
Probabilistic Logic Programming: Semantics, Inference and Learning

Fabrizio Riguzzi

Department of Mathematics and Computer Science
University of Ferrara, Italy

fabrizio.riguzzi@unife.it

Joint work with Evelina Lamma, Theresa Swift, Elena Bellodi, Riccardo Zese, Arnaud Nguembang

Fadja, Damiano Azzolini, Giuseppe Cota, Marco Alberti, Stefano Bragaglia

F. Riguzzi PLP 1 / 66

Outline

1 Probabilistic Logic Programming

2 Programs with Function Symbols

3 Exact Inference

4 Approximate Inference

5 Parameter learning

6 Structure learning

7 Scaling structure learning

8 Applications

F. Riguzzi PLP 2 / 66

Probabilistic Logic Programming

Outline

1 Probabilistic Logic Programming

2 Programs with Function Symbols

3 Exact Inference

4 Approximate Inference

5 Parameter learning

6 Structure learning

7 Scaling structure learning

8 Applications

F. Riguzzi PLP 3 / 66

Probabilistic Logic Programming Combining Logic and Probability

Combining Logic and Probability

Logic does not handle well uncertainty

Graphical models do not handle well relationships among entities

Solution: combine the two

Many approaches proposed in the areas of Logic Programming, Uncertainty in AI,
Machine Learning, Databases, Knowledge Representation

F. Riguzzi PLP 4 / 66

Probabilistic Logic Programming Combining Logic and Probability

Probabilistic Logic Programming

Distribution Semantics [Sato ICLP95]

A probabilistic logic program defines a probability distribution over normal logic programs
(called instances or possible worlds or simply worlds)

The distribution is extended to a joint distribution over worlds and interpretations (or
queries)

The probability of a query is obtained from this distribution

F. Riguzzi PLP 5 / 66

Probabilistic Logic Programming Languages

Probabilistic Logic Programming (PLP) Languages under the Distribution
Semantics

Probabilistic Logic Programs [Dantsin RCLP91]

Probabilistic Horn Abduction [Poole NGC93], Independent Choice Logic (ICL) [Poole
AI97]

PRISM [Sato ICLP95]

Logic Programs with Annotated Disjunctions (LPADs) [Vennekens et al. ICLP04]

ProbLog [De Raedt et al. IJCAI07]

They differ in the way they define the distribution over logic programs

F. Riguzzi PLP 6 / 66

Probabilistic Logic Programming Languages

Logic Programs with Annotated Disjunctions

sneezing(X) : 0.7 ; null : 0.3← flu(X).
sneezing(X) : 0.8 ; null : 0.2← hay fever(X).
flu(bob).
hay fever(bob).

Distributions over the head of rules

null does not appear in the body of any rule

Worlds obtained by selecting one atom from the head of each grounding of each clause

F. Riguzzi PLP 7 / 66

Probabilistic Logic Programming Languages

ProbLog

sneezing(X)← flu(X), flu sneezing(X).
sneezing(X)← hay fever(X), hay fever sneezing(X).
flu(bob).
hay fever(bob).
0.7 :: flu sneezing(X).
0.8 :: hay fever sneezing(X).

Distributions over facts

Worlds obtained by selecting or not each grounding of each probabilistic fact

F. Riguzzi PLP 8 / 66

Probabilistic Logic Programming Distribution Semantics

Distribution Semantics

Case of no function symbols: finite Herbrand universe, finite set of groundings of each
clause

Atomic choice: selection of the i-th atom for grounding Cθ of clause C

represented with the triple (C , θ, i)

Example C1 = sneezing(X) : 0.7 ; null : 0.3← flu(X)., (C1, {X/bob}, 1)

Composite choice κ: consistent set of atomic choices

The probability of composite choice κ is

P(κ) =
∏

(C ,θ,i)∈κ

P0(C , i)

F. Riguzzi PLP 9 / 66

Probabilistic Logic Programming Distribution Semantics

Distribution Semantics

Selection σ: a total composite choice (one atomic choice for every grounding of each
clause)

A selection σ identifies a logic program wσ called world

The probability of wσ is P(wσ) = P(σ) =
∏

(C ,θ,i)∈σ P0(C , i)

Finite set of worlds: WP = {w1, . . . ,wm}
P(w) distribution over worlds:

∑
w∈WP P(w) = 1

F. Riguzzi PLP 10 / 66

Probabilistic Logic Programming Distribution Semantics

Distribution Semantics

Ground query Q

P(Q|w) = 1 if Q is true in w (WFM(w) |= Q) and 0 otherwise

P(Q) =
∑

w P(Q,w) =
∑

w P(Q|w)P(w) =
∑

w |=Q P(w)

F. Riguzzi PLP 11 / 66

Probabilistic Logic Programming Distribution Semantics

Example Program (LPAD) Worlds

sneezing(bob)← flu(bob). null ← flu(bob).
sneezing(bob)← hay fever(bob). sneezing(bob)← hay fever(bob).
flu(bob). flu(bob).
hay fever(bob). hay fever(bob).
P(w1) = 0.7× 0.8 P(w2) = 0.3× 0.8

sneezing(bob)← flu(bob). null ← flu(bob).
null ← hay fever(bob). null ← hay fever(bob).
flu(bob). flu(bob).
hay fever(bob). hay fever(bob).
P(w3) = 0.7× 0.2 P(w4) = 0.3× 0.2

P(Q) =
∑

w∈WP

P(Q,w) =
∑

w∈WP

P(Q|w)P(w) =
∑

w∈WP :w|=Q

P(w)

sneezing(bob) is true in 3 worlds

P(sneezing(bob)) = 0.7× 0.8 + 0.3× 0.8 + 0.7× 0.2 = 0.94

F. Riguzzi PLP 12 / 66

Probabilistic Logic Programming Distribution Semantics

Example Program (ProbLog) Worlds

4 worlds
sneezing(X)← flu(X), flu sneezing(X).
sneezing(X)← hay fever(X), hay fever sneezing(X).
flu(bob).
hay fever(bob).

flu sneezing(bob).
hay fever sneezing(bob). hay fever sneezing(bob).
P(w1) = 0.7× 0.8 P(w2) = 0.3× 0.8
flu sneezing(bob).
P(w3) = 0.7× 0.2 P(w4) = 0.3× 0.2

P(Q) =
∑

w∈WP

P(Q,w) =
∑

w∈WP

P(Q|w)P(w) =
∑

w∈WP :w|=Q

P(w)

sneezing(bob) is true in 3 worlds

P(sneezing(bob)) = 0.7× 0.8 + 0.3× 0.8 + 0.7× 0.2 = 0.94

F. Riguzzi PLP 13 / 66

Probabilistic Logic Programming Distribution Semantics

Logic Programs with Annotated Disjunctions

strong sneezing(X) : 0.3 ; moderate sneezing(X) : 0.5← flu(X).
strong sneezing(X) : 0.2 ; moderate sneezing(X) : 0.6← hay fever(X).
flu(bob).
hay fever(bob).

9 worlds

strong sneezing(bob) is true in 5

P(strong sneezing(bob)) = 0.3 · 0.2 + 0.3 · 0.6 + 0.3 · 0.2 + 0.5 · 0.2 + 0.2 · 0.2 = 0.44

F. Riguzzi PLP 14 / 66

Probabilistic Logic Programming Distribution Semantics

Expressive Power

All languages under the distribution semantics have the same expressive power

LPADs have the most general syntax

There are transformations that can convert each one into the others

F. Riguzzi PLP 15 / 66

Probabilistic Logic Programming cplint

cplint

cplint system for inference and learning

Web interface https://cplint.eu

F. Riguzzi PLP 16 / 66

https://cplint.eu

Programs with Function Symbols

Outline

1 Probabilistic Logic Programming

2 Programs with Function Symbols

3 Exact Inference

4 Approximate Inference

5 Parameter learning

6 Structure learning

7 Scaling structure learning

8 Applications

F. Riguzzi PLP 17 / 66

Programs with Function Symbols Function Symbols

Function Symbols

What if function symbols are present?

Infinite, denumerable Herbrand universe

Infinite, denumerable Herbrand base

Infinite, denumerable grounding of the program P
Each world infinite, denumerable

P(w) = 0

Uncountable WP

Semantics not well-defined

F. Riguzzi PLP 18 / 66

Programs with Function Symbols Function Symbols

Game of Cards

F1 = 1/3 :: spades(X).
F2 = 1/2 :: clubs(X).
pick(0, spades)← spades(0).
pick(0, clubs)←∼spades(0), clubs(0).
pick(0, hearts)←∼spades(0),∼clubs(0).
pick(s(X), spades)← pick(X ,),∼pick(X , hearts), spades(s(X)).
pick(s(X), clubs)← pick(X ,),∼pick(X , hearts),∼spades(s(X)), clubs(s(X)).
pick(s(X), hearts)← pick(X ,),∼pick(X , hearts),∼spades(s(X)),∼clubs(s(X)).
at least once spades ← pick(, spades).
never spades ←∼at least once spades.

F. Riguzzi PLP 19 / 66

Programs with Function Symbols Function Symbols

Function Symbols

The set of worlds ωκ compatible with a composite choice κ is ωκ = {wσ ∈WP |κ ⊆ σ}.
For programs without function symbols, P(κ) =

∑
w∈ωκ

P(w)

For program with function symbols
∑

w∈ωκ
P(w) may not be defined as ωκ may be

uncountable and P(w) = 0.

P(κ) is still well defined. Let us call it µ so µ(κ) = P(κ).

F. Riguzzi PLP 20 / 66

Programs with Function Symbols Function Symbols

Function Symbols

Given a set of composite choices K , the set of worlds ωK compatible with K is
ωK =

⋃
κ∈K ωκ.

Two composite choices κ1 and κ2 are incompatible if their union is not consistent.

A set K of composite choices is pairwise incompatible if for all κ1 ∈ K , κ2 ∈ K , κ1 6= κ2

implies that κ1 and κ2 are incompatible.

F. Riguzzi PLP 21 / 66

Programs with Function Symbols Function Symbols

Function Symbols

The probability of a pairwise incompatible set K of composite choices can be defined as
P(K) =

∑
κ∈K P(κ)

µ(K) = P(K)

Two sets K1 and K2 of composite choices are equivalent if they correspond to the same
set of worlds: ωK1 = ωK2 .

Given a query q, a composite choice κ is an explanation for q if ∀w ∈ ωκ : w � q.

A set K of composite choices is covering with respect to q if every world in which q is
true belongs to ωK .

F. Riguzzi PLP 22 / 66

Programs with Function Symbols Function Symbols

Game of Cards

The set K = {κ1, κ2} with

κ1 = {(f1, {X/0}, 1), (f1, {X/s(0)}, 1)}
κ2 = {(f1, {X/0}, 0), (f2, {X/0}, 1), (f1, {X/s(0)}, 1)}

is a pairwise incompatible finite set of finite explanations that are covering for the query
pick(s(0), spades)

P(on(s(0), 1)) = P(K) = 1/3 · 1/3 + 2/3 · 1/2 · 1/3 = 2/9

F. Riguzzi PLP 23 / 66

Programs with Function Symbols Function Symbols

Function Symbols

Theorem (Existence of a pairwise incompatible set of composite choices (Poole JLP00))

Given a finite set K of composite choices, there exists a finite set K ′ of pairwise incompatible
composite choices such that K and K ′ are equivalent.

Theorem (Equivalence of the probability of two equivalent pairwise incompatible finite sets of
finite composite choices (Poole AI03))

If K1 and K2 are both pairwise incompatible finite sets of finite composite choices such that
they are equivalent, then P(K1) = P(K2).

F. Riguzzi PLP 24 / 66

Programs with Function Symbols Probability Measure

Probability Measure

For a probabilistic logic program P, we can define the probability measure µP : ΩP → [0, 1]
where ΩP is defined as the set of sets of worlds identified by countable sets of countable
composite choices: ΩP = {ωK |K is a countable set of countable composite choices }.

Theorem (σ-algebra of a program)

ΩP is an σ-algebra over WP .

F. Riguzzi PLP 25 / 66

Programs with Function Symbols Probability Measure

Function Symbols

Theorem (Probability space of a program)

The triple 〈WP ,ΩP , µP〉 with
µP(ωK) = lim

n→∞
µ(K ′

n)

where K = {κ1, κ2, . . .} and K ′
n is a pairwise incompatible set of composite choices equivalent

to {κ1, . . . , κn}, is a probability space

F. Riguzzi PLP 26 / 66

Programs with Function Symbols Example

Example

The query at least once spades has the pairwise incompatible covering set of explanations
K + = {κ+

0 , κ
+
1 , . . .} with

κ+
0 = {(f1, {X/0}, 1)}
κ+

1 = {(f1, {X/0}, 0), (f2, {X/0}, 1), (f1, {X/s(0)}, 1)}
. . .

κ+
i = {(f1, {X/0}, 0), (f2, {X/0}, 1), . . . , (f1, {X/s i−1(0)}, 0),

(f2, {X/s i−1(0)}, 1), (f1, {X/s i (0)}, 1)}
. . .

P(at least once spades) =
1

3
+

2

3
· 1

2
· 1

3
+

(
2

3
· 1

2

)2

· 1

3
+ . . .

=
1

3
+

1

9
+

1

27
. . . =

1
3

1− 1
3

=
1
3
2
3

=
1

2

F. Riguzzi PLP 27 / 66

Programs with Function Symbols Well-Definedness of the Distribution Semantics

Function Symbols

Theorem (Well-definedness of the distribution semantics (Riguzzi IJAR16))

For a sound ground probabilistic logic program P, µP({w |w ∈WP ,w � a}) for all a ∈ BP is
well defined.

F. Riguzzi PLP 28 / 66

Programs with Function Symbols Continuous Random Variables

Continuous Random Variables

p(X) : gaussian(X , 0, 1).
a← p(X),X > 3

X follows a Gaussian distribution with mean 0 and variance 1

a is true if X is greater than 3

Constraints on random variables’ range

Probabilistic Constraint Logic Programs (Michels et al AI15)

How about continuous random variables and function symbols?

F. Riguzzi PLP 29 / 66

Programs with Function Symbols Continuous Random Variables

Continuous Random Variables and Function Symbols

Variation of the previous program, with another requirement: the player spins a wheel,
and the game continues only if the axis is in the range]π, 2π]

. . .
angle(,X) : uniform dens(X , 0, 6.28)
pick(0, spades)← spades(0), angle(0,V),V > 3.14.
. . .
pick(s(X), spades)← pick(X ,),∼pick(X , hearts), spades(s(X)), angle(s(X),V),V > 3.14.
. . .
at least once spades ← pick(, spades).
never spades ←∼at least once spades.

F. Riguzzi PLP 30 / 66

Programs with Function Symbols Continuous Random Variables

Function Symbols

Theorem (Well-definedness of the distribution semantics - PCLP (Azzolini, Riguzzi, Lamma
AI21))

For a sound ground probabilistic constraint logic program P, for all ground atoms a,
µP({w | w ∈WP ,WFM(w) � a}) is well-defined.

F. Riguzzi PLP 31 / 66

Exact Inference

Outline

1 Probabilistic Logic Programming

2 Programs with Function Symbols

3 Exact Inference

4 Approximate Inference

5 Parameter learning

6 Structure learning

7 Scaling structure learning

8 Applications

F. Riguzzi PLP 32 / 66

Exact Inference Inference for PLP under DS

Inference for PLP under DS

Computing the probability of a query (no evidence)

Knowledge compilation:
compile the program to an intermediate representation

Binary Decision Diagrams (ProbLog [De Raedt et al. IJCAI07], cplint [Riguzzi
AIIA07,Riguzzi LJIGPL09], PITA [Riguzzi & Swift ICLP10, ICLP11])
deterministic Decomposable Negation Normal Form circuits (d-DNNF) (ProbLog2 [Fierens et
al. TPLP15])
Sentential Decision Diagrams (ProbLog2 [Fierens et al. TPLP15])

compute the probability by weighted model counting

F. Riguzzi PLP 33 / 66

Exact Inference Knowledge Compilation

Knowledge Compilation

Assign Boolean random variables to the probabilistic rules

Given a query Q, compute a covering set of explanation K

Build the formula
F (Q) =

∨
κ∈K

∧
X∈κ

X
∧
X∈κ

X

Build a BDD representing F (Q)

F. Riguzzi PLP 34 / 66

Exact Inference Knowledge Compilation

Example

A covering set of explanations for sneezing(bob) is K = {κ1, κ2}
κ1 = {X11} κ2 = {X21}
X11 ← (C1, θ1 = {X/bob}, 1) X21 ← (C2, θ1 = {X/bob}, 1)
fK (X) = X11 ∨ X21.

In order to compute the probability, we must make the explanations mutually exclusive

[De Raedt at. IJCAI07]: Binary Decision Diagram (BDD)

F. Riguzzi PLP 35 / 66

Exact Inference Binary Decision Diagrams

Binary Decision Diagrams

A BDD for a function of Boolean variables is a rooted graph that has one level for each
Boolean variable

A node n in a BDD has two children: one corresponding to the 1 value of the variable
associated with n and one corresponding the 0 value of the variable

The leaves store either 0 or 1.

X11

X21

1

0

X11 X21

F. Riguzzi PLP 36 / 66

Exact Inference Tabling

Tabling

PITA (Probabilistic Inference with Tabling and Answer subsumption) (Riguzzi Swift ICLP
2010 ICLP11)

All the explanations for a goal have to be found

It makes sense to store the explanations for subgoals with tabling

Associate to each answer (ground atom) a BDD representing its explanations

Combine BDDs by using the Boolean operators offered by BDD manipulating packages

Library for manipulating BDD directly in Prolog (interface to CUDD)

A BDD is represented in Prolog by an integer indicating the address of its root node

Casting for integer-pointer conversion

F. Riguzzi PLP 37 / 66

Exact Inference Tabling

Tabling

Add an extra argument to each atom for storing a BDD

When an answer p(x, bdd) is found, bdd represents the explanations for p(x)

If the program is range restricted, p(x) is ground

Use program transformation to obtain a Prolog program from an LPAD

F. Riguzzi PLP 38 / 66

Approximate Inference

Outline

1 Probabilistic Logic Programming

2 Programs with Function Symbols

3 Exact Inference

4 Approximate Inference

5 Parameter learning

6 Structure learning

7 Scaling structure learning

8 Applications

F. Riguzzi PLP 39 / 66

Approximate Inference Inference by Sampling

Approximate Inference

Inference problem is #P hard

For large models inference is intractable

Approximate inference

Monte Carlo: draw samples of the truth value of the query
Iterative deepening: gives a lower and an upper bound
Compute only the best k explanations: branch and bound, gives a lower bound

F. Riguzzi PLP 40 / 66

Approximate Inference MCINTYRE

Monte Carlo - MCINTYRE (Riguzzi FI13)

The disjunctive clause
Cr = H1 : α1 ∨ . . . ∨ Hn : αn ← L1, . . . , Lm.
is transformed into the set of clauses MC (Cr)
MC (Cr , 1) = H1 ← L1, . . . , Lm, sample head(r ,Vars, [α1, . . . , αn],NH),NH = 1.
. . .
MC (Cr , n) = Hn ← L1, . . . , Lm, sample head(r ,Vars, [α1, . . . , αn],NH),NH = n.

Sample truth value of query Q:

...
(call(Q)-> NT1 is NT+1; NT1 =NT),

...

F. Riguzzi PLP 41 / 66

Approximate Inference MCINTYRE

Monte Carlo - MCINTYRE

sample_head(R,Vars,_HeadList,N):-
sampled(R,Vars,N),!.

sample_head(R,Vars,HeadList,N):-
sample(HeadList,N),
assertz(sampled(R,Vars,N)).

Simplicity of implementation

The estimate can be improved as more time is available, making it an anytime algorithm.

F. Riguzzi PLP 42 / 66

Approximate Inference Markov Chain Monte Carlo

Markov Chain Example:

Model checking of a Markov chain: we want to know what is the likelihood that on an
execution of the chain from a start state s, a final state t will be reached?

The chains may be infinite so the query may have an infinite
number of explanations

PITA may not terminate.
Two solutions. We may either fix a bound on the depth of
the derivations of PITA by setting the parameters
:- set_pita(depth_bound,true).
:- set_pita(depth,<level of depth (integer)>).

Alternatively, MCINTYRE can be used.

F. Riguzzi PLP 43 / 66

Approximate Inference Hybrid Programs

Monte Carlo for Hybrid Programs

Monte Carlo inference can be used almost directly for approximate inference for hybrid
programs.

Ci = g(X ,Y) : gaussian(Y , 0, 1)← object(X).

MCINTYRE transforms it into (Riguzzi Bellodi Lamma Zese Cota SPE16, Alberti,
Bellodi, Cota, Riguzzi, Zese IA17)

g(X ,Y)← object(X), sample gauss(i , [X], 0, 1,Y).

sample_gauss(R,Vars,_Mean,_Variance,S):-
sampled(R,Vars,S),!.

sample_gauss(R,Vars,Mean,Variance,S):-
gauss(Mean,Variance,S),
assertz(sampled(R,Vars,S)).

F. Riguzzi PLP 44 / 66

Approximate Inference Conditional Inference

Conditional Inference

Computing the probability of a query given evidence: rejection sampling,
Metropolis-Hastings or Gibbs Markov chain Monte Carlo.

Rejection sampling: the evidence is first queried and, if it is successful, the query is asked
in the same sample; otherwise, the sample is discarded.

In Metropolis-Hastings and Gibbs MCMC, a Markov chain is built by taking an initial
sample and by generating successor samples

cplint implements both Metropolis-Hastings (Alberti, Bellodi, Cota, Riguzzi, Zese
IA17) and Gibbs (Azzolini, Riguzzi, Lamma PLP20)

F. Riguzzi PLP 45 / 66

Parameter learning

Outline

1 Probabilistic Logic Programming

2 Programs with Function Symbols

3 Exact Inference

4 Approximate Inference

5 Parameter learning

6 Structure learning

7 Scaling structure learning

8 Applications

F. Riguzzi PLP 46 / 66

Parameter learning Parameter learning

Parameter Learning

Problem: given a set of interpretations, a program, find the parameters maximizing the
likelihood of the interpretations (or of instances of a target predicate)

The interpretations record the truth value of ground atoms, not of the choice variables

Unseen data: relative frequency can’t be used

F. Riguzzi PLP 47 / 66

Parameter learning Parameter learning

Parameter Learning

UW-CSE domain (Kok, Domingos ICML05)

The objective is to predict the “advised by” relation between students and professors.

taughtby(ai , course44, person171).
taughtby(ai , course24, person240).
. . .
courselevel(ai , course52, level 400).
courselevel(ai , course44, level 400).
. . .
hasposition(ai , person292, faculty affiliate).
hasposition(ai , person293, faculty affiliate).
. . .
advisedby(ai , person265, person168).
advisedby(ai , person381, person168).
. . .

F. Riguzzi PLP 48 / 66

Parameter learning Parameter learning

Parameter Learning

advisedby(A,B) : 0.53 ; tempadvisedby(A,B) : 0.26← ta(C ,A), taughtby(C ,B).
advisedby(A,B) : 0.03← publication(C ,B), publication(C ,A), professor(B), student(A).
advisedby(A,B) : 0.05← professor(B).
hasposition(A, faculty) : 0.34 ; hasposition(A, faculty adjunct) : 0.22 ;
hasposition(A, faculty emeritus) : 0.14 ;
hasposition(A, faculty visiting) : 0.09← professor(A).
professor(A) : 0.56← hasposition(A,B).
. . .

F. Riguzzi PLP 49 / 66

Parameter learning Parameter learning

Parameter Learning

An Expectation-Maximization algorithm must be used:

Expectation step: the distribution of the unseen variables in each instance is computed given
the observed data
Maximization step: new parameters are computed from the distributions using relative
frequency
End when likelihood does not improve anymore

F. Riguzzi PLP 50 / 66

Parameter learning EMBLEM

EMBLEM (Bellodi Riguzzi IDA13)

EM over Bdds for probabilistic Logic programs Efficient Mining

Input: an LPAD; logical interpretations (data); target predicate(s)

All ground atoms in the interpretations for the target predicate(s) correspond to as many
queries

BDDs encode the explanations for each query Q

Expectations computed with two passes over the BDDs

F. Riguzzi PLP 51 / 66

Structure learning

Outline

1 Probabilistic Logic Programming

2 Programs with Function Symbols

3 Exact Inference

4 Approximate Inference

5 Parameter learning

6 Structure learning

7 Scaling structure learning

8 Applications

F. Riguzzi PLP 52 / 66

Structure learning Structure learning

Structure Learning for LPADs

Given a trivial LPAD or an empty one, a set of interpretations (data)

Find the model and the parameters that maximize the probability of the data
(log-likelihood)

SLIPCOVER: Structure LearnIng of Probabilistic logic program by searching OVER the
clause space (Riguzzi Bellodi TPLP15)

1 Beam search in the space of clauses to find the promising ones
2 Greedy search in the space of probabilistic programs guided by the LL of the data.

Parameter learning by means of EMBLEM

F. Riguzzi PLP 53 / 66

Structure learning Structure learning

SLIPCOVER

Cycle on the set of predicates that can appear in the head of clauses, either target or
background

For each predicate, beam search in the space of clauses

The initial set of beams is generated by building a set of bottom clauses as in Progol
(Muggleton NGC95)

F. Riguzzi PLP 54 / 66

Structure learning SLIPCOVER

SLIPCOVER

After the clause search phase, SLIPCOVER performs a greedy search in the space of
theories:

it starts with an empty theory and adds a target clause at a time from the list TC .
After each addition, it runs EMBLEM and computes the LL of the data as the score of the
resulting theory.
If the score is better than the current best, the clause is kept in the theory, otherwise it is
discarded.

Finally, SLIPCOVER adds all the background clauses to the theory and performs
parameter learning on the resulting theory.

F. Riguzzi PLP 55 / 66

Scaling structure learning

Outline

1 Probabilistic Logic Programming

2 Programs with Function Symbols

3 Exact Inference

4 Approximate Inference

5 Parameter learning

6 Structure learning

7 Scaling structure learning

8 Applications

F. Riguzzi PLP 56 / 66

Scaling structure learning Scaling structure learning

Scaling PILP

PILP requires expensive learning procedures due to the high cost of inference.

Two systems that try to remedy this are LIFTCOVER (Nguembang Fadja, Riguzzi ML19)
and SLEAHP (Nguembang Fadja, Riguzzi, Lamma ML21)

F. Riguzzi PLP 57 / 66

Scaling structure learning LIFTCOVER

LIFTCOVER

Lifted inference for reasoning on whole populations of individuals instead of considering
each individual separately.

Simple PLP language (liftable PLP) where programs contain clauses with a single
annotated atom in the head and the predicate of this atom is the same for all clauses.

In this case, all the approaches for lifted inference coincide and reduce to a simple
computation.

F. Riguzzi PLP 58 / 66

Scaling structure learning LIFTCOVER

UW-CSE

advisedby(A,B) : 0.4←
student(A), professor(B), publication(C ,A), publication(C ,B).

advisedby(A,B) : 0.5←
student(A), professor(B), ta(C ,A), taughtby(C ,B).

The probability that a student is advised by a professor depends on the number of joint
publications and the number of courses the professor teaches where the student is a TA,
the higher these numbers the higher the probability.

q = advisedby(harry , ben) where harry is a student, ben is a professor, they have 4 joint
publications and ben teaches 2 courses where harry is a TA.
P(advisedby(harry , ben)) = 1− (1− 0.4)4(1− 0.5)2 = 0.9676.

F. Riguzzi PLP 59 / 66

Scaling structure learning SLEAHP

SLEAHP

SLEAHP (Nguembang Fadja, Riguzzi, Lamma ML21) extends liftable PLP to Hierarchical
Probabilistic Logic Programs (HPLPs)

The computation of probabilities in such programs is truth-functional

Independent-or assumption

Suitable for domains where entities may be related to a varying number of other entities.

F. Riguzzi PLP 60 / 66

Scaling structure learning SLEAHP

UW-CSE

C1 = advised by(A,B) : 0.3←
student(A), professor(B), project(C ,A), project(C ,B),
r1 1(A,B,C).

C2 = advised by(A,B) : 0.6←
student(A), professor(B), ta(C ,A), taughtby(C ,B).

C1 1 1 = r1 1(A,B,C) : 0.2←
publication(P,A,C), publication(P,B,C).

The probability of q = advised by(harry , ben) depends not only on the number of joint
courses and projects but also on the number of joint publications from projects.

F. Riguzzi PLP 61 / 66

Scaling structure learning SLEAHP

UW-CSE

harry and ben have two joint courses c1 and c2, two joint projects pr1 and pr2, two joint
publications p1 and p2 from project pr1 and two joint publications p3 and p4 from project
pr2.

adivsedby(harry, ben)

G1

r1 1(harry, ben, pr1)

G1 1 1 G1 1 2

G2

r1 1(harry, ben, pr2)

G2 1 1 G2 1 2

G3 G4

⊕

×

⊕

1

0.2

1

0.2

0.36

0.3

0.36

×

⊕

1

0.2

1

0.2

0.36

0.3

0.36

×

1

0.6

1

×

1

0.6

1

0.873

p ⊕ q = 1− (1− p) · (1− q)

F. Riguzzi PLP 62 / 66

Applications

Outline

1 Probabilistic Logic Programming

2 Programs with Function Symbols

3 Exact Inference

4 Approximate Inference

5 Parameter learning

6 Structure learning

7 Scaling structure learning

8 Applications

F. Riguzzi PLP 63 / 66

Applications Applications

Applications

UW-CSE

Mutagenesis (Srinivasan et al. AI96): quantitative structure-activity relationship (QSAR):
predicting the biological activity of chemicals from their physicochemical properties or
molecular structure.

Carcinogenesis (Srinivasan et al. ILP97): QSAR, predict the cancerogenicity of
compounds from their chemical structure.

Mondial (Schulte, Khosravi ML12): information regarding geographical regions of the
world

Hepatitis (Khosravi et al. ML12): Discovery Challenge of ECML/PKDD 2002,
information on laboratory examinations of hepatitis B and C infected patients

Bupa (McDermot, Forsyth PRL16): diagnosing patients with liver disorders.

F. Riguzzi PLP 64 / 66

Applications Applications

Applications

NBA (Schulte, Routley, CIDM14): predicting the results of basketball matches from NBA.

Pyrimidine, Triazine (Layne, Qiu, 2005): predicting the inhibition of dihydrofolate
reductase by pyrimidines and triazines

Financial (Berka ECMLDC00): predicting the success of loan applications by clients of a
bank.

Sisyphus (Blockeel, Struyf IDDM01): classifying households and persons in relation to
private life insurance.

Yeast (Davis et al. ECML05): predicting whether a yeast gene codes for a protein
involved in metabolism.

Event Calculus (Schwitter ICLP17): learning effect axioms for the Event Calculus

F. Riguzzi PLP 65 / 66

Conclusions

Conclusions

Probabilistic Logic Progrramming

Semantics for programs with function symbols and
continuous random variables

Inference

Learning

Open problems

Exact inference with continuous variables
Learning for hybrid programs
Combining Deep Learning with PLP

out in October 2022

F. Riguzzi PLP 66 / 66

	Probabilistic Logic Programming
	Combining Logic and Probability
	Languages
	Distribution Semantics
	cplint

	Programs with Function Symbols
	Function Symbols
	Probability Measure
	Example
	Well-Definedness of the Distribution Semantics
	Continuous Random Variables

	Exact Inference
	Inference for PLP under DS
	Knowledge Compilation
	Binary Decision Diagrams
	Tabling

	Approximate Inference
	Inference by Sampling
	MCINTYRE
	Markov Chain Monte Carlo
	Hybrid Programs
	Conditional Inference

	Parameter learning
	Parameter learning
	EMBLEM

	Structure learning
	Structure learning
	SLIPCOVER

	Scaling structure learning
	Scaling structure learning
	LIFTCOVER
	SLEAHP

	Applications
	Applications

	Conclusions

