Errata to Foundations of Probabilistic Logic
Programming

Fabrizio Riguzzi

Page 107

The last formula of the proof of Lemma 7 should be replaced by

WFM (we) = WFM (we||Za) = WFM (we|IFPPT 1 a).

Page 154

The text:

[Binary Decision Diagrams (BDDs)| perform a Shannon expansion of the
Boolean formula: they express the formula as

f(X) = X1 v f51(X) A =Xy v f7(X)

should be replaced by

perform a Shannon expansion of the Boolean formula: they express
the formula as

fr(X) = X1 A f5H(X) v =X1 A f7(X)

Page 161

The text:

The Boolean variables are associated with the following parameters:

P(Xi1) = PXijp=1)

P(Xi; = k)
(1= P(Xije-1))

PXijk) =

should be replaced by

The Boolean variables are associated with the following parameters:

PXij) = PXij=1)
- P(Xij = k)
P(Xij1) Hf—ll(l — P(Xi;1))
Page 174
The text:

To define structured decomposability, consider a [Deterministic Decom-|
[posable Negation Normal Form (d-DNNF)|§ and assume, without loss of
generality, that all conjunctions are binary. § respects a vtree V' if for ev-
ery conjunction o A /3 in 4, there is a node v in V' such that vars(a) <
vars(vy) and vars(f) < vars(v,) where v; and v, are the left and right
child of v. & enjoys structured decomposability if it satisfies some vtree.

should be replaced by

To define structured decomposability, consider a § and assume,
without loss of generality, that all conjunctions are binary. J respects a
vtree V' if for every conjunction o A 8 in 4, there is a node v in V' such
that vars(a) < vars(v;) and vars(f) < vars(v,) where v; and v, are
the left and right child of v and vars(v) is the set of variables appearing in
[d-DNNHv. § enjoys structured decomposability if it satisfies some vtree.

Page 176, Definition 35

The text:

Definition 35 (T'cp operator [Vlasselaer et al., 2015, 2016]). Let P be a
ground probabilistic logic program with probabilistic facts F and atoms
Bp. Let T be a parameterized interpretation with pairs (a, A,). Then, the
Tcp operator is Tep(T) = {(a, A\y)|a € Bp} where

a ifaeF

)‘Zz = \/m—bl by, ,~e1 ~m€ER ;
yeeyUn, L, m B
Moy Ao e A X, A=A Ao A —A) ffacBp\F

should be replaced by

Definition 35 (T'cp operator [Vlasselaer et al., 2015, 2016[). Let P be
a ground probabilistic logic program with probabilistic facts F, rules R
and atoms Bp. Let T be a parameterized interpretation with pairs (a, A,).
Then, the T'cp operator is Tcp(T) = {(a, A\y)|a € Bp} where

a ifaeF
)‘Zz = \/m—bl bp €1, ~emER ;
Moy A e e A A, A=A Ao A —A) ffaeBp\F
Page 177
The text:

Vlasselaer et al.|[2016] show that if each atom is selected frequently enough
in step 1, then the same fixpoint 1Ifp(T'cp) is reached as for the naive al-
gorithm, provided that the operator is still applied stratum by stratum in
normal logic programs.

should be replaced by

Vlasselaer et al.|[2016] show that if each atom is selected frequently enough
in step 1, then the same fixpoint Ifp(T'cp) is reached as for the naive algo-
rithm that considers all atoms at the same time, provided that the operator
is still applied stratum by stratum in normal logic programs.

Page 247, Algorithm 11

The text:

Algorithm 11 Function EXACTSOLUTION: Solving the DTPROBLOG decision prob-
lem exactly.
1: function EXACTSOLUTION(DT)
2 ADDYI 0
3 for all (u — r) e U do
4 Build BDD(u), the BDD|for u
5 ADD(u) « PROBABILITYDD(BDD,,(DT))
6 ADD“(y) — 7 - ADD,(0)
7
8
9

ADDY! ADDY @ ADD""! (1)
end for
: let £, be the terminal node of ADD™" with the highest utility
10: let p be a path from ¢,,,4, to the root of ADD%ZZ
11: return the Boolean decisions made on p
12: end function
13: function PROBABILITYDD(n)

14 if n is the 1-terminal then
15: return a 1-terminal
16: end if

17: if n is the O-terminal then
18: return a O-terminal
19: end if

20: let h and [be the high and low children of n
21: ADDy, « PROBABILITYDD(h)
22: ADD; < PROBABILITYDD(h)

23: if n represents a decision d then

24: return ITE(d, ADD;,, ADD;)

25: end if

26: if n represents a fact with probability p then
27: return (p - ADD;,) @ ((1 — p) - ADDy)
28: end if

29: end function

should be replaced by

Algorithm 11 Function EXACTSOLUTION: Solving the DTPROBLOG decision prob-
lem exactly.
1: function EXACTSOLUTION(DT)
2 ADDYI 0
3 for all (u — r) e U do
4 Build BDD(«), the[BDD]for u
5 ADD(u) « PROBABILITYDD(BDD(u))
6 ADD“(y) — r- ADD(u)
7
8
9

ADDY! ADD™ @ ADD"H! (1)
end for
: let £, be the terminal node of ADD™" with the highest utility
10: let p be a path from ¢,,,4, to the root of ADD%ZZ
11: return the Boolean decisions made on p
12: end function
13: function PROBABILITYDD(n)

14 if n is the 1-terminal then
15: return a 1-terminal
16: end if

17: if n is the O-terminal then
18: return a O-terminal
19: end if

20: let h and [be the high and low children of n
21: ADDy, « PROBABILITYDD(h)
22: ADD; < PROBABILITYDD(!)

23: if n represents a decision d then

24: return ITE(d, ADD;,, ADD;)

25: end if

26: if n represents a fact with probability p then
27: return (p - ADD;,) @ ((1 — p) - ADDy)
28: end if

29: end function

Pages 260-261

The text:

To perform [Expectation Maximization (EM)| we can associate a random
variable X,; with values D = {x;1,...,Zip, } to the ground switch name
i0; of msw(i, x) with domain D, with 6; being a grounding substitution
for i. Let g() be the set of such substitutions:

g(i) = {j|0; is a grounding substitution for i in msw(i, z)}.
The algorithm alternates between the two phases:

e Expectation: computes E[c;|e] for all examples e, switches msw (3, z)
and k € {1,...,n;}, where c;;, is the number of times a variable X;;

takes value z;;, with j in g(i). E[cix|e] is given by >,) P(Xi; =
xle).

e Maximization: computes I1;;, for all msw(i,z) and k = 1,...,n; —

1as
ZeEE E[Cik |6]

Deer 2ir Blewle]

So, for each example e, X;;s and x;1s, we compute P(X,;; = z;x|e), the
expected value of X;; given the example, with k¥ € {1,...,n;}. These
expected values are then aggregated and used to complete the dataset for
computing the parameters by relative frequency. If ¢;;, is number of times
a variable X;; takes value x;;, for any j, E[c;;|e] is its expected value
given example e. if E[c;;] is its expected value given all the examples,

IL;, =

then
T
Elcik] = Z E[cix|et]
t=1

and E

H’ik = ng [C’Lk] *

21 Elcir]
should be replaced by

To perform [EM} we can associate a random variable X;; with values D =
{xi1,..., 2, } to the ground switch name ¢0; of msw(s, x) with domain
D, with §; being a grounding substitution for i. Let g(¢) be the set of such
substitutions:

g(i) = {j|0; is a grounding substitution for ¢ in msw(i, z)}.

PRISM will learn different parameters for each X;; random variable. The
algorithm alternates between the two phases:

o Expectation: computes E[c; ;1 |e] for all examples e, switches msw(i6;, x)
and k € {1,...,n;}, where ¢ij% 1s the number of times variable X;;
takes value x;x. E[c;ji|e] is given by P(X;; = z;e).

e Maximization: computes IT; , for all msw(i;,z) and k = 1,...,n,—

1 as

2ee Elcijkle]
Yicer 2ner Blcijile]
So, for each example e, X;;s and z;1s, we compute P(X,;; = z;z|e), the
expected value of X,; given the example, with £ € {1,...,n;}. These
expected values are then used to complete the dataset for computing the
parameters by relative frequency. If ¢; ;1 is number of times a variable X;;
takes value x;, E[c;;x|e] is its expected value given example e. If E[c;]
is its expected value given all the examples, then

ILj, =

T
Elciji] =)| Elcijxled]
t=1

and Efeis]
Cijk
I, = nlij
k=1 E[Cijk]

Page 262-263, Algorithms 13-14

The text:

Algorithm 13 Function PRISM-EM: Naive EM learning in PRISM

1: function PRISM-EM-NAIVE(E, P, ¢)
2: LL = —inf

3 repeat
4: LLy=LL
5: for all 7, k do > Expectation step
Zr;e e ymsw (i, ;1) jEe P(H)
6: Elcik] < Yeep —— P(e)k -
7: end for
8: for all 7, k do > Maximization step
9: HZ <« a3 E[(‘Lk]
R S Blea]
10: end for
11: LL <3 plogP(e)

12: until LI — LLg < ¢
13: return LL,I1;; forall 7, k
14: end function

Algorithm 14 Procedure GET-INSIDE-PROBS: computation of inside probabilities.

1: procedure GET-INSIDE-PROBS(q)
2: for all 7, k do

3 P(msw(i,vg)) <

4: end for

5: fori — m — 1do

6: P(gi) <0

7: forj — 1 — s;do

8: Let Sij be hijla ceey hijo

9 P(gi, Sij) < IT/—1 P(hiz)
10: P(gi) < P(gi) + P(gi, Sij)
11: end for

12: end for

13: end procedure

should be replaced by

Algorithm 13 Function PRISM-EM-NAIVE: Naive EM learning in PRISM

1: function PRISM-EM-NAIVE(E, P, €)
2: LL = —inf

3 repeat

4; LLy=LL

5: for all i, j, k do > Expectation step
Zne esmsw(ifj,x;)€e P(K)

6: Elciji] < Yoep =g

7: end for

8: for all i, j, k do = Maximization step

o H”k Zz;izl E[C'ijk’]

10 end for

11: LL <« 3% plogP(e)

12: until LL — LLg < ¢
13: return LL, 11,5, for all 4, j, k
14: end function

Algorithm 14 Procedure GET-INSIDE-PROBS: computation of inside probabilities.
1: procedure GET-INSIDE-PROBS(q)

2: for all ¢, j, k do

3 P(msw(ib;,vg)) < Ik

4: end for

5: fori — m — 1do

6: P(gi) <0

7: forj — 1 — s;do

8: Let Sij be hijla ceey hijo

9 P(gi, Sij) < IT/—1 P(hiz)
10: P(gi) < P(g:) + P(gi, Sij)
11: end for

12: end for

13: end procedure

Pages 263-264

The text:
If g; = msw(i,)0, then
P(Xij = zi,e) = Q(9:)P(9:) = Q(gi) L.

In fact, we can divide the explanations for e into two sets, K., that in-
cludes the explanations containing msw(, x)6;, and Ko, that includes

the other explanations. Then P(e) = P(K.1) + P(K.2) and P(X;; =
Tk, e) = P(K,1). Since each explanation in Ky contains g; = msw(%, xx)6;,
K., takes the form {{g;, W1}, ..., {gi, W,}} and

should be replaced by
If g; = msw(i0;, x), then
P(Xi5 = zik,) = Q(9:)P(9:) = Q(9:)ijk.

In fact, we can divide the explanations for e into two sets, K., that in-
cludes the explanations containing msw(iﬁj, 2), and Ko, that includes

the other explanations. Then P(e) = P(K.1) + P(K¢2) and P(X;; =
Zik, e) = P(K.1). Since each explanation in K ; contains g; = msw(i6;, 1),
K, takes the form {{g;, W1 },...,{g;, Ws}} and

Page 265, algorithms 16-17

The text:

Algorithm 16 Function PRISM-EM

1: function PRISM-EM(FE, P, €)

2: LL = —inf

3: repeat

4: LLy=LL

5: LL = EXPECTATION(E)
6: for all 7 do

7: Sum — Y0 Elcg]
8: for k = 1ton; do

9: 1L, = %

10: end for

11: end for

12: until LL — LLyj < ¢
13: return LL,II;; for all i, k
14: end function

Algorithm 17 Procedure PRISM-EXPECTATION

1: function PRISM-EXPECTATION(E)
2: LL=0

3 foralle € E do

4 GET-INSIDE-PROBS(€)

5: GET-OUTSIDE-PROBS(e)

6: for all i do

7 for k = 1ton; do

8 Elcit] = E[cir] + Q(msw(i, zx))ir/P(e)
9

: end for
10: end for
11: LL = LL +log P(e)
12: end for
13: return LL

14: end function

should be replaced by

Algorithm 16 Function PRISM-EM

1: function PRISM-EM(FE, P, €)
2: LL = —inf

3 repeat

4 LLy=LL

5 LL = EXPECTATION(E)
6: for all 7, j do

7 Sum «— 22;1 E[cijk]
8 for k = 1ton; do

9 I = Sgoied

10: end for

11: end for

12: until LI — LLy < ¢
13: return LL,I1;j;, forall 4, 5,k
14: end function

10

Algorithm 17 Procedure PRISM-EXPECTATION

1: function PRISM-EXPECTATION(E)

2:

3
4
5:
6:
7
8
9:
10:
11:

12:
13:

LL =0
foralle € E do
GET-INSIDE-PROBS(€)
GET-OUTSIDE-PROBS(e)
for all i, j do
for k = 1ton; do
Elcijr] = Elcijr] + Q(msw(ib;, xx)) i1/ P(e)
end for
end for
LL = LL +log P(e)
end for
return LL

14: end function

1 Page 272
The text:
— ZEEE E[Cikl |6]
Tik =
Yger Eleirole] + Elcige]
should be replaced by
S 2cer Elcir|e]
2cer Elcirole] + Elcir €]
2 Page 281
The text:

LFI-ProbLog computes P(X;; = z|Z) by computing P(X;; = z,Z)
using Procedure CIRCP shown in Algorithm 5: the circuit is
visited twice, once bottom up to compute P(g(Z)) and once top down
to compute P(X;; = x|Z) for all the variables X;; and values . Then

P(X;; = 3|T) is given by ZH5=EE),

should be replaced by

LFI-ProbLog computes P(X;; = z|Z) by computing P(X;; = z,7)
using Procedure CIRCP shown in Algorithm 5: the circuit is
visited twice, once bottom up to compute P(g(Z)) and once top down
to compute P(X,; = x,7) for all the variables X;; and values x. Then

P(X;; = 2|T) is given by ZE5=0E).

11

References

J. Vlasselaer, G. Van den Broeck, A. Kimmig, W. Meert, and L. De Raedt. Anytime
inference in probabilistic logic programs with Tp-compilation. In 24th International
Joint Conference on Artificial Intelligence (IJCAI 2015), pages 1852-1858, 2015.

J. Vlasselaer, G. Van den Broeck, A. Kimmig, W. Meert, and L. De Raedt. Tp-
compilation for inference in probabilistic logic programs. International Journal of
Approximate Reasoning, 78:15-32, 2016. doi: 10.1016/].ijar.2016.06.009.

12

	Page 272
	Page 281

