
Probabilistic Logic Programming with cplint
Week 1, lecture 2: approximate inference

Fabrizio Riguzzi

F. Riguzzi cplint, week 1, lecture 2 1 / 19



Approximate Inference

For large models inference is intractable
Approximate inference

Monte Carlo: draw samples of the truth value of the query
(MCINTYRE)
Iterative deepening: gives a lower and an upper bound
Compute only the best k explanations: branch and bound, gives a
lower bound

F. Riguzzi cplint, week 1, lecture 2 2 / 19



Monte Carlo

1: function MONTECARLO(P,q,n)
2: Input: Program P, query q, number of samples n,
3: Output: P(q)
4: transform P
5: Samples ← 0
6: TrueSamples ← 0
7: for i = 1→ n do
8: Samples ← Samples + 1
9: if SAMPLE(q) succeeds then

10: TrueSamples ← TrueSamples + 1
11: end if
12: end for
13: p̂ ← TrueSamples

Samples
14: return p̂
15: end function

F. Riguzzi cplint, week 1, lecture 2 3 / 19



Markov Chain Example:

Model checking of a Markov chain: we want to know what is the
likelihood that on an execution of the chain from a start state s, a final
state t will be reached?

The chains may be infinite so the query may
have an infinite number of explanations
PITA may not terminate.
Two solutions. We may either fix a bound on
the depth of the derivations of PITA by
setting the parameters
:- set_pita(depth_bound,true).
:- set_pita(depth,<level of depth (integer)>).

Alternatively, MCINTYRE can be used.

F. Riguzzi cplint, week 1, lecture 2 4 / 19



Markov Chain Example:

% load the library ‘mcintyre’ to perform approximate inference
:- use_module(library(mcintyre)).
% load the renderer ‘c3’ for graphical results
:- use_rendering(c3).
% initialize the library ’mcintyre’
:- mc.
% to be written before the program
:- begin_lpad.
reach(S, I, T) :-

trans(S, I, U),
reach(U, next(I), T).

reach(S, _, S).
trans(s0,S,s0):0.5; trans(s0,S,s1):0.3; trans(s0,S,s2):0.2.
trans(s1,S,s1):0.4; trans(s1,S,s3):0.1; trans(s1,S,s4):0.5.
trans(s4,_,s3).
% to be written after the program
:- end_lpad.

F. Riguzzi cplint, week 1, lecture 2 5 / 19



MCINTYRE

To execute queries we must use the predicates mc_prob/2

mc_prob(:Query:atom,-Probability:float).

We ask for the probability that starting at state ’s0’ at instance 0, state
’s3’ is reachable

mc_prob(reach(s0,0,s3),P).
mc_prob(reach(s0,0,s3),P),bar(P,G).

F. Riguzzi cplint, week 1, lecture 2 6 / 19



MCINTYRE

You can also take a given number of sample with

mc_sample(:Query:atom,+Samples:int,
-Probability:float).

The query

mc_sample(reach(s0,0,s3),1000,P).

samples reach(s0,0,s3) 1000 times and returns in P the estimated
probability.

F. Riguzzi cplint, week 1, lecture 2 7 / 19



Sampling Arguments

We can also sample arguments of queries with the predicate
mc_sample_arg/4

mc_sample_arg(:Query:atom,+Samples:int,
?Arg:var,-Values:list).

The predicate samples Query a number of Samples times.
Arg should be a variable in Query.
Values is a list of couples L-N where L is the list of values of Arg
for which Query succeeds in world sampled at random and N is
the number of samples.

Observations:
If L is the empty list, it means that for that sample the query failed.
If L is a list with a single element, it means that for that sample the
query is determinate.

F. Riguzzi cplint, week 1, lecture 2 8 / 19



Sampling Arguments

mc_sample_arg(reach(s0,0,S),50,S,Values).

If we want to see the bar graph of this sampling we use the predicate
argbar/2

argbar(+List:list,-Chart:dict).

For example

mc_sample_arg(reach(s0,0,S),50,S,List),
argbar(List,Chart).

F. Riguzzi cplint, week 1, lecture 2 9 / 19



Sampling Arguments

Moreover, we can sample arguments of queries with the predicate
mc_sample_arg_first/4

mc_sample_arg_first(:Query:atom,+Samples:int,
?Arg:var,-Values:list)

Values is a list of couples V-N where V is the value of Arg
returned as the first answer by Query in a world sampled at
random and N is the number of samples returning that value. V is
failure if the query fails.

Example

mc_sample_arg_first(reach(s0,0,S),50,S,Values).

F. Riguzzi cplint, week 1, lecture 2 10 / 19



Computing Expectations

Example: Coupon Collector Problem
http://cplint.eu/e/coupon.swinb

Suppose each box of cereal contains one of N different
coupons and once a consumer has collected a coupon of each
type, he can trade them for a prize. The aim of the problem
is determining the average number of cereal boxes the con-
sumer should buy to collect all coupon types, assuming that
each coupon type occurs with the same probability in the ce-
real boxes.
If there are 5 different coupons, what is the expected number
of boxes I have to buy to get the prize?

F. Riguzzi cplint, week 1, lecture 2 11 / 19

http://cplint.eu/e/coupon.swinb


Computing Expectations

mc_expectation(:Query:atom,+N:int,?Arg:var,
-Exp:float).

Example

mc_expectation(coupons(5,T),100,T,Exp).

F. Riguzzi cplint, week 1, lecture 2 12 / 19



Approximate Conditional Inference

Example: random arithmetic functions
http://cplint.eu/e/arithm.pl

This example generatively defines a random arithmetic func-
tion. The problem is to predict the value returned by the func-
tion given one or two couples of input-output, i.e., to compute
a conditional probability.
Sampling is necessary as queries have an infinite number of
explanations

F. Riguzzi cplint, week 1, lecture 2 13 / 19

http://cplint.eu/e/arithm.pl


Rejection Sampling

In rejection sampling, the evidence is first queried and, if it is
successful, the query is asked in the same sample; otherwise, the
sample is discarded

mc_rejection_sample(:Query:atom,:Evidence:atom,
+Samples:int,-Probability:float,+Options:list).

Example

mc_rejection_sample(eval(2,4),eval(1,3),1000,P,[]).

F. Riguzzi cplint, week 1, lecture 2 14 / 19



Metropolis-Hastings

In Metropolis-Hastings Markov Chain Monte Carlo, a Markov
chain is built by taking an initial sample and by generating
successor samples
After a sample, a number (lag) of sampled probabilistic choices
are deleted and the others are retained for the next sample.
The sample is accepted with a probability of min{1,N0/N1} where
N0 is the number of choices sampled in the previous sample and
N1 is the number of choices sampled in the current sample.
Metropolis-Hastings is usually much faster than rejection sampling
because less samples are discarded.

F. Riguzzi cplint, week 1, lecture 2 15 / 19



Metropolis-Hastings

To use Metropolis-Hastings, the following predicate is available

mc_mh_sample(:Query:atom,:Evidence:atom,+Samples:int,
-Probability:float,+Options:list).

where Options is a list of options, the following are recognised:
mix(+Mix:int) The first Mix samples are discarded (mixing
time), default value 0
lag(+lag:int) lag between each sample, Lag sampled
choices are forgotten, default value 1
successes(-successes:int) Number of successes
failures(-failures:int) Number of failures

F. Riguzzi cplint, week 1, lecture 2 16 / 19



Metropolis-Hastings

mc_mh_sample(eval(2,4),eval(1,3),10000,P).

takes 10000 accepted samples and returns in P the estimated
probability

F. Riguzzi cplint, week 1, lecture 2 17 / 19



Sampling Arguments

You can sample arguments of queries with rejection sampling and
Metropolis-Hastings MCMC using

mc_rejection_sample_arg(:Query:atom,:Evidence:atom,
+Samples:int,?Arg:Var,-Values:list,+Options:list).

mc_mh_sample_arg(:Query:atom,:Evidence:atom,
+Samples:int,?Arg:Var,-Values:list,+Options:list).

Example

mc_mh_sample_arg(eval(2,Y),eval(1,3),1000,Y,L),
argbar(L,C).

F. Riguzzi cplint, week 1, lecture 2 18 / 19



Conditional Expectations

mc_mh_expectation(:Query:atom,:Evidence:atom,+N:int,
?Arg:var,-Exp:float,+Options:list).

Example

mc_mh_expectation(eval(2,Y),eval(1,3),1000,Y,E,[]).

F. Riguzzi cplint, week 1, lecture 2 19 / 19


