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Abstract. Since Logic Programming (LP) and Description Logics (DLs)
are based on different assumptions (the closed and the open world as-
sumption, respectively), combining them provides higher expressiveness
in applications that require both assumptions.
Several proposals have been made to combine LP and DLs. An especially
successful line of research is the one based on Lifschitz’s logic of Minimal
Knowledge with Negation as Failure (MKNF). Motik and Rosati intro-
duced Hybrid knowledge bases (KBs), composed of LP rules and DL
axioms, gave them an MKNF semantics and studied their complexity.
Knorr et al. proposed a well-founded semantics for Hybrid KBs where
the LP clause heads are non-disjunctive, which keeps querying poly-
nomial (provided the underlying DL is polynomial) even when the LP
portion is non-stratified.
In this paper, we propose Probabilistic Hybrid Knowledge Bases (PHKBs),
where the atom in the head of LP clauses and each DL axiom is annotated
with a probability value. PHKBs are given a distribution semantics by
defining a probability distribution over deterministic Hybrid KBs. The
probability of a query being true is the sum of the probabilities of the
deterministic KBs that entail the query. Both epistemic and statistical
probability can be addressed, thanks to the integration of probabilistic
LP and DLs.

1 Introduction

Complex domains are often modeled using Logic Programming (LP) or Descrip-
tion Logics (DLs). Both LP and DLs are based on first order logic so they share
many similarities. The main and remarkable difference between them is the do-
main closure assumption: LP is based on the closed-world assumption (CWA)
while DLs use the open-world assumption (OWA). Several authors proposed
combinations of LP and DLs. Motik and Rosati [19] define Hybrid Knowledge
Bases, composed of a logic program and a DL KB, with semantics based on the
logic of Minimal Knowledge with Negation as Failure (MKNF) [15]; as shown by
the authors, their proposal exhibits desirable properties (faithfulness, i.e. preser-
vation of the semantics of both formalisms when the other is absent; tightness,



i.e. no layering of LP and DL; flexibility, the possibility to view each predicate
under both open and closed world assumption; decidability), that each of the
other existing approaches to LP and DL integration lacks at least partly.

HKBs can manage domains where different information requires different
closure assumptions, such as in legal reasoning; for instance, in [1] it is shown
that modeling a real world penal code requires both assumptions.

Many domains, especially those that model the real world, are often charac-
terized by uncertain information. In LP a large number of works have appeared
for allowing probabilistic reasoning, leading to the dawn of the Probabilistic
Logic Programming (PLP) field. One of the most widespread approaches is the
distribution semantics [26]. According to this semantics, a program defines a
probability distribution over normal Logic Programs called worlds from which
the probability of a query is obtained by marginalization. The distribution se-
mantics underlies many languages such as Logic Programs with Annotated Dis-
junctions (LPADs), CP-logic and ProbLog. All these languages have the same
expressive power as a program in one language can be translated into each of
others [27].

Similarly, DLs need as well to manage uncertainty to correctly model real
world domains. Some proposals for combining DLs with probability theory ex-
ploit graphical models: [10] and [9] exploit Bayesian networks while [12] combine
DLs with Markov networks. Differently, other approaches such as [11, 16, 17, 7]
exploit Nilsson’s probabilistic logic [20] to reason with intervals of probability
values.

In [4] we applied the distribution semantics to DLs defining DISPONTE (for
“DIstribution Semantics for Probabilistic ONTologiEs”). DISPONTE allows to
associate probability values to axioms of a KB. The probability of queries is
computed as for PLP languages.

In this paper we propose an approach for defining Probabilistic Hybrid KBs
(PHKBs) under the distribution semantics. We combine LPADs with DLs under
DISPONTE semantics, both following the distribution semantics. In a PHKB,
a query is always either entailed or not entailed in the MKNF sense, so its
probability can be computed as for LPADs and DISPONTE.

Halpern [13] distinguishes statistical statements from statements about de-
grees of belief and presents two examples: “the probability that a randomly
chosen bird flies is 0.9” and “the probability that Tweety (a particular bird)
flies is 0.9”. The first statement captures statistical information about the world
while the second captures a degree of belief. The first type of statement is called
“Type 1” while the latter “Type 2”. The first statement can be read as: given
a randomly chosen x in the domain, if x is a bird, the probability that x flies
is 0.9, or the conditional probability that x flies given that it is a bird is 0.9.
DISPONTE allows to define only “Type 2” statements since the probability as-
sociated with an axiom represents the degree of belief in that axiom as a whole.
Note that “Type 1” differs from statistical information on the domain such as
partial concept overlapping of the form ”90% of birds fly”. In fact, this second
statement means that for every bird we know with certainty whether it flies or



not but, of all birds, only 90% fly. However, if each individual bird has probabil-
ity 0.9 of flying, the expected number of birds that fly is 90% of all birds, so we
can model partial overlapping with “Type 2” statements, i.e., with probabilistic
statements about individuals. The integration of LP and DLs in PHKBs allows
to express a form of statistical probabilistic knowledge that is not permitted
by DISPONTE alone: in particular, with the LP part we can express “Type 1”
statements.

To understand PHKBs, one needs to first acquire background information
about what they combine together. Thus in Section 2 we provide a description of
these background notions and set the notation for the current work. In Section
3 we introduce our probabilistic extension to hybrid MKNF knowledge bases
and we define their semantics. Section 4 discusses related work while Section 5
concludes the paper and presents remarks on future work.

2 Background and notation

This section is devoted to introducing the background notions required to un-
derstand PHKBs. Hybrid KBs, presented in Section 2.3, combine Description
Logics (DLs) and Logic Programming (LP) following the Minimal Knowledge
with Negation as Failure (MKNF) semantics. Therefore, we start with these
blocks to achieve the goal of introducing HKBs. Then, we will discuss proba-
bilistic extensions to LP and DLs and in particular about Logic Programs with
Annotated Disjunctions (Sect. 2.4) and DISPONTE (Sect. 2.5), both following
the distribution semantics [26].

2.1 Description Logics

DLs are fragments of First Order Logic (FOL) languages used for modeling
ontologies [3]. These knowledge representation formalisms differ on which infor-
mation they permit to define and are usually designed to assure computational
properties such as decidability and/or low complexity.

Usually, DLs’ syntax is based on concepts, corresponding to sets of individ-
uals, and roles, sets of pairs of individuals of the domain. In order to illustrate
DLs, we now describe SHOIQ [14] as a prototype of expressive DLs.

Let consider a set of atomic concepts C, a set of atomic roles R and a set
of individuals I. Concepts are defined by induction as follows. Each C ∈ C, ⊥
and > are concepts. If C, C1 and C2 are concepts and R ∈ R, then (C1 u C2),
(C1 t C2) and ¬C are concepts, as well as ∃R.C and ∀R.C. Considering again
C, C1 and C2, if S ∈ R ∪R−, then ≥ nS.C and ≤ nS.C for an integer n ≥ 0
are also concepts. Finally, if a ∈ I, then {a} is a concept called nominal.

Roles are either atomic roles R ∈ R or their inverse R− where R ∈ R. The
set of all inverses of roles in R is denoted by R−.

A TBox T is a finite set of concept inclusion axioms C v D, where C and
D are concepts. We use C ≡ D to abbreviate the conjunction of C v D and
D v C. An RBox R consists of a finite set of transitivity axioms Trans(R),



where R ∈ R, and role inclusion axioms R v S, where R,S ∈ R ∪ R−. An
ABox A is a finite set of concept membership axioms a : C, role membership
axioms (a, b) : R, equality axioms a = b and inequality axioms a 6= b, where
C ∈ C, R ∈ R and a, b ∈ I.

A SHOIQ KB K = (T ,R,A) consists of a TBox T , an RBoxR and an ABox
A. It is usually assigned a semantics in terms of interpretations I = (∆I , ·I),
where ∆I is a non-empty domain and ·I is the interpretation function. This
function assigns an element in ∆I to each a ∈ I, a subset of ∆I to each C ∈ C
and a subset of ∆I ×∆I to each R ∈ R.

The satisfaction of an axiom E in an interpretation I = (∆I , ·I), denoted
by I |= E, is defined as follows: (1) I |= C v D iff CI ⊆ DI , (2) I |= a : C
iff aI ∈ CI , (3) I |= (a, b) : R iff (aI , bI) ∈ RI , (4) I |= a = b iff aI =
bI , (5) I |= a 6= b iff aI 6= bI , (6) I |= Trans(R) iff RI is transitive, i.e.,
∀X,Y, ZR(X,Y ) ∧ R(Y, Z) → R(X,Z), (7) I |= R v S iff RI ⊆ SI . I satisfies
a set of axioms E , denoted by I |= E , iff I |= E for all E ∈ E . An interpretation
I satisfies a knowledge base K = (T ,R,A), denoted I |= K, iff I satisfies T , R
and A. In this case we say that I is a model of K.
SHOIQ is decidable iff there are no number restrictions on roles which are

transitive or have transitive subroles.
DLs can be directly translated into FOL by using function πx that maps

concept expressions to logical formulas. Table 1 shows the translation of each
axiom of SHOIQ KBs:

Table 1. Translation of SHOIQ axioms into predicate logic.

Axiom Translation

C v D ∀x.πx(C) → πx(D)
R v S ∀x, y.R(x, y) → S(x, y)

Trans(R) ∀x, y, z.R(x, y) ∧R(y, z) → R(x, z)
a : C πa(C)

(a, b) : R R(a, b)
a = b a = b
a 6= b a 6= b

Example 1. In a social network scenario, the following axioms

∃rejectedBy.> v spammer
≥3 reported.> v hasReports
∃reported.trustedUser v hasReports
hasReports v spammer

model the fact that a user is considered a spammer if she or he has had at least
a friend request rejected, or if she or he has reports, which means she or he has
been reported at least three times, or at least once by a trusted user.



2.2 MKNF

The logic of Minimal Knowledge with Negation as Failure (MKNF) was intro-
duced in [15]. We briefly recall its syntax and semantics, following [19]. The
syntax of MKNF is the syntax of first order logic augmented with modal oper-
ators K and not . In the following, ∆ is the Herbrand universe of the signature
at hand.

An MKNF structure is a triple (I,M,N) where I as a first-order interpreta-
tion over ∆ and M and N are sets of first order interpretations over ∆. Satis-
faction of a closed formula by an MKNF structure is defined as follows (where
p is an atom and ψ is a formula):

(I,M,N) |= p iff p ∈ I
(I,M,N) |= ¬ψ iff (I,M,N) 6|= ψ
(I,M,N) |= ψ1 ∧ ψ2 iff (I,M,N) |= ψ1 and (I,M,N) |= ψ2

(I,M,N) |= ∃x : ψ iff (I,M,N) |= ψ[α/x] for some α ∈ ∆
(I,M,N) |= Kψ iff (J,M,N) |= ψ for all J ∈M
(I,M,N) |= notψ iff (J,M,N) 6|= ψ for some J ∈ N

An MKNF interpretation is a set M of interpretations over ∆. An interpretation
M is an MKNF model of a closed formula ψ iff

– (I,M,M) |= ψ for all I ∈M
– for all M ′ ⊃M , for some I ′ ∈M ′(I ′,M ′,M) 6|= ψ

A formula ψ entails a formula φ, written ψ |=MKNF φ, iff for all MKNF models
M of ψ and for all I ∈M (I,M,M) |= φ.

2.3 Hybrid Knowledge Bases

Let DL be a description logic, i.e., a fragment of first order logic such that

– a transformation π (such as the one in Table 1) exists from each knowledge
base O of DL to a formula of function-free first order logic with equality;

– it supports ABoxes (assertions of the form C(a1) and of the form R(a1, a2),
where C is an unary predicate -a class-, P is a binary predicate -a role- and
the ai’s are DL constants);

– satisfiability checking and instance checking are decidable.

A Hybrid Knowledge Base (HKB, [19]) is a pair K = 〈O,P〉 where O is a DL
knowledge base and P is a set of LP rules of the form h← a1, . . . , an,∼b1, . . . ,∼
bm, where ai and bi are atoms. Note that [19] allow disjunctions in rule heads,
but we do not introduce them because they are not required for our definition
of PHKBs (see Sect. 3).

[19] define HKB’s semantics by transforming it into an MKNF formula. More
precisely, the transformation π defined for DL is extended as follows to support
LP rules:



– if C is a rule of the form h← a1, . . . , an,∼b1, . . . ,∼bm and X is the vector of
all variables in C, π(C) = ∀X(K a1 ∧ . . .∧K an ∧not b1 ∧ . . .∧ . . .not bm →
Kh)

– π(P) =
∧

C∈P π(C)
– π(〈O,P〉) = Kπ(O) ∧ π(P)

In Sect. 3, we employ grounding in order to define the semantics of Proba-
bilistic Hybrid Knowledge Bases (PHKBs); for this purpose, it is important for
a HKB to have the same MKNF models as its grounding. As shown in [19], a
sufficient condition is DL-safety. A rule in a HKB K = 〈O,P〉 is DL-safe if all
variables in it occur in a positive atom in its body, whose predicate does not
appear in O. A HKB is DL-safe if all the rules in P are DL-safe. In [19], the
authors also argue that non DL-safe knowledge bases can be made DL-safe by
a syntactic transformation that does not affect their semantics, so in practice it
can be assumed that all knowledge bases are DL-safe.

Example 2. Consider the HKB K = 〈O,P〉, where O is the set of axioms defined
in Example 1, except for the last one, and P =

spammer(X) ← hasReports(X),∼trustedUser(X).
rejectedBy(X,Y )← invited(X,Y ),∼accepted(Y,X).

The LP rules define the role rejectedBy which occurs in the DL axioms in terms
of missing acceptance of a friend request, employing the closed world assumption,
and specify that a user with reports is a spammer, but only if she or he is not a
trusted user, again using default negation.

The corresponding MKNF formula is

π(K) = ∀X(K hasReports(X) ∧ not trustedUser(X)→ K spammer(X))
∧ ∀X∀Y (K invited(X,Y ) ∧ not invited(Y,X)→ K rejectedBy(X,Y ))
∧ K (∀X(∃Y rejectedBy(X,Y )→ spammer(X))
∧ ∀X(∃≥3Y reported(X,Y )→ hasReports(X))
∧ ∀X(∃Y (reported(X,Y ) ∧ trustedUser(Y ))→ hasReports(X)))

2.4 Probabilistic Logic Programs

We consider Logic Programs with Annotated Disjunctions (LPADs) and we do
not allow for function symbols; for the treatment of function symbols, see [22].

LPADs [28] consist of a finite set of annotated disjunctive clauses Ci of the
form hi1 : Πi1; . . . ;hini

: Πini
← bi1, . . . , bimi

. Here, bi1, . . . , bimi
are logical

literals which form the body of Ci, denoted by body(Ci), while hi1, . . . hini
are

logical atoms and {Πi1, . . . ,Πini} are real numbers in the interval [0, 1] such
that

∑ni

k=1Πik ≤ 1. Note that if ni = 1 and Πi1 = 1 the clause corresponds to a
non-disjunctive clause. Otherwise, if

∑ni

k=1Πik < 1, the head of the annotated
disjunctive clause implicitly contains an extra atom null that does not appear
in the body of any clause and whose annotation is 1−

∑ni

k=1Πik. The grounding
of an LPAD P is denoted by ground(P).



ground(P ) is still an LPAD from which we can obtain a normal logic program
by selecting a head atom for each ground clause. In this way we obtain a so-called
“world” to which we can assign a probability by multiplying the probabilities
of all the head atoms chosen. In this way we get a probability distribution over
worlds. We consider only sound LPADs, where each possible world w has a total
well-founded model, so for a query Q (a ground clause) either w |= Q (Q is
true in the well-founded model of w) or w 6|= Q, i.e. the well-founded model is
two-valued. The probability of a query Q given a world w can be thus defined
as P (Q|w) = 1 if w |= Q and 0 otherwise. The probability of Q is then:

P (Q) =
∑

w∈WP

P (Q,w) =
∑

w∈WP

P (Q|w)P (w) =
∑

w∈WP :w|=Q

P (w) (1)

Example 3. In the same setting of Example 2, the program

spammer(john) : 0.3← hasReports(john),∼trustedUser(john).
spammer(john) : 0.4← rejectedBy(john, jack).
hasReports(john). rejectedBy(john, jack).

is ground and has two probabilistic clauses, so there are four worlds. The query
spammer(john) is true in three of them, i.e., those containing at least one prob-
abilistic clause, and false in the world that does not contain any probabilistic
clause. The probability of Q is 0.3× 0.4 + 0.3× 0.6 + 0.7× 0.4 = 0.58.

2.5 Probabilistic Description Logics

DISPONTE [4] applies the distribution semantics to probabilistic ontologies [26].
In DISPONTE a probabilistic knowledge base O is a set of certain and probabilis-
tic axioms. Certain axioms are regular DL axioms. Probabilistic axioms take the
form p :: E, where p is a real number in [0, 1] and E is a DL axiom. Probability
p can be interpreted as an epistemic probability, i.e., as the degree of our belief
in axiom E. For example, a probabilistic concept membership axiom p :: a : c
means that we have degree of belief p in c(a). The statement that Tweety flies
with probability 0.9 can be expressed as 0.9 :: tweety : flies.

The idea of DISPONTE is to associate independent Boolean random vari-
ables with the probabilistic axioms. By assigning values to every random vari-
able we obtain a world, i.e. the set of probabilistic axioms whose random variable
takes on value 1 together with the set of certain axioms. DISPONTE defines a
probability distribution over worlds as in PLP.

We can now assign probabilities to queries. Given a world w, the probability
of a query Q is defined as P (Q|w) = 1 if w |= Q and 0 otherwise. The probability
of a query can be defined by marginalizing the joint probability of the query and
the worlds, as for PLP.

Example 4. Consider the following KBs, a probabilistic version of the one in
Example 1:



0.3 :: ∃rejectedBy.> v spammer
≥3 reported.> v hasReports
∃reported.trustedUser v hasReports
0.5 :: hasReports v spammer

Given that john : ∃rejectedBy.>, the query john : spammer has probability 0.3.
With the additional assumption john : ∃reported.trustedUser, the probability of
john : spammer is given by the sum of the probabilities of the three worlds where
either of the probabilistic axioms occurs, that is 0.3×0.5+0.3×0.5+0.7×0.5 =
0.65.

3 Probabilistic Hybrid Knowledge Bases

In this section we formally define Probabilistic Hybrid Knowledge Bases (PHKBs),
which combine a probabilistic DL knowledge base with a proabbilistic logic pro-
gram, and their semantics.

Definition 1. A PHKB is a pair K = 〈O,P〉 where O is a DISPONTE knowl-
edge base and P is an LPAD.

The semantics of a PHKB, as usually in the distribution semantics approach,
is given by considering possible worlds.

Definition 2. A possible world of a PHKB K = 〈O,P〉 is a non probabilistic
HKB w = 〈O,P〉 where O is a possible world of O and P is a possible world
of P, where P’s grounding is performed over O’s individuals together with P’s
Herbrand universe.

The probability distribution over worlds in the PHKB is induced by the
probability distributions of worlds in its DL and LP components.

Definition 3. If P (P) is the probability of P and P (O) is the probability of O,
the probability of w = 〈O,P〉 is P (w) = P (P)P (O).

It is easy to see that this is a probability distribution over the worlds of K.
We can assign probabilities to queries as for LPAD and DISPONTE, by

defining a joint probability distribution over worlds and queries, where a query’s
conditional probability given a world is 1 if the world entails the query in the
MKNF sense (see Sect. 2.2), and 0 otherwise. The probability of a query is again
defined by marginalizing the joint probability of the query and the worlds.

Definition 4. Given a world w, the probability of a query Q is defined as
P (Q|w) = 1 if w |=MKNF KQ and 0 otherwise.

The probability of the query is its marginal probability:

P (Q) =
∑
w

P (w) ∗ P (Q|w) (2)



Note that Eq. (2) is the sum of the probabilities of the worlds that entail, in
the MKNF sense, the query.

A nice result of PHKBs is that they allow coping with both types of prob-
abilities defined by Halpern in [13]. In fact, “Type 1” probabilistic statements
about individuals can be expressed using the LP part of PHKB because each
LP clause stands for the set of its ground instantiations and there is a different
random variable for each instantiation.

Example 5. The knowledge base K = 〈O,P〉 with

P =soldier(X) : 0.8← person(X), guard(X). (3)

person(pete).

person(al).

person(john).

O =∀commands.soldier v commander
pete : guard

al : guard

(john, pete) : commands

(john, al) : commands

john : ∀commands.guard

expresses that if X is a person and a guard, then X is a soldier with probability
80%. Moreover, we know that those who command only soldiers are commanders,
that pete and al are guards and that john commands only guards. Note that
this KB is DL-safe because the predicate person/1 does not appear in the DL
portion. What is the probability of commander(john)?

There are four pairs of possible worlds (in each pair the worlds are identical,
except for the presence of the clause soldier(john)← person(john), guard(john)),
which share O and differ for the LP clauses:

1. both instantiations of (3): soldier(pete) ← person(pete), guard(pete) and
soldier(al)← person(al), guard(al) (probability 0.8× 0.8 = 0.64);

2. soldier(pete)← person(pete), guard(pete) (probability 0.8× 0.2 = 0.16);
3. soldier(al)← person(al), guard(al) (probability 0.2× 0.8 = 0.16);
4. no clause(probability 0.2× 0.2 = 0.04).

All MKNF models of world 1 entail soldier(pete) and soldier(al), so john :
∀commands.soldier, and therefore commander(john); this means that world 1
entails commander(john). soldier(al) is not entailed by world 2, so neither is
commander(john). Likewise, worlds 3 and 4 do not entail commander(john).
The probability of commander(john) is thus the probability of world 1, i.e.,
0.64.

This example shows that PHKB allows “Type 1” statements: the only LP
rule (3) models the fact that an individual guard has 80% of being a soldier. In
this way PHKB highly extends the expressive power of DISPONTE.



Please note however that rule (3) is not equivalent to saying that 80% of
guards are soldiers. In this case in fact the query would be false with probability
1, as there exist guards that are not soldiers so john does not command only
soldiers. However, the expected number of soldiers, given that there are two
guards, is 2× 0.64 + 1× 0.16 + 1× 0.16 + 0× 0.04 = 1.6, which is 80% of 2.

Example 6. Consider the knowledge base K = 〈O,P〉, a probabilistic version of
the knowledge base in Example 2, with

P =spammer(X) : 0.3← hasReports(X),∼trustedUser(X). (4)

rejectedBy(X,Y )← invited(X,Y ),∼accepted(Y,X).

O =0.4 :: ∃rejectedBy.> v spammer (5)

≥3 reported.> v hasReports
∃reported.trustedUser v hasReports

Here, the probability of a randomly chosen user reported for spamming ac-
tivity that is not trusted is considered a spammer is 0.3, so the expected number
of spammers is 30% that of untrusted users reported for spamming.

With the assertion 〈john,mary〉 : invited , the KB has eight worlds and the
query Q = john : spammer is true in four of them, those containing axiom (5).
The probability of the query is 0.7× 0.7× 0.4 + 0.3× 0.7× 0.4 + 0.7× 0.3× 0.4 +
0.3× 0.3× 0.4 = 0.4.

Adding the assertions john :≥3 reported.>, Q is true in six worlds: those
that contain axiom (5) and (4) with X instantiated to john. The probability of
Q is thus 0.3 × 0.7 × 0.6 + 0.7 × 0.7 × 0.4 + 0.3 × 0.3 × 0.6 + 0.3 × 0.7 × 0.4 +
0.7× 0.3× 0.4 + 0.3× 0.3× 0.4 = 0.58.

Finally, if john : trustedUser holds, the rule (4) can no longer be used to
entail Q, so the probability is 0.4.

Example 7. We now consider the example in Section 4 of [18] and make one of
the DL axioms probabilistic thus obtaining K = 〈O,P〉 with:

P =notMarried(X)← person(X),∼married(X).

discount(X)← spouse(X,Y ), person(X), person(Y ).

O =notMarried ≡ ¬married

0.4 :: notMarried v highRisk (6)

∃spouse.> v married

john : person

In [18], highRisk(john) is entailed by the deterministic knowledge base. In the
probabilistic version, there are two possible worlds: one where axiom (6) occurs,
whose probability is 0.4, and one where it does not. The query highRisk(john)
is true only in the world where axiom (6) occurs, so its probability is 0.4.



4 Related Work

Despite the large number of proposals regarding the combination of probability
and LP or DLs, the field of hybrid KBs is still in fast development. Moreover, to
the best of our knowledge the definition of probabilistic hybrid KBs represents
a completely new field.

FOProbLog [6] is an extension of ProbLog where a program contains a set
of probabilistic facts, i.e. facts annotated with probabilities, and a set of general
clauses which can have positive and negative probabilistic facts in their body.
Each fact is assumed to be probabilistically independent. FOProbLog follows the
distribution semantics and exploits Binary Decision Diagrams to compute the
probability of queries. Differently from our approach, it follows only the open
world assumption. Moreover, it permits to associate probability values only to
facts. In our case a probability value can be associated also with implications in
the LP part and with TBox axioms in the DL part of the hybrid KB. FOProbLog
is a reasoner for FOL that is not tailored to DLs, so the algorithm could be
suboptimal for them.

In [8] the authors extend the definition of ontologies to allow the management
of information under the open world assumption. Axioms not included in the
KB are called open and are associated with a probability interval between 0
and a fixed threshold. In this way a query can return a probability interval in
the case open information is used for answering a query. Moreover, a background
knowledge can be specified to restrict the worlds defined by the open KB. Similar
to [6], only assertional probabilistic data is allowed.

A combination between DLs and logic programs was presented in [7] in or-
der to integrate ontologies and rules. They use a tightly coupled approach to
(probabilistic) disjunctive description logic programs. They define a description
logic program as a pair (L,P ), where L is a DL KB and P is a disjunctive logic
program which contains rules on concepts and roles of L. P may contain prob-
abilistic alternatives in the style of ICL [21]. The integration follows Nilsson’s
probabilistic logic [20] approach.

Nilsson’s logic allows weaker conclusions than the distribution semantics:
consider a probabilistic DISPONTE ontology composed of the axioms 0.4 :: a : C
and 0.5 :: b : C and a probabilistic Nilsson KB composed of C(a) ≥ 0.4 and
C(b) ≥ 0.5. The distribution semantics permits the derivation of P (a : C ∨ b :
C) = 0.4 × (1 − 0.5) + (1 − 0.4) × 0.5 + 0.4 × 0.5 = 0.7. Differently, Nilsson’s
logic returns the lowest p such that Pr satisfies all the F ≥ p in the KB. Since
in Nilsson’s logic Pr satisfies F ≥ p iff Pr(F ) ≥ p, in this example the lowest p
such that Pr(C(a) ∨ C(b)) ≥ p holds is 0.5. This is due to the fact that in the
distribution semantics the probabilistic axioms are considered as independent,
which allows to make stronger conclusions, without limiting the expressive power
as any probabilistic dependence can be modeled.



5 Conclusions and future work

In this paper we introduced Probabilistic Hybdrid Knowledge Bases, an exten-
sion of Hybrid MKNF Knowledge Bases to support probabilistic reasoning, and
gave them a distribution semantics.

The next step is to provide a reasoner for PHKBs. The SLG(O) procedure
[2] for hybrid knowledge bases under the well founded semantics integrates a
reasoner for the DL at hand with the SLG procedure in the form of an oracle:
the DL reasoner returns the LP atoms that need to be true for the query to
succeed. We are following a similar approach for PHKBs, integrating the TRILL
probabilistic DL reasoner [23, 29] with the PITA algorithm [25] for PLP reason-
ing. We also plan to develop a web application for using the system, similarly to
what we have done for TRILL3 [5] and PITA4 [24].
Acknowledgement This work was supported by the “GNCS-INdAM”.
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