
Modeling Smart Contracts with Probabilistic
Logic Programming

Damiano Azzolini1, Fabrizio Riguzzi2, and Evelina Lamma1

1 Dipartimento di Ingegneria – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy

2 Dipartimento di Matematica e Informatica – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy

[damiano.azzolini,fabrizio.riguzzi,evelina.lamma]@unife.it

Abstract. Smart contracts are computer programs that run in a dis-
tributed network, the blockchain. These contracts are used to regulate
the interaction among parties in a fully decentralized way without the
need of a trusted authority and, once deployed, are immutable. The
immutability property requires that the programs should be deeply an-
alyzed and tested, in order to ensure that they behave as expected and
to avoid bugs and errors. In this paper, we present a method to trans-
late smart contracts into probabilistic logic programs that can be used
to analyse expected values of several smart contract’s utility parameters
and to get a quantitative idea on how smart contracts variables changes
over time. Finally, we applied this method to study three real smart
contracts deployed on the Ethereum blockchain.

Keywords: blockchain, probabilistic logic programming, smart contracts.

1 Introduction

The idea of the blockchain model dates back to 1990 [12] as a method to se-
cure timestamping digital documents, but the interest around this technology
grew only after the success of the paper by Nakamoto in 2008 [18]. Afterwards,
the term smart contract, used to identify programs written in a quasi-Turing-
complete programming language that run in a blockchain environment, gained
traction, thanks to the possibility of enforcing contracts between two or more
parties without the need of a central authority.

Smart contracts and blockchain technology are relevant to several research
fields. In distributed systems the researchers study the interaction among peers
in a fully decentralized environment with an unreliable network and create meth-
ods to ensure a decentralized consensus, even in case of dishonest parties. Formal
methods are used to verify the behavior of smart contracts. Cryptography en-
compasses methods to ensure that all the participants can see the same data and
that data have not been tampered with. Game theory and decision theory are
used to model the behavior of the interacting parties to maximize the expected
profit.

The execution of a smart contract is deterministic, i.e., it always yields the
same result. However, because users can interact with it at their will, a proba-
bilistic analysis is needed to predict its behavior. From an issuer’s perspective,
he may be interested in how many people interact with the contract and how
profit values evolve. Similarly, from a user’s perspective, he can be interested
in the expected reward by interacting with a blockchain based game, such as
gambling.

In this paper, we propose a method to translate smart contracts into proba-
bilistic logic programs in order to compute the expected values of several smart
contract’s utility parameters. Furthermore, our approach can also be used to
identify some coding errors. Several tools exist for identifying bugs but almost
all of them provide a static analysis without computing a quantitative amount of
the possible monetary loss. Moreover, translating a smart contract into a prob-
abilistic logic language allows interaction with it in a practical way, without the
need of a specialized checking tool for every smart contract language.

The paper is organized as follows: in Section 2 we briefly present blockchain
technology and smart contracts. In Section 3 we introduce Probabilistic Logic
Programming. In Section 4 we propose a method to translate smart contracts
into probabilistic logic programs. In Section 5 we analyse three smart contracts
that model real world applications and Section 6 concludes the paper.

2 Blockchain and Smart Contracts

Smart contracts were initially proposed in 1994 [26] as computer protocols to fa-
cilitate a self-enforcing agreements between two parties. Smart contracts received
an increased attention only after the interest around blockchain technologies ex-
ploded, following the publication of [18]. Currently, the term smart contract is
always used in the context of a blockchain environment.

In a nutshell, a blockchain is a decentralized, distributed, append only (usu-
ally) public ledger maintained by a set of peers, that records transactions between
accounts. All the transactions are organized in a chain of blocks (hence the ori-
gin of the term blockchain) linked together using hash functions that guarantee
the consistency and the immutability of the stored data. Each honest (full) node
that follows a blockchain protocol stores his own updated copy of the ledger.
In order to guarantee consistency of the data, i.e., that all the peers see the
same copy of the ledger, a consensus must be reached: this is done by adopting
a so-called consensus algorithms, such as Proof-of-Work (PoW).

Blockchain is the underlying technology of several decentralized platforms,
such as Bitcoin and Ethereum. Ethereum is a decentralized transaction-based
state machine [31] that executes smart contracts written in a quasi-Turing-
complete bytecode language. Programmers usually develop smart contracts using
a programming language called Solidity which is translated, by a compiler, into
bytecode for execution. In this paper, when we write smart contract we mean a
smart contract deployed on Ethereum. However, our method can be extended to
general smart contracts of which source code is available. In case of Ethereum,

source code is not stored in the blockchain (only a hash of the code is stored)
but there are several platforms that allows developers to upload the code of a
contract and verify it, such as Etherscan3. This website checks if the compilation
of the uploaded code matches the bytecode stored into the blockchain. If so, the
smart contract is considered verified and the source code is made public.

3 Probabilistic Logic Programming

A wide variety of domains can be represented using Probabilistic Logic Program-
ming (PLP) languages under the distribution semantics [22,25]. A program in a
language adopting the distribution semantics defines a probability distribution
over normal logic programs called instances or worlds. Each normal program
is assumed to have a total well-founded model [27]. Then, the distribution is
extended to queries and the probability of a query is obtained by marginalizing
the joint distribution of the query and the programs. A PLP language under
the distribution semantics with a general syntax is that of Logic Programs with
Annotated Disjunctions (LPADs) [29]. In the following part we present the se-
mantics of LPADs for the case of no function symbols, if function symbols are
allowed see [21].

Heads of clauses in LPADs are disjunctions in which each atom is annotated
with a probability. Consider an LPAD T with n clauses: T = {C1, . . . , Cn}.
Each clause Ci takes the form: hi1 : Πi1; . . . ;hivi

: Πivi
:− bi1, . . . , biui

, where
hi1, . . . , hivi

are logical atoms, bi1, . . . , biui
are logical literals and

Πi1, . . . ,Πivi
are real numbers in the interval [0, 1] that sum to 1. bi1, . . . , biui

is indicated with body(Ci). Note that, if vi = 1 the clause corresponds to a
non-disjunctive clause. We also allow clauses where

∑vi
k=1Πik < 1: in this case

the head of the annotated disjunctive clause implicitly contains an extra atom
null that does not appear in the body of any clause and whose annotation is
1 −

∑vi
k=1Πik. We define substitution θ a function mapping variables to terms.

Usually θ has the form θ = {X1/t1, ..., Xk/tk} meaning that each variable Xi

is substituted by the term ti. Applying a substitution θ to a LPAD T means
replacing all the occurrences of each variable Xj in φ by the corresponding term
tj . For an exhaustive treatment of PLPs see [22].

Given an LPAD T , the main task is to perform inference. There are two
types of inference: exact inference and approximate inference. Both exact and
approximate inference are implemented into the suite cplint [1, 23].

3.1 Exact Inference

The main goal of exact inference is to solve tasks in an exact way, without
approximation. Various approaches have been presented for performing inference
on LPADs, such as PITA [24]. Starting from an LPAD, PITA performs inference
using knowledge compilation [10] to Binary Decision Diagrams (BDD).

3 https://etherscan.io/

https://etherscan.io/

The exact inference task is in general #P-complete [16] so it is not tractable
for certain domains. In these cases, approximate inference is needed. We will not
use exact inference in this paper and so we will not cover this topic further in
detail.

3.2 Approximate Inference

In cplint, approximate inference is performed using Monte Carlo algorithms [5,
20]. Using these algorithms, the possible worlds are sampled and the query is
tested in the samples. The estimated probability of the query is then given by
the fraction of the sampled worlds where the query succeeds.

Consider a simple example were a coin is toss with uncertainty on its fairness.
Our goal is to find the probability that it lands head or tail. A probabilistic logic
program to model this scenario may be:

heads(Coin):0.5; tails(Coin):0.5 :-

toss(Coin),not(biased(Coin)).

heads(Coin):0.6; tails(Coin):0.4 :-

toss(Coin),biased(Coin).

fair(Coin):0.9; biased(Coin):0.1.

toss(Coin).

The program states: if we toss a coin that is not biased, then it lands heads
or tails with the same probability 0.5. If we toss a coin that is biased, then it
lands heads with probability 0.6 and tails with probability 0.4. We express our
uncertainty on the bias of the coin supposing that it is fair with probability 0.9
and biased with probability 0.1. Finally, we say that the coin is certainly tossed.

To compute the probability that the coin lands head, using the module
MCINTYRE from cplint. For example, we can sample heads(Coin) a cer-
tain number of times and compute the probability that it’s biased using ?-

mc sample(heads(coin),1000,P). It’s also possible to compute expectations
by sampling using mc expectation/4 to get, for instance, the number of consec-
utive toss landing head. cplint also allows the definition of probability densities
using A:Density:- Body. For instance, g(X): gaussian(X,0, 1) states that
argument X of g(X) follows a Gaussian distribution with mean 0 and variance
1.

4 Modelling Smart Contracts with Probabilistic Logic
Programming

Probabilistic Logic Programming [11] has been successfully applied in many
different fields where probability has a key role, such as natural language pro-
cessing, link prediction in social networks, model checking and also Bitcoin pro-
tocol [3, 4, 19]. While smart contracts are, by definition, deterministic (i.e., the
execution of a smart contract’s function must always yield the same result), the

interaction among users of the same smart contract can be seen as probabilistic
because the involved parties are not under the control of the issuer.

From a smart contract issuer’s perspective, he can be interested in the ex-
pected value of certain profit variables, such as the collected fees (which can be
a fixed fraction of the user input value), the expected number of tokens sold in
a certain amount of time or the tokens distribution after several transactions
among users. From the opposite perspective, the user’s perspective, he could be
interested in the expected reward from participating in a smart contract game,
such as gambling, which is, at the moment of writing, among the smart contract
categories with most interactions (according to DappRadar4).

These values can be computed by translating smart contracts into probabilis-
tic logic programs. This process is composed of two steps: the smart contract is
translated into a Logic Program and then probabilistic facts are added to turn
it into a PLP. The translation of a smart contract function into a logic program-
ming predicate is straightforward. Here we use SWI-Prolog [30] implementation
of the programming language Prolog. Every function can be translated into a
predicate with the same name and the same number of arguments. Moreover, if
needed in the logic flows of the function, the members of the globally available
msg object, such as msg.value or msg.sender, can be added to the arguments
list of the predicate. Since a Prolog programs does not allow the return key-
word, all the values that are returned from a Solidity function must be added as
further arguments of the predicate.

Listing 1.1 shows a simple example of a smart contract written in Solidity
simulating a bank. The function constructor is executed only at the creation
of the contract: it sets the owner of the contract and issues 1000 tokens to the
creator. Each user has the possibility to call transfer. This function accepts two
parameters, the address of the receiver and the amount the user wants to transfer
to the receiver. First, it verifies that the user has enough funds to perform the
operation and that the sender is different from the receiver. Both conditions are
evaluated using require, a built-in function that checks the condition passed
as input and throws an exception if it is not met. Then, the balances of both
parties are updated accordingly.

To simulate the storage reserved to a smart contract, it is possible to add
two further arguments to the predicate arguments list, one for the input list and
one for the output list: using a user-defined predicate called find/3, we retrieve
the balance of the sender (identified with Sender) from BalanceList and we
store it into BalanceSender. Similarly, we retrieve the balance of the receiver.
Then, we perform the checks corresponding to require in listing 1.1. Finally,
we update the balances and update the list (generating another list with the old
balances replaced with the new one for both parties, since Prolog lists do not
allow modifications) using another user-defined predicate called update/3.

Once the contract is translated into SWI-Prolog code, we can add some
probabilistic facts. For instance, we may suppose that the transferred amount
from a user to another user (this transfer can be seen also as placing a bet, by

4 https://dappradar.com/

https://dappradar.com/

contract simpleBank {

address owner;

mapping(address => uint) balances;

constructor () public {

owner = msg.sender;

balances[msg.sender] = 1000;

}

function transfer(address receiver , uint amt) public {

require(balances[msg.sender] >= amt);

require(msg.sender != receiver);

balances[msg.sender] -= amt;

balances[receiver] += amt;

}

}

Listing 1.1. Example of Solidity smart contract.

transferring funds to the address where the smart contract is stored) is uniformly
distributed between 0.5 and 2 Ether. This uncertainty can be expressed with
amount(A):uniform(A,0.5,2.0). The complete code is shown listing 1.2.

amount(A):uniform(A,0.5 ,2.0).

transfer(Receiver ,Amt ,Sender ,BalanceList ,NewBalanceList):-

find(Sender ,BalanceList ,BalanceSender),

find(Receiver ,BalanceList ,BalanceReceiver),

amount(Amt),

BalanceSender >= Amt ,

Sender \= Receiver ,

NewBalanceS is BalanceSender - Amt ,

NewBalanceR is BalanceReceiver + Amt ,

update(BalanceList ,Sender ,NewBalanceS ,NewBalanceList1),

update(BalanceList1 ,Receiver ,NewBalanceR ,NewBalanceList).

Listing 1.2. Example of smart contract translated into a probabilistic logic program.

The parameter Amt is now sampled from the uniform distribution specified
above. Finally, to query the program to get, for instance, the expected trans-
ferred value, we can use mc expectation/4. The following section shows how we
applied this method to three smart contracts deployed and publicly accessible
on the Ethereum mainnet. The usage of a PLP language makes it possible to
test the smart contract without deploying it into a test net. Moreover, a logical
language for smart contracts makes the contract simpler and easier to debug.

5 Experiments

To conduct our experiments we modelled three smart contracts written in So-
lidity taken from Etherscan. In the experiments, we analyzed a smart con-

tract for transferring tokens, one for a Ponzi scheme and one of a gambling
game. All the experiments are conducted on a cluster5 with Intel® Xeon®

E5-2630v3 running at 2.40 GHz. The execution time is computed using the
built-in SWI-Prolog predicate statistics/2 and the memory usage is the value
maxresident computed using GNU Time6. For each experiment, we used the
predicate mc expectation/4, available in cplint, with 1000 samples.

5.1 Transfer

In this example we model a scenario where N users trade (burn or transfer) a
certain amount of tokens. The functions burn and transfer are taken from the
code stored at the address 0xB8c77482e45F1F44dE1745F52C74426C631bDD52 on
the Ethereum mainnet. Each user starts with 100 tokens. We want to know,
for example, how many transfers are needed to produce a situation where a
single user has more than 180 tokens. Those two values have been chosen just
to demonstrate the process. Transfers among users are done in a random way
with the transferred amount uniformly distributed between 1 and 10. Moreover,
we include a small probability (5%) that, instead of trading tokens, the user will
burn tokens. In Table 1 we show the relation between number of users, execution
time of the experiments, memory usage and expected number of transactions.
As expected, the number of transfers needed to create a situation in which a user
has more than a certain number (180 for this experiment) of tokens increases as
the number of users increases.

Consider now the transfer function shown in listing 1.1. The second line
checks that the sender of the tokens is different from the receiver. However,
in some real-world examples 7, due to coding errors, this check is not present,
causing the generation of unexpected extra tokens. The method proposed in this
paper is also suitable to spot bugs and coding errors of this type. For modelling
this situation, we run the previous experiment but this time we compute the
expected value of all circulating tokens, represented as the sum of the balances
of all the participants. In every run, the program chooses two random (possibly
the same) users from the user’s list and performs a transfer of tokens between
them. As expected, the number of circulating tokens exceeds the initial amount.
The results are presented in Table 2.

5.2 Ponzi Scheme

The boost of blockchain adoption in the last years caused a massive number of
smart contracts being issued. In [7] and [28] the authors identify and analyze
a huge number of Ponzi schemes deployed in the Bitcoin blockchain. In [6] the
analysis was extended to the Ethereum blockchain.

5 http://www.fe.infn.it/coka/doku.php?id=start
6 https://www.gnu.org/software/time/
7 https://gist.github.com/loiluu/0363070e1bada977f6192c8e78348438

http://www.fe.infn.it/coka/doku.php?id=start
https://www.gnu.org/software/time/
https://gist.github.com/loiluu/0363070e1bada977f6192c8e78348438

Table 1. Details for the Transfer experiment (Subsection 5.1).

of users Time (s) Memory (Mb) Expected Value

5 1.643 52.744 192.724
25 8.717 102.924 421.516
50 23.431 155.636 661.514
75 44.172 202.428 874.234
100 71.367 246.136 1071.335
125 101.48 285.208 1249.186
150 140.116 327.488 1441.242

Table 2. Details for the Transfer experiment (Subsection 5.1) with bug.

of users Time (s) Memory (Mb) Initial Amount Final Amount

5 0.755 33.324 500 627.262
25 4.967 95.996 2500 2592.483
50 12.834 154.196 5000 5077.37
75 23.828 204.036 7500 7568.241
100 37.663 253.204 10000 10064.181
125 53.451 294.352 125000 12561.246
150 72.883 344.072 150000 15058.114

A Ponzi scheme is a financial fraud that promises a high return of the in-
vestment: the profit increases as long as the number of people involved in the
schema increases. However, this type of business model, and in particular pyra-
mid schemes, a variant of Ponzi scheme, quickly become unsustainable due to
the need of constant increase in participants to be profitable. Probability models
in these cases are fundamental for analyzing the expected reward (payoff) and
avoid being cheated.

For this experiment, we collect the code for a well-known pyramid schema
called Rubixi, stored at 0xe82719202e5965Cf5D9B6673B7503a3b92DE20be. This
code is often used to show a critical vulnerability of smart contracts which allow
anyone to become the owner of the contract and withdraw the collected fees [2].
In this experiment we ignore this problem as it is out of the scope of this ex-
ample. The logic of Rubixi is simple: a user can send some Ether, at least 1, to
the contract through the fallback function. When receiving of the amount, the
contract collects the Ether, adds the new participant to the participants list and
redistributes the accumulated value to the other participants if certain condi-
tions are met. Several considerations can be done for this contract. For instance:
what is the amount of collected fees in a certain amount of time? What is the
number of participants we have to wait for receiving a payment? We modelled
the contract in order to answer the second question supposing that users will
send an amount of tokens to the contract uniformly distributed between 0.9 and
2, since we consider also a situation where a user sends an amount less than the
minimum required. In this case the amount is only added to the collected fees
but the participant is not considered. Our results are shown in Table 3.

Table 3. Details for the Ponzi Scheme experiment (Subsection 5.2). The last column
relates the number of users to the amount of reward distributed. For instance, the fifth
user entering the scheme has to wait 13 additional people to enter the schema before
getting paid.

of users Time (s) Memory (Mb) # of users to wait

5 0.159 13.384 13.783
50 1.997 37.232 69.814
100 6.111 59.384 111.138
150 12.681 85.768 152.868
200 22.051 113.436 194.760
300 50.852 174.420 278.393
400 92.934 225.832 361.172

5.3 Gambling

According to the DappRadar website, in April 2020, 5 out of 10 most used dApps
(web applications with the logic implemented on a smart contract) are gambling
games. In this section we analyse a smart contract implementing a gambling plat-
form stored at the address 0x999999C60566e0a78DF17F71886333E1dACE0BAE of
the Ethereum mainnet. It allows a player to bet on several games such as dice,
roulette or poker. The outcome is computed considering several payout masks.
Randomization is obtained using a commit value, externally generated, provided
as input to the bet, combined with other values. The experiments were con-
ducted simulating a player betting on the outcome of a single die an amount
distributed with a Poisson distribution with several values of mean, and trans-
action fees uniformly distributed between 0.07 and 0.2 Finney (1 Finney = 10−3

Ether), according to the data taken from BitInfoCharts8. The results obtained
are shown in Figure 1 and Table 4. As expected, the expected payout decreases
in relation to the bet amount and the number of trials.

Table 4. Resource usage for the Gambling experiment (Subsection 5.3) with λ = 150.

of trials Time (s) Memory (Mb)

5 0.517 9.344
50 4.890 11.016
100 8.757 18.924
150 12.938 28.22
200 17.439 27.076
300 27.011 143.896
400 37.437 201.996

8 https://bitinfocharts.com/ethereum/

https://bitinfocharts.com/ethereum/

0 100 200 300 400

−1,500

−1,000

−500

0

Number of trials

E
x
p

ec
te

d
p

ay
o
u

t
(F

in
n

ey
)

Gambling

λ = 50

λ = 100

λ = 150

λ = 200

Fig. 1. Graph showing the expected payout of consecutive number of trials. λ represents
the mean of the Poisson distribution.

6 Conclusions

In this paper we show that Probabilistic Logic Programming (PLP) can be ap-
plied to quantitatively model the behavior of smart contracts. We proposed an
approach to translate smart contracts into probabilistic logic programs, indepen-
dently from the contract language used, and we modelled three smart contracts
taken from the Ethereum mainnet (i.e., Transfer, Ponzi Scheme and Gambling)
in PLP.

Most of the literature about smart contracts is focused on vulnerability anal-
ysis and bug detection. There is a lot of work in the literature about automatic
verification of smart contracts written using Solidity. For example, in [17] the
authors used static analysis tools to automatically find bugs. Another approach
can be found in [15] where symbolic model checking has been used. In [13] the
Ethereum Virtual Machine has been defined in a language that can be compiled
and understood by theorem provers in order to check some safety properties.
All these methods perform well in finding bugs but do not return a quantitative
impact of a bug in the contract (for instance, the number of tokens lost). An
approach similar to the one proposed in this paper can be found in [8] where the
authors developed their own framework to extract some utility values based on
game theoretic considerations. Differently from them we focus on Probabilistic
Logic Programming and for the experiments we rely on existing and well-studied
tools instead of developing a new framework, taking advantage from the expres-
siveness of PLP and its underlying inference system. Moreover, our experiments
can be performed using cplint on SWISH9 [23] accessible through a web browser.

9 http://cplint.eu/

http://cplint.eu/

A natural extension of our work could be developing a tool that automatically
translates smart contracts into probabilistic logic programs to analyse further
examples. Another idea is to extend the analysis including a decision theory ap-
proach to select a set of actions to perform in order to maximize a reward value.
An interesting future work could be also to extend the probabilistic analysis to
the blockchain technology, as done in [4], to model several scenarios, such as
congestion of the network. Another future work is the design of a logic-based
smart contract language or architecture, as suggested in [9] and [14] or proba-
bilistic logic-based smart contract to directly allow probabilistic computation to
be performed on the blockchain.

References

1. Alberti, M., Cota, G., Riguzzi, F., Zese, R.: Probabilistic logical inference on the
web. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016 Ad-
vances in Artificial Intelligence. Lecture Notes in Computer Science, vol. 10037,
pp. 351–363. Springer, Berlin (2016)

2. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart con-
tracts (sok). In: International Conference on Principles of Security and Trust. pp.
164–186. Springer (2017)

3. Azzolini, D., Riguzzi, F., Lamma, E.: Studying transaction fees in the bitcoin
blockchain with probabilistic logic programming. Information 10(11), 335 (2019)

4. Azzolini, D., Riguzzi, F., Lamma, E., Bellodi, E., Zese, R.: Modeling bitcoin pro-
tocols with probabilistic logic programming. In: Bellodi, E., Schrijvers, T. (eds.)
Proceedings of the 5th International Workshop on Probabilistic Logic Program-
ming, PLP 2018, co-located with the 28th International Conference on Inductive
Logic Programming (ILP 2018), Ferrara, Italy, September 1, 2018. CEUR Work-
shop Proceedings, vol. 2219, pp. 49–61. CEUR-WS.org (2018)

5. Azzolini, D., Riguzzi, F., Lamma, E., Masotti, F.: A comparison of MCMC sam-
pling for probabilistic logic programming. In: Alviano, M., Greco, G., Scarcello,
F. (eds.) Proceedings of the 18th Conference of the Italian Association for Arti-
ficial Intelligence (AI*IA2019), Rende, Italy 19-22 November 2019. Lecture Notes
in Computer Science, Springer, Heidelberg, Germany (2019)

6. Bartoletti, M., Carta, S., Cimoli, T., Saia, R.: Dissecting ponzi schemes on
ethereum: identification, analysis, and impact. arXiv preprint arXiv:1703.03779
(2017)

7. Bartoletti, M., Pes, B., Serusi, S.: Data mining for detecting bitcoin ponzi schemes.
In: Crypto Valley Conference on Blockchain Technology, CVCBT 2018, Zug,
Switzerland, June 20-22, 2018. pp. 75–84. IEEE (2018)

8. Chatterjee, K., Goharshady, A.K., Velner, Y.: Quantitative analysis of smart con-
tracts. In: European Symposium on Programming. pp. 739–767. Springer, Cham
(2018)

9. Ciatto, G., Calegari, R., Mariani, S., Denti, E., Omicini, A.: From the blockchain to
logic programming and back: Research perspectives. In: Cossentino, M., Sabatucci,
L., Seidita, V. (eds.) Proceedings of the 19th Workshop ”From Objects to Agents”,
Palermo, Italy, June 28-29, 2018. CEUR Workshop Proceedings, vol. 2215, pp. 69–
74. CEUR-WS.org (2018)

10. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17,
229–264 (2002)

11. De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Mach.
Learn. 100(1), 5–47 (2015)

12. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. In: Conference
on the Theory and Application of Cryptography. pp. 437–455. Springer (1990)

13. Hirai, Y.: Defining the ethereum virtual machine for interactive theorem provers.
In: International Conference on Financial Cryptography and Data Security. pp.
520–535. Springer (2017)

14. Idelberger, F., Governatori, G., Riveret, R., Sartor, G.: Evaluation of logic-based
smart contracts for blockchain systems. In: International Symposium on Rules and
Rule Markup Languages for the Semantic Web. pp. 167–183. Springer (2016)

15. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: Zeus: Analyzing safety of smart
contracts. In: 25th Annual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, February 18-21, 2018 (2018)

16. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. Adaptive computation and machine learning, MIT Press, Cambridge, MA
(2009)

17. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. pp. 254–269. ACM (2016)

18. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
19. Nguembang Fadja, A., Riguzzi, F.: Probabilistic logic programming in action. In:

Holzinger, A., Goebel, R., Ferri, M., Palade, V. (eds.) Towards Integrative Machine
Learning and Knowledge Extraction, LNCS, vol. 10344. Springer (2017)

20. Riguzzi, F.: MCINTYRE: A Monte Carlo system for probabilistic logic program-
ming. Fund. Inform. 124(4), 521–541 (2013)

21. Riguzzi, F.: The distribution semantics for normal programs with function symbols.
Int. J. Approx. Reason. 77, 1 – 19 (October 2016)

22. Riguzzi, F.: Foundations of Probabilistic Logic Programming. River Publishers,
Gistrup, Denmark (2018)

23. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R., Cota, G.: Probabilistic logic pro-
gramming on the web. Softw.-Pract. Exper. 46(10), 1381–1396 (10 2016)

24. Riguzzi, F., Swift, T.: The PITA system: Tabling and answer subsumption for
reasoning under uncertainty. Theor. Pract. Log. Prog. 11(4–5), 433–449 (2011)

25. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: Sterling, L. (ed.) ICLP 1995. pp. 715–729. MIT Press (1995)

26. Szabo, N.: Smart contracts (1994)
27. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general

logic programs. J. ACM 38(3), 620–650 (1991)
28. Vasek, M., Moore, T.: Analyzing the bitcoin ponzi scheme ecosystem. In: Inter-

national Conference on Financial Cryptography and Data Security. pp. 101–112.
Springer (2018)

29. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic Programs With Annotated
Disjunctions. In: ICLP 2004. LNCS, vol. 3132, pp. 431–445. Springer (2004)

30. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theor. Pract.
Log. Prog. 12(1-2), 67–96 (2012)

31. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151, 1–32 (2014)

	Modeling Smart Contracts with Probabilistic Logic Programming

