Semantic Web aims at making information regarding real world domains
available in a form that is understandable by machines [31]. The World Wide
Web Consortium is working for realizing this vision by supporting the devel-
opment of the Web Ontology Language (OWL), a family of knowledge rep-
resentation formalisms for defining ontologies. OWL is based on Description
Logics (DLs), a set of languages that are restrictions of first order logic (FOL)
with decidability and, in some cases, low complexity. For example, the OWL
DL sublanguage is based on the expressive SHOIN (D) DL while OWL 2
corresponds to the SROIQ(D) DL [31]. Moreover, uncertain information is
intrinsic to real world domains, thus the combination of probability and logic
theories is of foremost importance.

In order to fully support the development of the Semantic Web, efficient DL
reasoners, such as Pellet, RacerPro, FaCT++ and HermiT were implemented,
that offer a variety of services (classification, satisfiability, query answering, en-
tailment, consistency, etc.) for ontologies. One of the most common approaches
for reasoning is the tableau algorithm that features some non-deterministic ex-
pansion rules. This requires the developers to implement a search strategy in
an or-branching search space. Moreover, if we want to compute the probability
of a query, the algorithm has to compute all the explanations for the query,
thus it has to explore all the non-deterministic choices taken during the exe-
cution. Despite the large number of available reasoners, only few of them are
able to manage probabilistic information as well.

In this paper, after introducing DLs (Section 2), we present the tableau
algorithm and discuss its implementation via logic programming (Section 3).
In particular, we present the systems TRILL for “Tableau Reasoner for de-
scrIption Logics in proLog” and TRILLP for “TRILL powered by Pinpointing
formulas”. They are tableau reasoners for the SHOIQ DL and for theALC DL
respectively, both implemented in Prolog. Prolog’s search strategy is exploited
for taking into account the non-determinism of the tableau rules. TRILL and
TRILLP use the Thea2 library [64] for parsing OWL in its various dialects.
Thea2 translates OWL files into a Prolog representation in which each ax-
iom is mapped to a fact. TRILL and TRILLP can check the consistency of a
concept and the entailment of an axiom from an ontology. We then present
various experiments on the feasibility of the use of Prolog for implementing
reasoning algorithms.

Then the paper discusses probabilistic inference and the extensions of
TRILL and TRILLP for managing uncertain information (Section 4). We first
describe the probabilistic semantics DISPONTE [7,58] which enables the def-
inition of probabilistic ontologies.

Both TRILL and TRILLP are extended to compute the probability of
the queries following DISPONTE. We provide experimentations to check the
competitiveness of TRILL and TRILLP with respect to state-of-the-art prob-
abilistic inference systems such as PRONTO [37] and BORN [13]. Finally, we
conclude the paper and highlight directions for future work.

Tableau Reasoning for Description Logics and its Extension to Probabilities 3

2 Description Logics

DLs are knowledge representation formalisms that are at the basis of the
Semantic Web [1,2] and are used for modeling ontologies. They possess nice
computational properties such as decidability and/or low complexity.

Usually, DLs’ syntax is based on concepts and roles which correspond re-
spectively to sets of individuals and sets of pairs of individuals of the domain.
We first briefly describe ALC and then SHOIQ.

Let C, R and I be sets of atomic concepts, atomic roles and individuals,
respectively. Concepts are defined by induction as follows. Each C ∈ C is a
concept, ⊥ and > are concepts. If C, C1 and C2 are concepts and R ∈ R,
then (C1 u C2), (C1 t C2) and ¬C are concepts, as well as ∃R.C and ∀R.C.
A TBox T is a finite set of concept inclusion axioms C v D, where C and
D are concepts. We use C ≡ D to abbreviate the conjunction of C v D and
D v C. An ABox A is a finite set of concept membership axioms a : C, role
membership axioms (a, b) : R, equality axioms a = b and inequality axioms
a 6= b, where C ∈ C, R ∈ R and a, b ∈ I. A knowledge base (KB) K = (T ,A)
consists of a TBox T and an ABox A and is usually assigned a semantics in
terms of interpretations I = (∆I , ·I), where ∆I is a non-empty domain and
·I is the interpretation function that assigns an element in ∆I to each a ∈ I,
a subset of ∆I to each C ∈ C and a subset of ∆I ×∆I to each R ∈ R.

The mapping ·I is extended to all concepts (where RI(x) = {y|(x, y) ∈
RI}) as:

>I = ∆I

⊥I = ∅
(C1 u C2)I = CI1 ∩ CI2
(C1 t C2)I = CI1 ∪ CI2

(¬C)I = ∆I \ CI
(∀R.C)I = {x ∈ ∆I |RI(x) ⊆ CI}
(∃R.C)I = {x ∈ ∆I |RI(x) ∩ CI 6= ∅}

In the following we describe SHOIQ showing what it adds to ALC. A role is
either an atomic role R ∈ R or the inverse R− of an atomic role R ∈ R. We
use R− to denote the set of all inverses of roles in R. An RBox R consists of
a finite set of transitivity axioms Trans(R), where R ∈ R, and role inclusion
axioms R v S, where R,S ∈ R ∪R−.

If a ∈ I, then {a} is a concept called nominal, and if C, C1 and C2 are
concepts and R ∈ R∪R−, then ≥ nR.C and ≤ nR.C for an integer n ≥ 0 are
also concepts. A SHOIQ KB K = (T ,R,A) consists of a TBox T , an RBox
R and an ABox A.

The mapping ·I is extended to all new concepts (where #X denotes the
cardinality of the set X and RI(x,C) is defined as {y|(x, y) ∈ RI , y ∈ CI})

4 Riccardo Zese et al.

as:
(R−)I = {(y, x)|(x, y) ∈ RI}
{a}I = {aI}

(≥ nR.C)I = {x ∈ ∆I |#RI(x,C) ≥ n}
(≤ nR.C)I = {x ∈ ∆I |#RI(x,C) ≤ n}

SHOIQ is decidable iff there are no number restrictions on roles which
are transitive or have transitive subroles.

A query Q over a KB K is usually an axiom for which we want to test the
entailment from the KB, written K |= Q. The entailment test may be reduced
to checking the unsatisfiability of a concept in the knowledge base, i.e., the
emptiness of the concept. For example, the entailment of the axiom C v D
may be tested by checking the unsatisfiability of the concept Cu¬D while the
entailment of the axiom a : C may be tested by checking the unsatisfiability
of a : ¬C.

Example 1 The following KB is inspired by the ontology people+pets [50]:

∃hasAnimal.Pet v NatureLover
fluffy : Cat
tom : Cat
Cat v Pet
(kevin,fluffy) : hasAnimal
(kevin, tom) : hasAnimal

It states that individuals that own an animal which is a pet are nature lovers
and that kevin owns the animals fluffy and tom, which are cats. Moreover,
cats are pets. The KB entails the query Q = kevin : NatureLover.

3 Querying KBs: the Tableau Algorithm

In this section we introduce the problem of finding all the explanations for
queries. In order to answer queries to DL KBs, one of the most common
approaches is the tableau algorithm [1], described in details in the following.
Then, we present TRILL and TRILLP that implement the tableau algorithm.
Finally, we discuss related work and present experiments for non-probabilistic
querying.

3.1 Tableau Algorithm

A tableau is an ABox represented using a tuple G = (V,E,L, ˙6=) that contains
a directed graph (V,E) where each node of V corresponds to an individual a
and is labeled with the set of concepts L(a) to which a belongs. Each edge in
〈a, b〉 ∈ E in the graph is labeled with the set of roles L(〈a, b〉). The binary
predicate ˙6= is used to specify inequalities between nodes. G is initialized with
a node for each individual a of the KB, labeled with the nominal {a} plus all

Tableau Reasoning for Description Logics and its Extension to Probabilities 5

concepts C such that a : C ∈ K, and an edge e = 〈a, b〉 labeled with R for
each assertion (a, b) : R ∈ K.

A tableau algorithm proves an axiom by refutation, starting from a tableau
that contains the negation of the axiom. For example, the axiom C v D can
be proved by showing that C u ¬D is empty, while, if the query is a class
assertion, C(a), we add ¬C to the label of a. For testing the inconsistency of
a concept C we have to test the emptiness of C by adding a new anonymous
node a to the tableau whose label contains C. Then, the tableau algorithm
repeatedly applies a set of consistency preserving tableau expansion rules until
a clash (i.e., a contradiction) is detected or a clash-free graph is found to which
no more rules are applicable. A clash is present when a node a contains in its
label both C and ¬C or when the tableau requires that two individuals a and
b are the same and are different. If no clashes are found, the tableau represents
a model for the negation of the query, which is thus not entailed.

In order to manage non-deterministic rules, a set T of completion graphs
is built instead of a single one. T is initialized with a single completion graph
G0, and in the case of application of a non-deterministic rule, the tableau Gi
on which the rule is applied is replaced by the set of tableaux returned by the
rule.

For ensuring the termination of the algorithm, a special condition known
as blocking [35] is used. In a tableau a node x can be a nominal node if its
label L(x) contains a nominal or a blockable node. If there is an edge e = 〈x, y〉
then y is a successor of x and x is a predecessor of y. Ancestor is the transitive
closure of predecessor while descendant is the transitive closure of successor.
A node y is called an R-neighbour of a node x if y is a successor of x and
R ∈ L(〈x, y〉), where R ∈ R.

An R-neighbour y of x is safe if (i) x is blockable or if (ii) x is a nominal
node and y is not blocked. Finally, a node x is blocked if it has ancestors x0, y
and y0 such that all the following conditions are true: (1) x is a successor of x0
and y is a successor of y0, (2) y, x and all nodes on the path from y to x are
blockable, (3) L(x) = L(y) and L(x0) = L(y0), (4) L(〈x0, x〉) = L(〈y0, y〉). In
this case, we say that y blocks x. A node is blocked also if it is blockable and
all its predecessors are blocked; if the predecessor of a safe node x is blocked,
then we say that x is indirectly blocked.

When the algorithm stops applying rules to the tableaux contained in T , it
means that every completion graph in T contains a clash or no more expansion
rules can be applied to it. At this point, if all the completion graphs contain
a clash, the algorithm could not find a model satisfying the query and returns
unsatisfiable. Otherwise, it collects all the models from all the clash-free com-
pletion graphs in T and returns satisfiable. Soundness and completeness of the
tableau algorithm are proved in [1].

6 Riccardo Zese et al.

3.2 Finding explanations to a query as minimal axiom sets

A relevant problem is that of finding the explanations for a query. Its solution
has been investigated by various authors [62,35,27,36] and called axiom pin-
pointing in [62], where it is defined as a non-standard reasoning service useful
for tracing derivations and debugging ontologies. In particular, minimal axiom
sets or MinAs for short, also called explanations, are introduced in [62].

Definition 1 (MinA) Let K be a knowledge base and Q an axiom that
follows from it, i.e., K |= Q. We call a set M ⊆ K a minimal axiom set or
MinA for Q in K if M |= Q and it is minimal w.r.t. set inclusion.

The problem of enumerating all MinAs is called min-a-enum. The set of all Mi-
nAs for query Q in the knowledge base K is indicated with All-MinAs(Q,K).

In order to build explanations, the tableau algorithm has been modified
[27] so that each expansion rule updates as well a tracing function τ , which
associates labels of nodes and edges with a subset of the axioms of the KB.
τ is initialized to the empty set for all the elements of its domain except
for τ(C, a) and τ(R, 〈a, b〉), to which the values {a : C} and {(a, b) : R} are
assigned if a : C and (a, b) : R are in the ABox. The tableau expansion rules for
SHOIQ are shown in Figure 1, where the rules for the ALC DL are marked
by (∗). Here, Add(C, a) stands for the addition of a concept C to L(a) while
Add(R, 〈a, b〉) represents the addition of a role R to L(〈a, b〉). The values of
the tracing function associated with the labels which causes the clash is then
put together to form the explanation.

The rules in Figure 1 are divided into deterministic and non-deterministic.
The first, when applied to a tableau, produces a single new tableau. The latter,
when applied to a tableau, produce a set of tableaux. Let us now describe
the rules, starting from the deterministic ones. Intuitively, the → unfold rule
looks for a subclass axiom C v D in the KB and if there is an individual
that belongs to C, it ensures that the label of the individual also contains
D. The → CE rule looks for axioms of the form C v D in the KB where
C is a complex concept and adds the disjunction ¬C t D to the label of an
individual. The third rule, → u, adds to an individual two concepts C1 and
C2 if its label contains the intersection of C1 and C2. The → ∃ rule checks
whether the concept ∃S.C is verified for individual a labeled with it, i.e., if the
individual a is linked through role S with at least an individual that belongs
to C. If this is not verified, it adds to the tableau a new anonymous individual
S-linked to a labeled with C. The rules → ∀ and → ∀+ ensure that, given an
individual a labeled with ∀(S.C), all the individuals linked with a through S
or its (transitive) subroles are labeled with the class C. Rule →≥ is similar
to → ∃, it looks for an individual a labeled with the concept (≥ nS.C) and
checks if a is linked with at least n individuals, instead of only one individual,
through role S. The last deterministic rule, → O, handles nominal nodes, i.e.,
nodes labeled with a concept defined by a set of individuals. If there are two
nodes corresponding to two individuals a and b sharing a nominal concept in

Tableau Reasoning for Description Logics and its Extension to Probabilities 7

Deterministic rules:
→ unfold (∗): if A ∈ L(a), A atomic and (A v D) ∈ K, then

if D /∈ L(a), then
Add(D, a)
τ(D, a) := (τ(A, a) ∪ {A v D})

→ CE (∗): if (C v D) ∈ K, with C not atomic, a not blocked, then
if (¬C tD) /∈ L(a), then

Add((¬C tD), a)
τ((¬C tD), a) := {C v D}

→ u (∗): if (C1 u C2) ∈ L(a), a is not indirectly blocked, then
if {C1, C2} 6⊆ L(a), then

Add({C1, C2}, a)
τ(Ci, a) := τ((C1 u C2), a)

→ ∃ (∗): if ∃S.C ∈ L(a), a is not blocked, then
if a has no S-neighbour b with C ∈ L(b), then

create new node b, Add(S, 〈a, b〉), Add(C, b)
τ(C, b) := τ((∃S.C), a)
τ(S, 〈a, b〉) := τ((∃S.C), a)

→ ∀ (∗): if ∀(S.C) ∈ L(a), a is not indirectly blocked and
there is an S-neighbour b of a, then

if C /∈ L(b), then
Add(C, b)
τ(C, b) := τ((∀S.C), a) ∪ τ(S, 〈a, b〉)

→ ∀+: if ∀(S.C) ∈ L(a), a is not indirectly blocked and
there is an R-neighbour b of a, Trans(R) and R v S, then

if ∀R.C /∈ L(b), then
Add(∀R.C, b)
τ((∀R.C), b) := τ((∀S.C), a) ∪ τ(R, 〈a, b〉) ∪ {Trans(R)} ∪ {R v S}

→≥: if (≥ nS.C) ∈ L(a), a is not blocked, then
if there are no n safe S-neighbours b1, ..., bn of a with bi 6= bj

with C in L(bi) for each bi, then
create n new nodes b1, ..., bn; Add(S, 〈a, bi〉), Add(C, bi), 6=(bi, bj)
τ(S, 〈a, bi〉) := τ((≥ nS), a)
τ(C, bi) := τ((≥ nS.C), a) ∪ τ(S, 〈a, b〉)
τ(6=(bi, bj)) := τ((≥ nS), a)

→ O: if {o} ∈ L(a) ∩ L(b) and not a6=b, then Merge(a, b)
τ(Merge(a, b)) := τ({o}, a) ∪ τ({o}, b)
For each concept Ci in L(a) then

τ(Ci, b) := τ(Ci, a) ∪ τ(Merge(a, b))
(similarly for roles merged, and correspondingly for concepts in L(b))

Non-deterministic rules:
→ t (∗): if (C1 t C2) ∈ L(a), a is not indirectly blocked, then

if {C1, C2} ∩ L(a) = ∅, then
Generate graphs Gi := G for each i ∈ {1, 2}
Add(Ci, a) in Gi for each i ∈ {1, 2}
τ(Ci, a) := τ((C1 t C2), a)

→≤: if (≤ nS.C) ∈ L(a), a is not indirectly blocked,
and there are m S-neighbours b1, ..., bm of a with m > n

with C in L(bi) for each bi, then
For each possible pair bi, bj , 1 ≤ i, j ≤ m; i 6= j with C ∈ L(bi) ∩ L(bj) then

Generate a graph G′

τ(Merge(bi, bj)) := τ((≤ nS.C), a) ∪ τ(S, 〈a, b1〉)... ∪ τ(S, 〈a, bm〉)
if bj is a nominal node, then Merge(bi, bj) in G′,
else if bi is a nominal node or ancestor of bj , then Merge(bj , bi)
else Merge(bi, bj) in G′

if bi is merged into bj , then for each concept Ci in L(bi),
τ(Ci, bj) := τ(Ci, bi) ∪ τ(Merge(bi, bj))
(similarly for roles merged, and correspondingly for concepts in bj
if merged into bi)

Fig. 1 TRILL tableau expansion rules; the subset of rules marked by (∗) is employed by
TRILLP .

8 Riccardo Zese et al.

their labels and there is not an axiom specifying that a and b are different
individuals, then a and b are merged.

The non-deterministic → t rule searches for nodes labeled with a union
of concepts and creates a set of new tableaux, one for each concept contained
in the union, with the corresponding concept added to the label of the node.
Finally, →≤ is applied to a node a labeled with the concept (≤ nS.C). In this
case, if there are more than n different nodes S-linked with a, the rule creates
a new tableau for each pair of those individuals where the two individuals in
the pair are merged into one, in order to reduce the number of S-neighbours
of a.

The tableau algorithm as described up to now returns a single MinA using
the tracing function. To solve min-a-enum, reasoners written in imperative
languages, like Pellet [63], have to implement a search strategy in order to
explore the entire search space of the possible explanations. In particular,
Pellet, that is written entirely in Java, uses Reiter’s hitting set algorithm [53].
The algorithm, described in detail in [35], starts from a MinA S and initializes
a labelled tree called Hitting Set Tree (HST) with S as the label of its root v.
Then it selects an arbitrary axiom E in S, it removes it from K, generating a
new knowledge base K′ = K− {E}, and tries to obtain a new explanation for
Q w.r.t. K′. If a new MinA is found, the algorithm adds a new node w and a
new edge 〈v, w〉 to the tree, then it assigns this new explanation to the label of
w and the axiom E to the label of the edge. The algorithm repeats this process
until the unsatisfiability test returns negative: in that case the algorithm labels
the new node with OK, makes it a leaf, backtracks to a previous node, selects a
different axiom to be removed from the KB and repeats these operations until
the HST is fully built. The algorithm also eliminates extraneous unsatisfiability
tests based on previous results: once a path leading to a node labelled OK is
found, any superset of that path is guaranteed to be a path leading to a node
where C is satisfiable, and thus no additional unsatisfiability test is needed
for that path, as indicated by an X in the node label. When the HST is fully
built, all leaves of the tree are labelled with OK or X. The distinct non leaf
nodes of the tree collectively represent the set All-MinAs(C,K).

The correctness of this approach [35] relies on the following key observa-
tions:

1. If a node is not a leaf of HST, then its label is an element of the set
All-MinAs(Q,K)

2. If one takes the union of the labels of the edges in any path from the
root of HST to a leaf node marked with OK, then a hitting set for All-
MinAs(Q,K) w.r.t. K is obtained. In fact, all the minimal hitting sets for
All-MinAs(Q,K) are obtained when all the paths from the root to a leaf
in HST are considered.

Formally, the correctness and completeness of the hitting set algorithm is given
by the following theorem.

Theorem 1 ([35]) Let Q be a query that corresponds with a concept C un-
satisfiable w.r.t. K and let ExpHST(Q,K) be the set of explanations returned

Tableau Reasoning for Description Logics and its Extension to Probabilities 9

by the hitting set algorithm, then ExpHST(Q,K) is equal to the set of all
explanations of unsatisfiability of the concept Q w.r.t. K, so

ExpHST(Q,K) ≡ All-MinAs(Q,K)

Proof We divide the proof of equivalence in two parts showing that:

1. ExpHST(Q,K) ⊆ All-MinAs(Q,K)
2. ExpHST(Q,K) ⊇ All-MinAs(Q,K)

(⊆ part)
Let S ∈ ExpHST(Q,K), then S belongs to the label of some non-leaf node w
in the hitting set tree HST generated by the algorithm. In this case, L(w) ∈
All-MinAs(Q,K′), for some K′ ⊆ K. Therefore, S ∈ All-MinAs(Q,K).

(⊇ part)
Suppose, by contradiction, there exists a set M ∈ All-MinAs(Q,K), but
M /∈ ExpHST(Q,K). In this case, M does not coincide with the label of
any node in HST. Let v0 be the root of HST, with L(v0) = {E1, ..., En}, if
M = L(v0) then there is a contradiction, otherwise there must be an Ei /∈M
and an edge of the graph whose label is Ei from which a path with a node
labeled with M in it must be present. Since in the HST such a condition is
not verified we have a contradiction. �

Example 2 (Tableau algorithm) Consider the following KB, similar to that of
Example 1.

E1 = kevin : ∀hasAnimal.Pet
E2 = (kevin, tom) : hasAnimal
E3 = tom : Cat
E4 = Cat v Pet

Let Q = tom : Pet be the query. The initial tableau contains two nodes corre-
sponding to kevin and tom. The concept ∀hasAnimal.Pet is added to the label
of kevin with the tracing function τ(∀hasAnimal.Pet, kevin) = {E1} while
the label associated with tom is L(tom) = {Cat,¬Pet} with the tracing func-
tion τ(Cat, tom) = {E4} and τ(¬Pet, tom) = ∅. Finally, the node of kevin is
linked with that of tom and the edge between them is labeled with hasAnimal
and its tracing function is initialized as τ(hasAnimal, 〈kevin, tom〉) = {E2}.
The initial tableau with all the labels with the corresponding values for the
tracing function τ is shown in Figure 2.

Then, the tableau algorithm applies the→ unfold rule to tom using axiom
E4, adding Pet to the label of tom. The tracing function τ is updated as:
τ(Pet, tom) = {E3, E4}

Now, there is a clash for the concept Pet, thus the algorithm stops and
returns the explanation {E3, E4}. By applying the hitting set algorithm, at a
certain point the axiom E4 = Cat v Pet is removed from the KB and a new
call to the tableau algorithm is executed. In this case, after the initialization
of the tableau as in Figure 2, the → ∀ rule is applied to kevin, adding Pet
to the label of tom. The tracing function τ is updated as: τ(Pet, tom) =
τ((∀hasAnimal.Pet), kevin) ∪ τ(hasAnimal, 〈kevin, tom〉) = {E1, E2}. At

10 Riccardo Zese et al.

kevin | L = {∀hasAnimal.Pet}
τ(∀hasAnimal.Pet, kevin) = {E1}

L = {hasAnimal}
τ(hasAnimal, 〈kevin, tom〉) = {E2}

tom |
L = {Cat,¬Pet}
τ(Cat, tom) = {E3}
τ(¬Pet, tom) = ∅

Fig. 2 Initial tableau for the Example 2. Each node of the tableau is boxed and contains
to the left the name of the corresponding individual and to the right the label L and the
tracing function τ . The edge is labeled with the set of roles that links the two individuals
and the tracing function.

this point another clash is found and a new MinA {E1, E2} is created. Since
there are no more explanation, then All-MinAs(Q,K) = {{E1, E2}, {E3, E4}}.

3.3 Finding explanations to a query as a pinpointing formula

In [3,4] the authors consider the problem of finding a pinpointing formula
instead of All-MinAs(Q,K). The pinpointing formula is a monotone Boolean
formula in which each Boolean variable corresponds to an axiom of the KB.
This formula is built using the variables and the conjunction and disjunction
connectives. It compactly encodes the set of all MinAs. Let’s assume that
each axiom E of a KB K is associated with a propositional variable, indicated
with var(E). The set of all propositional variables is indicated with var(K). A
valuation ν of a monotone Boolean formula is the set of propositional variables
that are true. For a valuation ν ⊆ var(K), let Kν := {t ∈ K|var(t) ∈ ν}.

Definition 2 (Pinpointing formula) Given a queryQ and a KBK, a mono-
tone Boolean formula φ over var(K) is called a pinpointing formula for Q if
for every valuation ν ⊆ var(K) it holds that Kν |= Q iff ν satisfies φ.

In Lemma 2.4 of [4] the authors proved that the set of all MinAs can be ob-
tained by transforming the pinpointing formula into a Disjunctive Normal
Form Boolean formula (DNF) and removing disjuncts implying other dis-
juncts.

In the following, we briefly define how a tableau algorithm can be modified
to find the pinpointing formula. For more details and formal definitions see
[4].

Given a KB K, the modified algorithm associates a label lab(a) that is
a monotone Boolean formula over var(K) with every assertion a. For de-
ciding whether a rule is applicable we have to control the insertability of
the new assertion. Let A be a set of labelled assertions and ψ a monotone
Boolean formula, the assertion a is ψ−insertable into A if either a /∈ A,

Tableau Reasoning for Description Logics and its Extension to Probabilities 11

or a ∈ A but ψ 2 lab(a). Given a set B of assertions and a set A of la-
belled assertions, the set of ψ−insertable elements of B into A is defined as
insψ(B,A) := {b ∈ B|b is ψ−insertable into A}. For deciding the applicabil-
ity of a rule we need also to give the definition of substitution. A substitution is
a mapping ρ : V → D, where V is a finite set of variables and D is a countably
infinite set of constants that contains all the individuals in the KB and all the
fresh individuals created by the application of the rules. Variables are seen as
placeholder for individuals in the assertions. For example, an assertion can be
C(x) or R(x, y) where C is a concept, R is a role and x and y are variables. In
this case, let C(x) be an assertion with the variable x and ρ : x→ a a substitu-
tion, then C(x)ρ denotes the assertion obtained by replacing the variable with
its ρ−image, i.e. C(a). A rule is of the form (B0, S)→ {B1, ..., Bm} where Bi
are finite sets of assertions and S is a finite set of axioms. A rule is applicable
with a substitution ρ on the variable occurring in B0 if S ⊆ K, B0ρ ⊆ A, where
A is the set of assertions contained in the ABox and found during inference,
and, for every 1 ≤ i ≤ m and every substitution ρ′ on the variables occurring
in B0∪Bi, we have insψ(Biρ

′, A) 6= ∅, where ψ :=
∨
b∈B0

lab(bρ)∧
∨
s∈S var(s).

Moreover, except for the→ unfold rule, the node N to which the rule is appli-
cable is not (indirectly) blocked. When the tableau is fully built, the algorithm
conjoins the values of the tracing function of each clash for building the final
pinpointing formula.

Example 3 (Tableau algorithm cont.) Consider the KB of Example 2 and the
query Q = tom : Pet. The tableau is initialized as in the previous example
and is shown in Figure 2. Then, the tableau algorithm applies the → unfold
rule (defined as ({a : C}, {C v D}) → {{a : C, a : D}}) to tom adding Pet
and updating the tracing function as: τ(Pet, tom) = E3 ∧ E4

In the second iteration of rule application, the → ∀ rule (defined as ({a :
∀S.C}, {(a, b) : S}) → {{a : ∀S.C, b : C}}) is applied to kevin. Since the
concept Pet already belongs to the label of tom, the resulting tracing function
τ will contain the disjunction of two formulas: the previous value of τ(Pet, tom)
and the new formula. Thus, the resulting tracing function is τ(Pet, tom) =
τ(Pet, tom) ∨ (τ((∀hasAnimal.Pet), kevin) ∪ τ(hasAnimal, 〈kevin, tom〉)) =
(E3∧E4)∨(E1∧E2). At this point, the tableau is fully built and the algorithm
returns the pinpointing formula (E3 ∧ E4) ∨ (E1 ∧ E2).

Example 4 Consider a more complicated KB shown in Example 1. We asso-
ciate Boolean variables with axioms as follows:

E1 = ∃hasAnimal.Pet v NatureLover
E2 = fluffy : Cat
E3 = tom : Cat
E4 = Cat v Pet
E5 = (kevin,fluffy) : hasAnimal
E6 = (kevin, tom) : hasAnimal

12 Riccardo Zese et al.

Let Q = kevin : NatureLover be the query, then All-MinAs(Q,K) =
{{E5, E2, E4, E1}, {E6, E3, E4, E1}}, while the pinpointing formula is ((E5 ∧
E2) ∨ (E6 ∧ E3)) ∧ E4 ∧ E1.

3.4 TRILL and TRILLP

Both TRILL and TRILLP implement the tableau algorithm, the first solves
min-a-enum while the second computes the pinpointing formula representing
the set of all MinAs. They can answer concept and role membership queries,
subsumption queries and can test the unsatisfiability of a concept of the KB
or the inconsistency of the entire KB. TRILL and TRILLP are implemented
in Prolog, so the management of the non-determinism of the rules is delegated
to the language. The code of TRILL and TRILLP is available at https:

//sites.google.com/a/unife.it/ml/trill.
We use the Thea2 library [64] for converting OWL DL KBs into Prolog.

Thea2 performs a direct translation of the OWL axioms into Prolog facts. For
example, a simple subclass axiom between two named classes Cat v Pet is
written using the subClassOf/2 predicate as subClassOf(‘Cat’,‘Pet’). For
more complex axioms, Thea2 exploits the list construct of Prolog, so the axiom
NatureLover ≡ PetOwner tGardenOwner becomes equivalentClasses([
‘NatureLover’, unionOf([‘PetOwner’,‘GardenOwner’])]).

In order to represent the tableau, TRILL and TRILLP use a pair Tableau =
(A, T), where A is a list containing information about individuals and class
assertions with the corresponding value of the tracing function. The tracing
function stores a fragment of the knowledge base in TRILL and the pinpointing
formula in TRILLP . T is a triple (G, RBN , RBR) in which G is a directed
graph that contains the structure of the tableau, RBN is a red-black tree (a
key-value dictionary), where a key is a couple of individuals and its value is
the set of the labels of the edge between the two individuals, and RBR is
a red-black tree, where a key is a role and its value is the set of couples of
individuals that are linked by the role. This representation allows to quickly
find the information needed during the execution of the tableau algorithm.
For managing the blocking system we use a predicate for each blocking state:
nominal/2, blockable/2, blocked/2, indirectly blocked/2 and safe/3.
Each predicate takes as arguments the individual Ind and the tableau (A, T);
safe/3, shown in Figure 3, takes as input also the role R. For each individual
Ind in the ABox, we add the atom nominal(Ind) to A, then every time we
have to check the blocking status of an individual we call the corresponding
predicate that returns the status by checking the tableau.

Deterministic and non-deterministic tableau expansion rules are imple-
mented following a different interface; this will facilitate the insertion of new
rules in the future. All non-deterministic rules are implemented following the
interface rule name(Tab, TabList), thus they take as input the current tableau
Tab and return the list of tableaux TabList created by the application of the
rule to Tab. Figure 4 shows the code of the non-deterministic rule → t. The

Tableau Reasoning for Description Logics and its Extension to Probabilities 13

safe(Ind,R,(ABox,(T,RBN,RBR))):-

rb_lookup(R,V,RBR),

member((X,Ind),V),

blockable(X,(ABox,(T,RBN,RBR))),!.

safe(Ind,R,(ABox,(T,RBN,RBR))):-

rb_lookup(R,V,RBR),

member((X,Ind),V),

nominal(X,(ABox,(T,RBN,RBR))),!,

\+ blocked(Ind,(ABox,(T,RBN,RBR))).

Fig. 3 Code of the predicates safe/3. An R-neighbour Ind of X is safe if (i) X is blockable -
corresponding with the first definition, where the predicate blockable/2 is called - or if (ii)
X is a nominal node and Ind is not blocked - checked by nominal/2 and blocked/2 -. The
predicates rb lookup/3 and member/2 are used to find an R-predecessor X to check if Ind is
safe following the definition.

or_rule((A,T),L):-

find((classAssertion(unionOf(LC),Ind),Expl),A),

\+ indirectly_blocked(Ind,(A,T)),

findall((A1,T),scan_or_list(LC,Ind,Expl,A,T,A1),L),

dif(L,[]),!.

scan_or_list([],_Ind,_Expl,A,T,A).

scan_or_list([C|_T],Ind,Expl,A,T,[(classAssertion(C,Ind),Expl)|A]):-

absent(classAssertion(C,Ind),Expl,(A,T)).

scan_or_list([_C|T],Ind,Expl,A0,T,A):-

scan_or_list(T,Ind,Expl,A0,T,A).

Fig. 4 Code of the → t rule. It unifies the list L with all the tableau resulting by the
application of the rule. scan or list/6 simply check if the concept C can be added with the
explanation Expl to the list or not.

predicate or rule/2 searches in the tableau (A, T) for an individual to which
the rule can be applied and unifies L with the list of new tableaux created
by scan or list/6. find/2 implements the search for a class assertion. Since
the data structure that stores class assertions is currently a list, find/2 sim-
ply calls member/2. absent/3 checks if the class assertion axiom with the
associated explanation is already present in A, and in this case it checks the
applicability of the expansion rule.

Deterministic rules are implemented by a predicate rule name(Tab, Tab1)
that, given the current tableau Tab, returns the tableau Tab1 obtained by
the application of the rule to Tab. Figure 5 shows part of the code of the
deterministic rule → unfold. The predicate unfold rule/2 searches in (A, T)
for an individual to which the rule can be applied and calls the predicate
find sub sup class/3 in order to find the class to be added to the label of
the individual.

14 Riccardo Zese et al.

unfold_rule((A,T),([(classAssertion(D,Ind),[(Ax,Ind)|Expl])|A],T)):-

find((classAssertion(C,Ind),Expl),A),

atomic(C),

find_sub_sup_class(C,D,Ax),

absent(classAssertion(D,Ind),[(Ax,Ind)|Expl],(A,T)).

find_sub_sup_class(C,D,subClassOf(C,D)):-

subClassOf(C,D).

find_sub_sup_class(C,D,equivalentClasses(L)):-

equivalentClasses(L),

member(C,L),

member(D,L),

dif(C,D).

Fig. 5 Code of the → unfold rule. It takes an atomic class C from the input tableau and
looks for a class D which is a superclass or an equivalent class of C and it is not already
in the tableau, builds the explanation for the new class assertion found and adds it to the
resulting tableau.

Expansion rules are applied in order by apply all rules/2, first
the deterministic ones and then the non-deterministic ones, as shown in
Figure 6. The predicate apply det rules/3 takes as input the list
of deterministic rules and the current tableau and returns a tableau
obtained by the application of one of the rules. It is called as
apply det rules(RuleList,Tab,Tab1). After the application of a determin-
istic rule, a cut avoids backtracking to other possible choices for the determin-
istic rules.

Then, non-deterministic rules are tried sequentially with the predicate
apply nondet rules/3, shown in Figure 6, that is called as
apply nondet rules(RuleList,Tab,Tab1). It takes as input the list of non-
deterministic rules and the current tableau and returns a tableau obtained with
the application of one of the rules. If a non-deterministic rule is applicable, the
list of tableaux obtained by its application is returned by the predicate corre-
sponding to the applied rule, a cut is performed to avoid backtracking to other
rule choices and a tableau from the list is non-deterministically chosen with
the member/2 predicate. If no rule is applicable, the input tableau is returned
and the rule application stops, otherwise a new round of rule application is
performed.

Finally, the findall/3 predicate is used on the set of the built tableaux
for finding all the clashes contained in them in order to collect all the possible
explanations.

Example 5 (Tableau algorithm cont.) Consider examples 2 and 3. Both TRILL
and TRILLP start applying expansion rules using apply all rules/2, which
in turn calls the goal apply det rules/3. At this point, predicate
unfold rule/2 succeeds and updates the tableau Tab0, returning it to
apply all rules/2. Now, a new round of application of the rules is exe-
cuted. As before, apply det rules/3 is executed and the new tableau is re-

Tableau Reasoning for Description Logics and its Extension to Probabilities 15

apply_all_rules(Tab0,Tab):-

apply_det_rules([...],Tab0,Tab1),

(Tab0=Tab1 *->

Tab=Tab1;

apply_all_rules(Tab1,Tab)

).

apply_det_rules([],Tab0,Tab):-

apply_nondet_rules([...],Tab0,Tab).

apply_det_rules([H|_],Tab0,Tab):-

call(H,Tab0,Tab),!.

apply_det_rules([_|T],Tab0,Tab):-

apply_det_rules(T,Tab0,Tab).

apply_nondet_rules([],Tab,Tab).

apply_nondet_rules([H|_],Tab0,Tab):-

call(H,Tab0,L),!,

member(Tab,L),

dif(Tab0,Tab).

apply_nondet_rules([_|T],Tab0,Tab):-

apply_nondet_rules(T,Tab0,Tab).

Fig. 6 Application of the expansion rules by means of the predicates apply all rules/2,
apply det rules/3 and apply nondet rules/3. The list [...] contains the available rules
and is different in TRILL and TRILLP .

turned to apply all rules/2. Finally, no more deterministic rules are ap-
plicable thus apply det rules/3 calls apply nondet rules/3. However, no
non-deterministic rule is applicable thus the input tableau is returned as the
final one and the explanation/pinpointing formula is returned to the user.

In each rule application round, the applicability of a rule is checked by
looking whether its result is not already present in the tableau. This avoids
both infinite loops in the rule application and considering alternative rules
when a rule is applicable. In fact, if a rule is applicable in a tableau, it will
also be so in any tableau obtained by the expansion of the original one. In this
case, the choice of which expansion rule to apply introduces “don’t care” non-
determinism. Differently, “don’t know” non-determinism is introduced by non-
deterministic rules, since a single tableau is expanded into a set of tableaux.
We use Prolog search only to handle “don’t know” non-determinism.

In Figure 1, the symbol (∗) denotes the rules shared by TRILL and TRILLP .
In these rules, the operator ∪ for τ means union between two sets in TRILL,
while in TRILLP it joins two Boolean formulas with the OR Boolean operator.
Moreover, when a concept is already present in a node label, TRILL checks
whether to update the tracing function by verifying that the corresponding set
of axioms is not a subset of τ , while TRILLP performs a ψ−insertability test.
The ψ−insertability test is done by means of a satisfiability solver. In par-

16 Riccardo Zese et al.

test(L1,L2):-

build_f(L1,L2,F),

cnf(F,Cnf),

sat(Cnf).

build_f([L1],[L2],(F1*(-F2))):-

build_f1(L1,F1,[],Var1),

build_f1(L2,F2,Var1,_Var).

Fig. 7 Definition of the predicates test/2 and build f/3. In particular, build f1/4 takes
as input a Boolean formula (the first argument) and a list containing the correspondence
between Boolean variables and axioms (the third argument) and returns the Boolean for-
mula in a format suitable for the predicate cnf/2 (the second argument) and the updated
correspondence list.

ticular, TRILLP conjoins the negation of the pinpointing formula contained
in the label of the individual in the tableau with the new Boolean formula
to add to the label and tests the satisfiability of such formula. This step is
performed by the test/2 predicate shown in Figure 7. The predicate test/2

first calls build f/3 which takes two Boolean formulas L1 and L2 and cre-
ates the conjunction that will be tested by means of the satisfiability solver.
Predicates cnf/2 and sat/1 are defined in Prolog built-in libraries providing
an interface to a sat solver. These libraries were originally presented in [16],
where the authors described the implementation of an interface between Pro-
log and the MiniSat SAT solver [21], a small (about 1200 lines of C code)
and efficient sat-solver. Predicate cnf/2 converts a propositional formula F, in
which the Boolean operators and, or and not are represented by *, + and -

respectively, into a conjunctive normal form Cnf. Finally, sat/1 takes as input
such a conjunctive normal form formula and succeeds if it is satisfiable. If the
test returns true, TRILLP combines the two Boolean formulas with the OR

Boolean operator.

3.5 Related Work

Usually, DL reasoners implement a tableau algorithm using a procedural lan-
guage. Since some tableau expansion rules are non-deterministic, the devel-
opers have to implement a search strategy from scratch. Moreover, in order
to solve min-a-enum, all different ways of entailing an axiom must be found.
For example, Pellet [63] is a tableau reasoner for OWL, written in Java, which
computes All-MinAs(Q,K) by finding a single MinA using the tableau algo-
rithm and then applying the hitting set algorithm to find all the other MinAs.

Reasoners written in Prolog can exploit its backtracking facilities for per-
forming the search. This has been observed in various works. In [6] the authors
proposed a tableau reasoner in Prolog for FOL based on free-variable semantic
tableaux. However, the reasoner is not tailored to DLs. Meissner [47] presented
the implementation of a Prolog reasoner for the DL ALCN . This work was
the basis of [30], that considered ALC and improved [47] by implementing

Tableau Reasoning for Description Logics and its Extension to Probabilities 17

heuristic search techniques to reduce the running time. The work [22] added
to [30] the possibility of returning explanations for queries but it still handled
only ALC.

In [32] the authors presented the KAON2 algorithm that exploits basic
superposition, a refutational theorem proving method for FOL with equality,
and a new inference rule, called decomposition, to reduce a SHIQ KB to a
disjunctive datalog program.

DLog [42] is an ABox reasoning algorithm for the SHIQ language that
permits storing the content of the ABox externally in a database and answers
instance check and instance retrieval queries by transforming the KB into a
Prolog program. TRILL differs from these works for the considered DL and
from DLog for the capability of answering general queries.

A different approach is shown in [54], that introduced a system for reason-
ing on a logic-based ontology representation language, called OntoDLP, which
is an extension of (disjunctive) ASP and can interoperate with OWL. This
system, called OntoDLV, rewrites the OWL KB into the OntoDLP language,
can retrieve information directly from external OWL ontologies and answers
queries by using ASP. OntoDLV cannot find the set of explanations.

In [24] and [23] we addressed reasoning for Datalog± ontologies with an
Abductive Logic Programming framework named SCIFF, with existential and
universal variables, and Constraint Logic Programming constraints in rule
heads. The underlying abductive proof procedure can be directly exploited as
an ontological reasoner for query answering and consistency checking.

3.6 Experiments

In order to test whether a Prolog implementation of the tableau algorithm can
be competitive with an implementation using a procedural language we did
a comparison with Pellet [63]. In this test we stressed the non-determinism
given by the choice of which rule to apply. In particular we artificially created
a set of KBs of increasing size of the following form:

C1,1 v C1,2 v ... v C1,n v Cn+1

C1,1 v C2,2 v ... v C2,n v Cn+1

C1,1 v C3,2 v ... v C3,n v Cn+1

...

C1,1 v Cm,2 v ... v Cm,n v Cn+1

with m and n that vary between 1 and 7. Finally, we add the assertion a : C1,1

and we ran queries of the form Q = a : Cn+1. For each KB, m explanations
can be found and every explanation will contain n + 1 axioms, n subclass
axioms and 1 assertion axiom. The idea is to create an increasing number of
backtracking points in order to test how the hitting set algorithm exploited by
Pellet manages them. Table 1 reports the average time on 100 query execution

18 Riccardo Zese et al.

Table 1 Average time (in seconds) for computing all the explanations for queries with the
reasoners TRILL, TRILLP and Pellet. The cells containing “–” represent cases in which the
execution was interrupted because of the very high computation time (10 minutes).

Reasoner 1 2 3 4 5 6 7

1
TRILL 0.15 0.15 0.15 0.15 0.13 0.14 0.16
TRILLP 0.30 0.26 0.25 0.29 0.25 0.24 0.28
Pellet 2.88 2.62 2.71 2.73 2.73 2.48 2.84

2
TRILL 0.15 0.16 0.14 0.14 0.15 0.16 0.13
TRILLP 0.24 0.27 0.28 0.28 0.32 0.30 0.25
Pellet 2.79 2.70 2.72 2.66 3.06 2.85 2.98

3
TRILL 0.14 0.15 0.14 0.13 0.14 0.14 0.15
TRILLP 0.24 0.27 0.25 0.26 0.28 0.28 0.26
Pellet 2.59 2.98 3.07 3.27 3.65 4.06 4.57

4
TRILL 0.14 0.14 0.14 0.15 0.14 0.15 0.13
TRILLP 0.27 0.30 0.28 0.31 0.30 0.30 0.27
Pellet 2.83 3.29 3.61 4.97 6.51 7.91 11.11

5
TRILL 0.15 0.14 0.16 0.14 0.14 0.14 0.14
TRILLP 0.29 0.32 0.33 0.32 0.39 0.46 0.49
Pellet 3.04 3.94 5.98 10.50 22.30 67.82 254.27

6
TRILL 0.16 0.16 0.14 0.14 0.16 0.15 0.16
TRILLP 0.29 0.29 0.35 0.47 0.51 0.50 0.51
Pellet 3.32 5.19 12.43 69.05 568.04 – –

7
TRILL 0.16 0.15 0.14 0.15 0.16 0.15 0.15
TRILLP 0.32 0.33 0.47 0.53 0.51 0.52 0.48
Pellet 3.66 8.70 92.24 – – – –

for each system and w.r.t. each KB when computing all the explanations for
the query Q. Columns correspond to n while the rows corresponds to m. The
cells filled with “–” mean that the execution was interrupted because of the
very high computation time. We set a time limit of 10 minutes for the query
execution. The results show that even small KBs may lead to high running time
for Pellet, and that TRILL and TRILLP manage such cases with extremely
good performances.

4 Probabilistic Querying

DISPONTE [55,58] applies the distribution semantics [61] of probabilistic logic
programming to DLs. In this section we first define DISPONTE and then we
show how TRILL and TRILLP can compute the probability of queries accord-
ing to this semantics. Finally, we discuss related work and present experiments
for probabilistic querying.

4.1 The DISPONTE semantics

In DISPONTE, a probabilistic knowledge base K contains a set of probabilistic
axioms which take the form

p :: E (1)

Tableau Reasoning for Description Logics and its Extension to Probabilities 19

where p is a real number in [0, 1] and E is a DL axiom. The probability p
can be interpreted as an epistemic probability, i.e., as the degree of our belief
in the truth of axiom E. For example, a probabilistic concept membership
axiom p :: a : C means that we have degree of belief p in C(a). A probabilistic
concept inclusion axiom of the form p :: C v D represents the fact that we
believe in the truth of C v D with probability p.

The idea of DISPONTE is to associate independent Boolean random vari-
ables with the axioms, which are pairwise independent. To obtain a world w
we decide whether to include each axiom or not in w. A world therefore is
a non-probabilistic KB that can be assigned a semantics in the usual way. A
query is entailed by a world if it is true in every model of the world.

Formally, an atomic choice is a pair (Ei, k) where Ei is the ith probabilistic
axiom and k ∈ {0, 1} indicates whether Ei is chosen to be included in a world
(k = 1) or not (k = 0). A set of atomic choices κ is consistent if only one
decision is taken for each axiom, i.e., (Ei, k) ∈ κ, (Ei,m) ∈ κ implies k = m. A
consistent set of atomic choices is also called composite choice. The probability
of a composite choice κ is P (κ) =

∏
(Ei,1)∈κ pi

∏
(Ei,0)∈κ(1−pi), where pi is the

probability associated with axiom Ei. A selection σ is a composite choice which
contains an atomic choice (Ei, k) for every axiom of the theory. A selection σ
identifies a theory wσ called a world in this way: wσ = {Ei|(Ei, 1) ∈ σ}. The
probability of a world wσ is P (wσ) = P (σ) =

∏
(Ei,1)∈σ pi

∏
(Ei,0)∈σ(1 − pi).

P (wσ) is a probability distribution over worlds, i.e.,
∑
w∈WK

P (w) = 1, where
WK is the set of all worlds. A composite choice κ identifies the set of worlds
ωκ that are “compatible” with κ: ωκ = {wσ|wσ ∈ WK, κ ⊆ σ}. Similarly, a set
of composite choices K identifies the set of worlds ωK “compatible” with K:
ωK =

⋃
κ∈K ωκ. A composite choice κ is an explanation for a query Q if Q is

entailed by every world of ωκ. A covering set of explanations for Q is a set of
composite choices K such that every world wσ in which the query is true is
included in the set of worlds identified by K.

We can now assign probabilities to queries. Given a world w, the probability
of a query Q is defined as P (Q|w) = 1 if w |= Q and 0 otherwise. The
probability of a query can be defined by marginalizing the joint probability of
the query and the worlds.

P (Q) =
∑

w∈WK

P (Q,w) (2)

=
∑

w∈WK

P (Q|w)P (w) (3)

=
∑

w∈WK:w|=Q

P (w) (4)

The following example illustrates inference under the DISPONTE seman-
tics.

20 Riccardo Zese et al.

Example 6 Consider the following KB, a probabilistic version of that proposed
in Example 1.

(E1) 0.5 :: ∃hasAnimal.Pet v NatureLover
fluffy : Cat
tom : Cat

(E2) 0.6 :: Cat v Pet
(kevin,fluffy) : hasAnimal
(kevin, tom) : hasAnimal

It indicates that the individuals that own an animal which is a pet are nature
lovers with a 50% probability and cats are pets with a 60% probability. These
probabilities are degrees of belief in the respective axioms. For example, the
fact that cats are pets is believed with degree 60%, meaning that the writer
of the KB cannot be absolutely sure of the axiom, for example because she
heard of wild cats, because she extracted the axiom with statistical methods
from text, because she cannot define for sure the concepts of cats and pets, or
for other reasons. The KB has four possible worlds:

{(E1), (E2)}, {(E1)}, {(E2)}, {}
and the query axiom Q = kevin : NatureLover is true in the first of them,
while in the remaining ones it is false. The probability of the query is P (Q) =
0.5 · 0.6 = 0.3.

The assumption of independence of the axioms may seem restrictive. However,
any probabilistic relationship between assertions that can be represented with
a Bayesian network can be modelled in this way. For example, suppose you
want to model a general dependency between the assertions A(i) and B(i) re-
garding classes A and B and individual i. This dependency can be represented
with the Bayesian network of Figure 8.

A(i)

��
B(i)

Prob. Table 1: P (A(i))
HHHHA(i)

0 1− p1
1 p1

Prob. Table 2: P (B(i)|A(i))
PPPPPPB(i)

A(i)
0 1

0 1− p2 1− p3
1 p2 p3

Fig. 8 Bayesian Network representing the dependency between A(i) and B(i).

Tableau Reasoning for Description Logics and its Extension to Probabilities 21

The joint probability distribution P (A(i), B(i)) over the two Boolean ran-
dom variables A(i) and B(i) is

P (0, 0) = (1− p1)(1− p2)
P (0, 1) = (1− p1)(p2)
P (1, 0) = p1(1− p3)
P (1, 1) = p1p3

This dependence can be modelled with the following DISPONTE KB:

E1 = p1 :: i : A

E2 = p2 :: ¬A v B
E3 = p3 :: A v B

We can associate the Boolean random variables X1 with (E1), X2 with (E2)
and X3 with (E3), where X1, X2 and X3 are mutually independent. These
three random variables generate 8 worlds. ¬A(i)∧¬B(i) is true in the worlds

w1 = {}, w2 = {(E3)}
whose probabilities are

P ′(w1) = (1− p1)(1− p2)(1− p3)
P ′(w2) = (1− p1)(1− p2)p3

so P ′(¬A(i),¬B(i)) = (1− p1)(1− p2)(1− p3) + (1− p1)(1− p2)p3 = P (0, 0).
We can prove similarly that the distributions P and P ′ coincide for all joint
states of A(i) and B(i).

Modelling the dependency between A(i) and B(i) with the KB above is
equivalent to represent the Bayesian network of Figure 8 with the Bayesian
network of Figure 9.

It can be easily checked that the distributions P and P ′′ of the two networks
agree on the variables A(i) and B(i), i.e., that P (A(i), B(i)) = P ′′(A(i), B(i))
for any value of A(i) and B(i). From Figure 9 is also clear that X1, X2 and
X3 are mutually unconditionally independent, thus showing that it is possible
to represent any dependence with independent random variables. So we can
model general dependencies among assertions with DISPONTE.

4.2 Computing the probability

The number of different worlds is exponential in the number of probabilistic
axioms, so their enumeration is unfeasible. A possible approach for computing
the probability of queries to KBs following the DISPONTE semantics relies
on the use of mutually exclusive explanations. Once collected, in fact, the
probability of the query corresponds to the sum of the probabilities of the
individual mutually exclusive explanations. The tableau algorithm shown in
Section 3 and implemented in TRILL can be used to find the set of mini-
mal explanations. In order to make them mutually exclusive we can exploit a

22 Riccardo Zese et al.

X1

��
A(i)

��

X2

��

X3

xx
B(i)

Prob. Table 3: P ′′(X1) Prob. Table 4: P ′′(X2)
HH

HHX1

0 1− p1
1 p1

HH
HHX2

0 1− p2
1 p2

Prob. Table 5: P ′′(A(i)|X1) Prob. Table 6: P ′′(X3)
PPPPPPA(i)

X1 0 1

0 1 0

1 0 1

HHHHX3

0 1− p3
1 p3

Prob. Table 7: P ′′(B(i)|X1, X2, X3)
`````````̀B(i)

X1, X2, X3 0,0,0 0,0,1 0,1,0 0,1,1 1,0,0 1,0,1 1,1,0 1,1,1

0 1 1 0 0 1 0 1 0

1 0 0 1 1 0 1 0 1

Fig. 9 Bayesian Network modelling the distribution over A(i), B(i), X1, X2, X3.

splitting algorithm as shown in [52]. Alternatively, we can assign independent
Boolean random variables to the axioms contained in the explanations and
define the DNF Boolean formula fK as fK(X) =

∨
κ∈K

∧
(Ei,1)

Xi

∧
(Ei,0)

Xi

where X = {Xi|(Ei, k) ∈ κ, κ ∈ K} is the set of Boolean random variables.

TRILLP , instead, computes directly a pinpointing formula which is a mono-
tone Boolean formula that represents the set of all explanations.

Irrespective of which representation of the explanations we choose, a DNF
or a general pinpointing formula, we can apply knowledge compilation and
transform it into a Binary Decision Diagram (BDD), from which we can com-
pute the probability of the query with a dynamic programming algorithm that
is linear in the size of the BDD.

A BDD for a function of Boolean variables is a rooted graph that has one
level for each Boolean variable. A node n in a BDD has two children: one
corresponding to the 1 value of the variable associated with the level of n,
indicated with child1(n), and one corresponding to the 0 value of the variable,
indicated with child0(n). When drawing BDDs, the 0-branch - the one going
to child0(n) - is distinguished from the 1-branch by drawing it with a dashed
line. The leaves store either 0 or 1.



Tableau Reasoning for Description Logics and its Extension to Probabilities 23

X1 n1

X2 n2

X3 n3

1 0

Fig. 10 BDD for Example 7.

Example 7 Consider the following probabilistic KB inspired by the people+pets
ontology.

∃hasAnimal.Pet v NatureLover
(kevin,fluffy) : hasAnimal

(kevin, tom) : hasAnimal

E1 = 0.4 :: fluffy : Cat

E2 = 0.3 :: tom : Cat

E3 = 0.6 :: Cat v Pet

Here individuals that own an animal which is a pet are surely nature lovers
and kevin has the animals fluffy and tom. Moreover, we believe in the fact
that fluffy and tom are cats and that cats are pets with a certain probability.
A covering set of explanations for the query axiom Q = kevin : NatureLover
is K = {κ1, κ2} where κ1 = {(E1, 1), (E3, 1)} and κ2 = {(E2, 1), (E3, 1)}.

If we associate the random variables X1 with E1, X2 with E2 and X3 with
E3, the BDD associated with the set K of explanations is shown in Figure 10.

A BDD performs a Shannon expansion of the Boolean formula f(X), so
that, if X is the variable associated with the root level of a BDD, the formula

f(X) can be represented as f(X) = X ∧ fX(X) ∨X ∧ fX(X) where fX(X)

(fX(X)) is the formula obtained by f(X) by setting X to 1 (0). Now the two
disjuncts are pairwise exclusive and the probability of f(X) being true can be

computed as P (f(X)) = P (X)P (fX(X)) + (1−P (X))P (fX(X)) by knowing
the probabilities P (X) of the Boolean variables of being true.

4.3 Related Work

First-order logics of probability were discussed in [5] and [28] where two dif-
ferent types of probability, statistical and epistemic, were presented, the first
type captures statistical information about the world while the second cap-
tures a degree of belief. For example, the first type represents probabilistic
statements such as “the probability that a randomly chosen bird flies is 0.9”,
while the latter represents probabilistic statements such as “the probability



24 Riccardo Zese et al.

that Tweety (a particular bird) flies is 0.9”. DISPONTE allows only Type 2
statements: 0.9 :: Bird v Flies means that each particular bird flies with a
probability of 0.9.

Prob-ALC [46], as DISPONTE, considers only epistemic probabilities. It
follows a possible world semantics and allows concept expressions of the form
P≥nC and ∃P≥nR.C in the TBox, indicating the set of individuals that belong
to C with probability greater than n and the set of individuals a connected to
at least another individual b of C by role R such that the probability of R(a, b)
is greater than n respectively. Axioms of the form P≥nC(a) and P≥nR(a, b)
are allowed in the ABox. Prob-ALC is complementary to DISPONTE ALC
as it allows new concept and assertional expressions while DISPONTE allows
probabilistic axioms.

In [34] the authors presented an approach for querying probabilistic databases
in the presence of an OWL2 QL ontology. Each assertion is assumed to be
stored in a database and associated with probabilistic events that are proba-
bilistically independent, resulting in a semantics very similar to the distribu-
tion semantics. The authors addressed the problem of computing probabilities
to conjunctive queries w.r.t. datasets where probabilities can occur only in as-
sertional informations. Events can be Boolean combinations of atomic events
in general, but the authors considered also a restricted setting where each as-
sertion is associated with a distinct atomic event. This setting is subsumed by
DISPONTE.

Heinsohn [29] extended the DL ALC in order to allow the expression of sta-
tistical information on the terminological knowledge such as partial concept
overlapping. Jaeger [33] extended [29] by allowing the definition of probabilis-
tic assertions and combines the resulting probability distributions using cross-
entropy minimization. Similarly, [39] presented a probabilistic description logic
based on Bayesian networks that deals with statistical terminological knowl-
edge.

In [20] the authors proposed a probabilistic extension of OWL that admits
a translation into Bayesian networks. The semantics assigns a probability dis-
tribution P (a) over individuals, i.e. the probability values of all individuals
sum up to 1. Classes can be assigned a probability defined as the sum of the
probabilities of the individuals belonging the class.

PR-OWL [17,12] is an upper ontology that provides a framework for build-
ing probabilistic ontologies. It allows to use the first-order probabilistic logic
MEBN [41] for representing uncertainty in ontologies.

DISPONTE differs from [29,33,39,20,17,12] because it minimally extends
DLs and provides a unified framework for representing different types of prob-
abilistic knowledge: from assertional to terminological degree of belief knowl-
edge.

FOProbLog [10] is an extension of ProbLog where a program contains a set
of probabilistic facts, i.e. facts annotated with probabilities, and a set of general
clauses which can have positive and negative probabilistic facts in their body.
Each fact is assumed to be probabilistically independent. FOProbLog follows
the distribution semantics and exploits BDDs to compute the probability of



Tableau Reasoning for Description Logics and its Extension to Probabilities 25

queries. FOProbLog is a reasoner for FOL that is not tailored to DLs, so the
algorithm could be suboptimal for them.

Bayesian networks are exploited also in [18] and [14]. Here, a KB is as-
sociated with a Bayesian network with variables V . Axioms take the form
E : X = x where E is a DL axiom and X = x is an annotation with X ⊆ V
and x a set of values for these variables. The Bayesian network assigns a prob-
ability to every assignment of V , called a world. The authors show that the
probability of a query Q = E : X = x is given by the sum of the probabilities
of the worlds where X = x is satisfied and where E is a logical consequence
of the theory composed of the axioms whose annotation is true in the world.
A similar approach was presented in [26] where Markov networks are used
instead of Bayesian networks. The approach of [14] was applied in [15,13]
to extend the EL DL, defining the probabilistic DL called BEL. The system
BORN [13] answers probabilistic subsumption queries w.r.t. BEL KBs. It ex-
ploits ProbLog for managing the probabilistic part of the KB. DISPONTE is
a special case of these semantics where every axiom Ei : Xi = xi is such that
Xi is a single Boolean variable and the Bayesian network has no edges, i.e., all
the variables are independent. This is an important special case that greatly
simplifies reasoning, as computing the probability of the worlds takes a time
linear in the number of variables. However, in case the added expressiveness
of these formalisms is needed, the Bayesian network could be translated into
an equivalent one with only mutually unconditionally independent random
variables as shown in Figure 9.

crALC [45] extends ALC by allowing the definition of statistical axioms
only. It adopts an interpretation-based semantics based on probability mea-
sures over the space of interpretations with a fixed domain. Inference can then
be performed by a first order loopy belief propagation algorithm on ground
direct acyclic graphs which represents the KBs w.r.t. queries. These graphs
have a node for each concept, role and restriction ∃R.C and ∀R.C, the edges
connect related concepts and roles.

A different approach to the combination of DLs with probability is taken
in [25,43,44]. The logic proposed in these papers is called P-SHIQ(D) and
uses probabilistic lexicographic entailment from probabilistic default reason-
ing. It allows both terminological probabilistic knowledge as well as assertional
probabilistic knowledge about instances of concepts and roles. In particular,
TBox probabilistic axioms are expressed through conditional constraints of
the form (D|C)[l, u] that informally mean “generally, if an object belongs to
C, then it belongs to D with a probability in [l, u]”. PRONTO [37] is a sys-
tem that can be used to perform inference. P-SHIQ(D) is based on Nilsson’s
probabilistic logic [49] that defines probabilistic interpretations instead of a
single probability distribution over theories. Each probabilistic interpretation
Pr defines a probability distribution over the set of usual interpretations Int.
The probability of a logical formula F according to Pr, denoted Pr(F ), is the
sum of all Pr(I) such that I ∈ Int and I |= F . A probabilistic KB K is a set
of probabilistic formulas of the form F ≥ p. A probabilistic interpretation Pr
satisfies F ≥ p iff Pr(F ) ≥ p. A probabilistic interpretation Pr is a model of a



26 Riccardo Zese et al.

probabilistic KB if it satisfies all of its probabilistic formulas. The probability
of a logical formula F according to a probabilistic KB K belongs to the set
of values {Pr(F )|Pr is a model of K}. So with Nilsson logic one reasons with
intervals of probability values. Pr(F ) ≥ p is a tight logical consequence of K
iff p is the infimum of Pr(F ) subject to all models Pr of K.

A combination between DLs and logic programs was presented in [11] in
order to integrate ontologies and rules. They use a tightly coupled approach to
(probabilistic) disjunctive description logic programs. They define a descrip-
tion logic program as a pair (L,P ), where L is a DL KB and P is a disjunctive
logic program which contains rules on concepts and roles of L. P may con-
tain probabilistic alternatives in the style of ICL [51]. Interpretations assign a
probability to ground atoms, in the style of Nilsson probabilistic logic [49].

Nilsson’s logic allows weaker conclusions than the distribution semantics:
consider a probabilistic ontology composed of the axioms 0.4 :: a : C and
0.5 :: b : C and a probabilistic KB composed of C(a) ≥ 0.4 and C(b) ≥ 0.5.
The distribution semantics allows us to say that P (a : C ∨ b : C) = 0.7, while
with Nilsson’s logic we can only say that Pr(C(a) ∨ C(b)) ∈ [0.5, 1]. This is
due to the fact that in the distribution semantics the probabilistic axioms
are considered as independent, which allows to make stronger conclusions.
However, this does not restrict expressiveness as one can specify any joint
probability distribution over the logical ground atoms, possibly introducing
new atoms if needed as is shown in Section 4.1.

The use of Nilsson logic causes the approaches of [25,43,44,11] to reason
with intervals of probability values, while with DISPONTE we work with point
probabilities.

Recently, BUNDLE [56,59] was proposed for reasoning over DISPONTE
KBs. BUNDLE exploits Pellet for solving min-a-enum and computes the prob-
ability of queries by exploiting BDDs.

4.4 Experiments

In order to evaluate TRILL and TRILLP for probabilistic querying, we com-
pared them with BUNDLE [56,59] and BORN [13]. We used four different
knowledge bases of various complexity:

– BRCA1, which models the risk factors of breast cancer;
– an extract of the DBPedia2 ontology obtained from Wikipedia;
– Biopax level 33, which models metabolic pathways;
– Vicodi4, which contains information on European history.

BRCA (“Breast Cancer Risk Assessment”) [38] states the risk factors of breast
cancer depending on several factors such as age, drugs taken, ethnicity, etc. For

1 http://www2.cs.man.ac.uk/~klinovp/pronto/brc/cancer_cc.owl
2 http://dbpedia.org/
3 http://www.biopax.org/
4 http://www.vicodi.org/



Tableau Reasoning for Description Logics and its Extension to Probabilities 27

...

<owl:Class rdf:about="&cancer_ra;LackOfExercise">

<rdfs:subClassOf rdf:resource="&cancer_ra;KnownFactor"/>

</owl:Class>

<owl:Class rdf:about="&cancer_ra;LateFirstChild">

<rdfs:subClassOf rdf:resource="&cancer_ra;KnownFactor"/>

</owl:Class>

...

Fig. 11 Axioms from BRCA. They state that the lack of exercise may increase the risk of
having breast cancer as well as having the first child at old age.

...

<owl:Class rdf:about="&dbpedia;ComicsCreator">

<rdfs:subClassOf rdf:resource="&dbpedia;Person"/>

</owl:Class>

...

<owl:Class rdf:about="&dbpedia;Hospital">

<rdfs:subClassOf rdf:&dbpedia;Place"/>

</owl:Class>

...

Fig. 12 Axioms from DBPedia. They state that a comic creator is a person and that
hospitals are places.

example, as shown in Figure 11, it states that known factors for the disease
are the lack of exercise or having the first child at a late age. The original
version presented in [38] reduced risk assessment to probabilistic entailment
in P-SHIQ(D). For this test we took only the non-probabilistic part and
we made probabilistic 50 axioms randomly chosen. BRCA has ALCHF(D)
expressiveness and contains 491 axioms, 154 different classes and 15 different
properties (12 object properties and 3 data properties).

DBPedia contains structured information about Wikipedia. It is built on
the data contained in the sideboxes shown in wiki pages. Some examples of
axioms are shown in Figure 12. DBPedia’s expressiveness is EL. The portion
we consider contains 267 axioms and 118 classes.

Biopax [19] was defined in order to allow integration on analysis of biologi-
cal pathways data. The BioPax project defines 3 different levels, in this test we
used level 3 that represents molecular and genetic interactions together with
pathways including molecular states. Figure 13 shows the axioms asserting
that physical entities are composed of complexes which are in turn physical
entities different from DNAs, RNAs or small molecules. The version of Biopax
used has SHIN (D) expressiveness and has 925 axioms, 69 classes, 55 object
properties and 41 data properties.

Finally, Vicodi [48] is an extract of the Vicodi knowledge base that contains
information on European history. It models historical events and important
personalities such as popes or princes, as shown in Figure 14. Vicodi’s expres-



28 Riccardo Zese et al.

...

<owl:ObjectProperty rdf:about="&biopax;component">

<rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>

<rdfs:domain rdf:resource="&biopax;Complex"/>

<rdfs:range rdf:resource="&biopax;PhysicalEntity"/>

</owl:ObjectProperty>

...

<owl:Class rdf:about="&biopax;Complex">

<rdfs:subClassOf rdf:resource="&biopax;PhysicalEntity"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="&biopax;memberPhysicalEntity"/>

<owl:allValuesFrom rdf:resource="&biopax;Complex"/>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="&biopax;Dna"/>

<owl:disjointWith rdf:resource="&biopax;DnaRegion"/>

<owl:disjointWith rdf:resource="&biopax;Protein"/>

<owl:disjointWith rdf:resource="&biopax;Rna"/>

<owl:disjointWith rdf:resource="&biopax;RnaRegion"/>

<owl:disjointWith rdf:resource="&biopax;SmallMolecule"/>

...

</owl:Class>

...

Fig. 13 Axioms from Biopax. A complex is a physical entity different from DNAs, RNAs
or their regions, proteins and small molecules. It can be part of another physical entity.

...

<owl:Class rdf:about="&vicodi;Pope">

<rdfs:subClassOf rdf:resource="&vicodi;Religious-Leader"/>

</owl:Class>

...

<owl:Class rdf:about="&vicodi;Prince">

<rdfs:subClassOf rdf:resource="&vicodi;Head-of-State"/>

</owl:Class>

...

<owl:Class rdf:about="&vicodi;War">

<rdfs:subClassOf rdf:resource="&vicodi;Event"/>

</owl:Class>

...

Fig. 14 Axioms from Vicodi. A Pope is a religious leader, while a prince is a head of a
state. Finally a war is an historical event.

siveness is ALH(D) and contains 209 axioms, 168 classes, 6 object properties
and 2 data properties

For the tests, we used a version of the DBPedia and Biopax KBs without
the ABox and a version of BRCA and of Vicodi with an ABox containing 1
individual and 19 individuals respectively. For each KB we made probabilistic
50 of its axioms. The probability values were learned using EDGE [57], a
system for parameter learning from a set of positive and negative examples in



Tableau Reasoning for Description Logics and its Extension to Probabilities 29

Table 2 Average number of MinAs and average time (in seconds) for computing the prob-
ability of queries with the reasoners TRILL, TRILLP and BUNDLE.

avg. n. TRILL TRILLP BUNDLE BORN
Dataset of minAs time (s) time (s) time (s) time (s)
BRCA 6.49 27.87 4.74 6.96 n.a.
DBPedia 16.32 51.56 4.67 3.79 5.16
Biopax level 3 3.92 0.12 0.12 1.85 n.a.
Vicodi 1.02 0.19 0.19 1.12 n.a.

the form of class assertion axioms that we regard as true (false), and for which
we would like to get a high (low) probability.

For each dataset we randomly created 100 different queries. In particular,
for the DBPedia and Biopax datasets, we created 100 subclass-of queries, while
for the other KBs we created 80 subclass-of and 20 instance-of queries. For
generating the subclass-of queries, we randomly selected two classes that are
connected in the hierarchy of classes, so that each query had at least one
explanation. For the instance-of queries, we randomly selected an individual
a and a class to which a belongs by following the hierarchy of the classes,
starting from the classes to which a explicitly belongs in the KB.

Table 2 shows, for each ontology, the average number of different MinAs
computed and the average time in seconds that TRILL, TRILLP , BUNDLE
and BORN took for computing the probability of the queries. In particular,
BRCA and the used version of DBPedia contain a large number of subclass
axioms between complex concepts resulting in a large number of explanations.
TRILLP performs better than TRILL because it is able to compactly encode
explanations. In the last column, “n.a.” means “not applicable” as BORN can
handle only EL DL.

A second test was performed following the approach presented in [38] to
investigate the scalability of our systems on versions of BRCA of increas-
ing size, comparing them with PRONTO, the system for which BRCA was
originally created, and BUNDLE. The authors of [38] included in the KB an
increasing number of conditional constraints randomly created. The number
of these constraints was varied from 9 to 15, and, for each number, 100 dif-
ferent consistent ontologies were created. To convert them into DISPONTE
KBs, we translated every conditional constraint (C|D)[l, u] into a probabilistic
axiom of the form u :: C v D. For instance, the statement that an average
woman has up to 12.3% chance of developing breast cancer in her lifetime is ex-
pressed by (WomanUnderAbsoluteBRCRisk|Woman)[0, 0.123] is translated
into 0.123 :: WomanUnderAbsoluteBRCRisk vWoman. Finally, an individ-
ual was added to every KB. The individual is randomly assigned to each simple
class that appears in the conditional constraints with probability 0.6. Complex
classes contained in the conditional constraints were split into their compo-
nents, e.g., the complex class PostmenopausalWomanTakingTestosterone was
divided into PostmenopausalWoman and WomanTakingTestosterone. Finally,
we ran 100 probabilistic queries of the form a : C where a is the individual of



30 Riccardo Zese et al.

the KB and C is a class randomly selected among those that represent women
under increased and lifetime risk such as WomanUnderLifetimeBRCRisk and
WomanUnderStronglyIncreasedBRCRisk.

Figure 15 shows the execution time and the memory consumption averaged
over the 100 KBs as a function of the number of probabilistic axioms. As one
can see, TRILL is initially slower than all the other systems but then inference
times becomes similar to that of BUNDLE. TRILLP performances are close
to that of BUNDLE and outperform PRONTO. The memory usage for both
TRILL and TRILLP is much lower than the other systems.

These tests show that both TRILL and TRILLP can sometimes be bet-
ter than other state-of-the-art probabilistic reasoners such as PRONTO and
BUNDLE, even if they lack all the optimizations implemented in them. In
particular, when a KB is relatively small, BUNDLE and PRONTO’s higher
cost is due to their expensive initialization phase that is not present in TRILL
and TRILLP . These results represent evidence that a Prolog implementation
of probabilistic tableau reasoners is feasible and may lead to practical systems.
Moreover, TRILLP is faster than TRILL when more MinAs are present.

5 Conclusions

In this paper we have presented the algorithm TRILL for reasoning on SHOIQ
KBs and the algorithm TRILLP for reasoning on ALC KBs. Both reasoners
implement the tableau algorithm in Prolog.

The experiments performed show that Prolog is a viable language for imple-
menting DL reasoning algorithms and that their performances are comparable
with those of a state-of-the-art reasoner such as Pellet. Moreover, we show how
they can be extended to compute the probability of queries from DISPONTE
KBs. A comparison with the probabilistic reasoners BUNDLE, PRONTO and
BORN show that again Prolog may play a role in this field.

In order to spread the use of TRILL, we developed a Web application called
“TRILL-on-SWISH” and available at http://trill.lamping.unife.it. The
application is based on SWISH [40], a recently proposed Web framework for
logic programming using various features and packages of SWI-Prolog. SWISH
allows the user to write Prolog programs and ask queries in the browser with-
out installing SWI-Prolog. TRILL-on-SWISH allows users to write a KB in
the RDF/XML format directly in the web page or load it from a URL, and
specify queries that are answered by TRILL running on the server. Once the
computation ends, the results are sent to the client browser and visualized in
the Web page.

In the future we plan to apply various optimizations to our systems in
order to better manage the expansion of the tableau. In particular, we plan to
carefully choose the rule and node application order. We are also studying an
extension of our systems for managing KBs integrating rules and DL axioms.
Moreover, we plan to exploit TRILL for implementing algorithms for learning
the parameters of probabilistic DISPONTE KBs, along the lines of [8,9,60].



Tableau Reasoning for Description Logics and its Extension to Probabilities 31

9 10 11 12 13 14 15
0

0.5

1

1.5

2

2.5

3
x 10

5

N. Of Axioms

T
im

e 
(m

s)

 

 

TRILL

TRILLP

BUNDLE
PRONTO

(a) Average execution time (ms) for inference.

9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

N. Of Axioms

M
em

or
y 

N
ee

de
d 

(k
)

 

 

TRILL

TRILLP

BUNDLE
PRONTO

(b) Average memory consumption (Kb) for inference.

Fig. 15 Comparison between TRILL, TRILLP , BUNDLE and PRONTO on BRCA KB.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications. Cam-
bridge University Press (2003)

2. Baader, F., Horrocks, I., Sattler, U.: Description logics. In: Handbook of knowledge
representation, chap. 3, pp. 135–179. Elsevier (2008)

3. Baader, F., Peñaloza, R.: Automata-based axiom pinpointing. J. Autom. Reasoning
45(2), 91–129 (2010)



32 Riccardo Zese et al.

4. Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. J. Log. Comput.
20(1), 5–34 (2010)

5. Bacchus, F.: Representing and reasoning with probabilistic knowledge - a logical ap-
proach to probabilities. MIT Press, Cambridge, MA, USA (1990)

6. Beckert, B., Posegga, J.: leantap: Lean tableau-based deduction. J. Autom. Reasoning
15(3), 339–358 (1995)

7. Bellodi, E., Lamma, E., Riguzzi, F., Albani, S.: A distribution semantics for probabilistic
ontologies. In: F. Bobillo, et al. (eds.) URSW 2011, CEUR Workshop Proceedings, vol.
778. Sun SITE Central Europe (2011)

8. Bellodi, E., Riguzzi, F.: Learning the structure of probabilistic logic programs. In: S.H.
Muggleton, A. Tamaddoni-Nezhad, F.A. Lisi (eds.) ILP 2011, LNCS, vol. 7207, pp.
61–75. Springer (2012). DOI 10.1007/978-3-642-31951-8 10

9. Bellodi, E., Riguzzi, F.: Expectation Maximization over binary decision diagrams for
probabilistic logic programs. Intel. Data Anal. 17(2), 343–363 (2013)

10. Bruynooghe, M., Mantadelis, T., Kimmig, A., Gutmann, B., Vennekens, J., Janssens,
G., Raedt, L.D.: Problog technology for inference in a probabilistic first order logic.
In: ECAI 2010 - 19th European Conference on Artificial Intelligence, Lisbon, Portugal,
August 16-20, 2010, Proceedings, Frontiers in Artificial Intelligence and Applications,
vol. 215, pp. 719–724. IOS Press (2010)

11. Cal̀ı, A., Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: Tightly coupled probabilistic
description logic programs for the semantic web. In: Journal on Data Semantics XII,
pp. 95–130. Springer (2009)

12. Carvalho, R.N., Laskey, K.B., Costa, P.C.G.: PR-OWL 2.0 - bridging the gap to OWL
semantics. In: F. Bobillo, et al. (eds.) URSW 2010, CEUR Workshop Proceedings, vol.
654. Sun SITE Central Europe (2010)

13. Ceylan, İ.İ., Mendez, J., Peñaloza, R.: The bayesian ontology reasoner is born! In:
M. Dumontier, B. Glimm, R.S. Gonçalves, M. Horridge, E. Jiménez-Ruiz, N. Matent-
zoglu, B. Parsia, G.B. Stamou, G. Stoilos (eds.) Informal Proceedings of the 4th Inter-
national Workshop on OWL Reasoner Evaluation (ORE-2015) co-located with the 28th
International Workshop on Description Logics (DL 2015), CEUR Workshop Proceed-
ings, vol. 1387, pp. 8–14. CEUR-WS.org (2015)

14. Ceylan, İ.İ., Peñaloza, R.: Bayesian description logics. In: M. Bienvenu, M. Ortiz,
R. Rosati, M. Simkus (eds.) Informal Proceedings of the 27th International Workshop
on Description Logics, Vienna, Austria, July 17-20, 2014., CEUR Workshop Proceedings,
vol. 1193, pp. 447–458. CEUR-WS.org (2014)

15. Ceylan, İ.İ., Peñaloza, R.: Probabilistic query answering in the bayesian description logic
BE l. In: C. Beierle, A. Dekhtyar (eds.) Proceedings of Scalable Uncertainty Management
- 9th International Conference, SUM 2015, Lecture Notes in Computer Science, vol.
9310, pp. 21–35. Springer (2015)

16. Codish, M., Lagoon, V., Stuckey, P.J.: Logic programming with satisfiability. TPLP
8(1), 121–128 (2008)

17. da Costa, P.C.G., Laskey, K.B., Laskey, K.J.: PR-OWL: A bayesian ontology language
for the semantic web. In: P.C.G. da Costa, C. d’Amato, N. Fanizzi, K.B. Laskey,
K.J. Laskey, T. Lukasiewicz, M. Nickles, M. Pool (eds.) Uncertainty Reasoning for the
Semantic Web I, ISWC International Workshops, URSW 2005-2007, Revised Selected
and Invited Papers, Lecture Notes in Computer Science, vol. 5327, pp. 88–107. Springer
(2008)

18. d’Amato, C., Fanizzi, N., Lukasiewicz, T.: Tractable reasoning with bayesian description
logics. In: S. Greco, T. Lukasiewicz (eds.) Scalable Uncertainty Management, Second
International Conference, SUM 2008, Naples, Italy, October 1-3, 2008. Proceedings,
Lecture Notes in Computer Science, vol. 5291, pp. 146–159. Springer (2008)

19. Demir, E., Cary, M.P., Paley, S., Fukuda, K., Lemer, C., Vastrik, I., Wu, G.,
D’Eustachio, P., Schaefer, C., Luciano, J., et al.: The biopax community standard for
pathway data sharing. Nature biotechnology 28(9), 935–942 (2010)

20. Ding, Z., Peng, Y.: A probabilistic extension to ontology language OWL. In: 37th Hawaii
International Conference on System Sciences (HICSS-37 2004), CD-ROM / Abstracts
Proceedings, 5-8 January 2004, Big Island, HI, USA. IEEE Computer Society (2004)



Tableau Reasoning for Description Logics and its Extension to Probabilities 33

21. Eén, N., Sörensson, N.: An extensible sat-solver. In: E. Giunchiglia, A. Tacchella (eds.)
Theory and Applications of Satisfiability Testing, 6th International Conference, SAT
2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers, Lecture
Notes in Computer Science, vol. 2919, pp. 502–518. Springer (2003)

22. Faizi, I.: A Description Logic Prover in Prolog, Bachelor’s thesis, Informatics Mathe-
matical Modelling, Technical University of Denmark (2011)

23. Gavanelli, M., Lamma, E., Riguzzi, F., Bellodi, E., Zese, R., Cota, G.: An abductive
framework for datalog± ontologies. In: M.D. Vos, T. Eiter, Y. Lierler, F. Toni (eds.)
Proceedings of the Technical Communications of the 31st International Conference on
Logic Programming (ICLP 2015), Cork, Ireland, August 31 - September 4, 2015., CEUR
Workshop Proceedings, vol. 1433. CEUR-WS.org (2015)

24. Gavanelli, M., Lamma, E., Riguzzi, F., Bellodi, E., Zese, R., Cota, G.: Abductive logic
programming for datalog +/- ontologies. In: D. Ancona, M. Maratea, V. Mascardi (eds.)
Proceedings of the 30th Italian Conference on Computational Logic, Genova, Italy, July
1-3, 2015., CEUR Workshop Proceedings, vol. 1459, pp. 128–143. CEUR-WS.org (2015)

25. Giugno, R., Lukasiewicz, T.: P-SHOQ(D): A probabilistic extension of SHOQ(D) for
probabilistic ontologies in the semantic web. In: S. Flesca, S. Greco, N. Leone, G. Ianni
(eds.) Logics in Artificial Intelligence, European Conference, JELIA 2002, Cosenza,
Italy, September, 23-26, Proceedings, Lecture Notes in Computer Science, vol. 2424,
pp. 86–97. Springer (2002)

26. Gottlob, G., Lukasiewicz, T., Simari, G.I.: Conjunctive query answering in probabilistic
datalog+/- ontologies. In: S. Rudolph, C. Gutierrez (eds.) Web Reasoning and Rule
Systems - 5th International Conference, RR 2011, Galway, Ireland, August 29-30, 2011.
Proceedings, Lecture Notes in Computer Science, vol. 6902, pp. 77–92. Springer (2011)

27. Halaschek-Wiener, C., Kalyanpur, A., Parsia, B.: Extending tableau tracing for ABox
updates. Tech. rep., University of Maryland (2006)

28. Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46(3), 311–350
(1990)

29. Heinsohn, J.: Probabilistic description logics. In: R.L. de Mántaras, D. Poole (eds.)
Conference on Uncertainty in Artificial Intelligence, pp. 311–318. Morgan Kaufmann
(1994)

30. Herchenröder, T.: Lightweight semantic web oriented reasoning in Prolog: Tableaux
inference for description logics. Master’s thesis, School of Informatics, University of
Edinburgh (2006)

31. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
CRCPress (2009)

32. Hustadt, U., Motik, B., Sattler, U.: Deciding expressive description logics in the frame-
work of resolution. Inf. Comput. 206(5), 579–601 (2008)

33. Jaeger, M.: Probabilistic reasoning in terminological logics. In: J. Doyle, E. Sande-
wall, P. Torasso (eds.) Proceedings of the 4th International Conference on Principles of
Knowledge Representation and Reasoning (KR’94). Bonn, Germany, May 24-27, 1994.,
pp. 305–316. Morgan Kaufmann (1994)

34. Jung, J.C., Lutz, C.: Ontology-based access to probabilistic data with OWL QL. In:
P. Cudré-Mauroux, J. Heflin, E. Sirin, T. Tudorache, J. Euzenat, M. Hauswirth, J.X.
Parreira, J. Hendler, G. Schreiber, A. Bernstein, E. Blomqvist (eds.) The Semantic
Web - ISWC 2012 - 11th International Semantic Web Conference, Boston, MA, USA,
November 11-15, 2012, Proceedings, Part I, Lecture Notes in Computer Science (LNCS),
vol. 7649, pp. 182–197. Springer, Berlin (2012)

35. Kalyanpur, A.: Debugging and repair of OWL ontologies. Ph.D. thesis, The Graduate
School of the University of Maryland (2006)

36. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL
DL entailments. In: K. Aberer, et al. (eds.) ISWC/ASWC 2007, LNCS, vol. 4825, pp.
267–280. Springer (2007)

37. Klinov, P.: Pronto: A non-monotonic probabilistic description logic reasoner. In: S. Bech-
hofer, M. Hauswirth, J. Hoffmann, M. Koubarakis (eds.) The Semantic Web: Research
and Applications, 5th European Semantic Web Conference, ESWC 2008, Tenerife, Ca-
nary Islands, Spain, June 1-5, 2008, Proceedings, Lecture Notes in Computer Science,
vol. 5021, pp. 822–826. Springer (2008)



34 Riccardo Zese et al.

38. Klinov, P., Parsia, B.: Optimization and evaluation of reasoning in probabilistic de-
scription logic: Towards a systematic approach. In: A.P. Sheth, S. Staab, M. Dean,
M. Paolucci, D. Maynard, T.W. Finin, K. Thirunarayan (eds.) The Semantic Web -
ISWC 2008, 7th International Semantic Web Conference, ISWC 2008, Karlsruhe, Ger-
many, October 26-30, 2008. Proceedings, Lecture Notes in Computer Science, vol. 5318,
pp. 213–228. Springer (2008)

39. Koller, D., Levy, A.Y., Pfeffer, A.: P-CLASSIC: A tractable probablistic description
logic. In: B. Kuipers, B.L. Webber (eds.) Proceedings of the Fourteenth National Con-
ference on Artificial Intelligence and Ninth Innovative Applications of Artificial Intelli-
gence Conference, AAAI 97, IAAI 97, July 27-31, 1997, Providence, Rhode Island., pp.
390–397. AAAI Press / The MIT Press (1997)

40. Lager, T., Wielemaker, J.: Pengines: Web logic programming made easy. TPLP 14(4-5),
539–552 (2014)

41. Laskey, K.B., da Costa, P.C.G.: Of starships and klingons: Bayesian logic for the 23rd
century. In: UAI ’05, Proceedings of the 21st Conference in Uncertainty in Artificial
Intelligence, Edinburgh, Scotland, July 26-29, 2005, pp. 346–353. AUAI Press (2005)

42. Lukácsy, G., Szeredi, P.: Efficient description logic reasoning in prolog: The dlog system.
TPLP 9(3), 343–414 (2009)

43. Lukasiewicz, T.: Probabilistic default reasoning with conditional constraints. Ann.
Math. Artif. Int. 34(1-3), 35–88 (2002)

44. Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Int. 172(6-7), 852–883
(2008)

45. Luna, J.E.O., Revoredo, K., Cozman, F.G.: Learning probabilistic Description Logics:
A framework and algorithms. In: I.Z. Batyrshin, G. Sidorov (eds.) Advances in Artificial
Intelligence - 10th Mexican International Conference on Artificial Intelligence, MICAI
2011, Puebla, Mexico, November 26 - December 4, 2011, Proceedings, Part I, Lecture
Notes in Computer Science, vol. 7094, pp. 28–39. Springer, Berlin (2011)

46. Lutz, C., Schröder, L.: Probabilistic Description Logics for subjective uncertainty. In:
F. Lin, U. Sattler, M. Truszczynski (eds.) Principles of Knowledge Representation and
Reasoning: Proceedings of the Twelfth International Conference, KR 2010, Toronto,
Ontario, Canada, May 9-13, 2010, pp. 393–403. AAAI Press, Menlo Park, CA, USA
(2010)

47. Meissner, A.: An automated deduction system for description logic with alcn language.
Studia z Automatyki i Informatyki 28-29, 91–110 (2004)

48. Nagypál, G., Deswarte, R., Oosthoek, J.: Applying the semantic web: The VICODI ex-
perience in creating visual contextualization for history. Literary and Linguistic Com-
puting 20(3), 327–349 (2005)

49. Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–87 (1986)

50. Patel-Schneider P, F., Horrocks, I., Bechhofer, S.: Tutorial on OWL (2003)

51. Poole, D.: The Independent Choice Logic for modelling multiple agents under uncer-
tainty. Artif. Intell. 94(1-2), 7–56 (1997)

52. Poole, D.: Abducing through negation as failure: stable models within the independent
choice logic. J. Log. Program. 44(1-3), 5–35 (2000)

53. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)

54. Ricca, F., Gallucci, L., Schindlauer, R., Dell’Armi, T., Grasso, G., Leone, N.: OntoDLV:
An ASP-based system for enterprise ontologies. J. Log. Comput. 19(4), 643–670 (2009)

55. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Epistemic and statistical probabilistic
ontologies. In: F. Bobillo, et al. (eds.) URSW 2012, CEUR Workshop Proceedings, vol.
900, pp. 3–14. Sun SITE Central Europe (2012)

56. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: BUNDLE: A reasoner for probabilistic
ontologies. In: W. Faber, D. Lembo (eds.) Web Reasoning and Rule Systems - 7th
International Conference, RR 2013, Mannheim, Germany, July 27-29, 2013. Proceedings,
Lecture Notes in Computer Science, vol. 7994, pp. 183–197. Springer (2013)

57. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Parameter learning for probabilistic on-
tologies. In: W. Faber, D. Lembo (eds.) Web Reasoning and Rule Systems - 7th In-
ternational Conference, RR 2013, Mannheim, Germany, July 27-29, 2013. Proceedings,
Lecture Notes in Computer Science, vol. 7994, pp. 265–270. Springer (2013)



Tableau Reasoning for Description Logics and its Extension to Probabilities 35

58. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Probabilistic description logics under the
distribution semantics. Semantic Web - Interoperability, Usability, Applicability 6(5),
447–501 (2015). DOI 10.3233/SW-140154

59. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Reasoning with probabilistic ontologies.
In: Q. Yang, M. Wooldridge (eds.) IJCAI 2015, pp. 4310–4316. AAAI Press (2015)

60. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R., Cota, G.: Learning probabilistic descrip-
tion logics. In: URSW III, LNCS, vol. 8816, pp. 63–78. Springer (2014)

61. Sato, T.: A statistical learning method for logic programs with distribution semantics.
In: ICLP 1995, pp. 715–729. MIT Press (1995)

62. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of de-
scription logic terminologies. In: G. Gottlob, T. Walsh (eds.) IJCAI 2003, pp. 355–362.
Morgan Kaufmann (2003)

63. Sirin, E., Parsia, B., Cuenca-Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. J. Web Sem. 5(2), 51–53 (2007)

64. Vassiliadis, V., Wielemaker, J., Mungall, C.: Processing OWL2 ontologies using thea:
An application of logic programming. In: OWLED 2009, CEUR Workshop Proceedings,
vol. 529. CEUR-WS.org (2009)


