
2
Probabilistic Logic Programming Languages

Various approaches have been proposed for combining logic programming
with probability theory. They can be broadly classified into two categories:
those based on the Distribution Semantics (DS) [Sato, 1995] and those that
follow a Knowledge Base Model Construction (KBMC) approach.

For languages in the first category, a probabilistic logic program without
function symbols defines a probability distribution over normal logic pro-
grams (termed worlds). To define the probability of a query, this distribution
is extended to a joint distribution of the query and the worlds and the probabil-
ity of the query is obtained from the joint distribution by marginalization, i.e.,
by summing out the worlds. For probabilistic logic programs with function
symbols, the definition is more complex, see Chapter 3.

The distribution over programs is defined by encoding random choices
for clauses. Each choice generates an alternative version of the clause and
the set of choices is associated with a probability distribution. The various
languages that follow the DS differ in how the choices are encoded. In all
languages, however, choices are independent from each other.

In the KBMC approach, instead, a probabilistic logic program is a com-
pact way of encoding a large graphical model, either a BN or MN. In the
KBMC approach, the semantics of a program is defined by the method for
building the graphical model from the program.

2.1 Languages with the Distribution Semantics

The languages following the DS differ in how they encode choices for clauses,
and how the probabilities for these choices are stated. As will be shown in
Section 2.4, they all have the same expressive power. This fact shows that
the differences in the languages are syntactic, and also justifies speaking
of the DS.

47

48 2 Probabilistic Logic Programming Languages

2.1.1 Logic Programs with Annotated Disjunctions

In Logic Programs with Annotated Disjunctions (LPADs) [Vennekens et al.,
2004], the alternatives are expressed by means of annotated disjunctive heads
of clauses. An annotated disjunctive clause Ci has the form

hi1 : ⇧i1 ; . . . ; hini : ⇧ini – bi1, . . . , bimi

where hi1, . . . , hini are logical atoms, bi1, . . . , bimi are logical literals, and
⇧i1, . . . , ⇧ini are real numbers in the interval r0, 1s such that

∞ni
k“1⇧ik “ 1.

An LPAD is a finite set of annotated disjunctive clauses.
Each world is obtained by selecting one atom from the head of each

grounding of each annotated disjunctive clause.

Example 13 (Medical symptoms – LPAD). The following LPAD models the
appearance of medical symptoms as a consequence of disease. A person may
sneeze if she has the flu or if she has hay fever:

sneezingpXq : 0.7 ; null : 0.3– flupXq.
sneezingpXq : 0.8 ; null : 0.2– hay_feverpXq.
flupbobq.
hay_feverpbobq.

The first clause can be read as: if X has the flu, then X sneezes with prob-
ability 0.7 and nothing happens with probability 0.3. Similarly, the second
clause can be read as: if X has hay fever, then X sneezes with probability 0.8
and nothing happens with probability 0.2. Here, and for the other languages
based on the distribution semantics, the atom null does not appear in the
body of any clause and is used to represent an alternative in which no atom
is selected. It can also be omitted obtaining

sneezingpXq : 0.7– flupXq.
sneezingpXq : 0.8– hay_feverpXq.
flupbobq.
hay_feverpbobq.

As can be seen from the example, LPADs encode in a natural way programs
representing causal mechanisms: flu and hay fever are causes for sneezing,
which, however, is probabilistic, in the sense that it may or may not hap-
pen even when the causes are present. The relationship between the DS, and
LPADs in particular, and causal reasoning is discussed in Section 2.8.

2.1 Languages with the Distribution Semantics 49

2.1.2 ProbLog

The design of ProbLog [De Raedt et al., 2007] was motivated by the desire to
make the simplest probabilistic extension of Prolog. In ProbLog, alternatives
are expressed by probabilistic facts of the form

⇧i :: fi

where ⇧i P r0, 1s and fi is an atom, meaning that each ground instantia-
tion fi✓ of fi is true with probability ⇧i and false with probability 1 ´ ⇧i.
Each world is obtained by selecting or rejecting each grounding of each
probabilistic fact.

Example 14 (Medical symptoms – ProbLog). Example 13 can be expressed
in ProbLog as:

sneezingpXq– flupXq,flu_sneezingpXq.
sneezingpXq– hay_feverpXq, hay_fever_sneezingpXq.
flupbobq.
hay_feverpbobq.
0.7 :: flu_sneezingpXq.
0.8 :: hay_fever_sneezingpXq.

2.1.3 Probabilistic Horn Abduction

Probabilistic Horn Abduction (PHA) [Poole, 1993b] and Independent Choice
Logic (ICL) [Poole, 1997] express alternatives by facts, called disjoint state-
ments, having the form

disjointprai1 : ⇧i1, . . . , ain : ⇧inisq.

where each aik is a logical atom and each ⇧ik a number in r0, 1s such that∞ni
k“1⇧ik “ 1. Such a statement can be interpreted in terms of its ground

instantiations: for each substitution ✓ grounding the atoms of the statement,
the aik✓s are random alternatives and aik✓ is true with probability ⇧ik. Each
world is obtained by selecting one atom from each grounding of each dis-
joint statement in the program. In practice, each ground instantiation of a
disjoint statement corresponds to a random variable with as many values as
the alternatives in the statement.

50 2 Probabilistic Logic Programming Languages

Example 15 (Medical symptoms – ICL). Example 13 can be expressed in
ICL as:

sneezingpXq– flupXq,flu_sneezingpXq.
sneezingpXq– hay_feverpXq, hay_fever_sneezingpXq.
flupbobq.
hay_feverpbobq.

disjointprflu_sneezingpXq : 0.7, null : 0.3sq.
disjointprhay_fever_sneezingpXq : 0.8, null : 0.2sq.

In ICL, LPADs, and ProbLog, each grounding of a probabilistic clause is
associated with a random variable with as many values as alternatives/head
disjuncts for ICL and LPADs and with two values for ProbLog. The random
variables corresponding to different instantiations of a probabilistic clause are
independent and identically distributed (IID).

2.1.4 PRISM

The language PRISM [Sato and Kameya, 1997] is similar to PHA/ICL but
introduces random facts via the predicate msw{3 (multi-switch):

mswpSwitchName,TrialId ,Valueq.

The first argument of this predicate is a random switch name, a term repre-
senting a set of discrete random variables; the second argument is an integer,
the trial id; and the third argument represents a value for that variable. The
set of possible values for a switch is defined by a fact of the form

valuespSwitchName, rv1, . . . , vnsq.

where SwitchName is again a term representing a switch name and each
vi is a term. Each ground pair pSwitchName,TrialIdq represents a distinct
random variable and the set of random variables associated with the same
switch are IID.

The probability distribution over the values of the random variables asso-
ciated with SwitchName is defined by a directive of the form

– set_swpSwitchName, r⇧1, . . . ,⇧nsq.

where ⇧i is the probability that variable SwitchName takes value vi. Each
world is obtained by selecting one value for each trial id of each random
switch.

2.2 The Distribution Semantics for Programs Without Function Symbols 51

Example 16 (Coin tosses – PRISM). The modeling of coin tosses shows dif-
ferences in how the various PLP languages represent IID random variables.
Suppose that coin c1 is known not to be fair, but that all tosses of c1 have the
same probabilities of outcomes – in other words, each toss of c1 is taken from
a family of IID random variables. This can be represented in PRISM as

valuespc1, rhead, tailsq.
– set_swpc1, r0.4, 0.6sq

Different tosses of c1 can then be identified using the trial id argument of
msw{3.

In PHA/ICL and many other PLP languages, each ground instantiation of
a disjoint/1 statement represents a distinct random variable, so that IID ran-
dom variables need to be represented through the statement’s instantiation
patterns: e.g.,

disjointprcoinpc1,TossNumber , headq : 0.4,
coinpc1,TossNumber , tailq : 0.6sq.

In practice, the PRISM system accepts an msw{2 predicate whose atoms
do not contain the trial id and for which each occurrence in a program is
considered as being associated with a different new variable.

Example 17 (Medical symptoms – PRISM). Example 15 can be encoded in
PRISM as:

sneezingpXq– flupXq,mswpflu_sneezingpXq, 1q.
sneezingpXq– hay_feverpXq,mswphay_fever_sneezingpXq, 1q.
flupbobq.
hay_feverpbobq.

valuespflu_sneezingpXq, r1, 0sq.
valuesphay_fever_sneezingpXq, r1, 0sq.
– set_swpflu_sneezingpXq, r0.7, 0.3sq.
– set_swphay_fever_sneezingpXq, r0.8, 0.2sq.

2.2 The Distribution Semantics for Programs Without Function
Symbols

We present first the DS for the case of ProbLog as it is the language with
the simplest syntax. A ProbLog program P is composed by a set of normal

52 2 Probabilistic Logic Programming Languages

rules R and a set F of probabilistic facts. Each probabilistic fact is of the
form ⇧i :: fi where ⇧i P r0, 1s and fi is an atom1, meaning that each ground
instantiation fi✓ of fi is true with probability ⇧i and false with probability
1 ´ ⇧i. Each world is obtained by selecting or rejecting each grounding of
each probabilistic fact.

An atomic choice indicates whether grounding f✓ of a probabilistic fact
F “ ⇧ :: f is selected or not. It is represented with the triple pf, ✓, kq where
k P t0, 1u and k “ 1 means that the fact is selected, k “ 0 that it is not. A
set of atomic choices is consistent if it does not contain two atomic choices
pf, ✓, kq and pf, ✓, jq with k ‰ j (only one alternative is selected for a ground
probabilistic fact). The function consistentpq returns true if is consistent.
A composite choice is a consistent set of atomic choices. The probability
of composite choice is

P pq “

π

pfi,✓,1qP

⇧i

π

pfi,✓,0qP

1 ´ ⇧i.

A selection � is a total composite choice, i.e., it contains one atomic choice
for every grounding of every probabilistic fact. A world w� is a logic program
that is identified by a selection �. The world w� is formed by adding f for
each atomic choice pf, ✓, 1q of � to R.

The probability of a world w� is P pw�q “ P p�q. Since in this section we
are assuming programs without function symbols, the set of groundings of
each probabilistic fact is finite, and so is the set of worlds WP . Accordingly,
for a ProbLog program P , WP “ tw1, . . . , wmu. Moreover, P pw�q is a dis-
tribution over worlds:

∞
wPWP

P pwq “ 1. We call sound a program for which
every world has a two-valued WFM. We consider here sound programs, for
non-sound ones, see Chapter 6.

Let q be a query in the form of a ground atom. We define the conditional
probability of q given a world w as: P pq|wq “ 1 if q is true in w and 0
otherwise. Since the program is sound, q can be only true or false in a world.
The probability of q can thus be computed by summing out the worlds from
the joint distribution of the query and the worlds:

P pqq “

ÿ

w

P pq, wq “

ÿ

w

P pq|wqP pwq “

ÿ

w(q

P pwq. (2.1)

So the probability of q is the sum of the probabilities of the worlds where
q is true. This formula can also be used for computing the probability of a

1 With an abuse of notation, sometimes we use F to indicate the set containing the atoms
fis. The meaning of F will be clear from the context.

2.2 The Distribution Semantics for Programs Without Function Symbols 53

conjunction q1, . . . , qn of ground atoms since the truth of a conjunction of
ground atoms in a world is well defined. So we can compute the conditional
probability of a query q given evidence e in the form of a conjunction of
ground atoms e1, . . . , em as

P pq|eq “
P pq, eq

P peq
(2.2)

We can also assign a probability to a query q by defining a probability space.
Since WP is finite, then pWP ,PpWPqq is a measurable space. For an element
! P PpWPq, define µp!q as

µp!q “

ÿ

wP!

P pwq

with the probability of a world P pwq defined as above. Then it’s easy to see
that pWP ,PpWPq, µq is a finitely additive probability space.

Given a ground atom q, define the function Q : WP Ñ t0, 1u as

Qpwq “

"
1 if w (q
0 otherwise (2.3)

Since the set of events is the powerset, then Q´1
p�q P PpWPq for all

� Ñ t0, 1u and Q is a random variable. The distribution of Q is defined
by P pQ“1q (P pQ“0q is given by 1 ´ P pQ“1q) and we indicate P pQ“1q

with P pqq.
We can now compute P pqq as

P pqq “ µpQ´1
pt1uqq “ µptw|w P WP , w (quq “

ÿ

w(q

P pwq

obtaining the same formula as Equation (2.1).
The distribution over worlds also induces a distribution over interpreta-

tions: given an interpretation I , we can define the conditional probability of
I given a world w as: P pI|wq “ 1 is I is the model of w (I (w) and 0
otherwise. The distribution over interpretations is then given by a formula
similar to Equation (2.1):

P pIq “

ÿ

w

P pI, wq “

ÿ

w

P pI|wqP pwq “

ÿ

I(w

P pwq (2.4)

We call the interpretations I for which P pIq ° 0 possible models because
they are models for at least one world.

54 2 Probabilistic Logic Programming Languages

Now define the function I : WP Ñ t0, 1u as

IpIq “

"
1 if I (w
0 otherwise (2.5)

I´1
p�q P PpWPq for all � Ñ t0, 1u so I is a random variable for probability

space pWP ,PpWPq, µq. The distribution of I is defined by P pI“1q and we
indicate P pI“1q with P pIq.

We can now compute P pIq as

P pIq “ µpI´1
pt1uqq “ µptw|w P WP , I (wuq “

ÿ

I(w

P pwq

obtaining the same formula as Equation (2.4).
The probability of a query q can be obtained from the distribution over

interpretations by defining the conditional probability of q given an interpre-
tation I as P pq|Iq “ 1 if I (q and 0 otherwise and by marginalizing the
interpretations obtaining

P pqq “

ÿ

I

P pq, Iq “

ÿ

I

P pq|IqP pIq “

ÿ

I(q

P pIq “

ÿ

I(q,I(w

P pwq (2.6)

So the probability of a query can be obtained by summing the probability of
the possible models where the query is true.

Example 18 (Medical symptoms – worlds – ProbLog). Consider the pro-
gram of Example 14. The program has four worlds

w1 “ t w2 “ t

flu_sneezingpbobq.
hay_fever_sneezingpbobq. hay_fever_sneezingpbobq.

u u

P pw1q “ 0.7 ˆ 0.8 P pw2q “ 0.3 ˆ 0.8
w3 “ t w4 “ t

flu_sneezingpbobq.
u u

P pw3q “ 0.7 ˆ 0.2 P pw4q “ 0.3 ˆ 0.2

The query sneezingpbobq is true in three worlds and its probability

P psneezingpbobqq “ 0.7 ˆ 0.8 ` 0.3 ˆ 0.8 ` 0.7 ˆ 0.2 “ 0.94.

2.2 The Distribution Semantics for Programs Without Function Symbols 55

Note that the contributions from the two clauses are combined disjunctively.
The probability of the query is thus computed using the rule giving the prob-
ability of the disjunction of two independent Boolean random variables:

P pa _ bq “ P paq ` P pbq ´ P paqP pbq “ 1 ´ p1 ´ P paqqp1 ´ P pbqq.

In our case, P psneezingpbobqq “ 0.7 ` 0.8 ´ 0.7 ¨ 0.8 “ 0.94.

We now give the semantics for LPADs. A clause

Ci “ hi1 : ⇧i1 ; . . . ; hini : ⇧ini – bi1, . . . , bimi

stands for a set of probabilistic clauses, one for each ground instantiation Ci✓
of Ci. Each ground probabilistic clause represents a choice among ni normal
clauses, each of the form

hik – bi1, . . . , bimi

for k “ 1 . . . , ni. Moreover, another clause

null– bi1, . . . , bimi

is implicitly encoded which is associated with probability ⇧0 “ 1´
∞ni

k“1⇧k.
So, for the LPAD P , an atomic choice is the selection of a head atom for a
grounding Ci✓j of a probabilistic clause Ci, including the atom null. An
atomic choice is represented in this case by the triple pCi, ✓j , kq, where ✓j is
a grounding substitution and k P t0, 1, . . . , niu. An atomic choice represents
an equation of the form Xij “ k where Xij is a random variable associated
with Ci✓j . The definition of consistent set of atomic choices, of composite
choices, and of the probability of a composite choice is the same as for
ProbLog. Again, a selection � is a total composite choice (one atomic choice
for each grounding of each probabilistic clause). A selection � identifies a
logic program w� (a world) that contains the normal clauses obtained by
selecting head atom hik✓ for each atomic choice pCi, ✓, kq:

w� “ t phik – bi1, . . . , bimiq✓|pCi, ✓, kq P �,
Ci “ hi1 : ⇧i1 ; . . . ; hini : ⇧ini – bi1, . . . , bimi , Ci P Pu

As for ProbLog, the probability of w� is P pw�q “ P p�q “
±

pCi,✓j ,kqP� ⇧ik,
the set of worlds WP “ tw1, . . . , wmu is finite, and P pw�q is a distribution
over worlds.

If q is a query, we can define P pq|wq as for ProbLog and again the
probability of q is given by Equation (2.1)

56 2 Probabilistic Logic Programming Languages

Example 19 (Medical symptoms – worlds – LPAD). The LPAD of Exam-
ple 13 has four worlds:

w1 “ t

sneezingpbobq – flupbobq.
sneezingpbobq – hay_feverpbobq.
flupbobq. hay_feverpbobq.

u

P pw1q “ 0.7 ˆ 0.8

w2 “ t

null– flupbobq.
sneezingpbobq – hay_feverpbobq.
flupbobq. hay_feverpbobq.

u

P pw2q “ 0.3 ˆ 0.8

w3 “ t

sneezingpbobq – flupbobq.
null– hay_feverpbobq.
flupbobq. hay_feverpbobq.

u

P pw3q “ 0.7 ˆ 0.2

w4 “ t

null– flupbobq.
null– hay_feverpbobq.
flupbobq. hay_feverpbobq.

u

P pw4q “ 0.3 ˆ 0.2

sneezingpbobq is true in three worlds and its probability is

P psneezingpbobqq “ 0.7 ˆ 0.8 ` 0.3 ˆ 0.8 ` 0.7 ˆ 0.2 “ 0.94

2.3 Examples of Programs

In this section, we provide some examples of programs to better illustrate the
syntax and the semantics.

2.3 Examples of Programs 57

Example 20 (Detailed medical symptoms – LPAD). The following LPAD2

models a program that describe medical symptoms in a way that is slightly
more elaborated than Example 13:

strong_sneezingpXq : 0.3 ; moderate_sneezingpXq : 0.5–
flupXq.

strong_sneezingpXq : 0.2 ; moderate_sneezingpXq : 0.6–
hay_feverpXq.

flupbobq.
hay_feverpbobq.

Here the clauses have three alternatives in the head of which the one asso-
ciated with atom null is left implicit. This program has nine worlds, the query
strong_sneezingpbobq is true in five of them, and P pstrong_sneezingpbobqq “

0.44.

Example 21 (Coin – LPAD). The coin example of [Vennekens et al., 2004]
is represented as3:

headspCoinq : 1{2 ; tailspCoinq : 1{2–
tosspCoinq,„biasedpCoinq.

headspCoinq : 0.6 ; tailspCoinq : 0.4–
tosspCoinq, biasedpCoinq.

fairpCoinq : 0.9 ; biasedpCoinq : 0.1.
tosspcoinq.

The first clause states that, if we toss a coin that is not biased, it has equal
probability of landing heads and tails. The second states that, if the coin is bi-
ased, it has a slightly higher probability of landing heads. The third states that
the coin is fair with probability 0.9 and biased with probability 0.1 and the
last clause states that we toss the coin with certainty. This program has eight
worlds, the query headspcoinq is true in four of them, and its probability is
0.51.

Example 22 (Eruption – LPAD). Consider this LPAD4 from [Riguzzi and
Di Mauro, 2012] that is inspired by the morphological characteristics of the
Italian island of Stromboli:

2 https://cplint.eu/e/sneezing.pl
3 https://cplint.eu/e/coin.pl
4 https://cplint.eu/e/eruption.pl

https://cplint.eu/e/sneezing.pl
https://cplint.eu/e/coin.pl
https://cplint.eu/e/eruption.pl

58 2 Probabilistic Logic Programming Languages

C1 “ eruption : 0.6 ; earthquake : 0.3 :- sudden_energy_release,
fault_rupturepXq.

C2 “ sudden_energy_release : 0.7.
C3 “ fault_rupturepsouthwest_northeastq.
C4 “ fault_rupturepeast_westq.

The island of Stromboli is located at the intersection of two geological faults,
one in the southwest–northeast direction, the other in the east–west direc-
tion, and contains one of the three volcanoes that are active in Italy. This
program models the possibility that an eruption or an earthquake occurs at
Stromboli. If there is a sudden energy release under the island and there is a
fault rupture, then there can be an eruption of the volcano on the island with
probability 0.6 or an earthquake in the area with probability 0.3. The energy
release occurs with probability 0.7 and we are sure that ruptures occur in
both faults.

Clause C1 has two groundings, C1✓1 with

✓1 “ tX{southwest_northeastu

and C1✓2 with
✓2 “ tX{east_westu,

while clause C2 has a single grounding C2H. Since C1 has three head atoms
and C2 two, the program has 3 ˆ 3 ˆ 2 worlds. The query eruption is true
in five of them and its probability is P peruptionq “ 0.6 ¨ 0.6 ¨ 0.7` 0.6 ¨ 0.3 ¨

0.7 ` 0.6 ¨ 0.1 ¨ 0.7 ` 0.3 ¨ 0.6 ¨ 0.7 ` 0.1 ¨ 0.6 ¨ 0.7 “ 0.588.

Example 23 (Monty Hall puzzle – LPAD). The Monty Hall puzzle
[Baral et al., 2009] refers to the TV game show hosted by Monty Hall in
which a player has to choose which of three closed doors to open. Behind one
door there is a prize, while behind the other two there is nothing. Once the
player has selected the door, Monty Hall opens one of the remaining closed
doors which does not contain the prize, and then he asks the player if he
would like to change his door with the other closed door or not. The problem
of this game is to determine whether the player should switch. The following
program provides a solution5. The prize is behind one of the three doors with
the same probability:

prizep1q : 1{3 ; prizep2q : 1{3 ; prizep3q : 1{3.
The player has selected door 1:

selectedp1q.

5 https://cplint.eu/e/monty.swinb

https://cplint.eu/e/monty.swinb

2.3 Examples of Programs 59

Monty opens door 2 with probability 0.5 and door 3 with probability 0.5 if the
prize is behind door 1:

open_doorp2q : 0.5 ; open_doorp3q : 0.5– prizep1q.
Monty opens door 2 if the prize is behind door 3:

open_doorp2q– prizep3q.
Monty opens door 3 if the prize is behind door 2:

open_doorp3q– prizep2q.
The player keeps his choice and wins if he has selected a door with the prize:

win_keep– prizep1q.
The player switches and wins if the prize is behind the door that he has not
selected and that Monty did not open:

win_switch– prizep2q, open_doorp3q.
win_switch– prizep3q, open_doorp2q.

Querying win_keep and win_switch we obtain probability 1/3 and 2/3 re-
spectively, so the player should switch. Note that if you change the probability
distribution of Monty selecting a door to open when the prize is behind the
door selected by the player, then the probability of winning by switching
remains the same.

Example 24 (Three-prisoner puzzle – LPAD). The following program6 from
[Riguzzi et al., 2016a] encodes the three-prisoner puzzle. In [Grünwald and
Halpern, 2003], the problem is described as:

Of three prisoners a, b, and c, two are to be executed, but a does not
know which. Thus, a thinks that the probability that i will be exe-
cuted is 2/3 for i P ta, b, cu. He says to the jailer, “Since either b or
c is certainly going to be executed, you will give me no information
about my own chances if you give me the name of one man, either
b or c, who is going to be executed.” But then, no matter what the
jailer says, naive conditioning leads a to believe that his chance of
execution went down from 2/3 to 1/2.

Each prisoner is safe with probability 1/3:
safepaq : 1{3 ; safepbq : 1{3 ; safepcq : 1{3.

If a is safe, the jailer tells that one of the other prisoners will be executed
uniformly at random:

tell_executedpbq : 1{2 ; tell_executedpcq : 1{2– safepaq.
Otherwise, he tells that the only unsafe prisoner will be executed:

6 https://cplint.eu/e/jail.swinb

https://cplint.eu/e/jail.swinb

60 2 Probabilistic Logic Programming Languages

tell_executedpbq– safepcq.
tell_executedpcq– safepbq.

The jailer speaks if he tells that somebody will be executed:
tell– tell_executedp_q.

where _ indicates a distinct anonymous variable, i.e., a variable that is there
as a placeholder and for which we don’t care about its value.

a is safe after the jailer utterance if he is safe and the jailer speaks:
safe_after_tell : ´safepaq, tell.

By computing the probability of safepaq and safe_after_tell , we get the same
probability of 1/3, so the jailer utterance does not change the probability of a
of being safe.

We can see this also by considering conditional probabilities: the proba-
bility of safepaq given the jailer utterance tell is

P psafepaq|tellq “
P psafepaq, tellq

P ptellq
“

P psafe_after_tellq
P ptellq

“
1{3

1
“ 1{3

because the probability of tell is 1.

Example 25 (Russian roulette with two guns – LPAD). The following exam-
ple7 models a Russian roulette game with two guns [Baral et al., 2009]. The
death of the player is caused with probability 1/6 by triggering the left gun
and similarly for the right gun:

death : 1{6– pull_triggerpleft_gunq.
death : 1{6– pull_triggerpright_gunq.
pull_triggerpleft_gunq.
pull_triggerpright_gunq.

Querying the probability of death we get the probability of the player of
dying.

Example 26 (Mendelian rules of inheritance – LPAD). Blockeel [2004]
presents a program8 that encodes the Mendelian rules of inheritance of the
color of pea plants. The color of a pea plant is determined by a gene that
exists in two forms (alleles), purple, p, and white, w. Each plant has two
alleles for the color gene that reside on a pair of chromosomes. cgpX,N,Aq

indicates that plant X has allele A on chromosome N . The program is:
colorpX,whiteq– cgpX, 1, wq, cgpX, 2, wq.
colorpX, purpleq– cgpX, _A, pq.

7 https://cplint.eu/e/trigger.pl
8 https://cplint.eu/e/mendel.pl

https://cplint.eu/e/trigger.pl
https://cplint.eu/e/mendel.pl

2.3 Examples of Programs 61

cgpX, 1, Aq : 0.5 ; cgpX, 1, Bq : 0.5–
motherpY,Xq, cgpY, 1, Aq, cgpY, 2, Bq.

cgpX, 2, Aq : 0.5 ; cgpX, 2, Bq : 0.5–
fatherpY,Xq, cgpY, 1, Aq, cgpY, 2, Bq.

motherpm, cq. fatherpf, cq.
cgpm, 1, wq. cgpm, 2, wq. cgpf, 1, pq. cgpf, 2, wq.

The facts of the program express that c is the offspring of m and f and that
the alleles of m are ww and of f are pw. The disjunctive rules encode the
fact that an offspring inherits the allele on chromosome 1 from the mother
and the allele on chromosome 2 from the father. In particular, each allele of
the parent has a probability of 50% of being transmitted. The definite clauses
for color express the fact that the color of a plant is purple if at least one of
the alleles is p, i.e., that the p allele is dominant. In the second definite clause,
_A indicates an anonymous variable. In a similar way, the rules of blood type
inheritance can be written in an LPAD9.

Example 27 (Path probability – LPAD). An interesting application of PLP
under the DS is the computation of the probability of a path between two
nodes in a graph in which the presence of each edge is
probabilistic10:

pathpX,Xq.
pathpX,Y q– pathpX,Zq, edgepZ, Y q.
edgepa, bq : 0.3. edgepb, cq : 0.2. edgepa, cq : 0.6.

This program, coded in ProbLog, was used in [De Raedt et al., 2007] for
computing the probability that two biological concepts are related in the
BIOMINE network [Sevon et al., 2006].

PLP under the DS can encode BNs [Vennekens et al., 2004]: each value of
each random variable is encoded by a ground atom, each row of each CPT is
encoded by a rule with the value of parents in the body and the probability
distribution of values of the child in the head.

Example 28 (Alarm BN – LPAD). The BN of Example 10, that we repeat in
Figure 2.1 for readability, can be encoded with the program11

9 https://cplint.eu/e/bloodtype.pl
10 https://cplint.eu/e/path.swinb
11 https://cplint.eu/e/alarm.pl

https://cplint.eu/e/bloodtype.pl
https://cplint.eu/e/path.swinb
https://cplint.eu/e/alarm.pl

62 2 Probabilistic Logic Programming Languages

Figure 2.1: Example of a BN.

burgptq : 0.1 ; burgpf q : 0.9.
earthquakeptq : 0.2 ; earthquakepf q : 0.8.
alarmptq– burgptq, earthqptq.
alarmptq : 0.8 ; alarmpf q : 0.2– burgptq, earthqpf q.
alarmptq : 0.8 ; alarmpf q : 0.2– burgpf q, earthqptq.
alarmptq : 0.1 ; alarmpf q : 0.9– burgpf q, earthqpf q.
callptq : 0.9 ; callpf q : 0.1– alarmptq.
callptq : 0.05 ; callpf q : 0.95– alarmpf q.

2.4 Equivalence of Expressive Power

To show that all these languages have the same expressive power, we discuss
transformations among probabilistic constructs from the various
languages.

The mapping between PHA/ICL and PRISM translates each PHA/ICL
disjoint statement to a multi-switch declaration and vice versa in the obvious
way. The mapping from PHA/ICL and PRISM to LPADs translates each dis-
joint statement/multi-switch declaration to a disjunctive
LPAD fact.

The translation from an LPAD into PHA/ICL (first shown in [Vennekens
and Verbaeten, 2003]) rewrites each clause Ci with v variables X

h1 : ⇧1 ; . . . ; hn : ⇧n–B.

into PHA/ICL by adding n new predicates tchoicei1{v, . . . , choicein{vu and
a disjoint statement:

2.4 Equivalence of Expressive Power 63

h1–B, choicei1pXq.
...
hn–B, choiceinpXq.

disjointprchoicei1pXq : ⇧1, . . . , choiceinpXq : ⇧nsq.

For instance, the first clause of the medical symptoms LPAD of Example 20
is translated to

strong_sneezingpXq– flupXq, choice11pXq.
moderate_sneezingpXq– flupXq, choice12pXq.
disjointprchoice11pXq : 0.3, choice12pXq : 0.5, choice13 : 0.2sq.

where the clause null– flupXq, choice13. is omitted since null does not
appear in the body of any clause.

Finally, as shown in [De Raedt et al., 2008], to convert LPADs into ProbLog,
each clause Ci with v variables X

h1 : ⇧1 ; . . . ; hn : ⇧n–B.

is translated into ProbLog by adding n ´ 1 probabilistic facts for predicates
tfi1{v, . . . , fin{vu:

h1–B, fi1pXq.
h2–B,„fi1pXq, fi2pXq.
...
hn–B,„fi1pXq, . . . ,„fin´1pXq.

⇡1 :: fi1pXq.
...
⇡n´1 :: fin´1pXq.

where
⇡1 “ ⇧1

⇡2 “
⇧2

1´⇡1

⇡3 “
⇧3

p1´⇡1qp1´⇡2q

. . .

In general

⇡i “
⇧i±i´1

j“1p1 ´ ⇡jq
.

64 2 Probabilistic Logic Programming Languages

Note that while the translation into ProbLog introduces negation, the in-
troduced negation involves only probabilistic facts, and so the transformed
program will have a two-valued model whenever the original program does.

For instance, the first clause of the medical symptoms LPAD of
Example 20 is translated to

strong_sneezingpXq– flupXq, f11pXq.
moderate_sneezingpXq– flupXq,„f11pXq, f12pXq.
0.3 :: f11pXq.
0.714285 :: f12pXq.

2.5 Translation into Bayesian Networks

We discuss here how an acyclic ground LPAD can be translated to a BN.
Let us first define the acyclic property for LPADs, extending Definition 4.
An LPAD is acyclic if an integer level can be assigned to each ground atom
so that the level of each atom in the head of each ground rule is the same and
is higher than the level of each atom in the body.

An acyclic ground LPAD P can be translated to a BN �pPq [Vennekens
et al., 2004]. �pPq is built by associating each atom a in BP with a binary
variable a with values true (1) and false (0). Moreover, for each rule Ci of the
following form

h1 : ⇧1 ; . . . ; hn : ⇧n– b1, . . . bm,„c1. . . . ,„cl
in groundpPq, we add a new variable chi (for “choice for rule Ci”) to �pPq.
chi has b1, . . . , bm, c1, . . . , cl as parents. The values for chi are h1, . . ., hn
and null, corresponding to the head atoms. The CPT of chi is

. . . b1 “ 1, . . . , bm “ 1, c1 “ 0, . . . , cl “ 0 . . .
chi “ h1 0.0 ⇧1 0.0

. . .
chn “ hn 0.0 ⇧n 0.0
chi “ null 1.0 1 ´

∞n
i“1 ⇧i 1.0

that can be expressed as

P pchi|b1, . . . , clq “

$
’’&

’’%

⇧k if chi “ hk, b1 “ 1, . . . , cl “ 0
1 ´

∞n
j“1 ⇧j if chi “ null, b1 “ 1, . . . , cl “ 0

1 if chi “ null, pb1 “ 1, . . . , cl “ 0q

0 otherwise

(2.7)

2.5 Translation into Bayesian Networks 65

If the body is empty, the CPT for chi is

chi “ h1 ⇧1

. . .
chn “ hn ⇧n

chi “ null 1 ´
∞n

i“1 ⇧i

Moreover, for each variable a corresponding to atom a P BP , the parents are
all the variables chi of rules Ci that have a in the head. The CPT for a is the
following deterministic table:

At least one parent equal to a Remaining columns
a “ 1 1.0 0.0
a “ 0 0.0 1.0

encoding the function

a “ fpchaq “

"
1 if Dchi P cha : chi “ a
0 otherwise

where cha are the parents of a. Note that in order to convert an LPAD con-
taining variables to a BN, its grounding must be generated.

Example 29 (LPAD to BN). Consider the following LPAD P:
C1 “ a1 : 0.4 ; a2 : 0.3.
C2 “ a2 : 0.1 ; a3 : 0.2.
C3 “ a4 : 0.6 ; a5 : 0.4– a1.
C4 “ a5 : 0.4– a2, a3.
C5 “ a6 : 0.3 ; a7 : 0.2– a2, a5.

Its corresponding network �pPq is shown in Figure 1.7, where the CPT for
a2 and ch5 are shown in Tables 2.1 and 2.2 respectively.

Table 2.1: Conditional probability table for a2, n stands for null

ch1, ch2 a1, a2 a1, a3 a1, n, a2, a2 a2, a3 a2, n n, a2 n, a3 n, n

a2 “ 1 1.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0
a2 “ 0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0

An alternative translation �pPq for a ground program P is built by includ-
ing random variables a for each atom a in BP and chi for each clause Ci as
for �pPq. Moreover, �pPq includes the Boolean random variable bodyi and
the random variable Xi with values h1, . . ., hn and null for each clause Ci.

The parents of bodyi are b1, . . . , bm, and c1, . . . , cl and its CPT encodes
the deterministic AND Boolean function:

66 2 Probabilistic Logic Programming Languages

Figure 2.2: BN �pPq equivalent to the program of Example 29.

Table 2.2: Conditional probability table for ch5

a2, a5 1,1 1,0 0,1 0,0
ch5 “ x6 0.3 0.0 0.0 0.0
ch5 “ x7 0.2 0.0 0.0 0.0
ch5 “ null 0.5 1.0 1.0 1.0

. . . b1 “ 1, . . . , bm “ 1, c1 “ 0, . . . , cl “ 0 . . .
bodyi “ 0 1.0 0.0 1.0
bodyi “ 1 0.0 1.0 0.0

If the body is empty, the CPT makes bodyi surely true

bodyi “ 0 0.0
bodyi “ 1 1.0

Xi has no parents and has the CPT
chi “ h1 ⇧1

. . .
chi “ hn ⇧n

chi “ null 1 ´
∞n

i“1 ⇧i

chi has Xi and bodyi as parents with the deterministic CPT

bodyi,Xi 0, h1 . . . 0, hn 0, null 1, h1 . . . 1, hn 1, null
chi “ h1 0.0 . . . 0.0 0.0 1.0 . . . 0.0 0.0

. . .
chi “ hn 0.0 . . . 0.0 0.0 0.0 . . . 1.0 0.0
chi “ null 1.0 . . . 1.0 1.0 0.0 . . . 0.0 1.0

2.5 Translation into Bayesian Networks 67

Figure 2.3: Portion of �pPq relative to a clause Ci.

encoding the function

chi “ fpbodyi,Xiq “

"
Xi if bodyi “ 1
null if bodyi “ 0

The parents of each variable a in �pPq are the variables chi of rules Ci that
have a in the head as for �pPq, with the same CPT as in �pPq.

The portion of �pPq relative to a clause Ci is shown in Figure 2.3.
If we compute P pchi|b1, . . . , bm, c1, . . . , clq by marginalizing

P pchi, bodyi,Xi|b1, . . . , bm, c1, . . . , clq

we can see that we obtain the same dependency as in �pPq:
P pchi|b1, . . . , clq “

“

ÿ

xi

ÿ

body
i

P pchi, bodyi, xi|b1, . . . , clq

“

ÿ

xi

ÿ

body
i

P pchi|bodyi, xiqP pxiqP pbodyi|b1, . . . , clq

“

ÿ

xi

P pxiq
ÿ

body
i

P pchi|bodyi, xiqP pbodyi|b1, . . . , clq

“

ÿ

xi

P pxiq
ÿ

body
i

P pchi|bodyi, xiq

$
&

%

1 if bodyi “ 1, b1 “ 1, . . . , cl “ 0
1 if bodyi “ 0, pb1 “ 1, . . . , cl “ 0q

0 otherwise

“

ÿ

xi

P pxiq
ÿ

body
i

$
&

%

1 if chi “ xi, bodyi “ 1, b1 “ 1, . . . , cl “ 0
1 if chi “ null, bodyi “ 0, pb1 “ 1, . . . , cl “ 0q

0 otherwise

68 2 Probabilistic Logic Programming Languages

Figure 2.4: BN �pPq equivalent to the program of Example 29.

“
∞

xi
P pxiq

$
&

%

1 if chi “ xi, b1 “ 1, . . . , cl “ 0
1 if chi “ null, pb1 “ 1, . . . , cl “ 0q

0 otherwise

“

$
’’&

’’%

⇧k if chi “ hk, b1 “ 1, . . . , cl “ 0
1 ´

∞n
j“1 ⇧j if chi “ null, b1 “ 1, . . . , cl “ 0

1 if chi “ null, pb1 “ 1, . . . , cl “ 0q

0 otherwise

which is the same as Equation (2.7).
From Figure 2.3 and using d-separation (see Definition 17), we can see

that the Xi variables are all pairwise unconditionally independent as between
every pair there is the collider Xi Ñ chi – bodyi.

Figure 2.4 shows �pPq for Example 29.

2.6 Generality of the Distribution Semantics

The assumption of independence of the random variables associated with
ground clauses may seem restrictive. However, any probabilistic relationship

2.6 Generality of the Distribution Semantics 69

Figure 2.5: BN representing the dependency between apiq and bpiq.

between Boolean random variables that can be represented with a BN can be
modeled in this way. For example, suppose you want to model a general
dependency between the ground atoms apiq and bpiq regarding predicates a{1
and b{1 and constant i. This dependency can be represented with the BN of
Figure 2.5.

The joint probability distribution P papiq, bpiqq over the two Boolean ran-
dom variables apiq and bpiq is

P p0, 0q “ p1 ´ p1qp1 ´ p2q

P p0, 1q “ p1 ´ p1qp2
P p1, 0q “ p1p1 ´ p3q

P p1, 1q “ p1p3

This dependency can be modeled with the following LPAD P:
C1 “ apiq : p1
C2 “ bpXq : p2– apXq

C3 “ bpXq : p3– „apXq

We can associate Boolean random variables X1 with C1, X2, with C2tX{iu,
and X3 with C3tX{iu, where X1, X2, and X3 are mutually independent.
These three random variables generate eight worlds. apiq ^ bpiq for ex-
ample is true in the worlds

w1 “ H, w2 “ tbpiq– apiqu

whose probabilities are

P 1
pw1q “ p1 ´ p1qp1 ´ p2qp1 ´ p3q

P 1
pw2q “ p1 ´ p1qp1 ´ p2qp3

so

P 1
p apiq, bpiqq “ p1´p1qp1´p2qp1´p3q`p1´p1qp1´p2qp3 “ P p0, 0q.

70 2 Probabilistic Logic Programming Languages

Figure 2.6: BN modeling the distribution over apiq, bpiq, X1, X2, X3.

We can prove similarly that the distributions P and P 1 coincide for all joint
states of apiq and bpiq.

Modeling the dependency between apiq and bpiq with the program above
is equivalent to represent the BN of Figure 2.5 with the network �pPq of
Figure 2.6.

Since �pPq defines the same distribution as P , the distributions P and
P 2, the one defined by �pPq, agree on the variables apiq and bpiq, i.e.,

P papiq, bpiqq “ P 2
papiq, bpiqq

for any value of apiq and bpiq. From Figure 2.6, it is also clear that X1, X2, and
X3 are mutually unconditionally independent, thus showing that it is possible
to represent any dependency with independent random variables. So we can
model general dependencies among ground atoms with the DS.

This confirms the results of Sections 2.3 and 2.5 that graphical models can
be translated into probabilistic logic programs under the DS and vice versa.
Therefore, the two formalisms are equally expressive.

2.7 Extensions of the Distribution Semantics

Programs under the DS may contain flexible probabilities [De Raedt and
Kimmig, 2015] or probabilities that depend on values computed during pro-

2.7 Extensions of the Distribution Semantics 71

gram execution. In this case, the probabilistic annotations are variables, as in
the program12 from [De Raedt and Kimmig, 2015]
red(Prob):Prob.

draw_red(R, G):-
Prob is R/(R + G),
red(Prob).

The query draw_red(r,g), where r and g are the number of green and
red balls in an urn, succeeds with the same probability as that of drawing a
red ball from the urn.

Flexible probabilities allow the computation of probabilities on the fly
during inference. However, flexible probabilities must be ground when their
value is evaluated during inference. Many inference systems support them by
imposing constraints on the form of programs.

The body of rules may also contain literals for a meta-predicate such as
prob/2 that computes the probability of an atom, thus allowing nested or
meta-probability computations [De Raedt and Kimmig, 2015]. Among the
possible uses of such a feature De Raedt and Kimmig [2015] mention: fil-
tering proofs on the basis of the probability of subqueries, or implementing
simple forms of combining rules.

An example of the first use is13

a:0.2:-
prob(b,P),
P>0.1.

where a succeeds with probability 0.2 only if the probability of b is larger
than 0.1.

An example of the latter is14

p(P):P.

max_true(G1, G2) :-
prob(G1, P1),
prob(G2, P2),
max(P1, P2, P), p(P).

where max_true(G1,G2) succeeds with the success probability of its
more likely argument.

12 https://cplint.eu/e/flexprob.pl
13 https://cplint.eu/e/meta.pl
14 https://cplint.eu/e/metacomb.pl

https://cplint.eu/e/flexprob.pl
https://cplint.eu/e/meta.pl
https://cplint.eu/e/metacomb.pl

72 2 Probabilistic Logic Programming Languages

2.8 CP-Logic

CP-logic [Vennekens et al., 2009] is a language for representing causal laws.
It shares many similarities with LPADs but specifically aims at modeling
probabilistic causality. Syntactically, CP-logic programs, or CP-theories, are
identical to LPADs15: they are composed of annotated disjunctive clauses.
For each grounding

h1 : ⇧1 ; . . . ; hm : ⇧n – B

of a clause of the program, B represents an event whose effect is to cause at
most one of the hi atoms to become true and the probability of hi of being
caused is ⇧i. Consider the following medical example.

Example 30 (CP-logic program – infection [Vennekens et al., 2009]). A
patient is infected by a bacterium. Infection can cause either pneumonia
or angina. In turn, angina can cause pneumonia and pneumonia can cause
angina. This can be represented by the CP-logic program:

angina : 0.2 – pneumonia. (2.8)
pneumonia : 0.3 – angina. (2.9)

pneumonia : 0.4 ; angina : 0.1 – infection. (2.10)
infection. (2.11)

The semantics of CP-logic programs is given in terms of probability trees
that represent the possible courses of the events encoded in the program. We
consider first the case where the program is positive, i.e., the bodies of rules
do not contain negative literals.

Definition 19 (Probability tree – positive case). A probability tree16 T for
a program P is a tree where every node n is labeled with a two-valued
interpretation Ipnq and a probability P pnq. T is constructed as follows:

• The root node r has probability P prq “ 1.0 and interpretation
Iprq “ H.

• Each inner node n is associated with a ground clause Ci such that
– no ancestor of n is associated with Ci,
– all atoms in bodypCiq are true in Ipnq,

15 There are versions of CP-logic that have a more general syntax but they are not essential
for the discussion here

16 We follow here the definition of [Shterionov et al., 2015] for its simplicity.

2.8 CP-Logic 73

n has one child node for each atom hk P headpCiq. The k-th child has
interpretation Ipnq Y thku and probability P pnq ¨ ⇧k.

• No leaf can be associated with a clause following the rule above.

A probability tree defines a probability distribution P pIq over the interpreta-
tion of the program P: the probability of an interpretation I is the sum of the
probabilities of the leaf nodes n such that I “ Ipnq.

The probability tree for Example 2.11 is shown in Figure 2.7. The proba-
bility distribution over the interpretations is

I tinf , pn, angu tinf , pnu tinf , angu tinf u

P pIq 0.11 0.32 0.07 0.5

There can be more than one probability tree for a program but Vennekens
et al. [2009] show that all the probability trees for the program define the
same probability distribution over interpretations. So we can speak of the
probability tree for P and this defines the semantics of the CP-logic program.
Moreover, each program has at least one probability tree.

Vennekens et al. [2009] also show that the probability distribution de-
fined by the LPADs semantics is the same as that defined by the CP-logic
semantics. So probability trees represent an alternative definition of the DS
for LPADs.

If the program contains negation, checking the truth of the body of a
clause must be made with care because an atom that is currently absent from
Ipnq may become true later. Therefore, we must make sure that for each
negative literal „a in bodypCiq, the positive literal a cannot be made true
starting from Ipnq.

H

tinf u

tinf , pnu

tinf , pn, angu

0.08

0.2
Clause 2.8

tinf , pnu

0.32

0.8

0.4

tinf , angu

tinf , ang, pnu

0.03

0.3
Clause 2.9

tinf , angu

0.07

0.7

0.1
Clause 2.10

tinf u

0.5

0.5

1
Clause 2.11

Figure 2.7: Probability tree for Example 2.11. From [Vennekens et al., 2009].

74 2 Probabilistic Logic Programming Languages

Example 31 (CP-logic program – pneumonia [Vennekens et al., 2009]). A
patient has pneumonia. Because of pneumonia, the patient is treated. If the
patient has pneumonia and is not treated, he may get fever.

pneumonia. (2.12)
treatment : 0.95 – pneumonia. (2.13)

fever : 0.7 – pneumonia,„treatment. (2.14)

Two probability trees for this program are shown in Figures 2.8 and 2.9. Both
trees satisfy Definition 19 but define two different probability distributions.
In the tree of Figure 2.8, Clause 2.14 has negative literal „treatment in its
body and is applied at a stage where treatment may still become true, as
happens in the level below.

In the tree of Figure 2.9, instead Clause 2.14 is applied when the only
rule for treatment has already fired, so in the right child of the node at the
second level treatment will never become true and Clause 2.14 can safely
be applied.

In order to formally define this, we need the following definition that uses
three-valued logic. A conjunction in three-valued logic is true or undefined if
no literal in it is false.

Definition 20 (Hypothetical derivation sequence). A hypothetical derivation
sequence in a node n is a sequence pIiq0§i§n of three-valued interpretations
that satisfy the following properties. Initially, I0 assigns false to all atoms
not in Ipnq. For each i ° 0, Ii`1 “ xIT,i`1, IF,i`1y is obtained from Ii “

xIT,i, IF,iy by considering a rule R with bodypRq true or undefined in Ii and

Figure 2.8: An incorrect probability tree for Example 31. From [Vennekens
et al., 2009].

2.8 CP-Logic 75

an atom a in its head that is false in I. Then IT,i`1 “ IT,i`1 and IF,i`1 “

IF,i`1ztau.

Every hypothetical derivation sequence reaches the same limit. For a node n
in a probabilistic tree, we denote this unique limit as Ipnq. It represents the
set of atoms that might still become true; in other words, all the atoms in the
false part of Ipnq will never become true and so they can be considered as
false.

The definition of probability tree of a program with negation becomes the
following.

Definition 21 (Probability tree – general case). A probability tree T for a
program P is a tree

• satisfying the conditions of Definition 19, and
• for each node n and associated clause Ci, for each negative literal „a

in bodypCiq, a P IF with Ipnq “ xIT , IF y.

All the probability trees according for the program according to Definition 21
establish the same probability distribution over interpretations.

It can be shown that the set of false atoms of the limit of the hypothetical
derivation sequence is equal to the greatest fixpoint of the operator OpFalse

P
I

(see Definition 2) with I “ xIpnq,Hy and P a program that contains, for
each rule

h1 : ⇧1 ; . . . ; hm : ⇧n – B

Figure 2.9: A probability tree for Example 31. From [Vennekens et al., 2009].

76 2 Probabilistic Logic Programming Languages

of P , the rules

h1 – B.

. . .

hm – B.

In other words, if Ipnq “ xIT , IF y and gfppOpFalse
P
I q “ F , then IF “ F .

In fact, for the body of a clause to be true or undefined in Ii “ xIT,i, IF,iy,
each positive literal a must be absent from IF,i and each negative literal
„a must be such that a is absent from IT,i, which are the complementary
conditions in the definition of the operator OpFalse

P
I pFaq.

On the other hand, the generation of a child n1 of a node n using a rule
Ci that adds an atom a to Ipnq can be seen as part of an application of
OpTrue

P
Ipnq

. So there is a strong connection between CP-logic and the WFS.
In the trees of Figures 2.8 and 2.9, the child n “ tpnu of the root has

IF “ H, so Clause 2.14 cannot be applied as treatment R IF and the only
tree allowed by Definition 21 is that of Figure 2.9.

The semantics of CP-logic satisfies these causality principles:
• The principle of universal causation states that all changes to the state

of the domain must be triggered by a causal law whose precondition is
satisfied.

• The principle of sufficient causation states that if the precondition to
a causal law is satisfied, then the event that it triggers must eventually
happen.

and therefore the logic is particularly suitable for representing causation.
Moreover, CP-logic satisfies the temporal precedence assumption that

states that a rule R will not fire until its precondition is in its final state. In
other words, a rule fires only when the causal process that determines whether
its precondition holds is fully finished. This is enforced by the treatment of
negation of CP-logic.

There are CP-logic programs that do not admit any probability tree, as the
following example shows.

Example 32 (Invalid CP-logic program [Vennekens et al., 2009]). In a two-
player game, white wins if black does not win and black wins if white does
not win:

winpwhiteq – „winpblackq. (2.15)
winpblackq – „winpwhiteq. (2.16)

2.8 CP-Logic 77

At the root of the probability tree for this program, both Clauses 2.15 and
2.16 have their body true but they cannot fire as IF for the root is H. So
the root is a leaf where however two rules have their body true, thus violating
the condition of Definition 19 that requires that leaves cannot be associated
with rules.

This theory is problematic from a causal point of view, as it is impossible to
define a process that follows the causal laws. Therefore, we want to exclude
these cases and consider only valid CP-theories.

Definition 22 (Valid CP-theory). A CP-theory is valid if it has at least one
probability tree.

The equivalence of the LPADs and CP-logic semantics is also carried to
the general case of programs with negation: the probability tree of a valid
CP-theory defines the same distribution as that defined by interpreting the
program as an LPAD.

However, there are sound LPADs that are not valid CP-theories. Recall
that a sound LPAD is one where each possible world has a two-valued WFM.

Example 33 (Sound LPAD – invalid CP-theory Vennekens et al. [2009]).
Consider the program

p : 0.5 ; q : 0.5– r.
r –„p.
r –„q.

Such a program has no probability tree, so it is not a valid CP-theory. Its
possible worlds are

tp– r; r –„p; r –„qu

and
tq – r; r –„p; r –„qu

that both have total WFMs, tr, pu and tr, qu, respectively, so the LPAD is
sound.

In fact, it is difficult to imagine a causal process for this program.

Therefore, LPADs and CP-logic have some differences but these arise only
in corner cases, so sometimes CP-logic and LPADs are used as a synonyms.
This also shows that clauses in LPADs can be assigned in many cases a causal
interpretation.

The equivalence of the semantics implies that, for a valid CP-theory, each
leaf of the probability tree is associated with the WFM of the possible world

78 2 Probabilistic Logic Programming Languages

obtained by considering all the clauses used in the path from the root to the
leaf with the head selected according to the choice of child. If the program is
deterministic, the only leaf is associated with the total-well founded model of
the program.

2.9 KBMC Probabilistic Logic Programming Languages

In this section, we present three examples of KBMC languages: Bayesian
Logic Programs (BLPs), CLP(BN), and the Prolog Factor Language (PFL).

2.9.1 Bayesian Logic Programs

BLPs [Kersting and De Raedt, 2001] use logic programming to compactly
encode a large BN. In BLPs, each ground atom represents a (not necessarily
Boolean) random variable and the clauses define the dependencies between
ground atoms. A clause of the form

a|a1, . . . , am

indicates that, for each of its groundings pa|a1, . . . , amq✓, a✓ has a1✓, . . .,
am✓ as parents. The domains and CPTs for the ground atoms/random vari-
ables are defined in a separate portion of the model. In the case where a
ground atom a✓ appears in the head of more than one clause, a combining
rule is used to obtain the overall CPT from those given by individual clauses.

For example, in the Mendelian genetics program of Example 26, the de-
pendency that gives the value of the color gene on chromosome 1 of a plant
as a function of the color genes of its mother can be expressed as

cg(X,1)|mother(Y,X),cg(Y,1),cg(Y,2).

where the domain of atoms built on predicate cg/2 is {p,w} and the domain of
mother(Y,X) is Boolean. A suitable CPT should then be defined that assigns
equal probability to the alleles of the mother to be inherited by the plant.

Various learning systems use BLPs as the representation language: RBLP
[Revoredo and Zaverucha, 2002; Paes et al., 2005], PFORTE [Paes et al.,
2006], and SCOOBY [Kersting and De Raedt, 2008].

2.9.2 CLP(BN)

In a CLP(BN) program [Costa et al., 2003], logical variables can be random.
Their domain, parents, and CPTs are defined by the program. Probabilistic

2.9 KBMC Probabilistic Logic Programming Languages 79

dependencies are expressed by means of constraints as in Constraint Logic
Programming (CLP):

{ Var = Function with p(Values, Dist) }
{ Var = Function with p(Values, Dist, Parents) }

The first form indicates that the logical variable Var is random with domain
Values and CPT Dist but without parents; the second form defines a ran-
dom variable with parents. In both forms, Function is a term over logical
variables that is used to parameterize the random variable: a different random
variable is defined for each instantiation of the logical variables in the term.
For example, the following snippet from a school domain:

course_difficulty(CKey, Dif) :-
{ Dif = difficulty(CKey) with p([h,m,l],

[0.25, 0.50, 0.25]) }.

defines the random variable Dif with values h, m, and l representing the dif-
ficulty of the course identified by CKey. There is a different random variable
for every instantiation of CKey, i.e., for each course. In a similar manner, the
intelligence Int of a student identified by SKey is given by

student_intelligence(SKey, Int) :-
{ Int = intelligence(SKey) with p([h, m, l],

[0.5,0.4,0.1]) }.

Using the above predicates, the following snippet predicts the grade received
by a student when taking the exam of a course.

registration_grade(Key, Grade) :-
registration(Key, CKey, SKey),
course_difficulty(CKey, Dif),
student_intelligence(SKey, Int),
{ Grade = grade(Key) with p(['A','B','C','D'],
% h/h h/m h/l m/h m/m m/l l/h l/m l/l

[0.20,0.70,0.85,0.10,0.20,0.50,0.01,0.05,0.10,
% 'A'

0.60,0.25,0.12,0.30,0.60,0.35,0.04,0.15,0.40,
% 'B'

0.15,0.04,0.02,0.40,0.15,0.12,0.50,0.60,0.40,
% 'C'

80 2 Probabilistic Logic Programming Languages

0.05,0.01,0.01,0.20,0.05,0.03,0.45,0.20,0.10],
% 'D'

[Int,Dif]) }.

Here Grade indicates a random variable parameterized by the identifier Key
of a registration of a student to a course. The code states that there is a dif-
ferent random variable Grade for each student’s registration in a course and
each such random variable has possible values 'A', 'B', 'C' and 'D'. The
actual value of the random variable depends on the intelligence of the student
and on the difficulty of the course, that are thus its parents. Together with
facts for registration/3 such as

registration(r0,c16,s0). registration(r1,c10,s0).
registration(r2,c57,s0). registration(r3,c22,s1).
....

the code defines a BN with a Grade random variable for each registration.
CLP(BN) is implemented as a library of YAP Prolog. The library performs
query answering by constructing the sub-network that is relevant to the query
and then applying a BN inference algorithm.

The unconditional probability of a random variable can be computed by
simply asking a query to the YAP command line.

The answer will be a probability distribution over the values of the logical
variables of the query that represent random variables, as in

?- registration_grade(r0,G).
p(G=a)=0.4115,
p(G=b)=0.356,
p(G=c)=0.16575,
p(G=d)=0.06675 ?

Conditional queries can be posed by including in them ground atoms repre-
senting the evidence.

For example, the probability distribution of the grades of registration r0
given that the intelligence of the student is high (h) is given by

?- registration_grade(r0,G),
student_intelligence(s0,h).
p(G=a)=0.6125,
p(G=b)=0.305,
p(G=c)=0.0625,
p(G=d)=0.02 ?

2.9 KBMC Probabilistic Logic Programming Languages 81

As you can see, the probability of the student receiving grade 'A' is in-
creased.

In general, CLP provides a useful tool for PLP, as is testified by the pro-
posals clp(pdf(Y)) [Angelopoulos, 2003, 2004] and Probabilistic Constraint
Logic Programming [Michels et al., 2015], see Section 4.5.

2.9.3 The Prolog Factor Language

The PFL [Gomes and Costa, 2012] is an extension of Prolog for representing
first-order probabilistic models.

Most graphical models such as BNs and MNs concisely represent a joint
distribution by encoding it as a set of factors. The probability of a set of
variables X taking value x can be expressed as the product of n factors as:

P pX “ xq “

±
i“1,...,n �ipxiq

Z

where xi is a sub-vector of x on which the i-th factor depends and Z is the
normalization constant. Often, in a graphical model, the same factors appear
repeatedly in the network, and thus we can parameterize these factors in order
to simplify the representation.

A Parameterized Random Variables (PRVs) is a logical atom representing
a set of random variables, one for each of its possible ground instantiations.
We indicate PRV as X,Y, . . . and vectors of PRVs as X,Y, . . .

A parametric factor or parfactor [Kisynski and Poole, 2009b] is a triple
xC,V, F y where C is a set of inequality constraints on parameters (logical
variables), V is a vector of PRVs and F is a factor that is a function from the
Cartesian product of ranges of PRVs in V to real values. A parfactor is also
represented as F pVq|C or F pVq if there are no constraints. A constrained
PRV is of the form V|C, where V “ ppX1, . . . , Xnq is a non-ground atom
and C is a set of constraints on logical variables X “ tX1, . . . , Xnu. Each
constrained PRV represents the set of random variables tppxq|x P Cu, where
x is the tuple of constants px1, . . . , xnq. Given a (constrained) PRV V, we
use RV pVq to denote the set of random variables it represents. Each ground
atom is associated with one random variable, which can take any value in
rangepVq.

The PFL extends Prolog to support probabilistic reasoning with paramet-
ric factors. A PFL factor is a parfactor of the form

Type F ; � ; C,

82 2 Probabilistic Logic Programming Languages

where Type refers to the type of the network over which the parfactor is
defined (bayes for directed networks or markov for undirected ones); F is a
sequence of Prolog goals each defining a PRV under the constraints in C (the
arguments of the factor). If L is the set of all logical variables in F, then C is
a list of Prolog goals that impose bindings on L (the successful substitutions
for the goals in C are the valid values for the variables in L). � is the table
defining the factor in the form of a list of real values. By default, all random
variables are Boolean but a different domain may be defined. Each parfactor
represents the set of its groundings. To ground a parfactor, all variables of L
are replaced with the values permitted by constraints in C. The set of ground
factors defines a factorization of the joint probability distribution over all
random variables.

Example 34 (PFL program). The following PFL program is inspired by the
workshop attributes problem of [Milch et al., 2008]. It models the organiza-
tion of a workshop where a number of people have been invited. series
indicates whether the workshop is successful enough to start a series of re-
lated meetings while attends(P) indicates whether person P attends the
workshop.

This problem can be modeled by a PFL program such as

bayes series, attends(P); [0.51, 0.49, 0.49, 0.51];
[person(P)].

bayes attends(P), at(P,A); [0.7, 0.3, 0.3, 0.7];
[person(P),attribute(A)].

A workshop becomes a series because people attend. People attend the work-
shop depending on the workshop’s attributes such as location, date, fame
of the organizers, etc. The probabilistic atom at(P,A) represents whether
person P attends because of attribute A.

The first PFL factor has the random variables series and attends(P)
as arguments (both Boolean), [0.51,0.49,0.49,0.51] as table and
the list [person(P)] as constraint.

Since KBMC languages are defined on the basis of a translation to graphical
models, translations can be built between PLP languages under the DS and
KBMC languages. The first have the advantage that they have a semantics
that can be understood in logical terms, without necessarily referring to an
underlying graphical model.

2.10 Other Semantics for Probabilistic Logic Programming 83

2.10 Other Semantics for Probabilistic Logic Programming

Here we briefly discuss a few examples of PLP frameworks that don’t follow
the distribution semantics. Our goal in this section is simply to give the fla-
vor of other possible approaches; a complete account of such frameworks is
beyond the scope of this book.

2.10.1 Stochastic Logic Programs

Stochastic Logic Programs (SLPs) [Muggleton et al., 1996; Cussens, 2001]
are logic programs with parameterized clauses which define a distribution
over refutations of goals. The distribution provides, by marginalization, a
distribution over variable bindings for the query. SLPs are a generalization
of stochastic grammars and hidden Markov models.

An SLP S is a definite logic program where some of the clauses are of
the form p : C where p P R, p • 0, and C is a definite clause. Let npSq

be the definite logic program obtained by removing the probability labels. A
pure SLP is an SLP where all clauses have probability labels. A normalized
SLP is one where probability labels for clauses whose heads share the same
predicate symbol sum to one.

In pure SLPs, each SLD derivation for a query q is assigned a real label
by multiplying the labels of each individual derivation step. The label of a
derivation step where the selected atom unifies with the head of clause pi : Ci

is pi. The probability of a successful derivation from q is the label of the
derivation divided by the sum of the labels of all the successful derivations.
This forms a distribution over successful derivations from q.

The probability of an instantiation q✓ is the sum of the probabilities of the
successful derivations that produce q✓. It can be shown that the probabilities
of all the atoms for a predicate q that succeed in npSq sum to one, i.e., S
defines a probability distribution over the success set of q in npSq.

In impure SLPs, the unparameterized clauses are seen as non-probabilistic
domain knowledge acting as constraints. Derivations are identified with the
set of the parameterized clauses they use. In this way, derivations that differ
only on the unparameterized clauses form an equivalence class.

In practice, SLPs define probability distributions over the children of
nodes of the SLD tree for a query: a derivation step u Ñ v that connects
node u with child node v is assigned a probability P pv|uq. This induces a
probability distributions over paths from the root to the leaves of the SLD
tree and in turn over answers for the query.

84 2 Probabilistic Logic Programming Languages

Given their similarity with stochastic grammars and hidden Markov mod-
els, SLPs are particularly suitable for representing these kinds of models.
They differ from the DS because they define a probability distribution over
instantiations of the query, while the DS usually defines a distribution over
the truth values of ground atoms.

Example 35 (Probabilistic context-free grammar – SLP). Consider the prob-
abilistic context free grammar:

0.2 : S Ñ aS
0.2 : S Ñ bS
0.3 : S Ñ a
0.3 : S Ñ b

The SLP
0.2 : spra|Rsq– spRq.
0.2 : sprb|Rsq– spRq.
0.3 : sprasq.
0.3 : sprbsq.

defines a distribution over the values of S in the success set of spSq that is
the same as the one defined by the probabilistic context-free grammar above.
For example, P pspra, bsqq “ 0.2 ¨ 0.3 “ 0.6 according to the program and
P pabq “ 0.2 ¨ 0.3 “ 0.6 according to the grammar.

Various approaches have been proposed for learning SLPs. Muggleton [2000a,b]
proposed to use an Inductive Logic Programming (ILP) system, Progol [Mug-
gleton, 1995], for learning the structure of the programs, and a second phase
where the parameters are tuned using a generalization of relative frequency.

Parameters are also learned by means of optimization in failure-adjusted
maximization [Cussens, 2001; Angelopoulos, 2016] and by solving algebraic
equations [Muggleton, 2003].

2.10.2 ProPPR

ProPPR [Wang et al., 2015] is an extension of SLPs that that is related to
Personalized PageRank (PPR) [Page et al., 1999].

ProPPR extends SLPs in two ways. The first is the method for computing
the labels of the derivation steps. A derivation step u Ñ v is not simply
assigned the parameter associated with the clause used in the step. Instead,
the label of the derivation step, P pv|uq is computed using a log-linear model
P pv|uq9 exppw¨�uÑvq where w is a vector of real-valued weights and �uÑv

is a 0/1 vector of “features” that depend on the clause being used. The features

2.10 Other Semantics for Probabilistic Logic Programming 85

are user defined and the association between clauses and features is indicated
using annotations.
Example 36 (ProPPR program). The ProPPR program [Wang et al., 2015]

aboutpX,Zq– handLabeledpX,Zq. #base
aboutpX,Zq– simpX,Y q, aboutpY, Zq. #prop
simpX,Y q– linkpX,Y q. #sim, link
simpX,Y q– hasWordpX,W q, hasWordpY,W q,
linkedBypX,Y,W q. #sim,word

linkedBypX,Y,W q. #bypW q

can be used to compute the topic of web pages on the basis of possible hand
labeling or similarity with other web pages. Similarity is defined as well in a
probabilistic way depending on the links and words between the two pages.

Clauses are annotated with a list of atoms (indicated after the # symbol) that
may contain variables from the head of clauses. In the example, the third
clause is annotated with the list of atoms sim, link while the last clause is
annotated by the atom bypW q. Each grounding of each atom in the list stands
for a different feature, so for example sim, link, and bypsprinterq stand for
three different features. The vector �uÑv is obtained by assigning value 1 to
the features associated with the atoms in the annotation of the clause used
for the derivation step u Ñ v and value 0 otherwise. If the atoms contain
variables, these are shared with the head of the clause and are grounded with
the values of the clause instantiation used in u Ñ v.

So a ProPPR program is defined by an annotated program plus values
for the weights w. This annotation approach considerably increases the flex-
ibility of SLP labels: ProPPR annotations can be shared across clauses and
can yield labels that depend on the particular clause grounding that is used
in the derivation step. An SLP is a ProPPR program where each clause has a
different annotation consisting of an atom without arguments.

The second way in which ProPPR extend SLPs consists in the addition of
edges to the SLD tree: an edge is added (a) from every solution leaf to itself;
and (b) from every node to the root.

The procedure for assigning probabilities to queries of SLP can then be
applied to the resulting graph. The self-loop links heuristically upweight so-
lution nodes and the restart links make SLP’s graph traversal a PPR procedure
[Page et al., 1999]: a PageRank can be associated with each node, represent-
ing the probability that a random walker starting from the root arrives in that
node.

The restart links favor the results of short proofs: if the restart probability
is ↵ for every node u, then the probability of reaching any node at depth d is
bounded by p1 ´ ↵q

d.

86 2 Probabilistic Logic Programming Languages

Parameter learning for ProPPR is performed in [Wang et al., 2015] by
stochastic gradient descent.

2.11 Other Semantics for Probabilistic Logics

In this section, we discuss semantics for probabilistic logic languages that are
not based on logic programming.

2.11.1 Nilsson’s Probabilistic Logic

Nilsson’s probabilistic logic [Nilsson, 1986] takes an approach for combining
logic and probability that is different from the DS: while the first considers
sets of distributions, the latter computes a single distribution over possible
worlds. In Nilsson’s logic, a probabilistic interpretation Pr defines a prob-
ability distribution over the set of interpretations Int2 . The probability of a
logical formula F according to Pr, denoted PrpF q, is the sum of all PrpIq

such that I P Int2 and I (F . A probabilistic knowledge base K is a set
of probabilistic formulas of the form F • p where F is a logical formula
and p a number in r0, 1s. A probabilistic interpretation Pr satisfies F • p
iff PrpF q • p. Pr satisfies K, or Pr is a model of K, iff Pr satisfies all
F • p P K. PrpF q • p is a tight logical consequence of K iff p is the
infimum of PrpF q in the set of all models Pr of K. Computing tight logical
consequences from probabilistic knowledge bases can be done by solving a
linear optimization problem.

With Nilsson’s logic, the consequences that can be obtained from logi-
cal formulas differ from those of the DS. Consider a ProbLog program (see
Section 2.1) composed of the facts 0.4 :: cpaq and 0.5 :: cpbq, and a prob-
abilistic knowledge base composed of cpaq • 0.4 and cpbq • 0.5. For the
DS, P pcpaq _ cpbqq “ 0.7, while with Nilsson’s logic, the lowest p such that
Prpcpaq _ cpbqq • p holds is 0.5. This difference is due to the fact that,
while Nilsson’s logic makes no assumption about the independence of the
statements, in the DS, the probabilistic axioms are considered as indepen-
dent. While independencies can be encoded in Nilsson’s logic by carefully
choosing the values of the parameters, reading off the independencies from
the theories becomes more difficult.

However, the assumption of independence of probabilistic axioms does
not restrict expressiveness as shown in Section 2.6.

2.11 Other Semantics for Probabilistic Logics 87

2.11.2 Markov Logic Networks

A Markov Logic Network (MLN) is a first-order logical theory in which each
sentence is associated with a real-valued weight. An MLN is a template for
generating MNs. Given sets of constants defining the domains of the logical
variables, an MLN defines an MN that has a Boolean node for each ground
atom and edges connecting the atoms appearing together in a grounding of
a formula. MLNs follow the KBMC approach for defining a probabilistic
model [Wellman et al., 1992; Bacchus, 1993]. The probability distribution
encoded by an Markov Logic Network (MLN) is

P pxq “
1

Z
expp

ÿ

fiPM

winipxqq

where x is a joint assignment of truth value to all atoms in the Herbrand base
(finite because of no function symbols), M is the MLN, fi is the i-th formula
in M , wi is its weight, nipxq is the number of groundings of formula fi that
are satisfied in x, and Z is a normalization constant.

Example 37 (Markov Logic Network). The following MLN encodes a the-
ory on the intelligence of friends and on the marks people get:

1.5 Intelligent(x) => GoodMarks(x)
1.1 Friends(x,y) => (Intelligent(x)<=>

Intelligent(y))

The first formula gives a positive weight to the fact that if someone is intel-
ligent, then he gets good marks in the exams he takes. The second formula
gives a positive weight to the fact that friends have similar intelligence: in
particular, the formula states that if x and y are friends, then x is intelligent
if and only if y is intelligent, so they are either both intelligent or both not
intelligent.

If the domain contains two individuals, Anna and Bob, indicated with A
and B, we get the ground MN of Figure 2.10.

2.11.2.1 Encoding Markov Logic Networks with Probabilistic Logic
Programming

It is possible to encode MNs and MLNs with LPADs. The encoding is based
on the BN that is equivalent to the MN as discussed in Section 1.6: an MN
factor can be represented with an extra node in the equivalent BN that is
always observed. In order to model MLN formulas with LPADs, we can add

88 2 Probabilistic Logic Programming Languages

Figure 2.10: Ground Markov network for the MLN of Example 37.

an extra atom clauseipXq for each formula Fi “ wi Ci where wi is the
weight associated with Ci and X is the vector of variables appearing in Ci.
Then, when we ask for the probability of query q given evidence e, we have
to ask for the probability of q given e^ ce, where ce is the conjunction of the
groundings of clauseipXq for all values of i.

Clause Ci must be transformed into a Disjunctive Normal Form (DNF)
formula Ci1 _ . . . _ Cini , where the disjuncts are mutually exclusive and the
LPAD should contain the clauses

clauseipXq : ewi{p1 ` ewiq – Cij

for all j in 1, ..., ni, where 1`ewi • maxxi �pxiq “ maxt1, ewiu. Similarly,
 Ci must be transformed into a DNF Di1 _ . . ._Dimi and the LPAD should
contain the clauses

clauseipXq : 1{p1 ` ewiq–Dil

for all l in 1, ...,mi.
Moreover, for each predicate p{n, we should add the clause

ppXq : 0.5.

to the program, assigning a priori uniform probability to every ground atom.
Alternatively, if wi is negative, ewi will be smaller than 1 and maxxi �pxiq “

1. So we can use the two probability values ewi and 1 with the clauses

clauseipXq : ewi – Cij .

clauseipXq – Dil.

This solution has the advantage that some clauses are non-probabilistic, re-
ducing the number of random variables. If wi is positive in the formula wi Ci,
we can consider the equivalent formula ´wi Ci.

The transformation above is illustrated by the following example. Given
the MLN

2.11 Other Semantics for Probabilistic Logics 89

1.5 Intelligent(x) => GoodMarks(x)
1.1 Friends(x,y) => (Intelligent(x)<=>Intelligent(y))

the first formula is translated to the clauses:

clause1(X):0.8175 :- \+intelligent(X).
clause1(X):0.1824 :- intelligent(X),

\+good_marks(X).
clause1(X):0.8175 :- intelligent(X),good_marks(X).

where 0.8175 “ e1.5{p1 ` e1.5q and 0.1824 “ 1{p1 ` e1.5q.
The second formula is translated to the clauses

clause2(X,Y):0.7502 :- \+friends(X,Y).
clause2(X,Y):0.7502 :- friends(X,Y),

intelligent(X),
intelligent(Y).

clause2(X,Y):0.7502 :- friends(X,Y),
\+intelligent(X),
\+intelligent(Y).

clause2(X,Y):0.2497 :- friends(X,Y),
intelligent(X),
\+intelligent(Y).

clause2(X,Y):0.2497 :- friends(X,Y),
\+intelligent(X),
intelligent(Y).

where 0.7502 “ e1.1{p1 ` e1.1q and 0.2497 “ 1{p1 ` e1.1q.
A priori we have a uniform distribution over student intelligence, good

marks, and friendship:

intelligent(_):0.5.
good_marks(_):0.5.
friends(_,_):0.5.

and there are two students:

student(anna).
student(bob).

We have evidence that Anna is friend with Bob and Bob is intelligent. The
evidence must also include the truth of all groundings of the clausei predi-
cates:

90 2 Probabilistic Logic Programming Languages

evidence_mln :- clause1(anna),clause1(bob),
clause2(anna,anna),clause2(anna,bob),
clause2(bob,anna),clause2(bob,bob).

ev_intelligent_bob_friends_anna_bob :-
intelligent(bob),friends(anna,bob),
evidence_mln.

The probability that Anna gets good marks given the evidence is thus

P pgood_marks(anna)|ev_intelligent_bob_friends_anna_bobq

while the prior probability of Anna getting good marks is given by

P pgood_marks(anna)q.

The probability resulting from the first query is higher (P “ 0.733) than the
second query (P “ 0.607), since it is conditioned to the evidence that Bob is
intelligent and Anna is his friend.

In the alternative transformation, the first MLN formula is translated to:

clause1(X) :- \+intelligent(X).
clause1(X):0.2231 :- intelligent(X),\+good_marks(X).
clause1(X) :- intelligent(X), good_marks(X).

where 0.2231 “ e´1.5.
MLN formulas can also be added to a regular probabilistic logic program.

In this case, their effect is equivalent to a soft form of evidence, where certain
worlds are weighted more than others. This is the same as soft evidence in
Figaro [Pfeffer, 2016]. MLN hard constraints, i.e., formulas with an infinite
weight, can instead be used to rule out completely certain worlds, those vio-
lating the constraint. For example, given hard constraint Ci equivalent to the
disjunction Ci1 _ . . . _ Cini , the LPAD should contain the clauses

clauseipXq – Cij

for all j, and the evidence should contain clauseipxq for all groundings
x of X . In this way, the worlds that violate Ci are ruled out.

2.11.3 Annotated Probabilistic Logic Programs

In Annotated Probabilistic Logic Programming (APLP) [Ng and Subrahma-
nian, 1992], program atoms are annotated with intervals that can be inter-
preted probabilistically. An example rule in this approach is:

a : r0.75, 0.85s – b : r1, 1s, c : r0.5, 0.75s

2.11 Other Semantics for Probabilistic Logics 91

that states that the probability of a is between 0.75 and 0.85 if b is certainly
true and the probability of c is between 0.5 and 0.75. The probability interval
of a conjunction or disjunction of atoms is defined using a combinator to
construct the tightest bounds for the formula. For instance, if d is annotated
with rld, hds and e with rle, hes, the probability of e ^ d is annotated with

rmaxp0, ld ` le ´ 1q,minphd, heqs.

Using these combinators, an inference operator and fixpoint semantics is de-
fined for positive Datalog programs. A model theory is obtained for such
programs by considering the annotations as constraints on acceptable proba-
bilistic worlds: an APLP thus describes a family of probabilistic worlds.

APLPs have the advantage that deduction is of low complexity, as the
logic is truth-functional, i.e., the probability of a query can be computed
directly using combinators. The corresponding disadvantages are that APLPs
may be inconsistent if they are not carefully written, and that the use of
the above combinators may quickly lead to assigning overly slack proba-
bility intervals to certain atoms. These aspects are partially addressed by
hybrid APLPs [Dekhtyar and Subrahmanian, 2000], which allow different
flavors of combinators based on, e.g., independence or mutual exclusivity of
given atoms.

