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Machine Learning

Machine Learning

Classification
Positive and negative examples
Representation of data and classifier
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Machine Learning

Representation Langauges

Propositional or attribute-value languages
First order/logical/relational languages
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Machine Learning

Propositional Languages

Each instance described by a fixed set of attributes
Data: table
One target attribute
Model/Classifier: production rules, decision trees, Bayesian
networks
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Machine Learning

Example: Targeted Mailing
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Machine Learning

Decision Trees

Age < 30

Resp=no

fal
se

Address

Resp=no

wa

Resp=no

va

Resp=yes

ca

true
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Machine Learning

Production Rules

If Age<30 and Address=ca then Resp=yes
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Machine Learning

First-Order Languages

Instances described by logic theories
They allow to easily represents parts of objects, attributes of parts
and relations among parts
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Machine Learning

Targeted Mailing

Name Category Size Price

bike_1 sport l 1000

jacket_2 clothing l 150

tent_2 outdoor m 250

Name Article Quantity

john bike_1 2

ann jacket_2 1

steve bike_1 1

john tent_2 1

ann bike_1 3

Name Age Sex Address

john 35 m ca

mary 25 f ca

ann 29 f wa

steve 31 m va

customer article

transaction

Name

ann

respond
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Machine Learning

Logic

Useful to model domains with complex relationships among
entities
Various forms:

First Order Logic
Logic Programming
Description Logics
Temporal Logics
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Machine Learning

Logic Programming

Closed World Assumption
Turing complete
Prolog

flu(bob).
hay_fever(bob).
sneezing(X )← flu(X ).
sneezing(X )← hay_fever(X ).
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Inductive Logic Programming

Inductive Logic Programming

Aim:
classifying instances of the domain, i.e.
predicting the class

Two settings:
Learning from entailment
Learning from interpretations
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Inductive Logic Programming Learning from entailment

Learning from Entailment

Given
A set of positive example E+

A set of negative examples E−

A background knowledge B
A space of possible programs H

Find a program P ∈ H such that
∀e+ ∈ E+, P ∪ B |= e+ (completeness)
∀e− ∈ E−, P ∪ B 6|= e− (consistency)
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Inductive Logic Programming Learning from entailment

Targeted Mailing

Name Category Size Price

bike_1 sport l 1000

jacket_2 clothing l 150

tent_2 outdoor m 250

Name Article Quantity

john bike_1 2

ann jacket_2 1

steve bike_1 1

john tent_2 1

ann bike_1 3

Name Age Sex Address

john 35 m ca

mary 25 f ca

ann 29 f wa

steve 31 m va

customer article

transaction

Name

ann

respond
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Inductive Logic Programming Learning from entailment

Mailing Example

Positive examples E+ = {respond(ann)}
Negative examples
E− = {respond(john), respond(mary), respond(steve)}
Background B = facts for relations customer , transaction and
article
customer(john,35,m, ca).
customer(mary ,25, f , ca).
customer(ann,29, f ,wa). . . .
transaction(john,bike_1,2).
transaction(ann, jacket_2,1). . . .
article(bike_1, sport , l ,1000).
article(jacket_2, clothing, l ,150). . . .
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Inductive Logic Programming Learning from entailment

Mailing Example

Space of programs H: programs containing clauses with
in the head respond(Customer)
in the body a conjunction of literals from the set
{customer(Customer ,Age,Sex ,Address),
transaction(Customer ,Article,Quantity),
article(Article,Category ,Price),
Age = constant ,Sex = constant , . . .}

Possible solution
respond(Customer)← transaction(Customer ,Article,_Quantity),
article(Article,Category ,_Size,_Price),
Category = clothing
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Inductive Logic Programming Learning from entailment

Definitions

covers(P,e) = true if B ∪ P |= e
covers(P,E) = {e ∈ E |covers(P,e) = true}
A theory P is more general than Q if covers(P,U) ⊇ covers(Q,U)

Specialization opposite of generalization
If B ∪ P |= Q then B ∪Q |= e⇒ B ∪ P |= e so P is more general
than Q
A clause C is more general than D if
covers({C},U) ⊇ covers({D},U)

If B,C |= D then C is more general than D
If a clause covers an example, all of its generalizations will (covers
is antimonotonic with respect to specialization)
If a clause does not cover an example, none of its specializations
will

Fabrizio Riguzzi (UNIFE) Temporal Aspects of ILP 18 / 120



Inductive Logic Programming Learning from entailment

Theta Subsumption

A clause
h← b1, . . . ,bn
can be seen as a set of literals {h,not b1, . . . ,not bn}
A substitution θ is a replacement of variable with terms:
θ = {X/a,Y/b}
C θ-subsumes D (C ≥ D) if there exists a substitution θ such that
Cθ ⊆ D [Plotkin 70]
C ≥ D ⇒ C |= D ⇒ B,C |= D ⇒ C is more general than D
C |= D 6⇒ C ≥ D
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Inductive Logic Programming Learning from entailment

Examples of Theta Subsumption

C1 = father(X ,Y )← parent(X ,Y )

C2 = father(X ,Y )← parent(X ,Y ),male(X )

C3 = father(john, steve)← parent(john, steve),male(john)
C1 = {father(X ,Y ),not parent(X ,Y )}
C2 = {father(X ,Y ),not parent(X ,Y ),not male(X )}
C3 =
{father(john, steve),not parent(john, steve),not male(john)}
C1 ≥ C2 with θ = ∅
C1 ≥ C3 with θ = {X/john,Y/steve}
C2 ≥ C3 with θ = {X/john,Y/steve}
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Inductive Logic Programming Learning from entailment

In Practice

Coverage test: SLD or SLDNF resolution
Try to derive e from B ∪ P ∪ {C}

Generality order:
θ-subsumption
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Inductive Logic Programming Learning from entailment

Properties of Theta Subsumption

θ-subsumption induces a lattice in the space of clauses
Every set of clauses has a least upper bound (lub) and a greatest
lower bound (glb)
This is not true for the generality relation based on logical
consequence
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Inductive Logic Programming Learning from entailment

Lattice
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Inductive Logic Programming Learning from entailment

Top-Down Systems

Covering loop
Search for a clause from general to specific

Learn(E ,B)
P := 0
repeat /* covering loop */

C :=GenerateClauseTopDown(E ,B)
P := P ∪ {C}
Remove from E the positive examples covered by P

until Sufficiency criterion
return P
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Inductive Logic Programming Learning from entailment

Top-down Systems

GenerateClauseTopDown(E,B)
Beam := {p(X )← true}
BestClause := null
repeat /* specialization loop */

Remove the first clause C of Beam
compute ρ(C)
score all the refinements
update BestClause
add all the refinements to the beam
order the beam according to the score
remove the last clauses that exceed the dimension d

until the Necessity criterion is satisfied
return BestClause
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Inductive Logic Programming Learning from entailment

Typical Stopping Criteria

Sufficiency criteria:
E+ = ∅
GenerateClauseTopDown returns null
a disjunction of the above

Necessity criteria
the number of negative examples covered by BestClause is 0
the number of negative examples covered by BestClause is below a
threshold
Beam is empty
a disjunction of the above
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Inductive Logic Programming Learning from entailment

Refinement Operator

ρ(C) = {D|D ∈ L,C ≥ D}
where L is the space of possible clauses
A refinement operator usually generates only minimal
specializations
A typical refinement operator applies two syntactic operations to a
clause

it applies a substitution to the clause
it adds a literal to the body
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Inductive Logic Programming Learning from entailment

Heuristic Functions

n+,n− number of positive and negative examples in the training
set, n = n+ + n−

n+(C),n−(C) number of positive and negative examples covered
by clause C
n(C) = n+(C) + n−(C)

Accuracy: Acc = P(+|C) (more accurately Precision), P(+|C)
can be estimated by

relative frequency: P(+|C) = n+(C)
n(C)

m-estimate: P(+|C) = n+(C)+mP(+)
n(C)+m , where P(+) = n+/n

Laplace: m-estimate with m = 2,P(+) = 0.5 P(+|C) = n+(C)+1
n(C)+2
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Inductive Logic Programming Learning from entailment

Heuristic Functions

Coverage: Cov = n+(C)− n−(C)

Informativity: Inf = log2(Acc)
Weighted relative accuracy: WRAcc = P(C)(P(+|C)− P(+)),
where P(C) = n(C)/n
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Inductive Logic Programming Learning from entailment

FOIL [Quinlan 90]

Top-down system with
Dimension of the beam: 1
Heuristic: (approximately) weighted gain of Inf :
H = n(C′)(Inf (C′)− Inf (C))
Refinement operator: addition of a literal or unification of two
variables
Sufficiency criterion: E+ = ∅
Necessity criterion: n−(BestClause) = 0
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Inductive Logic Programming Learning from entailment

Progol [Muggleton 95] & Aleph [Srinivasan 07]

Top-down system with
Dimension of the beam: user defined
Heuristic: Compression: Comp = n+(C)− n−(C)− |C| + branch
and bound (Aleph)
Refinement operator: adds a literal from the most specific clause
(bottom clause) ⊥ after having replaced some of the constants with
variables
Sufficiency criterion: E+ = ∅
Necessity criterion: Beam = ∅ or a maximum number of iterations
of the loop is reached
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Inductive Logic Programming Learning from entailment

Language Bias

Mode declarations
Syntax

modeh(RecallNumber,PredicateMode).
modeb(RecallNumber,PredicateMode).

RecallNumber can be a number or *. Usually *. Maximum
number of answers to queries to include in the bottom clause
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Inductive Logic Programming Learning from entailment

Mode Declarations

PredicateMode template of the form:

p(ModeType, ModeType,...)

Some examples:

modeb(1,mem(+number,+list)).
modeb(1,dec(+integer,-integer)).
modeb(1,mult(+integer,+integer,-integer)).
modeb(1,plus(+integer,+integer,-integer)).
modeb(1,(+integer)=(#integer)).
modeb(*,has_car(+train,-car))
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Inductive Logic Programming Learning from entailment

Mode Declarations

ModeType can be:
Simple:

+T input variables of type T;
-T output variables of type T; or
#T constants of type T.

Structured: of the form f(..) where f is a function symbol and
every argument can be either simple or structured. For example:

modeb(1,mem(+number,[+number|+list])).
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Inductive Logic Programming Learning from entailment

Bottom Clause ⊥ [Muggleton 95]

Most specific clause covering an example e
Form: e← B
B: set of ground literals that are true regarding the example e
B obtained by considering the constants in e and querying the
predicates of the background for true atoms regarding these
constants
A map from types to lists of constants is kept, it is enlarged with
constants in the answers to the queries and the procedure is
iterated a user-defined number of times
Values for output arguments are used as input arguments for
other predicates
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Inductive Logic Programming Learning from entailment

Bottom Clause ⊥

Example:
e = father(john,mary)
B = {parent(john,mary),parent(david , steve),
parent(kathy ,mary), female(kathy),male(john),male(david)}
modeh(∗, father(+person,+person)).
modeb(∗,parent(+person,−person)).
modeb(∗,parent(−person,+person)).
modeb(∗,male(+person)).
modeb(∗, female(#person)).
e← B = father(john,mary)← parent(john,mary),male(john),
parent(kathy ,mary), female(kathy).
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Inductive Logic Programming Learning from entailment

Bottom Clause ⊥

The resulting ground clause ⊥ is then processed by replacing
each term in a + or - placemarker with a variable
An input variable (+T) must appear as an output variable with the
same type in a previous literal or as an input variable in the head
and a constant (#T) is not replaced by a variable.

⊥ = father(X ,Y )←
parent(X ,Y ),male(X ),parent(Z ,Y ), female(kathy).
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Inductive Logic Programming Learning from entailment

Aleph Example

http://cplint.eu/p/grandfather_sol.pl

Learning the grandfather relation from knowledge of parent/2,
male/1 and female/1
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Inductive Logic Programming Learning from interpretations

Learning from Interpretations

Interpretation = set of ground atoms.
Aim: learning a classifier for logical interpretations
Classifier: a set of disjunctive clauses T
Disjunctive clause
C = h1 ∨ h2 ∨ . . . ∨ hn ← b1,b2, . . . ,bm
can be seen as a set of literals
{h1, . . . ,hn,not b1, . . . ,not bm}
head(C) = h1 ∨ h2 ∨ . . . ∨ hn or {h1, . . . ,hn}
body(C) = b1,b2, . . . ,bm or {b1, . . . ,bm}
body+(C) = set of positive literals of body(C)

body−(C) = set of atoms of negative literals of body(C)
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Inductive Logic Programming Learning from interpretations

Learning from Interpretations

Set of clauses as a classifier
an interpretation I is positive if all the clauses of T are true in the
interpretation (I |= T )
an interpretation I is negative if there exists at least one clause of T
that is false in it (I 6|= T )

A clause C is true in an interpretation I (I |= C) if for all grounding
substitutions θ of C:
I |= body(C)θ ⇒ head(C)θ ∩ I 6= ∅
or
body+(C)θ ⊆ I ∧ body−(C)θ ∩ I = ∅ ⇒ head(C)θ ∩ I 6= ∅
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Inductive Logic Programming Learning from interpretations

Test of the Truth of a Clause

Range restricted clause: all the variables of the clause appear in
positive literals in the body
Range restricted clause C, finite interpretation I: run the query
?− body(C),not head(C) against a logic program containing I
If C = h1 ∨ h2 ∨ . . . ∨ hn ← b1,b2, . . . ,bm then the query is
?− b1,b2, . . . ,bm,not h1,not h2, . . . ,not hn

If the query succeeds, C is false in I. If the query fails, C is true in
I [De Raedt, Bruynooghe 93]
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Inductive Logic Programming Learning from interpretations

Example

I = {female(liz),male(richard),
gorilla(liz),gorilla(richard)}
C = male(X ) ∨ female(X )← gorilla(X ): the clause is true in I
because the query ?− gorilla(X ),not male(X ),not female(X ) fails
C = male(X )← gorilla(X ): the clause is false in I because the
query
?− gorilla(X ),not male(X ) succeeds with θ = {X/liz}.
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Inductive Logic Programming Learning from interpretations

Learning from Interpretations

Given
a space of possible clausal theories H
a set P of interpretations
a set N of interpretations

Find: a clausal theory H ∈ H such that
for all p ∈ P, p |= H
for all n ∈ N, n 6|= H

Less expressive than learning from entailment: no recursive
definitions
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Inductive Logic Programming Learning from interpretations

Test with Background

Background: a normal program B
Truth of a clause C in the interpretation M(B ∪ I) where M is the
model according to the chosen semantics and I is an
interpretation (i.e. B ∪ I |= C)
Range restricted clause C, normal program B containing only
range restricted clauses, interpretation I: run the query
?− body(C),not head(C) against the logic program B ∪ I.
If the query succeeds, C is false in M(B ∪ I) (B ∪ I 6|= C). If the
query fails, C is true in M(B ∪ I) (B ∪ I |= C)
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Inductive Logic Programming Learning from interpretations

Learning from Int. with Background

Given
a space of possible clausal theories H
a set P of interpretations
a set N of interpretations
a background theory B

Find: a clausal theory H ∈ H such that
for all p ∈ P, B ∪ p |= H
for all n ∈ N, B ∪ n 6|= H
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Inductive Logic Programming Learning from interpretations

Generality Relation

cover({C},e) = true if e |= C
C ≥ D ⇒ C |= D ⇒ D is more general than C
the relation is reversed
Example:

false← true
false← gorilla(X )
female(X )← gorilla(X )
female(X ) ∨male(X )← gorilla(X )
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Inductive Logic Programming Learning from interpretations

ICL [De Raedt, Van Laer, 95]

Dual version of a top down entailment algorithm:
coverage loop is performed on negative examples

Updates CN2 to first order

ICL(P,N,B)
H := ∅
repeat

C :=FindBestClause(P,N,B)
if C 6= null then

add C to H
remove from N all interpretations that are false for C

until C = null or N is empty
return H
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Inductive Logic Programming Learning from interpretations

ICL FindBestClause

FindBestClause(P,N,B)
Beam := {false← true}, BestClause := null
while Beam is not empty do

NewBeam := ∅
for each clause C in Beam do

for each refinement Ref of C do
if Ref is better than BestClause and Ref is

statistically significant then
BestClause := Ref

if Ref is not to be pruned then
add Ref to NewBeam
if size of NewBeam > MaxBeamSize then

remove worst clause from NewBeam
Beam := NewBeam

return BestClause
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Inductive Logic Programming Learning from interpretations

ICL Heuristics

n(C)= number of interpretations (positive and negative) where C
is false
n−(C)= number of negative interpretation where C is false

H(C) = p(−|C) = n−(C)+1
n(C)+2

= precision over negative class
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Process Mining

Process Mining

Every organization performs a number of business processes in
order to achieve its mission.
Information system can log all the actions performed in a process
Problem: how to mine a process model from the log
Research area: process mining, e.g. [Agrawal et al. 1998], [Aalst
et al. 2003] [Greco et al. 2006]
We propose:

A novel representation language for describing process models.
An approach to Process Mining that uses learning from
interpretations techniques from ILP.
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Process Mining

Processes

A process trace t is a sequence of events or a list of time-stamped
events.
An example of a trace is
〈a,b, c〉
A process model PM is a formula in a language.
Interpreter of the language:

t |= PM: compliant trace
t 6|= PM: non compliant trace

A bag of process traces L is called a log.
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Process Mining Process Representation in Logic Programming

Traces Representation with Logic Programming

A trace can be represented as an interpretation:
Each event is represented with an atom whose predicate is the
event type .
An extra argument is added to the atom indicating the position in
the sequence or its time.

For example, the trace: a,b, c
can be represented with the interpretation
{a(1),b(2), c(3)}.
Background knowledge: a normal logic program B.
M(B ∪ t) rather than simply t
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Process Mining Process Representation in Logic Programming

Models Representation

Subset of the SCIFF language [Alberti et al. 2007] for specifying
and verifying interaction in open agent societies.
A process model is a set of integrity constraints
Integrity Constraint (IC):

Body →∃(ConjP1) ∨ . . . ∨ ∃(ConjPn)∨
∀¬(ConjN1) ∨ . . . ∨ ∀¬(ConjNm)
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Process Mining Process Representation in Logic Programming

Models Representation

Body , ConjPi and ConjNj : conjunctions of literals
The variables of the body are implicitly universally quantified with
scope the entire formula.
The quantifiers in the head apply to all the variables not appearing
in the body.
∃(ConjPi): P disjunct
∀¬(ConjNj): N disjunct
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Process Mining Process Representation in Logic Programming

IC Example

a(bob,T ),T < 10
→∃T 1(b(alice,T 1),T < T 1)
∨
∀T1¬(c(mary ,T 1),T < T 1,T 1 < T + 10)

(1)

Meaning: if bob has executed action a at a time T < 10, then alice
must execute action b at a time T 1 later than T or mary must not
execute action c for 9 time units after T .
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Process Mining Process Representation in Logic Programming

Truth of an IC

An IC C is true in an interpretation M(B ∪ t), written M(B ∪ t) |= C,
if, for every substitution θ for which Body is true in M(B ∪ t), there
exists a disjunct ∃(ConjPi) or ∀¬(ConjNj) that is true in M(B ∪ t).
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Process Mining Process Representation in Logic Programming

Test of the Truth of an IC

Similarly to disjunctive clauses, the truth of an IC in an
interpretation M(B ∪ t) can be tested by running the query:

?− Body ,not(ConjP1), . . .not(ConjPn),

not(not(ConjN1)), . . . ,not(not(ConjNm))

in a database containing the clauses of B and atoms of t as facts.
If the query fails, the IC is true in the interpretation.
If the query succeeds, the IC is false in the interpretation.
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Process Mining Process Representation in Logic Programming

Example

For the example above we have the query

?− a(bob,T ),T < 10,not(b(alice,T 1),T < T 1),
not(not(c(mary ,T1),T < T1,T 1 < T + 10))

fails in {a(bob,2),b(alice,3)}
fails in {a(bob,2), c(mary ,14)}
succeeds in {a(bob,2), c(mary ,6)}
succeeds in {a(bob,2),b(alice,1), c(mary ,6)}
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Process Mining Process Representation in Logic Programming

Truth of a Theory

A process model H is true in an interpretation M(B ∪ t) if every IC
is true in it and we write M(B ∪ t) |= H.
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Process Mining Learning Problem

Learning Problem

Adaptation to ICs of the learning from interpretation setting of ILP:
Given

a space of possible process models H
a set I+ of positive traces;
a set I− of negative traces;
a background theory B.

Find: a process model H ∈ H such that
for all i+ ∈ I+, M(B ∪ i+) |= H;
for all i− ∈ I−, M(B ∪ i−) 6|= H;

If M(B ∪ i) |= C we say that IC C covers the trace i
if M(B ∪ i) 6|= C we say that C rules out the trace i .
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Process Mining Learning Problem

Learning IC Theories

Definition (Subsumption)
An IC D subsumes an IC C, written D ≥ C, iff it exists a substitution θ
for the variables in the body of D or in the N conjunctions of D such
that

Body(D)θ ⊆ Body(C) and
∀ConjP(D) ∈ HeadSet(D), ∃ConjP(C) ∈ HeadSet(C) :
ConjP(C) ⊆ ConjP(D)θ and
∀ConjN(D) ∈ HeadSet(D), ∃ConjN(C) ∈ HeadSet(C) :
ConjN(D)θ ⊆ ConjN(C)
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Process Mining Learning Problem

Learning IC Theories

Theorem
D ≥ C ⇒ D |= C.

Thus C is more general than D.
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Process Mining Learning Problem

Language Bias

Set of IC templates. Each template specifies
a set of literals BS allowed in the body,
a set of disjuncts HS allowed in the head. For each disjunct, the
template specifies:

whether it is a P or an N disjunct,
the set of literals allowed in the disjunct.
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Process Mining Learning Problem

Refinement Operator

Given an IC D, the set of refinements ρ(D) of D is obtained by
performing one of the following operations

adding a literal from the IC template for D to the body;
adding a disjunct from the IC template for D to the head: the
disjunct can be

∃d1 ∧ . . . ∧ dk where {d1, . . . , dk} is the set of literals allowed by the
IC template for D for the P disjunct,
∀¬d where d is allowed by the IC template for D for a N disjunct;

removing a literal from a P disjunct in the head;
adding a literal to an N disjunct in the head. The literal must be
allowed by the language bias.
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Process Mining Learning Algorithm

Learning Algorithm

DPML (Declarative Process Model Learner), an adaptation of ICL.
function DPML(I+, I−,B)
initialize H := ∅
do

C := FindBestIC(I+, I−,B)
if C 6= ∅ then

add C to H
remove from I− all interpretations that are false for C

while C 6= ∅ and I− is not empty
return H
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Process Mining Learning Algorithm

Learning Algorithm

function FindBestIC(I+, I−,B)
initialize Beam := {false← true}
initialize BestIC := ∅
while Beam is not empty do

initialize NewBeam := ∅
for each IC C in Beam do

for each refinement Ref of C do
if Ref is better than BestIC then BestIC := Ref
if Ref is not to be pruned then

add Ref to NewBeam
if size of NewBeam > MaxBeamSize then

remove worst clause from NewBeam
Beam := NewBeam

return BestIC
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Process Mining Learning Algorithm

Learning Algorithm

FindBestIC: beam search with p(	|C) as a heuristic function,
p(	|C) is the probability that an input trace is negative given that
is ruled out by the IC C.

p(	|C) = n(	|C)

n(	|C)+n(⊕|C)
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Process Mining Learning Algorithm

Learning Algorithm

Differently from ICL we do not perform pruning of the ICs that are
not statistically significant
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Probabilistic Logic Programming Semantics

Combining Logic and Probability

Logic does not handle well uncertainty
Graphical models do not handle well relationships among entities
Solution: combine the two
Many approaches proposed in the areas of Logic Programming,
Uncertainty in AI, Machine Learning, Databases, Knowledge
Representation
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Probabilistic Logic Programming Semantics

Probabilistic Logic Programming

Distribution Semantics [Sato ICLP95]
A probabilistic logic program defines a probability distribution over
normal logic programs (called instances or possible worlds or
simply worlds)
The distribution is extended to a joint distribution over worlds and
interpretations (or queries)
The probability of a query is obtained from this distribution
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Probabilistic Logic Programming Semantics

Probabilistic Logic Programming (PLP) Languages
under the Distribution Semantics

Probabilistic Logic Programs [Dantsin RCLP91]
Probabilistic Horn Abduction [Poole NGC93], Independent Choice
Logic (ICL) [Poole AI97]
PRISM [Sato ICLP95]
Logic Programs with Annotated Disjunctions (LPADs) [Vennekens
et al. ICLP04]
ProbLog [De Raedt et al. IJCAI07]
They differ in the way they define the distribution over logic
programs
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Probabilistic Logic Programming Semantics

PLP Online

http://cplint.eu
Inference (knwoledge compilation, Monte Carlo)
Parameter learning (EMBLEM)
Structure learning (SLIPCOVER)

https://dtai.cs.kuleuven.be/problog/
Inference (knwoledge compilation, Monte Carlo)
Parameter learning (LFI-ProbLog)
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Probabilistic Logic Programming Semantics

Logic Programs with Annotated Disjunctions

http://cplint.eu/e/sneezing_simple.pl

sneezing(X ) : 0.7 ; null : 0.3← flu(X ).
sneezing(X ) : 0.8 ; null : 0.2← hay_fever(X ).
flu(bob).
hay_fever(bob).

Distributions over the head of rules
null does not appear in the body of any rule
Worlds obtained by selecting one atom from the head of every
grounding of each clause
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Probabilistic Logic Programming Semantics

ProbLog

sneezing(X )← flu(X ), flu_sneezing(X ).
sneezing(X )← hay_fever(X ),hay_fever_sneezing(X ).
flu(bob).
hay_fever(bob).
0.7 :: flu_sneezing(X ).
0.8 :: hay_fever_sneezing(X ).

Distributions over facts
Worlds obtained by selecting or not every grounding of each
probabilistic fact
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Probabilistic Logic Programming Semantics

Distribution Semantics

Case of no function symbols: finite Herbrand universe, finite set of
groundings of each switch/clause/fact
Atomic choice: selection of the i-th atom for grounding Cθ of
switch/clause C

represented with the triple (C, θ, i)

Example C1 = sneezing(X ) : 0.7 ; null : 0.3← flu(X ).,
(C1, {X/bob},1)
A ProbLog fact p :: F is interpreted as F : p ∨ null : 1− p.

Fabrizio Riguzzi (UNIFE) Temporal Aspects of ILP 75 / 120



Probabilistic Logic Programming Semantics

Distribution Semantics

Selection σ: a total set of atomic choices (one atomic choice for
every grounding of each clause)
A selection σ identifies a logic program wσ called world
The probability of wσ is P(wσ) =

∏
(C,θ,i)∈σ P0(C, i)

Finite set of worlds: WT = {w1, . . . ,wm}
P(w) distribution over worlds:

∑
w∈WT

P(w) = 1
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Probabilistic Logic Programming Semantics

Distribution Semantics

Ground query Q
P(Q|w) = 1 if Q is true in w and 0 otherwise
P(Q) =

∑
w P(Q,w) =

∑
w P(Q|w)P(w) =

∑
w |=Q P(w)

You can see P(Q) as the probability that Q is true in a world
sampled at random from P(w)

for each choice, sample a value to get a world
test the query in the world
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Probabilistic Logic Programming Semantics

Example Program (LPAD) Worlds
http://cplint.eu/e/sneezing_simple.pl

sneezing(bob)← flu(bob). null ← flu(bob).
sneezing(bob)← hay_fever(bob). sneezing(bob)← hay_fever(bob).
flu(bob). flu(bob).
hay_fever(bob). hay_fever(bob).
P(w1) = 0.7× 0.8 P(w2) = 0.3× 0.8

sneezing(bob)← flu(bob). null ← flu(bob).
null ← hay_fever(bob). null ← hay_fever(bob).
flu(bob). flu(bob).
hay_fever(bob). hay_fever(bob).
P(w3) = 0.7× 0.2 P(w4) = 0.3× 0.2

P(Q) =
∑

w∈WT

P(Q,w) =
∑

w∈WT

P(Q|w)P(w) =
∑

w∈WT :w|=Q

P(w)

sneezing(bob) is true in 3 worlds
P(sneezing(bob)) = 0.7× 0.8 + 0.3× 0.8 + 0.7× 0.2 = 0.94
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Probabilistic Logic Programming Semantics

Example Program (ProbLog) Worlds

4 worlds
sneezing(X )← flu(X ), flu_sneezing(X ).
sneezing(X )← hay_fever(X ), hay_fever_sneezing(X ).
flu(bob).
hay_fever(bob).

flu_sneezing(bob).
hay_fever_sneezing(bob). hay_fever_sneezing(bob).
P(w1) = 0.7× 0.8 P(w2) = 0.3× 0.8
flu_sneezing(bob).
P(w3) = 0.7× 0.2 P(w4) = 0.3× 0.2

sneezing(bob) is true in 3 worlds
P(sneezing(bob)) = 0.7× 0.8 + 0.3× 0.8 + 0.7× 0.2 = 0.94
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Probabilistic Logic Programming Semantics

Logic Programs with Annotated Disjunctions

http://cplint.eu/e/sneezing.pl

strong_sneezing(X ) : 0.3 ; moderate_sneezing(X ) : 0.5← flu(X ).
strong_sneezing(X ) : 0.2 ; moderate_sneezing(X ) : 0.6← hay_fever(X ).
flu(bob).
hay_fever(bob).

9 worlds
strong_sneezing(bob) is true in 5
P(strong_sneezing(bob)) =
0.3 · 0.2 + 0.3 · 0.6 + 0.3 · 0.2 + 0.5 · 0.2 + 0.2 · 0.2 = 0.44
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Probabilistic Logic Programming Semantics

Monty Hall Puzzle

A player is given the opportunity to select one of three closed
doors, behind one of which there is a prize.
Behind the other two doors are empty rooms.
Once the player has made a selection, Monty is obligated to open
one of the remaining closed doors which does not contain the
prize, showing that the room behind it is empty.
He then asks the player if he would like to switch his selection to
the other unopened door, or stay with his original choice.
Does it matter if he switches?
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Probabilistic Logic Programming Semantics

Monty Hall Puzzle
http://cplint.eu/e/monty.swinb

:- use_module(library(pita)).
:- endif.
:- pita.
:- begin_lpad.
prize(1):1/3; prize(2):1/3; prize(3):1/3.

open_door(2):0.5 ; open_door(3):0.5:- prize(1).
open_door(2):- prize(3).
open_door(3):- prize(2).

win_keep:- prize(1).

win_switch:-
prize(2),
open_door(3).

win_switch:-
prize(3),
open_door(2).

:- end_lpad.
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Probabilistic Logic Programming Semantics

Examples

Throwing coins http://cplint.eu/e/coin.swinb

heads(Coin):1/2 ; tails(Coin):1/2 :-
toss(Coin),\+biased(Coin).

heads(Coin):0.6 ; tails(Coin):0.4 :-
toss(Coin),biased(Coin).

fair(Coin):0.9 ; biased(Coin):0.1.
toss(coin).

Russian roulette with two guns http://cplint.eu/e/trigger.pl

death:1/6 :- pull_trigger(left_gun).
death:1/6 :- pull_trigger(right_gun).
pull_trigger(left_gun).
pull_trigger(right_gun).
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Probabilistic Logic Programming Semantics

Examples

Mendel’s inheritance rules for pea plants
http://cplint.eu/e/mendel.pl

color(X,purple):-cg(X,_A,p).
color(X,white):-cg(X,1,w),cg(X,2,w).
cg(X,1,A):0.5 ; cg(X,1,B):0.5 :-

mother(Y,X),cg(Y,1,A),cg(Y,2,B).
cg(X,2,A):0.5 ; cg(X,2,B):0.5 :-
father(Y,X),cg(Y,1,A),cg(Y,2,B).

Probability of paths http://cplint.eu/e/path.swinb

path(X,X).
path(X,Y):-path(X,Z),edge(Z,Y).
edge(a,b):0.3.
edge(b,c):0.2.
edge(a,c):0.6.
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Probabilistic Logic Programming Semantics

Encoding Bayesian Networks

Burglary Earthquake

Alarm

alarm t f
b=t,e=t 1.0 0.0
b=t,e=f 0.8 0.2
b=f,e=t 0.8 0.2
b=f,e=f 0.1 0.9

burg t f
0.1 0.9

earthq t f
0.2 0.8

http://cplint.eu/e/alarm.pl

burg(t):0.1 ; burg(f):0.9.
earthq(t):0.2 ; earthq(f):0.8.
alarm(t):-burg(t),earthq(t).
alarm(t):0.8 ; alarm(f):0.2:-burg(t),earthq(f).
alarm(t):0.8 ; alarm(f):0.2:-burg(f),earthq(t).
alarm(t):0.1 ; alarm(f):0.9:-burg(f),earthq(f).
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Probabilistic Logic Programming Semantics

Expressive Power

All languages under the distribution semantics have the same
expressive power
LPADs have the most general syntax
There are transformations that can convert each one into the
others
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Probabilistic Logic Programming Semantics

Function Symbols

What if function symbols are present?
Infinite, countable Herbrand universe
Infinite, countable Herbrand base
Infinite, countable grounding of the program T
Uncountable WT

Each world infinite, countable
P(w) = 0
Semantics not well-defined
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Probabilistic Logic Programming Semantics

Game of dice

http://cplint.eu/e/threesideddice.pl

on(0,1):1/3 ; on(0,2):1/3 ; on(0,3):1/3.
on(T,1):1/3 ; on(T,2):1/3 ; on(T,3):1/3 :-
T1 is T-1, T1>=0, on(T1,F), \+ on(T1,3).

Fabrizio Riguzzi (UNIFE) Temporal Aspects of ILP 88 / 120

http://cplint.eu/e/threesideddice.pl


Probabilistic Logic Programming Semantics

Markov chain

Model checking: we want to know what is the likelihood that on an
execution of the chain from a start state s, a final state t is reached

http://cplint.eu/e/markov_chain.pl

. . . X(t − 1) X(t) X(t + 1) . . .

% reach(S, I, T) starting at state S at instance I,
% state T is reachable.
reach(S, I, T) :-
trans(S, I, U),
reach(U, next(I), T).

reach(S, _, S).
% trans(S,I,T) transition from S at instance I goes to T
trans(s0,S,s0):0.5; trans(s0,S,s1):0.3; trans(s0,S,s2):0.2.
trans(s1,S,s1):0.4; trans(s1,S,s3):0.1; trans(s1,S,s4):0.5.
trans(s4,_,s3).

s0 0.5

s1

0.3

s2

0.2

0.4

s3

0.1 s4

0.5

1.0
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Probabilistic Logic Programming Semantics

Hidden Markov Models

http://cplint.eu/e/hmm.pl

. . . X(t − 1) X(t) X(t + 1) . . .

Y (t − 1) Y (t) Y (t + 1)

hmm(S,O):-hmm(q1,[],S,O).
hmm(end,S,S,[]).
hmm(Q,S0,S,[L|O]):-

Q\= end,
next_state(Q,Q1,S0),
letter(Q,L,S0),
hmm(Q1,[Q|S0],S,O).

next_state(q1,q1,_S):1/3;next_state(q1,q2_,_S):1/3;
next_state(q1,end,_S):1/3.

next_state(q2,q1,_S):1/3;next_state(q2,q2,_S):1/3;
next_state(q2,end,_S):1/3.

letter(q1,a,_S):0.25;letter(q1,c,_S):0.25;
letter(q1,g,_S):0.25;letter(q1,t,_S):0.25.

letter(q2,a,_S):0.25;letter(q2,c,_S):0.25;
letter(q2,g,_S):0.25;letter(q2,t,_S):0.25.
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Probabilistic Logic Programming Reasoning

Reasoning Tasks

Inference: we want to compute the probability of a query given the
model and, possibly, some evidence, or find assignments of the
random variables with the highest probability
Weight learning: we know the structural part of the model (the
logic formulas) but not the numeric part (the weights) and we want
to infer the weights from data
Structure learning we want to infer both the structure and the
weights of the model from data
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Probabilistic Logic Programming Reasoning

Inference for PLP under DS

EVID: compute an unconditional probability P(e), the probability
of evidence (also query in this case).
COND: compute the conditional probability distribution of the
query given the evidence, i.e. compute P(q|e)
MPE or most probable explanation: find the most likely value of all
non-evidence atoms given the evidence, i.e. solving the
optimization problem argmaxq P(q|e)
MAP or maximum a posteriori: find the most likely value of a set of
non-evidence atoms given the evidence, i.e. finding
argmaxq P(q|e). MPE is a special case of MAP where
Q ∪ E = HT .
DISTR: compute the probability distribution or density of the
non-ground arguments of a conjunction of literals q, e.g.,
computing the probability density of X in goal mix(X ) of the
Gaussian mixture
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Probabilistic Logic Programming Reasoning

Weight Learning

Given
model: a probabilistic logic model with unknown parameters
data: a set of interpretations

Find the values of the parameters that maximize the probability of
the data given the model
Discriminative learning: maximize the conditional probability of a
set of outputs (e.g. ground instances for a predicate) given a set
of inputs
Alternatively, the data are queries for which we know the
probability: minimize the error in the probability of the queries that
is returned by the model
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Probabilistic Logic Programming Reasoning

Structure Learning

Given
language bias: a specification of the search space
data: a set of interpretations

Find the formulas and the parameters that maximize the likelihood
of the data given the model
Discriminative learning: again maximize the conditional likelihood
of a set of outputs given a set of inputs
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Probabilistic Logic Programming Reasoning

Inference for PLP under DS

EVID
Knowledge compilation:

compile the program to an intermediate representation
Binary Decision Diagrams (BDD) (ProbLog [De Raedt et al. IJCAI07],
cplint [Riguzzi AIIA07,Riguzzi LJIGPL09], PITA [Riguzzi & Swift
ICLP10])
deterministic, Decomposable Negation Normal Form circuit (d-DNNF)
(ProbLog2 [Fierens et al. TPLP15])
Sentential Decision Diagrams

compute the probability by weighted model counting

Fabrizio Riguzzi (UNIFE) Temporal Aspects of ILP 95 / 120



Probabilistic Logic Programming Reasoning

Inference for PLP under DS

Bayesian Network based:
Convert to BN
Use BN inference algorithms (CVE [Meert et al. ILP09])

Lifted inference
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Probabilistic Logic Programming Reasoning

Knowledge Compilation

Assign Boolean random variables to the probabilistic rules
Given a query Q, compute its explanations, assignments to the
random variables that are sufficient for entailing the query
Let K be the set of all possible explanations
Build a Boolean formula F (Q)

Build a BDD representing F (Q)
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Probabilistic Logic Programming Reasoning

Approximate Inference

Inference problem is #P hard
For large models inference is intractable
Approximate inference

Monte Carlo: draw samples of the truth value of the query
Iterative deepening: gives a lower and an upper bound
Compute only the best k explanations: branch and bound, gives a
lower bound
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Probabilistic Logic Programming Reasoning

Parameter Learning

Problem: given a set of interpretations, a program, find the
parameters maximizing the likelihood of the interpretations (or of
instances of a target predicate)
The interpretations record the truth value of ground atoms, not of
the choice variables
Unseen data: relative frequency can’t be used
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Probabilistic Logic Programming Reasoning

Parameter Learning

An Expectation-Maximization algorithm must be used:
Expectation step: the distribution of the unseen variables in each
instance is computed given the observed data
Maximization step: new parameters are computed from the
distributions using relative frequency
End when likelihood does not improve anymore
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Probabilistic Logic Programming Reasoning

EMBLEM

EM over Bdds for probabilistic Logic programs Efficient Mining
Input: an LPAD; logical interpretations (data); target predicate(s)
All ground atoms in the interpretations for the target predicate(s)
correspond to as many queries
BDDs encode the explanations for each query Q
Expectations computed with two passes over the BDDs
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Probabilistic Logic Programming Reasoning

Structure Learning for LPADs

Given a trivial LPAD or an empty one, a set of interpretations
(data)
Find the model and the parameters that maximize the probability
of the data (log-likelihood)
SLIPCOVER: Structure LearnIng of Probabilistic logic program by
searching OVER the clause space EMBLEM [Riguzzi & Bellodi
TPLP 2015]

1 Beam search in the space of clauses to find the promising ones
2 Greedy search in the space of probabilistic programs guided by the

LL of the data.

Parameter learning by means of EMBLEM
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Probabilistic Logic Programming Reasoning

SLIPCOVER

Cycle on the set of predicates that can appear in the head of
clauses, either target or background
For each predicate, beam search in the space of clauses
The initial set of beams is generated by building a set of bottom
clauses as in Progol [Muggleton NGC 1995]
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Probabilistic Logic Programming Reasoning

SLIPCOVER

The initial beam associated with predicate P/Ar will contain the
clause with the empty body h : 0.5. for each bottom clause
h :− b1, . . . ,bm

In each iteration of the cycle over predicates, it performs a beam
search in the space of clauses for the predicate.
The beam contains couples (Cl ,LIterals) where
Literals = {b1, . . . ,bm}
For each clause Cl of the form Head :− Body , the refinements
are computed by adding a literal from Literals to the body.
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Probabilistic Logic Programming Reasoning

SLIPCOVER

The tuple (Cl ′, Literals′) indicates a refined clause Cl ′ together
with the new set Literals′

EMBLEM is then executed for a theory composed of the single
refined clause.
LL is used as the score of the updated clause (Cl ′′,Literals′).
(Cl ′′,Literals′) is then inserted into a list of promising clauses.
Two lists are used, TC for target predicates and BC for
background predicates.
These lists ave a maximum size
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Probabilistic Logic Programming Reasoning

SLIPCOVER

After the clause search phase, SLIPCOVER performs a greedy
search in the space of theories:

it starts with an empty theory and adds a target clause at a time
from the list TC.
After each addition, it runs EMBLEM and computes the LL of the
data as the score of the resulting theory.
If the score is better than the current best, the clause is kept in the
theory, otherwise it is discarded.

Finally, SLIPCOVER adds all the clauses in BC to the theory and
performs parameter learning on the resulting theory.
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Event Calculus Language

Event Calculus

[Kowalski Sergot 1986] is a logic programming formalism for
representing the effects of events on properties
Event: an action that may occur in the world, e.g., a person who is
arriving in the kitchen
Fluent: time-varying property that might be the effect of an event;
for example, e.g. a person is located in the kitchen (after arriving
in the kitchen)
Time point: an instant of time and indicates when an event
happens or when a fluent holds
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Event Calculus Language

Event Calculus

Simple EC [Shanahan 1999]
initiates(a,b,t) Fluent b starts to hold after action a at time t
terminates(a,b,t) Fluent b ceases to hold after action a at
time t
initially(b) Fluent b holds from time 0
t1 < t2 Time point t1 is before time point t2
happens(a,t) Action a occurs at time t
holdsAt(b,t) Fluent b holds at time t
clipped(t1,b,t2) Fluent b is terminated between times t1 and
t2
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Event Calculus Language

Event Calculus Axioms

holdsAt(F, T) :-
initially(F),
\+ clipped(0, F, T).

holdsAt(F, T2) :-
initiates(F, T1),
T1 < T2 ,
\+ clipped(T1 ,F, T2 ).

clipped(T1 ,F, T3) :-
terminates(F, T2),
T1 < T2 , T2 < T3.

% effect axioms
initiates(<fluent> T) :-
happens(<event>, T),
<conditions>.

terminates(<fluent>, T) :-
happens(<event>, T),
<conditions>.

initially(<fluent>).
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Event Calculus Language

Example

initiates(locatedIn(A, B), T) :-
happens(arrive(A, B), T).

terminates(locatedIn(A, D), T) :-
happens(arrive(A, B), T),
B \= D.

initially(locatedIn(bob, garden)).
happens(arrive(bob, kitchen), 3).
happens(arrive(bob, garage), 5).

holdsAt(locatedIn(bob,garden),2) true

holdsAt(locatedIn(bob,garden),4) false

holdsAt(locatedIn(bob,kitchen),4) true

holdsAt(locatedIn(bob,garage),6) true

http://cplint.eu/p/event_calculus.pl
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Event Calculus Language

Probabilistic Event Calculus

initiates(locatedIn(A, B), T):0.66 :-
happens(arrive(A, B), T).

terminates(locatedIn(A, D), T):0.66 :-
happens(arrive(A, B), T),
B \= D.

initially(locatedIn(bob, garden)).
happens(arrive(bob, kitchen), 3).
happens(arrive(bob, garage), 5).

holdsAt(locatedIn(bob,garden),2) 1.0

holdsAt(locatedIn(bob,garden),4) 0.34

holdsAt(locatedIn(bob,kitchen),4) 0.66

holdsAt(locatedIn(bob,garage),6) 0.66

http://cplint.eu/p/prob_event_calculus.pl
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Probabilistic Event Calculus

You may also have probabilities on events

initiates(locatedIn(A, B), T):0.66 :-
happens(arrive(A, B), T).

terminates(locatedIn(A, D), T):0.66 :-
happens(arrive(A, B), T),
B \= D.

initially(locatedIn(bob, garden)).
happens(arrive(bob, kitchen), 3):0.95.
happens(arrive(bob, garage), 5):0.99.

holdsAt(locatedIn(bob,garden),2) 1.0

holdsAt(locatedIn(bob,garden),4) 0.373

holdsAt(locatedIn(bob,kitchen),4) 0.627

holdsAt(locatedIn(bob,garage),6) 0.6534

http://cplint.eu/p/prob_event_calculus2.pl
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Learning Probabilistic Event Calculus

Given a number of histories including the values of fluents and the
events at each time
Find the effect axioms [Schwitter 2018]
Problem: no examples of initiates/2 and terminates/2

Solution: generate them from the histories.
For a fluent that initiates, a positive example for initiates/2
For a fluent that terminates, a negative example for
terminates/2

For a fluent that stays the same, a negative example for
initiates/2 and terminates/2
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Conclusions

ILP suitable for temporal data
PLP useful to deal with uncertainty
Parameter learning
Structure learning
Research directions:

Dealing with intervals
Learning restricted and cheaper
languages
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Resources

Online course on cplint
Moodle https://edu.swi-prolog.org/
Videos of lectures https://www.youtube.com/playlist?
list=PLJPXEH0boeND0UGWJxBRWs7qzzKpC-FkN

ACAI summer school on Statistical Relational AI
http://acai2018.unife.it/

Videos of lectures https://www.youtube.com/playlist?
list=PLJPXEH0boeNDWTNwWTWnVffXi5XwAj1mb

Videos of lecture Probabilistic Inductive Logic Programming
Part 1 https://youtu.be/mLdPGSlgNxU
Part 2 https://youtu.be/DRlOft0Y_Ng

cplint in Playing with Prolog https://www.youtube.com/
playlist?list=PLJPXEH0boeNAik6QnfvGlAGRQxFY_LCE3
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