
Errata to Foundations of Probabilistic Logic
Programming

Fabrizio Riguzzi

Page 1
Replace

An element a P S is the least upper bound of a subset X of X

with

An element a P S is the least upper bound of a subset X of S

Page 2
Replace

A relation ă defined by a ă b iff a ă b and a ‰ b is associated with any
partial order ď on S.

with

A relation ă defined by a ă b iff a ď b and a ‰ b is associated with any
partial order ď on S.

Page 17

Replace Definition 2 (OpFalsePI and OpFalsePI operators) with Definition 2 (OpTruePI
and OpFalsePI operators)

Page 25
Replace P pX “ ωq with P pX P ωq.

Page 73
Replace w in the first line with wσ

1

Page 107
The last formula of the proof of Lemma 7 should be replaced by

WFM pwσq “WFM pwσ||Iαq “WFM pwσ|IFPP
P
Ò αq.

The proof of Lemma 8 should be:

This is a simple consequence of Lemma 7: wσ P ωKα
a

means that a is a
fact inwσ|IFPPP

Ò α so WFM pwσ|IFPP
P
Ò αq (a and WFM pwσq (

a.

On the other hand, wσ P ωKα
„a

means that there are not rules for a in
wσ|IFPP

P
Ò α therefore WFM pwσ|IFPP

P
Ò αq („a and WFM pwσq („

a.

Page 117
Formula

P pqq “

ż

σPSP ,xPRn
ppq, wσ,xq “

ż

σPSP ,xPRn
P pq|wσ,xqppwσ,xq “

ż

σPSP ,xPRn:wσ,x(q
ppwσ,xq

should be replaced by

P pqq “

ż

σPSP ,xPRn
ppq, wσ,xqdσdx “

ż

σPSP ,xPRn
P pq|wσ,xqppwσ,xqdσdx “

ż

σPSP ,xPRn:wσ,x(q
ppwσ,xqdσdx “

ÿ

σPSP

ż

xPRn:wσ,x(q
ppwσ,xqdx

Page 154
The text:

Binary Decision Diagrams (BDDs) perform a Shannon expansion of the
Boolean formula: they express the formula as

fKpXq “ X1 _ f
X1

K pXq ^ X1 _ f
 X1

K pXq

2

should be replaced by

BDDs perform a Shannon expansion of the Boolean formula: they express
the formula as

fKpXq “ X1 ^ f
X1

K pXq _ X1 ^ f
 X1

K pXq

Page 161
The text:

The Boolean variables are associated with the following parameters:

P pXij1q “ P pXij1 “ 1q

. . .

P pXijkq “
P pXij “ kq

śk´1
l“1 p1´ P pXijk´1qq

should be replaced by

The Boolean variables are associated with the following parameters:

P pXij1q “ P pXij1 “ 1q

. . .

P pXijkq “
P pXij “ kq

śk´1
l“1 p1´ P pXijlqq

Page 174
The text:

To define structured decomposability, consider a Deterministic Decom-
posable Negation Normal Form (d-DNNF) δ and assume, without loss of
generality, that all conjunctions are binary. δ respects a vtree V if for ev-
ery conjunction α ^ β in δ, there is a node v in V such that varspαq Ď
varspvlq and varspβq Ď varspvrq where vl and vr are the left and right
child of v. δ enjoys structured decomposability if it satisfies some vtree.

should be replaced by

To define structured decomposability, consider a d-DNNF δ and assume,
without loss of generality, that all conjunctions are binary. δ respects a
vtree V if for every conjunction α ^ β in δ, there is a node v in V such
that varspαq Ď varspvlq and varspβq Ď varspvrq where vl and vr are
the left and right child of v and varspvq is the set of variables appearing in
d-DNNF v. δ enjoys structured decomposability if it satisfies some vtree.

3

Page 176, Definition 35
The text:

Definition 35 (TcP operator [Vlasselaer et al., 2015, 2016]). Let P be a
ground probabilistic logic program with probabilistic facts F and atoms
BP . Let I be a parameterized interpretation with pairs pa, λaq. Then, the
TcP operator is TcP pIq “ tpa, λaq|a P BPu where

λ1a “

$

&

%

a if a P F
Ž

aÐb1,...,bn,„c1,...,„cmPR
pλb1 ^ . . .^ λbn ^ λc1 ^ . . .^ λcmq

if a P BPzF

should be replaced by

Definition 35 (TcP operator [Vlasselaer et al., 2015, 2016]). Let P be
a ground probabilistic logic program with probabilistic facts F , rules R
and atoms BP . Let I be a parameterized interpretation with pairs pa, λaq.
Then, the TcP operator is TcP pIq “ tpa, λaq|a P BPu where

λ1a “

$

&

%

a if a P F
Ž

aÐb1,...,bn,„c1,...,„cmPR
pλb1 ^ . . .^ λbn ^ λc1 ^ . . .^ λcmq

if a P BPzF

Page 177
The text:

Vlasselaer et al. [2016] show that if each atom is selected frequently enough
in step 1, then the same fixpoint lfppTcP q is reached as for the naive al-
gorithm, provided that the operator is still applied stratum by stratum in
normal logic programs.

should be replaced by

Vlasselaer et al. [2016] show that if each atom is selected frequently enough
in step 1, then the same fixpoint lfppTcP q is reached as for the naive algo-
rithm that considers all atoms at the same time, provided that the operator
is still applied stratum by stratum in normal logic programs.

Page 194
Formula:

4

ψg1pXq “ Mpψ2g2 , Zq “
¿

Z

ψ2g2ÓZ “

“ 0.3NZp2.5, 1.1q ` 0.7NXp3.5, 1.1q

should be replaced by

ψg1pXq “ Mpψ2g2 , Zq “
¿

Z

ψ2g2ÓZ “

“ 0.3NXp2.5, 1.1q ` 0.7NXp3.5, 1.1q

Page 247, Algorithm 11
The text:

5

Algorithm 11 Function EXACTSOLUTION: Solving the DTPROBLOG decision prob-
lem exactly.

1: function EXACTSOLUTION(DT)
2: ADDutil

tot Ð 0
3: for all puÑ rq P U do
4: Build BDDpuq, the BDD for u
5: ADDpuq Ð PROBABILITYDDpBDDupDT qq
6: ADDutil

puq Ð r ¨ADDupσq
7: ADDutil

tot Ð ADDutil
tot ‘ADDutil

puq
8: end for
9: let tmax be the terminal node of ADDutil

tot with the highest utility
10: let p be a path from tmax to the root of ADDutil

tot

11: return the Boolean decisions made on p
12: end function
13: function PROBABILITYDD(n)
14: if n is the 1-terminal then
15: return a 1-terminal
16: end if
17: if n is the 0-terminal then
18: return a 0-terminal
19: end if
20: let h and l be the high and low children of n
21: ADDh Ð PROBABILITYDDphq
22: ADDl Ð PROBABILITYDDphq
23: if n represents a decision d then
24: return ITEpd,ADDh,ADDlq

25: end if
26: if n represents a fact with probability p then
27: return pp ¨ADDhq ‘ pp1´ pq ¨ADDlq

28: end if
29: end function

should be replaced by

6

Algorithm 11 Function EXACTSOLUTION: Solving the DTPROBLOG decision prob-
lem exactly.

1: function EXACTSOLUTION(DT)
2: ADDutil

tot Ð 0
3: for all puÑ rq P U do
4: Build BDDpuq, the BDD for u
5: ADDpuq Ð PROBABILITYDDpBDDpuqq
6: ADDutil

puq Ð r ¨ADDpuq
7: ADDutil

tot Ð ADDutil
tot ‘ADDutil

puq
8: end for
9: let tmax be the terminal node of ADDutil

tot with the highest utility
10: let p be a path from tmax to the root of ADDutil

tot

11: return the Boolean decisions made on p
12: end function
13: function PROBABILITYDD(n)
14: if n is the 1-terminal then
15: return a 1-terminal
16: end if
17: if n is the 0-terminal then
18: return a 0-terminal
19: end if
20: let h and l be the high and low children of n
21: ADDh Ð PROBABILITYDDphq
22: ADDl Ð PROBABILITYDDplq
23: if n represents a decision d then
24: return ITEpd,ADDh,ADDlq

25: end if
26: if n represents a fact with probability p then
27: return pp ¨ADDhq ‘ pp1´ pq ¨ADDlq

28: end if
29: end function

Pages 260-261
The text:

To perform Expectation Maximization (EM), we can associate a random
variable Xij with values D “ txi1, . . . , xiniu to the ground switch name
iθj of mswpi, xq with domain D, with θj being a grounding substitution
for i. Let gpiq be the set of such substitutions:

gpiq “ tj|θj is a grounding substitution for i in mswpi, xqu.

The EM algorithm alternates between the two phases:

• Expectation: computes Ercik|es for all examples e, switchesmswpi, xq
and k P t1, . . . , niu, where cik is the number of times a variable Xij

7

takes value xik with j in gpiq. Ercik|es is given by
ř

jPgpiq P pXij “

x|eq.

• Maximization: computes Πik for all mswpi, xq and k “ 1, . . . , ni´
1 as

Πik “

ř

ePE Ercik|es
ř

ePE

řni
k“1 Ercik|es

So, for each example e, Xijs and xiks, we compute P pXij “ xik|eq, the
expected value of Xij given the example, with k P t1, . . . , niu. These
expected values are then aggregated and used to complete the dataset for
computing the parameters by relative frequency. If cik is number of times
a variable Xij takes value xik for any j, Ercik|es is its expected value
given example e. if Erciks is its expected value given all the examples,
then

Erciks “
T
ÿ

t“1

Ercik|ets

and

Πik “
Erciks

řni
k“1 Erciks

.

should be replaced by

To perform EM, we can associate a random variable Xij with values D “
txi1, . . . , xiniu to the ground switch name iθj of mswpi, xq with domain
D, with θj being a grounding substitution for i. Let gpiq be the set of such
substitutions:

gpiq “ tj|θj is a grounding substitution for i in mswpi, xqu.

PRISM will learn different parameters for each Xij random variable. The
EM algorithm alternates between the two phases:

• Expectation: computes Ercijk|es for all examples e, switchesmswpiθj , xq
and k P t1, . . . , niu, where cijk is the number of times variable Xij

takes value xik. Ercijk|es is given by P pXij “ xik|eq.

• Maximization: computes Πijk for allmswpiθj , xq and k “ 1, . . . , ni´
1 as

Πijk “

ř

ePE Ercijk|es
ř

ePE

řni
k“1 Ercijk|es

So, for each example e, Xijs and xiks, we compute P pXij “ xik|eq, the
expected value of Xij given the example, with k P t1, . . . , niu. These
expected values are then used to complete the dataset for computing the
parameters by relative frequency. If cijk is number of times a variable Xij

takes value xik, Ercijk|es is its expected value given example e. If Ercijks
is its expected value given all the examples, then

Ercijks “
T
ÿ

t“1

Ercijk|ets

8

and

Πijk “
Ercijks

řni
k“1 Ercijks

.

Page 262-263
The text:

Algorithm 13 Function PRISM-EM: Naive EM learning in PRISM
1: function PRISM-EM-NAIVE(E,P, ε)
2: LL “ ´inf
3: repeat
4: LL0 “ LL
5: for all i, k do Ź Expectation step

6: Erciks Ð
ř

ePE

ř

κPKe,mswpi,xikqθjPe
P pκq

P peq

7: end for
8: for all i, k do ŹMaximization step
9: Πik Ð

Erciks
řni
k1“1

Ercik1 s

10: end for
11: LLÐ

ř

ePE logP peq
12: until LL´ LL0 ă ε
13: return LL,Πik for all i, k
14: end function

Algorithm 14 Procedure GET-INSIDE-PROBS: computation of inside probabilities.
1: procedure GET-INSIDE-PROBS(q)
2: for all i, k do
3: P pmswpi, vkqq Ð Πik

4: end for
5: for iÐ mÑ 1 do
6: P pgiq Ð 0
7: for j Ð 1 Ñ si do
8: Let Sij be hij1, . . . , hijo
9: P pgi, Sijq Ð

śo
l“1 P phijlq

10: P pgiq Ð P pgiq ` P pgi, Sijq
11: end for
12: end for
13: end procedure

should be replaced by

9

Algorithm 13 Function PRISM-EM-NAIVE: Naive EM learning in PRISM
1: function PRISM-EM-NAIVE(E,P, ε)
2: LL “ ´inf
3: repeat
4: LL0 “ LL
5: for all i, j, k do Ź Expectation step

6: Ercijks Ð
ř

ePE

ř

κPKe,mswpiθj ,xikqPe
P pκq

P peq

7: end for
8: for all i, j, k do ŹMaximization step
9: Πijk Ð

Ercijks
řni
k1“1

Ercijk1 s

10: end for
11: LLÐ

ř

ePE logP peq
12: until LL´ LL0 ă ε
13: return LL,Πijk for all i, j, k
14: end function

Algorithm 14 Procedure GET-INSIDE-PROBS: computation of inside probabilities.
1: procedure GET-INSIDE-PROBS(e)
2: for all i, j, k do
3: P pmswpiθj , vkqq Ð Πijk

4: end for
5: for iÐ mÑ 1 do
6: P pgiq Ð 0
7: for j Ð 1 Ñ si do
8: Let Sij be hij1, . . . , hijo
9: P pgi, Sijq Ð

śo
l“1 P phijlq

10: P pgiq Ð P pgiq ` P pgi, Sijq
11: end for
12: end for
13: end procedure

The text

Outside probabilities instead are defined as

Qpgiq “
BP pqq

BP pgiq

should be replaced by

Outside probabilities instead are defined as

Qpgiq “
BP peq

BP pgiq

10

Pages 263-264
The text

We have that Qpg1q “ 1 as q “ g1. For i “ 2, . . . ,m, we can derive
Qpgiq by the chain rule of the derivative knowing that P pqq is a function
of P pb1q, . . . , P pbKq

Qpgiq “
BP pqq

BP pb1q

BP pgi,W11q

BP pg1q
` . . .`

BP pqq

BP pbKq

BP pgi,WKiK q

BP pg1q
“

Qpb1qP pgi,W11q{P pgiq ` . . .`QpbkqP pgi,WKiK q{P pgiq

should be replaced by

We have that Qpg1q “ 1 as e “ g1. For i “ 2, . . . ,m, we can derive
Qpgiq by the chain rule of the derivative knowing that P peq is a function
of P pb1q, . . . , P pbKq

Qpgiq “
BP peq

BP pb1q

BP pgi,W11q

BP pg1q
` . . .`

BP peq

BP pbKq

BP pgi,WKiK q

BP pg1q
“

Qpb1qP pgi,W11q{P pgiq ` . . .`QpbkqP pgi,WKiK q{P pgiq

The text:

If gi “ mswpi, xkqθj , then

P pXij “ xik, eq “ QpgiqP pgiq “ QpgiqΠik.

In fact, we can divide the explanations for e into two sets, Ke1, that in-
cludes the explanations containing mswpi, xkqθj , and Ke2, that includes
the other explanations. Then P peq “ P pKe1q ` P pKe2q and P pXij “

xik, eq “ P pKe1q. Since each explanation inKe1 contains gi “ mswpi, xkqθj ,
Ke1 takes the form ttgi,W1u, . . . , tgi,Wsuu and

should be replaced by

If gi “ mswpiθj , xkq, then

P pXij “ xik, eq “ QpgiqP pgiq “ QpgiqΠijk.

In fact, we can divide the explanations for e into two sets, Ke1, that in-
cludes the explanations containing mswpiθj , xkq, and Ke2, that includes
the other explanations. Then P peq “ P pKe1q ` P pKe2q and P pXij “

xik, eq “ P pKe1q. Since each explanation inKe1 contains gi “ mswpiθj , xkq,
Ke1 takes the form ttgi,W1u, . . . , tgi,Wsuu and

The text:

11

Algorithm 15 Procedure GET-OUTSIDE-PROBS: computation of outside probabilities.
1: procedure GET-OUTSIDE-PROBS(q)
2: Qpg1q Ð 1.0
3: for iÐ 2 Ñ m do
4: Qpgiq Ð 0.0
5: end for
6: for iÐ 2 Ñ m do
7: Qpgiq Ð 0.0
8: for j Ð 1 Ñ si do
9: Let Sij be hij1, . . . , hijo

10: for lÐ 1 Ñ o do
11: Qphlq Ð Qphlq `QpgiqP pgi, Sijq{P phijlq
12: end for
13: end for
14: end for
15: end procedure

should be replaced by

Algorithm 15 Procedure GET-OUTSIDE-PROBS: computation of outside probabilities.
1: procedure GET-OUTSIDE-PROBS(e)
2: Qpg1q Ð 1.0
3: for iÐ 2 Ñ m do
4: Qpgiq Ð 0.0
5: end for
6: for iÐ 2 Ñ m do
7: Qpgiq Ð 0.0
8: for j Ð 1 Ñ si do
9: Let Sij be hij1, . . . , hijo

10: for lÐ 1 Ñ o do
11: Qphlq Ð Qphlq `QpgiqP pgi, Sijq{P phijlq
12: end for
13: end for
14: end for
15: end procedure

Page 265, Algorithms 16-17
The text:

12

Algorithm 16 Function PRISM-EM
1: function PRISM-EM(E,P, ε)
2: LL “ ´inf
3: repeat
4: LL0 “ LL
5: LL “ EXPECTATION(E)
6: for all i do
7: SumÐ

řni
k“1 Erciks

8: for k “ 1 to ni do
9: Πik “

Erciks
Sum

10: end for
11: end for
12: until LL´ LL0 ă ε
13: return LL,Πik for all i, k
14: end function

Algorithm 17 Procedure PRISM-EXPECTATION

1: function PRISM-EXPECTATION(E)
2: LL “ 0
3: for all e P E do
4: GET-INSIDE-PROBS(e)
5: GET-OUTSIDE-PROBS(e)
6: for all i do
7: for k “ 1 to ni do
8: Erciks “ Erciks `Qpmswpi, xkqqΠik{P peq
9: end for

10: end for
11: LL “ LL` logP peq
12: end for
13: return LL
14: end function

should be replaced by

13

Algorithm 16 Function PRISM-EM
1: function PRISM-EM(E,P, ε)
2: LL “ ´inf
3: repeat
4: LL0 “ LL
5: LL “ PRISM-EXPECTATION(E)
6: for all i, j do
7: SumÐ

řni
k“1 Ercijks

8: for k “ 1 to ni do
9: Πijk “

Ercijks
Sum

10: end for
11: end for
12: until LL´ LL0 ă ε
13: return LL,Πijk for all i, j, k
14: end function

Algorithm 17 Procedure PRISM-EXPECTATION

1: function PRISM-EXPECTATION(E)
2: LL “ 0
3: for all e P E do
4: GET-INSIDE-PROBS(e)
5: GET-OUTSIDE-PROBS(e)
6: for all i, j do
7: for k “ 1 to ni do
8: Ercijks “ Ercijks `Qpmswpiθj , xkqqΠijk{P peq
9: end for

10: end for
11: LL “ LL` logP peq
12: end for
13: return LL
14: end function

Page 272
The text:

πik “

ř

ePE Ercik1|es
ř

qPE Ercik0|es `Ercik1|es

should be replaced by

πik “

ř

ePE Ercik1|es
ř

ePE Ercik0|es `Ercik1|es

14

Page 275
The two formulas should be replaced by

P pXijk “ 0, eq “
ÿ

nPNpXijkq

e0pnq `

p1´ πikq

¨

˝

ÿ

nPDel0pXijkq

e0pnq `
ÿ

nPDel1pXijkq

e1pnq

˛

‚

P pXijk “ 1, eq “
ÿ

nPNpXijkq

e1pnq `

πik

¨

˝

ÿ

nPDel0pXijkq

e0pnq `
ÿ

nPDel1pXijkq

e1pnq

˛

‚

Page 276
The formula

BP pfpXqq

BΠj
“ Πk ¨

BP pfXkpXqq

BΠj
` p1´Πkq ¨

P pf XkpXqq

BΠj

should be replaced by

BP pfpXqq

BΠj
“ Πk ¨

BP pfXkpXqq

BΠj
` p1´Πkq ¨

BP pf XkpXqq

BΠj

Page 277 Algorithm 22
πpikq should be replaced by πik in line 4.

Page 278 Algorithm 24
η0t and η1t in lines 10 and 11 should be replaced respectively by η0 and η1.

Page 281
The text:

LFI-ProbLog computes P pXij “ x|Iq by computing P pXij “ x, Iq
using Procedure CIRCP shown in Algorithm 5: the d-DNNF circuit is
visited twice, once bottom up to compute P pqpIqq and once top down
to compute P pXij “ x|Iq for all the variables Xij and values x. Then
P pXij “ x|Iq is given by P pXij“x,Iq

P pIq .

15

should be replaced by

LFI-ProbLog computes P pXij “ x|Iq by computing P pXij “ x, Iq
using Procedure CIRCP shown in Algorithm 5: the d-DNNF circuit is
visited twice, once bottom up to compute P pqpIqq and once top down
to compute P pXij “ x, Iq for all the variables Xij and values x. Then
P pXij “ x|Iq is given by P pXij“x,Iq

P pIq .

Page 292 Algorithm 26
targetÐ bod, refinement in line 18 should be replaced with targetÐ body, refinement.

References
J. Vlasselaer, G. Van den Broeck, A. Kimmig, W. Meert, and L. De Raedt. Anytime

inference in probabilistic logic programs with Tp-compilation. In 24th International
Joint Conference on Artificial Intelligence (IJCAI 2015), pages 1852–1858, 2015.

J. Vlasselaer, G. Van den Broeck, A. Kimmig, W. Meert, and L. De Raedt. Tp-
compilation for inference in probabilistic logic programs. International Journal of
Approximate Reasoning, 78:15–32, 2016. doi: 10.1016/j.ijar.2016.06.009.

16

