Week 2, lecture 2: learning

Probabilistic Logic Programming with cplint J

Fabrizio Riguzzi



Parameter Learning

Definition
Given an LPAD P with unknown parameters and two sets
E* ={ey,...,er}and E- ={er.1,...,eq} of ground atoms (positive

and negative examples), find the value of the parameters N of P that
maximize the likelihood of the examples, i.e., solve

T Q
argmax P(ET, ~E™) = arg maxH P(et) H P(~e).
n n i t=T+1

The predicates for the atoms in E* and E— are called target because
the objective is to be able to better predict the truth value of atoms for
them. )




Parameter Learning

@ Typically, the LPAD P has two components:
o a set of rules, annotated with parameters
e a set of certain ground facts, representing background knowledge
on individual cases of a specific world
@ Useful to provide information on more than one world: a
background knowledge and sets of positive and negative
examples for each world

@ Description of one world: mega-interpretation or mega-example

@ Positive examples encoded as ground facts of the
mega-interpretation and the negative examples as suitably
annotated ground facts (such as neg(a) for negative example a)

@ The task then is maximizing the product of the likelihood of the
examples for all mega-interpretations.



Example: Bongard Problems

@ Introduced by the Russian scientist M. Bongard
@ Pictures, some positive and some negative
@ Problem: discriminate between the two classes.

@ The pictures contain shapes with different properties, such as
small, large, pointing down, ... and different relationships
between them, such as inside, above, ...



I
Data

Each mega-examle encodes a single picture

begin (model (2)) .
pos.
triangle (05) .
config(o5,up) .
square (04) .
in(o4,05).
circle(03).
triangle (02) .
config(o2,up) .
in(02,03).
triangle (ol) .
config(ol,up) .
end (model (2)) .

begin (model (3)) .
neg (pos) .

circle (o4).
circle(o03) .
in(o03,04).

5/33



Program

Theory for parameter learning and background

pos:0.5 :-
circle (A),
in(B,A) .

pos:0.5 :-
circle (A),
triangle (B) .

The task is to tune the two parameters



Parameter Learning

@ The random variables associated to clauses are unobserved in
the data
@ Relative frequency cannot be used
@ An Expectation-Maximization algorithm must be used:
o Expectation step: the distribution of the unseen variables in each
instance is computed given the observed data
o Maximization step: new parameters are computed from the

distributions using relative frequency
o End when likelihood does not improve anymore



e —
EMBLEM

@ EM over Bdds for probabilistic Logic programs Efficient Mining
[Bellodi and Riguzzi IDA 2013]

@ Input: an LPAD,; logical interpretations (data); target predicate(s)

@ All ground atoms in the interpretations for the target predicate(s)
correspond to as many queries

@ BDDs encode the explanations for each query
@ Expectations computed with two passes over the BDDs



.
Input File

Preamble

:—use_module (library (slipcover)) .

:— if (current_predicate (use_rendering/1)) .
:— use_rendering(c3).

:— use_rendering(lpad) .

:— endif.

:—sc.

:— set_sc(random_restarts_number,10).
:— set_sc(seed, seed (3020)).

:— set_sc(epsilon_em,0.001).

:— set_sc(epsilon_em fraction,0.001).
:— set_sc(verbosity,1).

See http://cplint.eu/help/help-cplint.html for a list of
options


http://cplint.eu/help/help-cplint.html

.
Input File

Theory for parameter learning and background

bg ([1) .

in ([

(pos:0.5 :—
circle (A7),
in(B,A)),

(pos:0.5 :—
circle(d),
triangle(B))]).

cplint, week 2 10/33



.
Input File

Data: two formats, models

begin (model (2)) .
pos.
triangle (05) .
config(o5,up) .
square (04) .
in(o4,05).
circle(03).
triangle (02) .
config(o2,up) .
in(02,03).
triangle (ol) .
config(ol,up) .
end (model (2)) .

begin (model (3)) .
neg (pos) .

circle (o4).
circle(o03) .
in(o03,04).



.
Input File

Data: two formats, keys (internal representation)

pos (2) .
triangle(2,05).
config(2,05,up) .
square (2,04) .
in(2,04,05).
circle(2,03).
triangle(2,02).
config(2,02,up).
in(2,02,03).
triangle(2,01) .
config(2,0l,up).

neg (pos(3)) .
circle(3,04).
circle(3,03).
in(3,03,04).
square (3,02) .
circle(3,01).
in(3,0l1,02).

12/33



.
Input File

@ Folds (a group of examples)
@ Target predicates output (<predicate>)

fold(train, [2,3,5,...]).
fold(test, [490,491,494,...1).
output (pos/0) .



Command

induce_par ([train],P),
test (P, [test], LL,AUCROC, ROC, AUCPR, PR) .

http://cplint.eu/e/bongard.pl


http://cplint.eu/e/bongard.pl

N
Structure Learning for LPADs

@ Given a set of interpretations (data)

@ Find the model and the parameters that maximize the probability
of the data (log-likelihood)

@ SLIPCOVER: Structure Learning of Probabilistic logic program by
searching OVER the clause space EMBLEM [Riguzzi & Bellodi
TPLP 2015]

@ Beam search in the space of clauses to find the promising ones
@ Greedy search in the space of probabilistic programs guided by the
LL of the data.

@ Parameter learning by means of EMBLEM



e —
SLIPCOVER

@ Cycle on the set of predicates that can appear in the head of
clauses, either target or background

@ For each predicate, beam search in the space of clauses

@ The initial set of beams is generated by building a set of bottom
clauses as in Progol [Muggleton NGC 1995]

@ Bottom clause: most specific clause covering an example



Language Bias

@ Mode declarations as in Progol
@ Syntax

modeh (RecallNumber, PredicateMode) .
modeb (RecallNumber, PredicateMode) .

@ RecallNumber can be a number or *. Usually *. Maximum
number of answers to queries to include in the bottom clause



Mode Declarations

@ PredicateMode template of the form:

p (ModeType, ModeType, ...)

@ Some examples:

modeb (1, mem (+number, +1ist)) .

modeb (1, dec (+integer, —integer)) .

modeb (1, mult (+integer, +integer, —integer))

modeb (1, plus (+integer, +integer, —integer)) .

modeb (1
(

modeb

, (+tinteger)=(#integer)) .
*,has_car (+train, —car))



Mode Declarations

@ ModeType can be:
e Simple:
@ +T input variables of type T;
@ -T output variables of type T; or
@ #T, —-#T constants of type T.

@ Structured: of the form £ (. .) where £ is a function symbol and
every argument can be either simple or structured. For example:

modeb (1, mem (+number, [+number|+1ist])) .



Bottom Clause L

@ Most specific clause covering an example e
@ Form: e — B
@ B: set of ground literals that are true regarding the example e

@ B obtained by considering the constants in e and querying the
data for true atoms regarding these constants

@ Values for output arguments are used as input arguments for
other predicates

@ A map from types to lists of constants is kept, it is enlarged with
constants in the answers to the queries and the procedure is
iterated a user-defined number of times

@ #T arguments are instantiated in calls, —#T aren’t and the values
after the call are added to the list of constants



Bottom Clause L

@ Example:

e = father(john, mary)

B = {parent(john, mary), parent(david, steve),

parent(kathy, mary), female(kathy), male(john), male(david)}
modeh(father(+person, +person)).

modeb(parent(+person, —person)).

modeb(parent(—+#person, +person)).

modeb(male(+person)). modeb(female(#person)).

e — B = father(john, mary) < parent(john, mary), male(john),
parent(kathy, mary), female(kathy).



Bottom Clause L

@ The resulting ground clause L is then processed by replacing
each term in a + or - placemarker with a variable
@ An input variable (+T) must appear as an output variable with the
same type in a previous literal and a constant (#T or -#T) is not
replaced by a variable.
1 = father(X,Y) <
parent(X,Y), male(X), parent(kathy, Y), female(kathy).



Determination

determination (predl/nl,pred2/n2).

@ indicates that pred2/n2 can appear in the body of clauses for
predicate predl/n1

@ As in Progol



e —
SLIPCOVER

@ The initial beam associated with predicate P/Ar of h will contain
the clause with the empty body h : 0.5. for each bottom clause
h:— by,...,bn In each iteration of the cycle over predicates, it
performs a beam search in the space of clauses for the predicate.

@ The beam contains couples (ClI, Literals) where
Literals = {by,...,bmn}

@ For each clause CI of the form Head : — Body, the refinements
are computed by adding a literal from Literals to the body.

@ Each refinement is evaluated in terms of LL by using EMBLEM

@ and added in order of LL to the lists TC (target predicates) or BC
(non-target predicates)



e —
SLIPCOVER

@ After the clause search phase, SLIPCOVER performs a greedy
search in the space of theories:

e it starts with an empty theory and adds a target clause at a time
from the list TC.

o After each addition, it runs EMBLEM and computes the LL of the
data as the score of the resulting theory.

o If the score is better than the current best, the clause is kept in the
theory, otherwise it is discarded.

@ Finally, SLIPCOVER adds all the clauses in BC to the theory and
performs parameter learning on the resulting theory.



Example Input File for Bongard

Preamble

:—use_module (library (slipcover)) .
:— if (current_predicate (use_rendering/1)) .
:— use_rendering(c3).

:— use_rendering(lpad) .

:— endif.

:—sc.

:— set_sc (megaex_bottom, 20) .

:— set_sc(max_iter, 3).

:— set_sc(max_iter_ structure,10).
:— set_sc (maxdepth_var, 4).

:— set_sc(verbosity,1).

See http://cplint.eu/help/help-cplint.html for a list of
options


http://cplint.eu/help/help-cplint.html

.
Input File

Background

bg([]).



Input File
Data:

begin (model (2)) .
pos.
triangle (05) .
config(o5,up) .
square (04) .
in(o4,05).
circle(03).
triangle (02) .
config(o2,up) .
in(02,03).
triangle (ol) .
config(ol,up) .
end (model (2)) .

begin (model (3)) .
neg (pos) .

circle (o4).
circle(o03) .
in(o03,04).



.
Input File

@ Folds

@ Target predicates output (<predicate>)

@ Input predicates are those whose atoms you are not interested in
predicting
input_cw (<predicate>/<arity>).
True atoms are those in the interpretations and those derivable
from them using the background knowledge

@ Open world input predicates are declared with
input (<predicate>/<arity>).

the facts in the interpretations, the background clauses and the
clauses of the input program are used to derive atoms



.
Input File

fold(train, [2,3,5,...]).
fold(test, [490,491,494,...1).
output (pos/0) .

input_cw (triangle/1).
input_cw (square/1) .

input_cw (circle/1) .
input_cw(in/2) .

input_cw (config/2) .



.
Input File

Language bias

determination (pos/0,triangle/1).
determination (pos/0, square/1) .
determination (pos/0,circle/1).
determination (pos/0,1in/2) .
determination (pos/0,config/2) .
modeh (%, pos) .

modeb (%, triangle (-ob7j)) .

modeb (%, square (-obj)) .

modeb (%, circle (-obj)) .

modeb (%, in (+obj, —0obj)) .

modeb (%, in (-obj, tobj)) .

modeb (x, config (+obj, —#dir)) .

~ e~ o~~~ —~



.
Input File

Search bias

lookahead (logp (B), [ (B=_C)]).

@ When trying to add atom logp (B), add instead the conjunction
logp(B),B=_C



Command

@ Structure learning

induce ([train], P),
test (P, [test],LL, AUCROC, ROC, AUCPR, PR) .

http://cplint.eu/e/bongard.pl


http://cplint.eu/e/bongard.pl

