
Errata to Foundations of Probabilistic Logic
Programming

Fabrizio Riguzzi

Page 107
The last formula of the proof of Lemma 7 should be replaced by

WFM pwσq “WFM pwσ||Iαq “WFM pwσ|IFPP
P
Ò αq.

Page 154
The text:

Binary Decision Diagrams (BDDs) perform a Shannon expansion of the
Boolean formula: they express the formula as

fKpXq “ X1 _ f
X1

K pXq ^ X1 _ f
 X1

K pXq

should be replaced by

BDDs perform a Shannon expansion of the Boolean formula: they express
the formula as

fKpXq “ X1 ^ f
X1

K pXq _ X1 ^ f
 X1

K pXq

Page 161
The text:

The Boolean variables are associated with the following parameters:

P pXij1q “ P pXij1 “ 1q

. . .

P pXijkq “
P pXij “ kq

śk´1
l“1 p1´ P pXijk´1qq

should be replaced by

1

The Boolean variables are associated with the following parameters:

P pXij1q “ P pXij1 “ 1q

. . .

P pXijkq “
P pXij “ kq

śk´1
l“1 p1´ P pXijlqq

Page 174
The text:

To define structured decomposability, consider a Deterministic Decom-
posable Negation Normal Form (d-DNNF) δ and assume, without loss of
generality, that all conjunctions are binary. δ respects a vtree V if for ev-
ery conjunction α ^ β in δ, there is a node v in V such that varspαq Ď
varspvlq and varspβq Ď varspvrq where vl and vr are the left and right
child of v. δ enjoys structured decomposability if it satisfies some vtree.

should be replaced by

To define structured decomposability, consider a d-DNNF δ and assume,
without loss of generality, that all conjunctions are binary. δ respects a
vtree V if for every conjunction α ^ β in δ, there is a node v in V such
that varspαq Ď varspvlq and varspβq Ď varspvrq where vl and vr are
the left and right child of v and varspvq is the set of variables appearing in
d-DNNF v. δ enjoys structured decomposability if it satisfies some vtree.

Page 176, Definition 35
The text:

Definition 35 (TcP operator [Vlasselaer et al., 2015, 2016]). Let P be a
ground probabilistic logic program with probabilistic facts F and atoms
BP . Let I be a parameterized interpretation with pairs pa, λaq. Then, the
TcP operator is TcP pIq “ tpa, λaq|a P BPu where

λ1a “

$

&

%

a if a P F
Ž

aÐb1,...,bn,„c1,...,„cmPR
pλb1 ^ . . .^ λbn ^ λc1 ^ . . .^ λcmq

if a P BPzF

should be replaced by

2

Definition 35 (TcP operator [Vlasselaer et al., 2015, 2016]). Let P be
a ground probabilistic logic program with probabilistic facts F , rules R
and atoms BP . Let I be a parameterized interpretation with pairs pa, λaq.
Then, the TcP operator is TcP pIq “ tpa, λaq|a P BPu where

λ1a “

$

&

%

a if a P F
Ž

aÐb1,...,bn,„c1,...,„cmPR
pλb1 ^ . . .^ λbn ^ λc1 ^ . . .^ λcmq

if a P BPzF

Page 177
The text:

Vlasselaer et al. [2016] show that if each atom is selected frequently enough
in step 1, then the same fixpoint lfppTcP q is reached as for the naive al-
gorithm, provided that the operator is still applied stratum by stratum in
normal logic programs.

should be replaced by

Vlasselaer et al. [2016] show that if each atom is selected frequently enough
in step 1, then the same fixpoint lfppTcP q is reached as for the naive algo-
rithm that considers all atoms at the same time, provided that the operator
is still applied stratum by stratum in normal logic programs.

Page 247, Algorithm 11
The text:

3

Algorithm 11 Function EXACTSOLUTION: Solving the DTPROBLOG decision prob-
lem exactly.

1: function EXACTSOLUTION(DT)
2: ADDutil

tot Ð 0
3: for all puÑ rq P U do
4: Build BDDpuq, the BDD for u
5: ADDpuq Ð PROBABILITYDDpBDDupDT qq
6: ADDutil

puq Ð r ¨ADDupσq
7: ADDutil

tot Ð ADDutil
tot ‘ADDutil

puq
8: end for
9: let tmax be the terminal node of ADDutil

tot with the highest utility
10: let p be a path from tmax to the root of ADDutil

tot

11: return the Boolean decisions made on p
12: end function
13: function PROBABILITYDD(n)
14: if n is the 1-terminal then
15: return a 1-terminal
16: end if
17: if n is the 0-terminal then
18: return a 0-terminal
19: end if
20: let h and l be the high and low children of n
21: ADDh Ð PROBABILITYDDphq
22: ADDl Ð PROBABILITYDDphq
23: if n represents a decision d then
24: return ITEpd,ADDh,ADDlq

25: end if
26: if n represents a fact with probability p then
27: return pp ¨ADDhq ‘ pp1´ pq ¨ADDlq

28: end if
29: end function

should be replaced by

4

Algorithm 11 Function EXACTSOLUTION: Solving the DTPROBLOG decision prob-
lem exactly.

1: function EXACTSOLUTION(DT)
2: ADDutil

tot Ð 0
3: for all puÑ rq P U do
4: Build BDDpuq, the BDD for u
5: ADDpuq Ð PROBABILITYDDpBDDpuqq
6: ADDutil

puq Ð r ¨ADDpuq
7: ADDutil

tot Ð ADDutil
tot ‘ADDutil

puq
8: end for
9: let tmax be the terminal node of ADDutil

tot with the highest utility
10: let p be a path from tmax to the root of ADDutil

tot

11: return the Boolean decisions made on p
12: end function
13: function PROBABILITYDD(n)
14: if n is the 1-terminal then
15: return a 1-terminal
16: end if
17: if n is the 0-terminal then
18: return a 0-terminal
19: end if
20: let h and l be the high and low children of n
21: ADDh Ð PROBABILITYDDphq
22: ADDl Ð PROBABILITYDDplq
23: if n represents a decision d then
24: return ITEpd,ADDh,ADDlq

25: end if
26: if n represents a fact with probability p then
27: return pp ¨ADDhq ‘ pp1´ pq ¨ADDlq

28: end if
29: end function

Pages 260-261
The text:

To perform Expectation Maximization (EM), we can associate a random
variable Xij with values D “ txi1, . . . , xiniu to the ground switch name
iθj of mswpi, xq with domain D, with θj being a grounding substitution
for i. Let gpiq be the set of such substitutions:

gpiq “ tj|θj is a grounding substitution for i in mswpi, xqu.

The EM algorithm alternates between the two phases:

• Expectation: computes Ercik|es for all examples e, switchesmswpi, xq
and k P t1, . . . , niu, where cik is the number of times a variable Xij

5

takes value xik with j in gpiq. Ercik|es is given by
ř

jPgpiq P pXij “

x|eq.

• Maximization: computes Πik for all mswpi, xq and k “ 1, . . . , ni´
1 as

Πik “

ř

ePE Ercik|es
ř

ePE

řni
k“1 Ercik|es

So, for each example e, Xijs and xiks, we compute P pXij “ xik|eq, the
expected value of Xij given the example, with k P t1, . . . , niu. These
expected values are then aggregated and used to complete the dataset for
computing the parameters by relative frequency. If cik is number of times
a variable Xij takes value xik for any j, Ercik|es is its expected value
given example e. if Erciks is its expected value given all the examples,
then

Erciks “
T

ÿ

t“1

Ercik|ets

and

Πik “
Erciks

řni
k“1 Erciks

.

should be replaced by

To perform EM, we can associate a random variable Xij with values D “
txi1, . . . , xiniu to the ground switch name iθj of mswpi, xq with domain
D, with θj being a grounding substitution for i. Let gpiq be the set of such
substitutions:

gpiq “ tj|θj is a grounding substitution for i in mswpi, xqu.

PRISM will learn different parameters for each Xij random variable. The
EM algorithm alternates between the two phases:

• Expectation: computes Ercijk|es for all examples e, switchesmswpiθj , xq
and k P t1, . . . , niu, where cijk is the number of times variable Xij

takes value xik. Ercijk|es is given by P pXij “ xik|eq.

• Maximization: computes Πijk for allmswpiθj , xq and k “ 1, . . . , ni´
1 as

Πijk “

ř

ePE Ercijk|es
ř

ePE

řni
k“1 Ercijk|es

So, for each example e, Xijs and xiks, we compute P pXij “ xik|eq, the
expected value of Xij given the example, with k P t1, . . . , niu. These
expected values are then used to complete the dataset for computing the
parameters by relative frequency. If cijk is number of times a variable Xij

takes value xik, Ercijk|es is its expected value given example e. If Ercijks
is its expected value given all the examples, then

Ercijks “
T

ÿ

t“1

Ercijk|ets

6

and

Πijk “
Ercijks

řni
k“1 Ercijks

.

Page 262-263, Algorithms 13-14
The text:

Algorithm 13 Function PRISM-EM: Naive EM learning in PRISM
1: function PRISM-EM-NAIVE(E,P, ε)
2: LL “ ´inf
3: repeat
4: LL0 “ LL
5: for all i, k do Ź Expectation step

6: Erciks Ð
ř

ePE

ř

κPKe,mswpi,xikqθjPe
P pκq

P peq

7: end for
8: for all i, k do ŹMaximization step
9: Πik Ð

Erciks
řni
k1“1

Ercik1 s

10: end for
11: LLÐ

ř

ePE logP peq
12: until LL´ LL0 ă ε
13: return LL,Πik for all i, k
14: end function

Algorithm 14 Procedure GET-INSIDE-PROBS: computation of inside probabilities.
1: procedure GET-INSIDE-PROBS(q)
2: for all i, k do
3: P pmswpi, vkqq Ð Πik

4: end for
5: for iÐ mÑ 1 do
6: P pgiq Ð 0
7: for j Ð 1 Ñ si do
8: Let Sij be hij1, . . . , hijo
9: P pgi, Sijq Ð

śo
l“1 P phijlq

10: P pgiq Ð P pgiq ` P pgi, Sijq
11: end for
12: end for
13: end procedure

should be replaced by

7

Algorithm 13 Function PRISM-EM-NAIVE: Naive EM learning in PRISM
1: function PRISM-EM-NAIVE(E,P, ε)
2: LL “ ´inf
3: repeat
4: LL0 “ LL
5: for all i, j, k do Ź Expectation step

6: Ercijks Ð
ř

ePE

ř

κPKe,mswpiθj ,xikqPe
P pκq

P peq

7: end for
8: for all i, j, k do ŹMaximization step
9: Πijk Ð

Ercijks
řni
k1“1

Ercijk1 s

10: end for
11: LLÐ

ř

ePE logP peq
12: until LL´ LL0 ă ε
13: return LL,Πijk for all i, j, k
14: end function

Algorithm 14 Procedure GET-INSIDE-PROBS: computation of inside probabilities.
1: procedure GET-INSIDE-PROBS(q)
2: for all i, j, k do
3: P pmswpiθj , vkqq Ð Πijk

4: end for
5: for iÐ mÑ 1 do
6: P pgiq Ð 0
7: for j Ð 1 Ñ si do
8: Let Sij be hij1, . . . , hijo
9: P pgi, Sijq Ð

śo
l“1 P phijlq

10: P pgiq Ð P pgiq ` P pgi, Sijq
11: end for
12: end for
13: end procedure

Pages 263-264
The text:

If gi “ mswpi, xkqθj , then

P pXij “ xik, eq “ QpgiqP pgiq “ QpgiqΠik.

In fact, we can divide the explanations for e into two sets, Ke1, that in-
cludes the explanations containing mswpi, xkqθj , and Ke2, that includes
the other explanations. Then P peq “ P pKe1q ` P pKe2q and P pXij “

xik, eq “ P pKe1q. Since each explanation inKe1 contains gi “ mswpi, xkqθj ,
Ke1 takes the form ttgi,W1u, . . . , tgi,Wsuu and

8

should be replaced by

If gi “ mswpiθj , xkq, then

P pXij “ xik, eq “ QpgiqP pgiq “ QpgiqΠijk.

In fact, we can divide the explanations for e into two sets, Ke1, that in-
cludes the explanations containing mswpiθj , xkq, and Ke2, that includes
the other explanations. Then P peq “ P pKe1q ` P pKe2q and P pXij “

xik, eq “ P pKe1q. Since each explanation inKe1 contains gi “ mswpiθj , xkq,
Ke1 takes the form ttgi,W1u, . . . , tgi,Wsuu and

Page 265, algorithms 16-17
The text:

Algorithm 16 Function PRISM-EM
1: function PRISM-EM(E,P, ε)
2: LL “ ´inf
3: repeat
4: LL0 “ LL
5: LL “ EXPECTATION(E)
6: for all i do
7: SumÐ

řni
k“1 Erciks

8: for k “ 1 to ni do
9: Πik “

Erciks
Sum

10: end for
11: end for
12: until LL´ LL0 ă ε
13: return LL,Πik for all i, k
14: end function

9

Algorithm 17 Procedure PRISM-EXPECTATION

1: function PRISM-EXPECTATION(E)
2: LL “ 0
3: for all e P E do
4: GET-INSIDE-PROBS(e)
5: GET-OUTSIDE-PROBS(e)
6: for all i do
7: for k “ 1 to ni do
8: Erciks “ Erciks `Qpmswpi, xkqqΠik{P peq
9: end for

10: end for
11: LL “ LL` logP peq
12: end for
13: return LL
14: end function

should be replaced by

Algorithm 16 Function PRISM-EM
1: function PRISM-EM(E,P, ε)
2: LL “ ´inf
3: repeat
4: LL0 “ LL
5: LL “ EXPECTATION(E)
6: for all i, j do
7: SumÐ

řni
k“1 Ercijks

8: for k “ 1 to ni do
9: Πijk “

Ercijks
Sum

10: end for
11: end for
12: until LL´ LL0 ă ε
13: return LL,Πijk for all i, j, k
14: end function

10

Algorithm 17 Procedure PRISM-EXPECTATION

1: function PRISM-EXPECTATION(E)
2: LL “ 0
3: for all e P E do
4: GET-INSIDE-PROBS(e)
5: GET-OUTSIDE-PROBS(e)
6: for all i, j do
7: for k “ 1 to ni do
8: Ercijks “ Ercijks `Qpmswpiθj , xkqqΠijk{P peq
9: end for

10: end for
11: LL “ LL` logP peq
12: end for
13: return LL
14: end function

1 Page 272
The text:

πik “

ř

ePE Ercik1|es
ř

qPE Ercik0|es `Ercik1|es

should be replaced by

πik “

ř

ePE Ercik1|es
ř

ePE Ercik0|es `Ercik1|es

2 Page 281
The text:

LFI-ProbLog computes P pXij “ x|Iq by computing P pXij “ x, Iq
using Procedure CIRCP shown in Algorithm 5: the d-DNNF circuit is
visited twice, once bottom up to compute P pqpIqq and once top down
to compute P pXij “ x|Iq for all the variables Xij and values x. Then
P pXij “ x|Iq is given by P pXij“x,Iq

P pIq .

should be replaced by

LFI-ProbLog computes P pXij “ x|Iq by computing P pXij “ x, Iq
using Procedure CIRCP shown in Algorithm 5: the d-DNNF circuit is
visited twice, once bottom up to compute P pqpIqq and once top down
to compute P pXij “ x, Iq for all the variables Xij and values x. Then
P pXij “ x|Iq is given by P pXij“x,Iq

P pIq .

11

References
J. Vlasselaer, G. Van den Broeck, A. Kimmig, W. Meert, and L. De Raedt. Anytime

inference in probabilistic logic programs with Tp-compilation. In 24th International
Joint Conference on Artificial Intelligence (IJCAI 2015), pages 1852–1858, 2015.

J. Vlasselaer, G. Van den Broeck, A. Kimmig, W. Meert, and L. De Raedt. Tp-
compilation for inference in probabilistic logic programs. International Journal of
Approximate Reasoning, 78:15–32, 2016. doi: 10.1016/j.ijar.2016.06.009.

12

	Page 272
	Page 281

