Errata to Foundations of Probabilistic Logic Programming

Fabrizio Riguzzi

Page 1

Replace
An element $a \in S$ is the least upper bound of a subset X of X with

An element $a \in S$ is the least upper bound of a subset X of S

Page 2

Replace
A relation $<$ defined by $a<b$ iff $a<b$ and $a \neq b$ is associated with any partial order \leqslant on S.
with
A relation $<$ defined by $a<b$ iff $a \leqslant b$ and $a \neq b$ is associated with any partial order \leqslant on S.

Page 17

Replace Definition $2\left(O p F a l s e_{\mathcal{I}}^{P}\right.$ and $O p F a l s e_{\mathcal{I}}^{P}$ operators) with Definition $2\left(O p T r u e_{\mathcal{I}}^{P}\right.$ and $O p F a l s e_{\mathcal{I}}^{P}$ operators)

Page 25

Replace $P(X=\omega)$ with $P(X \in \omega)$.

Page 73

Replace w in the first line with w_{σ}

Page 107

The last formula of the proof of Lemma 7 should be replaced by

$$
W F M\left(w_{\sigma}\right)=W F M\left(w_{\sigma} \| \mathcal{I}_{\alpha}\right)=W F M\left(w_{\sigma} \mid I F P P^{\mathcal{P}} \uparrow \alpha\right)
$$

The proof of Lemma 8 should be:
This is a simple consequence of Lemma 7: $w_{\sigma} \in \omega_{K_{a}^{\alpha}}$ means that a is a fact in $w_{\sigma} \mid I F P P^{\mathcal{P}} \uparrow \alpha$ so $W F M\left(w_{\sigma} \mid I F P P^{\mathcal{P}} \uparrow \alpha\right) \models a$ and $\operatorname{WFM}\left(w_{\sigma}\right) \models$ a.
On the other hand, $w_{\sigma} \in \omega_{K_{a}^{\alpha}}$ means that there are not rules for a in $w_{\sigma} \mid I F P P^{\mathcal{P}} \uparrow \alpha$ therefore $\operatorname{WFM}\left(w_{\sigma} \mid I F P P^{\mathcal{P}} \uparrow \alpha\right) \models \sim a$ and $\operatorname{WFM}\left(w_{\sigma}\right) \models \sim$ a.

Page 117

Formula

$$
\begin{aligned}
P(q)= & \int_{\sigma \in S_{\mathcal{P}}, \mathbf{x} \in \mathbb{R}^{n}} p\left(q, w_{\sigma, \mathbf{x}}\right)= \\
& \int_{\sigma \in S_{\mathcal{P}}, \mathbf{x} \in \mathbb{R}^{n}} P\left(q \mid w_{\sigma, \mathbf{x}}\right) p\left(w_{\sigma, \mathbf{x}}\right)= \\
& \int_{\sigma \in S_{\mathcal{P}}, \mathbf{x} \in \mathbb{R}^{n}: w_{\sigma, \mathbf{x}} \models q} p\left(w_{\sigma, \mathbf{x}}\right)
\end{aligned}
$$

should be replaced by

$$
\begin{aligned}
P(q)= & \int_{\sigma \in S_{\mathcal{P}}, \mathbf{x} \in \mathbb{R}^{n}} p\left(q, w_{\sigma, \mathbf{x}}\right) d \sigma d \mathbf{x}= \\
& \int_{\sigma \in S_{\mathcal{P}}, \mathbf{x} \in \mathbb{R}^{n}} P\left(q \mid w_{\sigma, \mathbf{x}}\right) p\left(w_{\sigma, \mathbf{x}}\right) d \sigma d \mathbf{x}= \\
& \int_{\sigma \in S_{\mathcal{P}}, \mathbf{x} \in \mathbb{R}^{n}: w_{\sigma, \mathbf{x}} \models q} p\left(w_{\sigma, \mathbf{x}}\right) d \sigma d \mathbf{x}= \\
& \sum_{\sigma \in S_{\mathcal{P}}} \int_{\mathbf{x} \in \mathbb{R}^{n}: w_{\sigma, \mathbf{x}} \models q} p\left(w_{\sigma, \mathbf{x}}\right) d \mathbf{x}
\end{aligned}
$$

Page 154

The text:
Binary Decision Diagrams (BDDs) perform a Shannon expansion of the Boolean formula: they express the formula as

$$
f_{K}(\mathbf{X})=\mathrm{X}_{1} \vee f_{K}^{\mathrm{X}_{1}}(\mathbf{X}) \wedge \neg \mathrm{X}_{1} \vee f_{K}^{\neg \mathrm{X}_{1}}(\mathbf{X})
$$

should be replaced by
BDDs perform a Shannon expansion of the Boolean formula: they express the formula as

$$
f_{K}(\mathbf{X})=\mathrm{X}_{1} \wedge f_{K}^{\mathrm{X}_{1}}(\mathbf{X}) \vee \neg \mathrm{X}_{1} \wedge f_{K}^{\neg \mathrm{X}_{1}}(\mathbf{X})
$$

Page 161

The text:
The Boolean variables are associated with the following parameters:

$$
\begin{array}{rlc}
P\left(\mathrm{X}_{i j 1}\right) & = & P\left(\mathrm{X}_{i j 1}=1\right) \\
& \cdots & \\
P\left(\mathrm{X}_{i j k}\right) & = & \frac{P\left(\mathrm{X}_{i j}=k\right)}{\prod_{l=1}^{k-1}\left(1-P\left(\mathrm{X}_{i j k-1}\right)\right)}
\end{array}
$$

should be replaced by
The Boolean variables are associated with the following parameters:

$$
\begin{aligned}
P\left(\mathrm{X}_{i j 1}\right) & =P\left(\mathrm{X}_{i j 1}=1\right) \\
& \cdots \\
P\left(\mathrm{X}_{i j k}\right) & =\frac{P\left(\mathrm{X}_{i j}=k\right)}{\prod_{l=1}^{k-1}\left(1-P\left(\mathrm{X}_{i j l}\right)\right)}
\end{aligned}
$$

Page 174

The text:
To define structured decomposability, consider a Deterministic Decomposable Negation Normal Form (d-DNNF) δ and assume, without loss of generality, that all conjunctions are binary. δ respects a vtree V if for every conjunction $\alpha \wedge \beta$ in δ, there is a node v in V such that $\operatorname{vars}(\alpha) \subseteq$ $\operatorname{vars}\left(v_{l}\right)$ and $\operatorname{vars}(\beta) \subseteq \operatorname{vars}\left(v_{r}\right)$ where v_{l} and v_{r} are the left and right child of $v . \delta$ enjoys structured decomposability if it satisfies some vtree.
should be replaced by
To define structured decomposability, consider a d-DNNF δ and assume, without loss of generality, that all conjunctions are binary. δ respects a vtree V if for every conjunction $\alpha \wedge \beta$ in δ, there is a node v in V such that $\operatorname{vars}(\alpha) \subseteq \operatorname{vars}\left(v_{l}\right)$ and $\operatorname{vars}(\beta) \subseteq \operatorname{vars}\left(v_{r}\right)$ where v_{l} and v_{r} are the left and right child of v and $\operatorname{vars}(v)$ is the set of variables appearing in d-DNNF $v . \delta$ enjoys structured decomposability if it satisfies some vtree.

Page 176, Definition 35

The text:

Definition 35 ($T c_{P}$ operator [Vlasselaer et al., 2015, 2016]). Let \mathcal{P} be a ground probabilistic logic program with probabilistic facts \mathcal{F} and atoms $\mathcal{B}_{\mathcal{P}}$. Let \mathcal{I} be a parameterized interpretation with pairs $\left(a, \lambda_{a}\right)$. Then, the $T c_{P}$ operator is $T c_{P}(\mathcal{I})=\left\{\left(a, \lambda_{a}\right) \mid a \in \mathcal{B}_{\mathcal{P}}\right\}$ where
$\lambda_{a}^{\prime}= \begin{cases}a & \text { if } a \in \mathcal{F} \\ \bigvee_{a \leftarrow b_{1}, \ldots, b_{n}, \boldsymbol{\epsilon}_{1}, \ldots, \boldsymbol{\epsilon}_{m} \in \mathcal{R}} & \text { if } a \in \mathcal{B}_{\mathcal{P}} \backslash \mathcal{F} \\ \left(\lambda_{b_{1} \wedge} \wedge \ldots \wedge \lambda_{b_{n}} \wedge \neg \lambda_{c_{1}} \wedge \ldots \wedge \neg \lambda_{c_{m}}\right) & \end{cases}$
should be replaced by

Definition 35 ($T c_{P}$ operator [Vlasselaer et al., 2015, 2016]). Let \mathcal{P} be a ground probabilistic logic program with probabilistic facts \mathcal{F}, rules \mathcal{R} and atoms $\mathcal{B}_{\mathcal{P}}$. Let \mathcal{I} be a parameterized interpretation with pairs $\left(a, \lambda_{a}\right)$. Then, the $T c_{P}$ operator is $T c_{P}(\mathcal{I})=\left\{\left(a, \lambda_{a}\right) \mid a \in \mathcal{B}_{\mathcal{P}}\right\}$ where
$\lambda_{a}^{\prime}= \begin{cases}a & \text { if } a \in \mathcal{F} \\ \bigvee_{a \leftarrow b_{1}, \ldots, b_{n}, \varkappa_{1}, \ldots, \mathcal{c}_{m} \in \mathcal{R}} & \text { if } a \in \mathcal{B}_{\mathcal{P}} \backslash \mathcal{F} \\ \left(\lambda_{\left.b_{1} \wedge \wedge \ldots \wedge \lambda_{b_{n}} \wedge \neg \lambda_{c_{1}} \wedge \ldots \wedge \neg \lambda_{c_{m}}\right)}\right. & \end{cases}$

Page 177

The text:
Vlasselaer et al. [2016] show that if each atom is selected frequently enough in step 1, then the same fixpoint $\operatorname{lfp}\left(T c_{P}\right)$ is reached as for the naive algorithm, provided that the operator is still applied stratum by stratum in normal logic programs.
should be replaced by
Vlasselaer et al. [2016] show that if each atom is selected frequently enough in step 1, then the same fixpoint $\operatorname{lfp}\left(T c_{P}\right)$ is reached as for the naive algorithm that considers all atoms at the same time, provided that the operator is still applied stratum by stratum in normal logic programs.

Page 194

Formula:

$$
\begin{aligned}
\psi_{g_{1}}(X) & =\mathbb{M}\left(\psi_{g_{2}}^{\prime \prime}, Z\right)=\oint_{Z} \psi_{g_{2}}^{\prime \prime} \downarrow_{Z}= \\
& =0.3 \mathcal{N}_{Z}(2.5,1.1)+0.7 \mathcal{N}_{X}(3.5,1.1)
\end{aligned}
$$

should be replaced by

$$
\begin{aligned}
\psi_{g_{1}}(X) & =\mathbb{M}\left(\psi_{g_{2}}^{\prime \prime}, Z\right)=\oint_{Z} \psi_{g_{2}}^{\prime \prime} \downarrow_{Z}= \\
& =0.3 \mathcal{N}_{X}(2.5,1.1)+0.7 \mathcal{N}_{X}(3.5,1.1)
\end{aligned}
$$

Page 247, Algorithm 11

The text:

```
Algorithm 11 Function ExactSolution: Solving the DTProbLog decision prob-
lem exactly.
    function EXACTSOLUTION( \(\mathcal{D} \mathcal{T}\) )
        \(\mathrm{ADD}_{\text {tot }}^{\text {util }} \leftarrow 0\)
        for all \((u \rightarrow r) \in \mathcal{U}\) do
            Build \(\operatorname{BDD}(u)\), the BDD for \(u\)
            \(\operatorname{ADD}(u) \leftarrow \operatorname{ProbabiLITYDD}\left(\operatorname{BDD}_{u}(\mathcal{D} \mathcal{T})\right)\)
            \(\operatorname{ADD}^{u t i l}(u) \leftarrow r \cdot \operatorname{ADD}_{u}(\sigma)\)
            \(\mathrm{ADD}_{\text {tot }}^{u t i l} \leftarrow \mathrm{ADD}_{\text {tot }}^{u t i l} \oplus \mathrm{ADD}^{u t i l}(u)\)
        end for
        let \(t_{\text {max }}\) be the terminal node of \(\mathrm{ADD}_{\text {tot }}^{u t i l}\) with the highest utility
        let \(p\) be a path from \(t_{\text {max }}\) to the root of \(\mathrm{ADD}_{\text {tot }}^{u t i l}\)
        return the Boolean decisions made on \(p\)
    end function
    function ProbabilitydD \((n)\)
        if \(n\) is the 1-terminal then
            return a 1 -terminal
        end if
        if \(n\) is the 0 -terminal then
            return a 0 -terminal
        end if
        let \(h\) and \(l\) be the high and low children of \(n\)
        \(\mathrm{ADD}_{h} \leftarrow\) ProbabilitydD \((h)\)
        \(\mathrm{ADD}_{l} \leftarrow\) ProbabilityDD \((h)\)
        if \(n\) represents a decision \(d\) then
            return \(\operatorname{ITE}\left(d, \mathrm{ADD}_{h}, \mathrm{ADD}_{l}\right)\)
        end if
        if \(n\) represents a fact with probability \(p\) then
            return \(\left(p \cdot \mathrm{ADD}_{h}\right) \oplus\left((1-p) \cdot \mathrm{ADD}_{l}\right)\)
        end if
    end function
```

should be replaced by

```
Algorithm 11 Function ExactSolution: Solving the DTPROBLOG decision prob-
lem exactly.
    function EXACTSOLUTION( \(\mathcal{D} \mathcal{T}\) )
        \(\mathrm{ADD}_{\text {tot }}^{\text {util }} \leftarrow 0\)
        for all \((u \rightarrow r) \in \mathcal{U}\) do
            Build \(\operatorname{BDD}(u)\), the \(\operatorname{BDD}\) for \(u\)
            \(\operatorname{ADD}(u) \leftarrow \operatorname{ProbaBILITYDD}(\operatorname{BDD}(u))\)
            \(\operatorname{ADD}^{u t i l}(u) \leftarrow r \cdot \operatorname{ADD}(u)\)
            \(\mathrm{ADD}_{\text {tot }}^{u t i l} \leftarrow \mathrm{ADD}_{\text {tot }}^{\text {util }} \oplus \mathrm{ADD}^{u t i l}(u)\)
        end for
        let \(t_{\text {max }}\) be the terminal node of \(\mathrm{ADD}_{\text {tot }}^{u t i l}\) with the highest utility
        let \(p\) be a path from \(t_{\text {max }}\) to the root of \(\mathrm{ADD}_{\text {tot }}^{u t i l}\)
        return the Boolean decisions made on \(p\)
    end function
    function ProbabilitydD \((n)\)
        if \(n\) is the 1-terminal then
            return a 1 -terminal
        end if
        if \(n\) is the 0 -terminal then
            return a 0 -terminal
        end if
        let \(h\) and \(l\) be the high and low children of \(n\)
        \(\mathrm{ADD}_{h} \leftarrow \operatorname{ProbaBiLityDD}(h)\)
        \(\mathrm{ADD}_{l} \leftarrow\) PRobabilityDD \((l)\)
        if \(n\) represents a decision \(d\) then
            return \(\operatorname{ITE}\left(d, \mathrm{ADD}_{h}, \mathrm{ADD}_{l}\right)\)
        end if
        if \(n\) represents a fact with probability \(p\) then
            return \(\left(p \cdot \mathrm{ADD}_{h}\right) \oplus\left((1-p) \cdot \mathrm{ADD}_{l}\right)\)
        end if
    end function
```


Pages 260-261

The text:
To perform Expectation Maximization (EM), we can associate a random variable $X_{i j}$ with values $D=\left\{x_{i 1}, \ldots, x_{i n_{i}}\right\}$ to the ground switch name $i \theta_{j}$ of $\operatorname{msw}(i, x)$ with domain D, with θ_{j} being a grounding substitution for i. Let $g(i)$ be the set of such substitutions:

$$
g(i)=\left\{j \mid \theta_{j} \text { is a grounding substitution for } i \text { in } m s w(i, x)\right\} .
$$

The EM algorithm alternates between the two phases:

- Expectation: computes $\mathbf{E}\left[c_{i k} \mid e\right]$ for all examples e, switches $m s w(i, x)$ and $k \in\left\{1, \ldots, n_{i}\right\}$, where $c_{i k}$ is the number of times a variable $X_{i j}$
takes value $x_{i k}$ with j in $g(i) . \mathbf{E}\left[c_{i k} \mid e\right]$ is given by $\sum_{j \in g(i)} P\left(X_{i j}=\right.$ $x \mid e)$.
- Maximization: computes $\Pi_{i k}$ for all $m s w(i, x)$ and $k=1, \ldots, n_{i}$ 1 as

$$
\Pi_{i k}=\frac{\sum_{e \in E} \mathbf{E}\left[c_{i k} \mid e\right]}{\sum_{e \in E} \sum_{k=1}^{n_{i}} \mathbf{E}\left[c_{i k} \mid e\right]}
$$

So, for each example $e, X_{i j} \mathrm{~s}$ and $x_{i k} \mathrm{~s}$, we compute $P\left(X_{i j}=x_{i k} \mid e\right)$, the expected value of $X_{i j}$ given the example, with $k \in\left\{1, \ldots, n_{i}\right\}$. These expected values are then aggregated and used to complete the dataset for computing the parameters by relative frequency. If $c_{i k}$ is number of times a variable $X_{i j}$ takes value $x_{i k}$ for any $j, \mathbf{E}\left[c_{i k} \mid e\right]$ is its expected value given example e. if $\mathbf{E}\left[c_{i k}\right]$ is its expected value given all the examples, then

$$
\mathbf{E}\left[c_{i k}\right]=\sum_{t=1}^{T} \mathbf{E}\left[c_{i k} \mid e_{t}\right]
$$

and

$$
\Pi_{i k}=\frac{\mathbf{E}\left[c_{i k}\right]}{\sum_{k=1}^{n_{i}} \mathbf{E}\left[c_{i k}\right]}
$$

should be replaced by
To perform EM, we can associate a random variable $X_{i j}$ with values $D=$ $\left\{x_{i 1}, \ldots, x_{i n_{i}}\right\}$ to the ground switch name $i \theta_{j}$ of $m s w(i, x)$ with domain D, with θ_{j} being a grounding substitution for i. Let $g(i)$ be the set of such substitutions:

$$
g(i)=\left\{j \mid \theta_{j} \text { is a grounding substitution for } i \text { in } m s w(i, x)\right\}
$$

PRISM will learn different parameters for each $X_{i j}$ random variable. The EM algorithm alternates between the two phases:

- Expectation: computes $\mathbf{E}\left[c_{i j k} \mid e\right]$ for all examples e, switches $\operatorname{msw}\left(i \theta_{j}, x\right)$ and $k \in\left\{1, \ldots, n_{i}\right\}$, where $c_{i j k}$ is the number of times variable $X_{i j}$ takes value $x_{i k} . \mathbf{E}\left[c_{i j k} \mid e\right]$ is given by $P\left(X_{i j}=x_{i k} \mid e\right)$.
- Maximization: computes $\Pi_{i j k}$ for all $m s w\left(i \theta_{j}, x\right)$ and $k=1, \ldots, n_{i}-$ 1 as

$$
\Pi_{i j k}=\frac{\sum_{e \in E} \mathbf{E}\left[c_{i j k} \mid e\right]}{\sum_{e \in E} \sum_{k=1}^{n_{i}} \mathbf{E}\left[c_{i j k} \mid e\right]}
$$

So, for each example $e, X_{i j} \mathrm{~s}$ and $x_{i k} \mathrm{~s}$, we compute $P\left(X_{i j}=x_{i k} \mid e\right)$, the expected value of $X_{i j}$ given the example, with $k \in\left\{1, \ldots, n_{i}\right\}$. These expected values are then used to complete the dataset for computing the parameters by relative frequency. If $c_{i j k}$ is number of times a variable $X_{i j}$ takes value $x_{i k}, \mathbf{E}\left[c_{i j k} \mid e\right]$ is its expected value given example e. If $\mathbf{E}\left[c_{i j k}\right]$ is its expected value given all the examples, then

$$
\mathbf{E}\left[c_{i j k}\right]=\sum_{t=1}^{T} \mathbf{E}\left[c_{i j k} \mid e_{t}\right]
$$

and

$$
\Pi_{i j k}=\frac{\mathbf{E}\left[c_{i j k}\right]}{\sum_{k=1}^{n_{i}} \mathbf{E}\left[c_{i j k}\right]}
$$

Page 262-263

The text:

```
Algorithm 13 Function PRISM-EM: Naive EM learning in PRISM
    function PRISM-EM-NAIVE \((E, \mathcal{P}, \epsilon)\)
        \(L L=-i n f\)
        repeat
            \(L L_{0}=L L\)
            for all \(i, k\) do \(\quad \triangleright\) Expectation step
                    \(\mathbf{E}\left[c_{i k}\right] \leftarrow \sum_{e \in E} \frac{\sum_{\kappa \in K_{e}, m s w\left(i, x_{i k}\right) \theta_{j} \in e} P(\kappa)}{P(e)}\)
            end for
            for all \(i, k\) do \(\quad \triangleright\) Maximization step
                    \(\Pi_{i k} \leftarrow \frac{\mathbf{E}\left[c_{i k}\right]}{\sum_{k^{\prime}=1}^{n_{i}} \mathbf{E}\left[c_{i k^{\prime}}\right]}\)
            end for
            \(L L \leftarrow \sum_{e \in E} \log P(e)\)
        until \(L L-L L_{0}<\epsilon\)
        return \(L L, \Pi_{i k}\) for all \(i, k\)
    end function
```

```
Algorithm 14 Procedure GET-INSIDE-PROBS: computation of inside probabilities.
    procedure GET-InSIDE-PROBS \((q)\)
        for all \(i, k\) do
            \(P\left(m s w\left(i, v_{k}\right)\right) \leftarrow \Pi_{i k}\)
        end for
        for \(i \leftarrow m \rightarrow 1\) do
            \(P\left(g_{i}\right) \leftarrow 0\)
            for \(j \leftarrow 1 \rightarrow s_{i}\) do
                Let \(S_{i j}\) be \(h_{i j 1}, \ldots, h_{i j o}\)
                    \(P\left(g_{i}, S_{i j}\right) \leftarrow \prod_{l=1}^{o} P\left(h_{i j l}\right)\)
                    \(P\left(g_{i}\right) \leftarrow P\left(g_{i}\right)+P\left(g_{i}, S_{i j}\right)\)
            end for
        end for
    end procedure
```

should be replaced by

```
Algorithm 13 Function PRISM-EM-NAIVE: Naive EM learning in PRISM
    function PRISM-EM-NAIVE \((E, \mathcal{P}, \epsilon)\)
        \(L L=-i n f\)
        repeat
            \(L L_{0}=L L\)
            for all \(i, j, k\) do \(\triangleright\) Expectation step
                        \(\mathbf{E}\left[c_{i j k}\right] \leftarrow \sum_{e \in E} \frac{\sum_{\kappa \in K_{e}, m s w\left(i \theta_{j}, x_{i k}\right) \in e} P(\kappa)}{P(e)}\)
            end for
            for all \(i, j, k\) do \(\quad \triangleright\) Maximization step
                    \(\Pi_{i j k} \leftarrow \frac{\mathbf{E}\left[c_{i j k}\right]}{\sum_{k^{\prime}=1}^{n_{i}} \mathbf{E}\left[c_{i j k^{\prime}}\right]}\)
            end for
            \(L L \leftarrow \sum_{e \in E} \log P(e)\)
        until \(L L-L L_{0}<\epsilon\)
        return \(L L, \Pi_{i j k}\) for all \(i, j, k\)
    end function
```

```
Algorithm 14 Procedure GET-INSIDE-PROBS: computation of inside probabilities.
    procedure GET-INSIDE-PROBS( \(e\) )
        for all \(i, j, k\) do
            \(P\left(m s w\left(i \theta_{j}, v_{k}\right)\right) \leftarrow \Pi_{i j k}\)
        end for
        for \(i \leftarrow m \rightarrow 1\) do
            \(P\left(g_{i}\right) \leftarrow 0\)
            for \(j \leftarrow 1 \rightarrow s_{i}\) do
                Let \(S_{i j}\) be \(h_{i j 1}, \ldots, h_{i j o}\)
                    \(P\left(g_{i}, S_{i j}\right) \leftarrow \prod_{l=1}^{o} P\left(h_{i j l}\right)\)
                    \(P\left(g_{i}\right) \leftarrow P\left(g_{i}\right)+P\left(g_{i}, S_{i j}\right)\)
            end for
        end for
    end procedure
```

The text
Outside probabilities instead are defined as

$$
Q\left(g_{i}\right)=\frac{\partial P(q)}{\partial P\left(g_{i}\right)}
$$

should be replaced by
Outside probabilities instead are defined as

$$
Q\left(g_{i}\right)=\frac{\partial P(e)}{\partial P\left(g_{i}\right)}
$$

Pages 263-264

The text
We have that $Q\left(g_{1}\right)=1$ as $q=g_{1}$. For $i=2, \ldots, m$, we can derive $Q\left(g_{i}\right)$ by the chain rule of the derivative knowing that $P(q)$ is a function of $P\left(b_{1}\right), \ldots, P\left(b_{K}\right)$

$$
\begin{aligned}
Q\left(g_{i}\right)= & \frac{\partial P(q)}{\partial P\left(b_{1}\right)} \frac{\partial P\left(g_{i}, W_{11}\right)}{\partial P\left(g_{1}\right)}+\ldots+\frac{\partial P(q)}{\partial P\left(b_{K}\right)} \frac{\partial P\left(g_{i}, W_{K i_{K}}\right)}{\partial P\left(g_{1}\right)}= \\
& Q\left(b_{1}\right) P\left(g_{i}, W_{11}\right) / P\left(g_{i}\right)+\ldots+Q\left(b_{k}\right) P\left(g_{i}, W_{K i_{K}}\right) / P\left(g_{i}\right)
\end{aligned}
$$

should be replaced by
We have that $Q\left(g_{1}\right)=1$ as $e=g_{1}$. For $i=2, \ldots, m$, we can derive $Q\left(g_{i}\right)$ by the chain rule of the derivative knowing that $P(e)$ is a function of $P\left(b_{1}\right), \ldots, P\left(b_{K}\right)$

$$
\begin{aligned}
Q\left(g_{i}\right)= & \frac{\partial P(e)}{\partial P\left(b_{1}\right)} \frac{\partial P\left(g_{i}, W_{11}\right)}{\partial P\left(g_{1}\right)}+\ldots+\frac{\partial P(e)}{\partial P\left(b_{K}\right)} \frac{\partial P\left(g_{i}, W_{K i_{K}}\right)}{\partial P\left(g_{1}\right)}= \\
& Q\left(b_{1}\right) P\left(g_{i}, W_{11}\right) / P\left(g_{i}\right)+\ldots+Q\left(b_{k}\right) P\left(g_{i}, W_{K i_{K}}\right) / P\left(g_{i}\right)
\end{aligned}
$$

The text:
If $g_{i}=m s w\left(i, x_{k}\right) \theta_{j}$, then

$$
P\left(X_{i j}=x_{i k}, e\right)=Q\left(g_{i}\right) P\left(g_{i}\right)=Q\left(g_{i}\right) \Pi_{i k}
$$

In fact, we can divide the explanations for e into two sets, $K_{e 1}$, that includes the explanations containing $m s w\left(i, x_{k}\right) \theta_{j}$, and $K_{e 2}$, that includes the other explanations. Then $P(e)=P\left(K_{e 1}\right)+P\left(K_{e 2}\right)$ and $P\left(X_{i j}=\right.$ $\left.x_{i k}, e\right)=P\left(K_{e 1}\right)$. Since each explanation in $K_{e 1}$ contains $g_{i}=m s w\left(i, x_{k}\right) \theta_{j}$, $K_{e 1}$ takes the form $\left\{\left\{g_{i}, W_{1}\right\}, \ldots,\left\{g_{i}, W_{s}\right\}\right\}$ and
should be replaced by
If $g_{i}=m s w\left(i \theta_{j}, x_{k}\right)$, then

$$
P\left(X_{i j}=x_{i k}, e\right)=Q\left(g_{i}\right) P\left(g_{i}\right)=Q\left(g_{i}\right) \Pi_{i j k}
$$

In fact, we can divide the explanations for e into two sets, $K_{e 1}$, that includes the explanations containing $m s w\left(i \theta_{j}, x_{k}\right)$, and $K_{e 2}$, that includes the other explanations. Then $P(e)=P\left(K_{e 1}\right)+P\left(K_{e 2}\right)$ and $P\left(X_{i j}=\right.$ $\left.x_{i k}, e\right)=P\left(K_{e 1}\right)$. Since each explanation in $K_{e 1}$ contains $g_{i}=\operatorname{msw}\left(i \theta_{j}, x_{k}\right)$, $K_{e 1}$ takes the form $\left\{\left\{g_{i}, W_{1}\right\}, \ldots,\left\{g_{i}, W_{s}\right\}\right\}$ and

The text:

```
Algorithm 15 Procedure GET-OUTSIDE-PROBS: computation of outside probabilities.
    procedure GET-OUTSIDE-PROBS \((q)\)
        \(Q\left(g_{1}\right) \leftarrow 1.0\)
        for \(i \leftarrow 2 \rightarrow m\) do
            \(Q\left(g_{i}\right) \leftarrow 0.0\)
        end for
        for \(i \leftarrow 2 \rightarrow m\) do
            \(Q\left(g_{i}\right) \leftarrow 0.0\)
            for \(j \leftarrow 1 \rightarrow s_{i}\) do
                Let \(S_{i j}\) be \(h_{i j 1}, \ldots, h_{i j o}\)
                for \(l \leftarrow 1 \rightarrow o\) do
                \(Q\left(h_{l}\right) \leftarrow Q\left(h_{l}\right)+Q\left(g_{i}\right) P\left(g_{i}, S_{i j}\right) / P\left(h_{i j l}\right)\)
                    end for
            end for
        end for
    end procedure
```

should be replaced by

```
Algorithm 15 Procedure GET-OUTSIDE-PROBS: computation of outside probabilities.
    procedure GET-OUTSIDE-PROBS \((e)\)
        \(Q\left(g_{1}\right) \leftarrow 1.0\)
        for \(i \leftarrow 2 \rightarrow m\) do
            \(Q\left(g_{i}\right) \leftarrow 0.0\)
        end for
        for \(i \leftarrow 2 \rightarrow m\) do
            \(Q\left(g_{i}\right) \leftarrow 0.0\)
            for \(j \leftarrow 1 \rightarrow s_{i}\) do
                Let \(S_{i j}\) be \(h_{i j 1}, \ldots, h_{i j o}\)
                for \(l \leftarrow 1 \rightarrow o\) do
                \(Q\left(h_{l}\right) \leftarrow Q\left(h_{l}\right)+Q\left(g_{i}\right) P\left(g_{i}, S_{i j}\right) / P\left(h_{i j l}\right)\)
                    end for
            end for
        end for
    end procedure
```


Page 265, Algorithms 16-17

The text:

```
Algorithm 16 Function PRISM-EM
    function PRISM-EM \((E, \mathcal{P}, \epsilon)\)
        \(L L=-i n f\)
        repeat
            \(L L_{0}=L L\)
            \(L L=\operatorname{ExpECTATION}(E)\)
            for all \(i\) do
                Sum \(\leftarrow \sum_{k=1}^{n_{i}} \mathbf{E}\left[c_{i k}\right]\)
                for \(k=1\) to \(n_{i}\) do
                    \(\Pi_{i k}=\frac{\mathrm{E}\left[c_{i k}\right]}{\text { Sum }}\)
                    end for
        end for
        until \(L L-L L_{0}<\epsilon\)
        return \(L L, \Pi_{i k}\) for all \(i, k\)
    end function
```

```
Algorithm 17 Procedure PRISM-EXPECTATION
    function PRISM-ExPECTATION \((E)\)
        \(L L=0\)
        for all \(e \in E\) do
            Get-Inside-Probs(e)
            Get-Outside-Probs(e)
            for all \(i\) do
                for \(k=1\) to \(n_{i}\) do
                    \(\mathbf{E}\left[c_{i k}\right]=\mathbf{E}\left[c_{i k}\right]+Q\left(m s w\left(i, x_{k}\right)\right) \Pi_{i k} / P(e)\)
                    end for
            end for
            \(L L=L L+\log P(e)\)
        end for
        return \(L L\)
    end function
```

should be replaced by

```
Algorithm 16 Function PRISM-EM
    function PRISM-EM \((E, \mathcal{P}, \epsilon)\)
        \(L L=-i n f\)
        repeat
            \(L L_{0}=L L\)
            \(L L=\) PRISM-EXPECTATION \((E)\)
            for all \(i, j\) do
                Sum \(\leftarrow \sum_{k=1}^{n_{i}} \mathbf{E}\left[c_{i j k}\right]\)
            for \(k=1\) to \(n_{i}\) do
                        \(\Pi_{i j k}=\frac{\mathrm{E}\left[c_{i j k}\right]}{S u m}\)
                    end for
        end for
        until \(L L-L L_{0}<\epsilon\)
        return \(L L, \Pi_{i j k}\) for all \(i, j, k\)
    end function
```

```
Algorithm 17 Procedure PRISM-EXPECTATION
    function PRISM-EXPECTATION \((E)\)
        \(L L=0\)
        for all \(e \in E\) do
            Get-Inside-Probs(e)
            Get-Outside-Probs(e)
            for all \(i, j\) do
                for \(k=1\) to \(n_{i}\) do
                    \(\mathbf{E}\left[c_{i j k}\right]=\mathbf{E}\left[c_{i j k}\right]+Q\left(m s w\left(i \theta_{j}, x_{k}\right)\right) \Pi_{i j k} / P(e)\)
                    end for
            end for
            \(L L=L L+\log P(e)\)
        end for
        return \(L L\)
    end function
```


Page 272

The text:

$$
\pi_{i k}=\frac{\sum_{e \in E} \mathbf{E}\left[c_{i k 1} \mid e\right]}{\sum_{q \in E} \mathbf{E}\left[c_{i k 0} \mid e\right]+\mathbf{E}\left[c_{i k 1} \mid e\right]}
$$

should be replaced by

$$
\pi_{i k}=\frac{\sum_{e \in E} \mathbf{E}\left[c_{i k 1} \mid e\right]}{\sum_{e \in E} \mathbf{E}\left[c_{i k 0} \mid e\right]+\mathbf{E}\left[c_{i k 1} \mid e\right]}
$$

Page 275

The two formulas should be replaced by

$$
\begin{aligned}
P\left(X_{i j k}=0, e\right)= & \sum_{n \in N\left(X_{i j k}\right)} e^{0}(n)+ \\
& \left(1-\pi_{i k}\right)\left(\sum_{n \in \operatorname{Del}^{0}\left(X_{i j k}\right)} e^{0}(n)+\sum_{n \in \operatorname{Del}^{1}\left(X_{i j k}\right)} e^{1}(n)\right) \\
P\left(X_{i j k}=1, e\right)= & \sum_{n \in N\left(X_{i j k}\right)} e^{1}(n)+ \\
& \pi_{i k}\left(\sum_{n \in \operatorname{Del}^{0}\left(X_{i j k}\right)} e^{0}(n)+\sum_{n \in \operatorname{Del^{1}(X_{ijk})}} e^{1}(n)\right)
\end{aligned}
$$

Page 276

The formula

$$
\frac{\partial P(f(\mathbf{X}))}{\partial \Pi_{j}}=\Pi_{k} \cdot \frac{\partial P\left(f^{\mathrm{X}_{k}}(\mathbf{X})\right)}{\partial \Pi_{j}}+\left(1-\Pi_{k}\right) \cdot \frac{P\left(f^{\neg \mathrm{X}_{k}}(\mathbf{X})\right)}{\partial \Pi_{j}}
$$

should be replaced by

$$
\frac{\partial P(f(\mathbf{X}))}{\partial \Pi_{j}}=\Pi_{k} \cdot \frac{\partial P\left(f^{\mathrm{X}_{k}}(\mathbf{X})\right)}{\partial \Pi_{j}}+\left(1-\Pi_{k}\right) \cdot \frac{\partial P\left(f^{\neg \mathrm{X}_{k}}(\mathbf{X})\right)}{\partial \Pi_{j}}
$$

Page 277 Algorithm 22

$\pi(i k)$ should be replaced by $\pi_{i k}$ in line 4.

Page 278 Algorithm 24

η_{t}^{0} and η_{t}^{1} in lines 10 and 11 should be replaced respectively by η^{0} and η^{1}.

Page 281

The text:
LFI-ProbLog computes $P\left(X_{i j}=x \mid \mathcal{I}\right)$ by computing $P\left(X_{i j}=x, \mathcal{I}\right)$ using Procedure CIRCP shown in Algorithm 5: the d-DNNF circuit is visited twice, once bottom up to compute $P(q(\mathcal{I}))$ and once top down to compute $P\left(X_{i j}=x \mid \mathcal{I}\right)$ for all the variables $X_{i j}$ and values x. Then $P\left(X_{i j}=x \mid \mathcal{I}\right)$ is given by $\frac{P\left(X_{i j}=x, \mathcal{I}\right)}{P(\mathcal{I})}$.
should be replaced by
LFI-ProbLog computes $P\left(X_{i j}=x \mid \mathcal{I}\right)$ by computing $P\left(X_{i j}=x, \mathcal{I}\right)$ using Procedure CIRCP shown in Algorithm 5: the d-DNNF circuit is visited twice, once bottom up to compute $P(q(\mathcal{I}))$ and once top down to compute $P\left(X_{i j}=x, \mathcal{I}\right)$ for all the variables $X_{i j}$ and values x. Then $P\left(X_{i j}=x \mid \mathcal{I}\right)$ is given by $\frac{P\left(X_{i j}=x, \mathcal{I}\right)}{P(\mathcal{I})}$.

Page 292 Algorithm 26

target \leftarrow bod, refinement in line 18 should be replaced with target \leftarrow body, refinement.

References

J. Vlasselaer, G. Van den Broeck, A. Kimmig, W. Meert, and L. De Raedt. Anytime inference in probabilistic logic programs with Tp-compilation. In 24th International Joint Conference on Artificial Intelligence (IJCAI 2015), pages 1852-1858, 2015.
J. Vlasselaer, G. Van den Broeck, A. Kimmig, W. Meert, and L. De Raedt. Tpcompilation for inference in probabilistic logic programs. International Journal of Approximate Reasoning, 78:15-32, 2016. doi: 10.1016/j.ijar.2016.06.009.

