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Hybrid Programs

@ Up to now only discrete random variables and discrete probability
distributions.

@ Hybrid Probabilistic Logic Programs: some of the random
variables are continuous.

@ cplint allows the specification of density functions over arguments
of atoms in the head of rules



Hybrid

Programs

@ A probability density on an argument var of an atom 2 is
specified with

A

Density :— Body.

where Density is a special atom

uniform(Var, L, U): Var is uniformly distributed in [L, U]
gaussian (Var,Mean, Variance): Gaussian distribution
dirichlet (Var, Par): Dirichlet distribution with parameters o
specified by the list Par

gamma (Var, Shape, Scale): gamma distribution

beta (Var,Alpha, Beta) : beta distribution

+ others (see the manual)



|
Hybrid Programs

@ Also discrete distribution, with either a finite or countably infinite
support:
@ discrete (Var,D) or finite (Var,D): D is a list of couples
Value:Prob assigning probability Prob to value
@ uniform(Var,D):D is a list of values each taking the same
probability (1 over the length of D).
@ poisson (Var, Lambda) : Poisson distribution



Examples

g(X) : gaussian(X,0,1).




Inference

@ If an atom encodes a continuous random variable (such as g (X)
above), asking the probability that a ground instantiation, such as
g (0.3),is true is not meaningful, as the probability that a
continuous random variables takes a specific value is always 0.

@ In this case you are more interested in computing the distribution
of X of a goal g (X), possibly after having observed some
evidence.



Gaussian Mixture Example

@ http://cplint.eu/e/gaussian_mixture.pl defines a
mixture of two Gaussians:

heads:0.6;tails:0.4.
g (X): gaussian(X,0, 1).
h(X): gaussian(X,5, 2).
mix (X) :— heads, g(X).
mix (X) :— tails, h(X).
@ The argument X of mix (X) follows a distribution that is a mixture
of two Gaussian, one with mean 0 and variance 1 with probability
0.6 and one with mean 5 and variance 2 with probability 0.4.


http://cplint.eu/e/gaussian_mixture.pl

Gaussian Mixture Example

@ We can perform the query
mc_sample_arg (mix(X),1000,X,Values) .
@ histogram/3 draws a histogram of values
histogram(+List:1ist, -Chart:dict,+Options:1list).
@ possible Options:

@ min (+Min:float) the minimum value of domain, default value
the minimum in List

@ max (+Max:float) the maximum value of domain, default value
the maximum in List

@ nbins (+NBins:int) the number of bins for dividing the domain,
default value 40



Gaussian Mixture Example

@ Probability density function of x, we can use

mc_sample_arg(mix (X),1000,X,_Values),
histogram(_Values, Chart, []) .



Posterior estimation in Bayesian models Example

@ The parameters of the distribution atoms can be taken from the
probabilistic atom, the example
http://cplint.eu/e/gauss_mean_est.pl
val(I,X) :—

mean (M) ,

val(I,M,X).
mean (M) : gaussian(M,1.0, 5.0).
val(_,M,X): gaussian(X,M, 2.0).

@ states that for an index I the continuous variable X is sampled
from a Gaussian whose variance is 2 and whose mean is sampled
from a Gaussian with mean 1 and variance 5.


http://cplint.eu/e/gauss_mean_est.pl

Kalman Filter Example

@ Any operation is allowed on continuous random variables. Kalman

filter http://cplint.eu/e/kalman_filter.pl:

kf(N,0, T) :-

init (S),

kf_part (0, N, S,0,T).
kf_part(I, N, S,[V|IRO], T) :-

I <N,

NextI is I+1,

trans (S, I,NextS),

emit (NextS,I,V),

kf_part (NextI, N, NextS,RO, T).
kf_part (N, N, S, [],S).
trans (S, I,NextS) :-—

{NextS =:= E + S},

trans_err(I,E).
emit (NextS,I,V) :—

{NextS =:= V+X},

obs_err(I,X).
init (S) :gaussian(S,0,1).
trans_err(_,E) :gaussian(E, 0,2) .
obs_err(_,E) :gaussian(E,0,1).

@ In case random variables are not sufficiently instantiated to exploit

expressions for inferring the values of other variables, inference

will return an error.
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http://cplint.eu/e/kalman_filter.pl

Conditional Queries

@ You can also execute conditional queries over hybrid programs.

@ Sampling arguments of goals representing continuous random
variables and drawing a probability density of the sampled
argument.

@ Three cases

@ The evidence does not contain atoms with continuous random
variables (the probability of evidence is different from 0).

@ The evidence contains atoms with continuous random variables,
but its probability is not zero.

© The evidence contains the grounding of atoms with continuous
random variables (its probability is 0).

@ For the first two cases you can use the predicates
mc_rejection_sample_arg/6 and mc_mh_sample_arg/6.



Conditional Queries, Case 1

@ Take 1000 samples of x in mix(X) given that heads was true using
rejection sampling and Metropolis-Hastings MCMC
mc_rejection_sample_arg(mix (X),heads,1000,X,_V),

histogram(_V,Chart, []) .
mc_mh_sample_arg(mix(X),heads,1000,X,_V, [lag(2)1),

histogram(_V,Chart, []) .
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Conditional Queries, Case 2

@ Take 1000 samples of X in mix (X) given that x>2 was true using
rejection sampling and draw an histogram of the probability
density of x
mc_rejection_sample_arg(mix(X), (mix(Y),¥Y>2),

1000,X,_V,), histogram(_V,Chart, []).
mc_mh_sample_arg(mix(X), (mix(Y),¥>2),1000, X,
_Values, [lag(2)]),histogram(_Values,Chart, []) .



Conditional Queries, Case 3

@ When you have evidence on ground atoms that have continuous
values as arguments (probability of the evidence is 0), you need to
use likelihood weighting

@ For each sample to be taken, likelihood weighting uses a
meta-interpreter to find a sample where the goal is true

@ Then a different meta-interpreter is used to evaluate the evidence
attaching a weight to the sample.

@ Each time the meta-interpreter encounters a probabilistic choice
over a continuous variable, it it was already sampled, it computes

the probability density of the sampled value and multiplies the
weight by it.



Posterior estimation in Bayesian models Example

@ Estimating the true value of a Gaussian distributed random
variable, given some observed data.

@ The variance is known (2) and we suppose that the mean has a
Gaussian distribution with mean 1 and variance 5.

@ We take different measurement (e.g. at different times), indexed
with an integer. Given that we observe 9 and 8 at indexes 1 and 2,
how does the distribution of the random variable (value at index 0)
changes with respect to the case of no observations?



Posterior estimation in Bayesian models Example

@ Likelihood weighing
mc_lw_sample_arg(:Query:atom, :Evidence:atomn,

+N:int, ?Arg:var, -Vallist)

@ ValList a list of couples v—-w where v is a value of Arg for which
Query succeeds and W is the weight computed by likelihood
weighting according to Evidence

@ Given that we observe 9 and 8 at indexes 1 and 2, what is the
distribution of the random variable (value at index 0)?
mc_lw_sample_arg(val(0,X), (val(l,9),val(2,8)),

1000,X,V).
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Posterior estimation in Bayesian models Example

density (+List:1ist,-Chart:dict,+Options:1list)
draws a line chart of the density of the samples in List

densities (+PriorList:1ist, +PostList:1ist, -Chart:dict,
+Options:1ist)

draws a line chart of the density of two sets of samples, usually prior
and post observations.
The same options as in histogram/3 are recognised.

?- mc_sample_arg(val(0,X),1000,X,L0,[]),
histogram(LO,Chart, []).

?- mc_sample_arg(val(0,X),1000,X,L0,[]),
density (L0, Chart, []) .

? - mc_sample_arg(val(0,Y),1000,Y,_VO0),
mc_lw_sample_arg(val(0,X), (val(1,9),val(2,8)),1000,X%X,_V),
densities (_VO0,_V,Chart, []).



N
Expectations

mc_lw_expectation (:Query:atom, Evidence:atom,
+N:int, ?Arg:var, -Exp:float)

@ computes the expected value of Arg in Query given that
Evidence is true.

@ It takes N samples, weighting each according to the evidence, and
returns their weighted average.



Particle Filtering

@ In some cases likelihood weighting encounters numerical
problems, as the weights of samples may go rapidly to very small
numbers that can be rounded to 0 by floating point arithmetic.

@ This happens for example for dynamic models,

@ Particle filtering periodically resamples the individual
samples/particles so that their weight is reset to 1.

@ In particle filtering, the evidence is a list of literals. A number n of
samples of the query is taken that are weighted by the likelihood
of the first element of the evidence list.

@ Each sample constitutes a particle and the sampled random
variables are stored away.

@ After weighting, n particles are resampled with replacement with a
probability proportional to their weight.

@ Then the next element of the evidence is considered.



Particle Filtering Example

http://cplint.eu/e/kalman_filter.pl

?-[01,02,03,04]1=[-0.133, -1.183, -3.212, -4.586],
mc_particle_sample_arg([kf_fin(1,T1),kf_fin(2,T2),
kf fin(3,T3),kf_fin(4,T4)],
[kf_o(1,01),kf_o0(2,02),kf_0(3,03),kf_o(4,04)],100,
[T1,T2,T3,T4], [F1,F2,F3,F4]).

performs particle filtering for a Kalman filter with four observations. For
each observation, the value of the state at the same time point is
sampled. The list of samples is returned in [F1,F2,F3,F4]

mc_particle_sample (:Query:atom, :Evidence:1list,
+Samples:int, -Prob:float)

mc_particle_expectation (:Query:atom,Evidence:atom,
+N:int, ?Arg:var, -Exp:float)


http://cplint.eu/e/kalman_filter.pl

